同源四倍体
人教版高中生物必修2-5.2拓展资料:同源多倍体和异源多倍体

同源多倍体和异源多倍体一、同源多倍体同一物种经过染色体加倍形成的多倍体,称为同源多倍体。
同源多倍体在植物界是比较常见的。
由于大多数植物是雌雄同株的,两性配子有可能同时发生减数分裂异常,结果使配子中染色体数目不减半,然后通过自交形成多倍体。
多倍体在动物中比较少见,这是因为动物大多数是雌雄异体,染色体稍微不平衡,就容易引起不育,甚至使个体不能生存,所以多倍体动物个体通常只能依靠无性生殖来传代。
例如,有一种甲壳动物,它的二倍体个体进行有性生殖,而四倍体个体则进行无性生殖。
此外,在蝾螈、蛙以及家蚕等动物中,也发现过三倍体和四倍体的个体,但是都没有能够连续传代。
同源多倍体中最常见的是同源四倍体和同源三倍体。
同源四倍体是正常二倍体通过染色体加倍形成的。
例如,马铃薯就是一个天然的同源四倍体。
人为地用化学药剂秋水仙素等处理发芽的水稻种子,可以获得人工同源四倍体水稻。
大麦、烟草、油菜等用化学药剂处理,也可以获得同源四倍体。
同源四倍体与二倍体相比,大多表现出细胞体积的增大,有时出现某些器官的巨型化。
这种巨型化一般都表现在花瓣、果实和种子等有限生长的器官上。
但是多倍体化却很少导致整个植株的巨型化,有时甚至相反。
这是因为植株的体积不仅取决于细胞的体积,还取决于生长期间所产生的细胞的数目。
通常情况下,同源多倍体的生长速率比其二倍体亲本低,因而大大限制了生长过程中细胞数目的增加。
在自然条件下,同源三倍体的出现,大多是因减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。
香蕉是天然的三倍体植物。
它一般只有果实,种子退化,以营养体进行无性繁殖。
采用人工手段使同种植物的四倍体与正常二倍体杂交,也可以获得同源三倍体植物。
在减数分裂过程中,三倍体植物由于染色体配对发生紊乱,通常很难正常分裂并形成有功能的配子。
例如,在分裂前期,每种染色体有三条,它们既可以组成三价体(三条染色体连在一起),也组成二价体(两条染色体连在一起)和单价体(一条染色体单独存在)。
第七章 同源四倍体 ppt课件

2察,具40条染色体的4n玉米,产生的雄配 子中含有20条染色体的占42%,其余均为非整倍体。
Dawson(1962)研究,同源四倍体番茄的花粉 (n=24)只占75%,其它25%的花粉含有多于或少于
n=24的染色体数。
2020/10/28
14
○
2020/10/28
15
2、配子传递
产生的非整倍体配子,雌雄配子成活率相近,但 传递率不同,因为雄配子有竞争作用,所以没有雌配
子传递率高,也即整倍体配子通过花粉传递率高。
2020/10/28
16
同源四倍体后代当中,染色体数目存在差异:
例如,Randolph 1935 报告
4n玉米后Ⅰ20/20分离的占2/3
后代中 2n = 40
器官和组织变大。
2、代谢活性改变 四倍体细胞成份有所改变,如,水份、蛋白质、叶
绿素、纤维素、生长素等(有增有减)。
例如,生长素含量 4n<2n
∴一般4n生长缓慢,花期推迟,分蘖和分枝减少。大多数
水果、蔬菜,维生素C含量4n>2n;种子植物蛋白质含
量4n>2n;玉米,类胡萝卜素含量4n>2n,高43%
75-95%, 黑麦种在瑞典,结实率约为65%,在美国加
洲结实率达90%以上。
2020/10/28
18
U.Lsing 1967 研究四倍体大麦,F1优势不同结实率不同, F1优势越大,结实率越高,说明其非整倍体发育较好。
引起花粉和胚珠不育的原因不尽相同:
花粉育性:取决于小孢子发生过程
结实性:取决于(1)大孢子发生过程;
4n新种
(2)减数分裂异常 性母细胞(2n)→2n配子→有性结合→少数4n个体
不同物种或基因型产生2n配子频率不同:
同源四倍体白菜异源胞质雄性不育系的选育

单角籽数 2##3; 7#* 763 ( ! I >E ) ><= F D <= F !! E= @ D E= 1 >@= L D L= L
! ! 注:>= 四倍体白菜胞质雄性不育系 K’89:.6( ( @A)0&2;<= 榨菜胞质雄性不育系 &5;%’*3 0&2; L= 四倍体白菜胞质雄性不育系的保持系( 四倍体中白梗)K’89:.6( ( @A) 0&2 G’()%’()#* +()#( M.6)-N’(-#)-( @A) )
・ 2#・
天,将转育父本四倍体中白梗 !" 的成熟花粉用 #$ %& 的 !’射线预处理。蕾期人工杂交,以促使真杂种的 产出。 #( )( )* 回交选择* 将 +# 种子播种成苗后,株型出现分离,从中选择叶片变圆的胞质不育株,将其与中 白梗第 , 代自交系杂交。以后,各回交世代对不育株的选择方法是:对营养器官,选择叶片变圆,叶柄 变宽,叶色转绿迅速的植株;对生殖器官,选择雄蕊退化成花瓣状,其剖面内无花粉者。同时,对蜜腺 和子房的发育程度进行选择,淘汰蜜汁分泌少和子房扭曲畸形的植株。每代采种时,通过检查单株每角 果结籽数,对雌蕊育性进行选择。至回交 - 代,同源四倍体白菜胞质雄性不育系转育成功。选育过程见 图 #。
!!
宽 J(3%. F= BC D E= B1 !! L= LF D E= @C 1= LC D E= L? !!
雄蕊长 H GG 2%’G#) +#)-%. ( ! I >E ) @= @E D E= @B F= B1 D E= FE 1= <B D E= 11
!! !!
雌蕊长 H GG K(;%(+ +#)-%. ( ! I >E ) ?= B? D E= F< ?= BB D E= F? C= 1F D E= BE
1同源四倍体咖啡 microsatellites markers

Abstract Genetic diversity among 115coffee accessions from the Coffea Germplasm Collection of IAC was assessed using SSR markers.The germplasm represents 73accessions of Coffea arabica derived from spontaneous and subspon-taneous plants in Ethiopia and Eritrea,species center of origin and diversity,13commercial cultivars of C.arabica developed by the Breeding Program of IAC,1accession of C.arabica cv.‘Geisha’,13accessions of C.arabica from Yemen,5accessions of C.eugenioides ,4accessions of C.racemosa and 6accessions of C.canephora .Genetic analysis was performed using average number of alleles per locus (A ),proportion of polymorphic loci (P ),Shannon’s genetic index (H ¢;and G ¢ST )and clustering analysis.All eval-uated species were distinguished by a cluster analysis based on Jaccard’s coefficient.Differen-tiation between the cultivated plants of C.arabica and accessions derived from spontaneous and sub-spontaneous plants was observed.Spontaneous and subspontaneous accessions from Ethiopia were separated according to the geographical origin:east and west of the Great Rift Valley.Cultivated plants showed a low genetic diversity with a division in two groups:accessions from Yemen (H ¢=0,028)and Brazilian commercial cultivars (H ¢=0,030).The results agreed with previously reported narrow genetic basis of cul-tivated plants of C.arabica and supported the hypotheses about domestication of the species.This study also showed a significant genetic diversity among accessions from Ethiopia and Eritrea present in the Germplasm Collection of IAC.This diversity is specially observed in accessions from Sidamo (H ¢=0,143),Kaffa (H ¢=0,142)and Illubabor (H ¢=0,147)indicating their importance as source of genetic variability for coffee breeding programs.Keywords Coffea arabica ÆDomestication ÆGermplasm ÆMolecular markersIntroductionAlthough the genus Coffea contains approxi-mately 80taxa (Bridson and Verdcourt,1988),only two species are commercially exploited,M.Silvestrini (&)ÆO.Guerreiro-Filho ÆM.B.SilvarollaCentro de Cafe´‘‘Alcides Carvalho’’,Instituto Agronoˆmico de Campinas (IAC),Campinas,SP 13001-970,Brazile-mail:milene.silvestrini@M.G.Junqueira ÆA.C.Favarin ÆC.A.ColomboCentro de Recursos Gene´ticos Vegetais,Instituto Agronoˆmico de Campinas (IAC),Campinas,Brazil M.P.MalufEmpresa Brasileira de Pesquisa Agropecua´ria (Embrapa),Campinas,BrazilGenet Resour Crop Evol (2007)54:1367–1379DOI 10.1007/s10722-006-9122-4RESEARCH ARTICLEGenetic diversity and structure of Ethiopian,Yemen and Brazilian C offea arabica L.accessions using microsatellites markersMilene Silvestrini ÆMichele G.Junqueira ÆAndre ´a C.Favarin ÆOliveiro Guerreiro-Filho ÆMirian P.Maluf ÆMaria B.Silvarolla ÆCarlos A.ColomboReceived:25November 2005/Accepted:12September 2006/Published online:28February 2007ÓSpringer Science+Business Media B.V.2007Coffea arabica L.and Coffea canephora Pierre ex Froehner.C.arabica is an autogamous species and the only allotetraploid(2n=4x=44)of the genus while the other species are diploids(2n=2x =22)and generally self-incompatible(Krug and Carvalho,1951). C.arabica is native of the highlands of Ethiopia(Sylvain,1955),but there are also records of wild arabica coffee in the Boma Plateau of Sudan(Thomas,1942)and Mount Marsabit of Kenya(Berthaud and Charrier,1988).The arabica coffee cultivation started in Arabia, specifically in Yemen,five centuries ago.In the early 18th century,progenies from a single Indonesia plant cultivated in Europe were spread out to South America and turned out to be the genetic basis of main cultivars of Brazil and other countries (Chevalier and Dagron,1928;Carvalho,1945).In view of this narrow genetic basis and the necessity of genetic resources conservation,FAO organized in1964–65a mission to collect sponta-neous and subspontaneous coffee germplasm in probable native regions of the species(FAO, 1968).This initiative resulted in621samples of seeds from various collecting sites in Ethiopia and the Republic of Eritrea which were carefully documented and sent to six institutions in India,Tanzania,Ethiopia,Costa Rica,Peru and Portugal for further research(FAO,1968).The accessions represented in the Coffee Germplasm Collection of Instituto Agronoˆmico de Campinas(IAC)include plant material orig-inated from308of those seed sample,obtained from plants of the Centro Agrono´mico Tropical de Investigacio´n y Ensen˜anza(CATIE)at Turri-alba,Costa Rica,collected in the years1973and 1987.There is also a substantial number of cultivated coffee germplasm in the IAC’s collec-tion.Besides this,several samples of plants from Yemen were introduced by A.B.Eskes,a researcher from IRCC,Montpellier,after a detailed morphologic and agronomic character-ization(Eskes and Mukred,1990).Since their introduction at IAC,all those materials are under continuous evaluation regard-ing botanic,agronomic,and technologic aspects (Carvalho et al.,1983;Mazzafera et al.,1990; Silvarolla et al.,2000).However,despite all these studies,the degree of genetic diversity and structure of the IAC collection is poorly under-stood.In order to fulfill this analysis,molecular markers could help reveal the structure of genetic diversity,which is an important information for setting up a core collection and to improve the conservation,accessibility and use of genetic resources of this collection(Hamon et al.,1999).Previous studies have already evaluated the genetic diversity of some Ethiopian and FAO accessions through morphologic and agronomic characteristics(Montagnon and Bouharmont, 1996),RAPD markers(Lashermes et al.,1996; Anthony et al.,2001;Chaparro et al.,2004;Aga et al.,2003)and ISSR markers(Aga et al.,2005). However,in these studies only few accessions from Yemen were analyzed(Montagnon and Bouharmont,1996;Lashermes et al.,1996; Anthony et al.,2002)and were reported different results regarding grouping and genetic structure of those accessions collected in different regions from Ethiopia and Yemen.Chaparro et al.(2004) did not found an association between grouping and the site of origin in Ethiopia.Montagnon and Bouharmont(1996)showed that there is a sepa-ration between coffee trees growing east and west of the Great Rift Valley,with accessions from south–eastern and southern of Ethiopia being grouped together with cultivated plants from Yemen.Anthony et al.(2001)and Aga et al. (2003,2005)also distinguished eastern and western groups in accessions from Ethiopia,but with a low genetic differentiation between them and cultivated plants arising as a group apart (Anthony et al.,2001).Microsatellites markers(SSR)have shown good efficiency to assess genetic diversity and relationships among coffee trees(Moncada and McCouch2004;Maluf et al.,2005).Thus,we thought SSR could be an alternative tool to elucidate the questions about genetic structure of C.arabica as well to characterize diversity levels of genetic resources included in the Coffea Germplasm Collection of IAC.Further-more,this is thefirst study analyzing a repre-sentative sample of both materials collected from the center of the origin and diversity of the C.arabica species and cultivated plants from Yemen and Brazil through microsatellites markers.Material and methods Plant materialThe evaluated plant material consisted of 115coffee accessions from the Coffea Germplasm Collection of IAC.These included 73accessions of C.arabica L.derived from spontaneous and subspontaneous trees from various regions of Ethiopia and Eritrea (Fig.1),13accessions of C.arabica from Yemen,1accession of C.arabica cv.‘Geisha’(Table 1),and 13commercial culti-vars of C.arabica developed by the IAC Breed-ing Program (Table 2).Also,5accessions of C.eugenioides S.Moore,4accessions of C.racemosa Lour.and 6accessions of Coffea canephora Pierre ex Froehner were included as outgroup species due to their importance in the evolutionary history of coffee and as source of target genes for breeding programs.Sampling of spontaneous and subspontaneous accessions from Ethiopia and Eritrea was representative of total accession number at the Germplasm Collection of IAC.Genomic DNA extractionTotal genomic DNA was extracted from frozen young leaves according to Stewart Jr.and Via (1993),using CTAB as detergent.All DNA samples were diluted to a final concentration of 20ng/l l.SSR amplificationPrimer sequences to amplify SSR locus were obtained from Combes et al.(2000)and Rovelli et al.(2000)(Table 3).Final reaction conditions were 40ng of genomic DNA, 1.5·reaction buffer,0.1mmol l –1of dNTP,2mmol l –1of MgCl 2,5q mol of each primer and 1.5U of Taq DNA polymerase.The complete thermal cycle program was 5min at 95°C,followed by 30cycles of 1min at 95°C,1min at 60°C and 1min at 72°C,and a final 5min of elongation time at 72°C.Primers were fluorescently labelled and ampli-fied products were separated on a 5%acrylamide gel using an ABI 377automatedsequencerFig.1Collecting sites of Coffea arabica accessions evaluated.Ethiopia political organization is according to FAO (1968),except by separation of Eritrea(Applied Biosystems).Products were detected by the applicative Gene Scan(Applied Biosys-tems)using internal molecular size markers (GENESCAN-500ROX),and analyzed by the applicative Genotyper v 2.0(Applied Biosys-tems).Table1List of Coffea arabica accessions from the Coffea Germplasm Collection of IAC analyzed through SSR markers.‘‘E’’identifies material collected in Ethiopia and Eritrea by FAO and‘‘T’’identifies material from the CATIE’s collection.Spontaneous(spont)and subspontaneous-derived(sub)material originated from single plant,random or representative sample according to FAO(1968)Origin SampleCode Accession CollectionnumberType Origin SampleCodeAccession CollectionnumberTypeHarar HA1IAC2026E12/T4950Random sample sub Kaffa KA23IAC3929E336/T4594Single sub HA2IAC2025E7/T4472Random sample sub KA24IAC3930E345/T4603Single subSidamo SI1IAC2029E18/T4474Random sample sub KA25IAC3948E142/T4663Single spont SI2IAC2102E237/T4758Representativesample subKA26IAC3949E143/t4664Single spontSI3IAC2032E22/T4476Random sample sub KA27IAC3952E468/T4691Single subSI4IAC2030E19/T4475Random sample sub KA28IAC3950E144/T4665Single spontSI5IAC2031E21/T4953Random sample sub KA29IAC3954E188/T4693Two plants sub SI6IAC2028E17/T4473Random sample sub KA30IAC3955E311/T4699Single subShoa SH1IAC2027E16/T4951Random sample sub KA31IAC3959E385/T4784Single sub SH2IAC2035E36/T4500Random sample sub KA32IAC3960E388/T4787Single subSH3IAC2036E37/T4501Random sample sub KA33IAC3965E396/T4803Single subEritrea ER IAC2207E579/T4945Random sample sub KA34IAC3968E411/T4811Single subGojjam GO1IAC2205E571/T4939Single sub KA35IAC3972E418/T4818Single sub GO2IAC2202E558/T4926Single sub Illubabor IL1IAC3986E453/T4853Single spontGO3IAC2206E572/T4940Single sub IL2IAC3985E448/T4848Single spontGO4IAC2204E565/T4933Single sub IL3IAC3984E446/T4846Single spontGO5IAC2203E563/T4931Single sub IL4IAC3983E445/T4845Single spontGO6IAC4008E559/T4927Single sub IL5IAC3981E438/T4838Single spontGO7IAC4009E560/T4928Single sub IL7IAC3979E436/T4836Single spontGO8IAC4010E561/T4929Single sub IL8IAC3976E425/T4825Single spontGO9IAC4011E562/T4930Single sub IL9IAC3975E424/T4824Single spontGO11IAC4013E578/T4944Single sub IL10IAC3843E431/T4831Single spontGO12IAC4015E577/T4959Single sub IL11IAC3849E465/T4865Single spontKaffa KA1IAC3814E134/T4568Random sample sub IL12IAC3934E358/T4631Single sub KA2IAC3818E328/T4586Single sub IL13IAC3935E361/T4634Single subKA3IAC3832E226/T4749Single sub IL14IAC3936E366/T4639Single subKA4IAC3856E531/T4900Single sub IL15IAC3937E367/T4640Single subKA5IAC3838E380/T4795Single sub IL16IAC3938E369/T4642Single subKA6IAC3995E522/T4889Single sub IL17IAC3940E373/T4646Single subKA7IAC3998E536/T4905Single subKA8IAC3999E539/T4908Single spont Geisha(cv)GE IAC2210T4305Cultivated fromMalawi KA9IAC4000E542/T4911Single sub Yemen YE1IAC4113Cultivated-Localtype KA10IAC4001E543/T4912Single sub YE2IAC4114Cultivated-Localtype KA11IAC4002E547/T4916Single sub YE4IAC4116Cultivated-Tessawi KA12IAC3804E307/T4485Single sub YE5IAC4117Cultivated-Tessawi KA13IAC3839E412/T4812Single sub YE6IAC4118Cultivated-Essaii KA14IAC3913E495/T4533Single sub YE8IAC4120Cultivated-Essaii KA15IAC3915E300/T4546Single sub YE10IAC4122Cultivated-Tessawi KA16IAC3916E474/T4547Single sub YE11IAC4123Cultivated-Odaynii KA17IAC3917E475/T4548Single sub YE12IAC4124Cultivated-Localvariant KA18IAC3919E480/T4553Single sub YE13IAC4125Cultivated-Localvariant KA19IAC3920E488/T4560Single sub YE14IAC4126Cultivated-Tessawi KA20IAC3921E491/T4564Single sub YE15IAC4127Cultivated-Katii KA22IAC3926E150/T4573Single sub YE16IAC4128Cultivated-KatiiTable2List of commercial Coffea arabica cultivars developed by IAC evaluated through SSR markersCultivar Sample code OriginAcaia´IAC474-4AC474-4Bourbon Vermelho·Sumatra(Typica)Mundo Novo IAC388-17MN388-17Bourbon Vermelho·Sumatra(Typica)Bourbon Amarelo IAC J19BA Bourbon Vermelho(mutation)Catuaı´Vermelho IAC81CV81Caturra Amarelo476·Mundo Novo374-19Catuaı´Vermelho IAC144CV144Caturra Amarelo476·Mundo Novo374-19Catuaı´Amarelo IAC100CA100Caturra Amarelo476·Mundo Novo374-19Icatu Vermelho IAC4042IV4042(C.canephora cv.Robusta·Bourbon Vermelho)·Mundo Novo Icatu Vermelho IAC4045IV4045(C.canephora cv.Robusta·Bourbon Vermelho)·Mundo Novo Icatu Vermelho IAC4046IV4046(C.canephora cv.Robusta·Bourbon Vermelho)·Mundo Novo Icatu Amarelo IAC2944IA Icatu Vermelho·Bourbon AmareloOuro Verde IAC H5010-5OV Catuaı´Amarelo·Mundo Novo515Obata˜IAC1669-20OB(Villa Sarchi·Hybrid of Timor)·Catuaı´VermelhoTupi IAC1669-33TP(Villa Sarchi·Hybrid of Timor)·Catuaı´VermelhoTable3Access number of microsatellite loci in the‘‘Genbank’’,locus code and respective forward(F)and reverse(R) primer sequencesAcession number Locus code Sequence of primers(5‘–3’)Repeated sequenceAJ3087384-1CTG F=AAAAAGCTGGTCCATGTCAA(TG)8(SSR5)R=GGGGCGTTCAGTTATAAACAAJ30874617-2CTG F=AGGCCTTCATCTCAAAAACC(TC)14/(CA)11/(CA)16(SSR6)R=AGCGTTACTTGAGGCAAAGAAJ308762E6-3CTG F=CTGGGTTGGTTCTGATTTTG(TG)16(SSR7)R=GGTTCCCAGAGATTCTCTCCAJ308767E12-3CTG F=TGCTTAGGCACTTGATATAGGA(CA+TA)38(SSR9)R=CACGTGCAAGTCACATACTTTAAJ308785I9-3CTG F=TGGCCGTGATAATAAACAGC(TG)21(SSR11)R=ATGTGGCAATCTAAAGCCAAAJ250258M32F=AACTCTCCATTCCCGCATTC(CA)3/(CA)3/(CA)18(SSR14)R=CTGGGTTTTCTGTGTTCTCG–C2-2CATC F=CTCTCCCTCAGTCAATTCCA(ATC)14(SSR15)R=CTTGGTCTCCCTCCTTTTTCAJ30875432-2CTG F=AAGGGGAGTGGATAAGAAGG(CA)12(SSR17)R=GGCTGGATTTGTGCTTTAAGAJ308764E8-3CTG F=CACTGGCATTAGAAAGCACC(CA)14(SSR18)R=GGCAAAGTCAATGATGACTCAJ250251M3F=ATTCTCTCCCCCTCTCTGC(CA)6/(CA)3/(CA)3/(CA)3/ (SSR20)R=TGTGTGCGCGTTTTCTTG(CA)4/(CA)3/(CA)3/(CA)3AJ250252M11F=ACCCGAAAGAAAGAACCAAG(GT)4/(GA)4/(GT)4/(GT)6 (SSR21)R=CCACACAACTCTCCTCATTCAJ250253M20F=CTTGTTTGAGTCTGTCGCTG(GA)5/(GT)8/TT(GT)4/TT (SSR22)R=TTTCCCTCCCAATGTCTGTA(GT)7/(GA)11/(TC)2/(CT)3GT AJ250255M25F=CCCTCCCTGCCAGAAGAAGC(GT)5/CT(GT)2/(GT)12(SSR24)R=AACCACCGTCCTTTTCCTCGAJ250256M27F=AGGAGGGAGGTGTGGGTGAAG(GT)11(SSR25)R=AGGGGAGTGGATAAGAAGGAJ250257M29F=GACCATTACATTTCACACAC(CTCACA)4/(CA)9(SSR26)R=GCATTTTGTTGCACACTGTAAJ250260M47F=TGATGGACAGGAGTTGATGG(CT)9/(CA)8/(CT)4/(CA)5 (SSR27)R=TGCCAATCTACCTACCCCTTData analysisGels were scored by presence or absence of bands or alleles.Due to the tetraploid condition of C.arabica,it is impossible to distinguish between diallelic duplex and simplex and among different types of triallelic combinations of SSR loci. Therefore,for each individual plant,fragment frequencies were analyzed as multilocusfinger-prints,in which each allele was either scored present or absent.Genetic diversity within groups of C.arabica and within diploids species was evaluated by average number of alleles per locus(A),propor-tion of polymorphic loci(P)and the Shannon’s genetic index(H¢)(Bussel,1999).Groups of C.arabica consisted of accessions of the same collecting region(Table1)and commercial culti-vars developed by IAC.Cultivar‘Geisha’was excluded of the genetic diversity analysis because it was represented by only one accession/group. Estimation of A was an exception to the multilo-cusfingerprints approach once amplified products of each pair of primers were considered as alleles of the same locus.P was calculated dividing the number of polymorphic bands by total number of amplified bands in each group.Shannon’s genetic index for each marker was calculated for each group as:H¢=-Pp i*log2p iwhere p i is the frequency of the presence or absence of a band in that group.Following the method of Bussel(1999),the partitioning of genetic variation within and between groups of C.arabica was estimated.The average diversity over all populations for each locus(H¢pop)and the total diversity in the99 accessions of C.arabica for each locus(H¢sp)were calculated(for more details see Bussel,1999).Then the component of diversity within populations (H¢pop/H¢sp)and the component between popula-tions(G’ST=(H¢sp–H¢pop)/H¢sp)were estimated.H¢,H¢pop,H¢sp and G¢ST were the average values per locus calculated over all loci,including monomorphic ones,according to Bussel(1999). We categorized the partitioning of genetic diver-sity analysis according to the groups of accessions analyzed.These groups included all accessions (Analysis1),all accessions without Eritrea group (Analysis2),spontaneous and subspontaneous accessions(Analysis3)and spontaneous and subspontaneous accessions without Eritrea group (Analysis4).Eritrea group was excluded from Analysis2and4to improve understanding of species genetic structure.This was carried out because Eritrea group contains just one individual and this could lead to bias G¢ST values by decreasing H¢pop.Genetic distance among all accessions(includ-ing C.arabica cv.‘Geisha’)was estimated as the complement of Jaccard’s(1908)coefficient(Link et al.,1995).Genetic distances were also esti-mated using Dice coefficient(Dice,1945),which is equivalent to Nei and Li(1979),in order to compare values with other studies.Cluster anal-ysis was performed using the matrix distance based on the complement of Jaccard’s coefficient employing the UPGMA method.Bootstrap anal-ysis(Felsenstein,1985)was performed to evalu-ate the tree topology reliability for1,000 simulations using the software Treecon(Van de Peer and Watcher,1994).ResultsThe multilocusfingerprints approach was used to analyze the genetic diversity and structure of coffee accessions.In spite of this,specific results for each primers pairs were pointed out for characterization of individual SSR locus.SSR locus characterizationThe E12-3CTG(SSR9)locus showed a profile with3and4peaks even in diploid species such as C.canephora and C.eugenioides.The 4-1CTG(SSR5)locus was monomorphic(band of97bp)in C.arabica and C.eugenioides and did not amplify any fragment in C.racemosa and C.canephora species.Primers E6-3CTG, E8-3CTG and M3also amplified monomorphic bands within C.arabica accessions(a total of12 bands),and those were polymorphic among evaluated species.Genetic diversitySixteen SSR primers pairs produced a total of121 bands or alleles.All tested markers detected polymorphisms among the accessions evaluated, being54bands among C.arabica accessions and15bands among cultivated plants(Yemen,‘Geisha’and Brazilian cultivars).Also,7out of54 polymorphic bands of C.arabica,were present at high frequencies(0.8or more),31as rare alleles in low frequency(0.2or less)and16with frequencies between0.2and0.8.Genetic diversity analysis showed the highest values of H¢in diploid species(Table4).Values for A in diploid species were similar or even lower than those observed in C.arabica groups,prob-ably due to the allotetraploid nature of C.arabica which results in duplicate A values per plant.H¢values were relatively high in accessions from Kaffa,Illubabor and Sidamo provinces,moderate in Gojjam and Harar,and very low in cultivated plants.The P index was higher in diploid species and within Kaffa and Illubabor groups.The discrepancy of H¢relative to A and P values in Kaffa and Illubabor groups occurred due to the presence of rare alleles(Table4).Genetic distances ranged from0to0.88 between all possible pairs of genotypes,from0 to0.37among C.arabica accessions,from0to 0.30among spontaneous and subspontaneous accessions from Ethiopia and Eritrea,and from 0to0.19among cultivated accessions(Fig.1). Genetic distances among C.arabica accessions were also calculated using only the polymorphic bands exclusive to C.arabica(44.6%of total fragments).Results showed that this distance ranged from0to0.65using Jaccard’s coefficient or its complement and from0to0.49using Dice’s coefficient.Genetic structureG¢ST values showed a strong genetic structure in all accessions of C.arabica(Table5).A strong genetic structure was also observed in spontane-ous and subspontaneous accessions from Ethio-pian.Exclusion of group Eritrea,which contains just one individual,increased H¢pop values and decreased G¢ST values but yet results showed the strong genetic structure in the evaluated acces-sions(Table5).The hierarchical clustering analysis presented in Fig.2showed four major clusters comprising grouped accessions of each species.The analysis of species relationships showed C.canephora closer to C.arabica,followed by C.eugenioides. Also, C.racemosa was distantly related to C.arabica.Grouping of C.arabica accessions(Fig.2) revealed two main clusters.Thefirst contains only cultivated plants,including the accessions of Yemen,cultivar‘Geisha’and commercial cultivars from Brazil.An exception was the accession of Sidamo(SI4)also included in this group with materials from Yemen.Yemen accessions of type Tessawi(Table1)were distinguished from the others in a separated cluster.The second group encompassed basically all spontaneous and sub-spontaneous accessions from Ethiopia and Eri-trea.Despite the low boostrap values(Fig.2), there was a clear separation of these accessions in two large subgroups:thefirst included mainlyTable4Genetic diversity within species and groups of coffee species assessed by average number of alleles per locus(A),proportion of polymorphic loci(P) and Shannon’s genetic index averaged over all loci(H¢)Species Group A P(%)H¢Coffea arabica Harar(HA) 2.3 5.00.050Sidamo(SI) 2.716.50.143Shoa(SH) 2.512.40.115Eritrea(ER) 2.0––Gojjam(GO) 2.513.20.087Kaffa(KA) 3.224.80.142Illubabor(IL) 3.124.00.147Yemen(YE) 2.2 5.00.028Commercial cultivars 2.0 4.10.030 Coffea eugenioides 2.529.80.242 Coffea canephora 2.824.60.197 Coffea racemosa 2.120.70.200accessions from Sidamo and the second subgroup included all other accessions from the west side of the Great Rift Valley.DiscussionSSR locus characterizationIn general,the amplification patterns for each SSR locus evaluated corresponded to those pre-viously reported.The profile of E12-3CTG (SSR9)locus with3and4peaks in the diploid species C.canephora and C.eugenioides con-firmed that this pair of primers amplified a number of independent loci(Rovelli et al., 2000).Considering this,E12-3CTG locus has not been used to estimate number of alleles per locus(A).The locus4-1CTG(SSR5)was monomorphic in C.arabica and C.eugenioides and did not amplify any fragment in C.racemosa and C. canephora species.According Rovelli et al.(2000) this locus showed diploid type segregation in C. arabica.Thus,it is probable that the amplification has just occurred in putative genome provided by C.eugenioides(Lashermes et al.,1999).However, in other analysis Poncet et al.(2004)using different primer sequences to amplify this same SSR locus identified a monomorphic band of 239bp also in C.canephora and other diploid species,including C.eugenioides.This new primer pair amplified the total SSR sequence present at GENBANK,while Rovelli et al.(2000)’s primers amplified only part of the SSR sequence.These results suggested that the4-1CTG locus is present in C.arabica, C.eugenioides and C.canephora and other Coffea species(see Poncet et al.,2004).However,there is an interspecific polymorphism in theflanking regions of SSR that prevent amplification in C.canepho-ra,C.racemosa and in the putative C.canephora genome of C.arabica(Lashermes et al.,1999). Interestingly,Rovelli et al.(2000)identified heterozygotes in the accessions of C.arabica var.Caturra showing a polymorphism in repeat motifs within cultivated plants of C.arabica that was not observed in our study.Genetic diversityThe high variability detected in spontaneous and subspontaneous accessions of C.arabica was observed mainly in coffee trees from Sidamo, Kaffa and Illubabor provinces although it also must be noted that50%of accessions were sampled from Kaffa and Illubabor regions. Significant levels of genetic diversity in coffee plants from Kaffa and Illubabor were also reported by Anthony et al.(2001)and Chaparro et al.(2004).Indeed,the high variability among accessions from these regions in the collections is a consequence of the great effort in collecting samples with as much visual,botanical and agronomical diversity as possible(FAO,1968). The high genetic diversity detected in Sidamo accessions could be visualized by the proportion of shared alleles among genotypes within both divergent groups of C.arabica,cultivated plants and spontaneous and subspontaneous accessions from Ethiopia.Comparing the genetic distance values among C.arabica accessions,we found values similar to those reported by Orozco-Castillo et al.(1994), Anthony et al.(2001,2002),but lower values than Moncada and McCouch(2004).Genetic diversity evaluated by allele distribution(29.6%of alleles Fig.2Dendrogram of the115Coffea accessions listed in Tables1and2based on Jaccard genetic distance obtained from SSR markers using the UPGMA method.Numbers (%)on the branches correspond to bootstrap values above 50%(1,000replications).Letters indicate the geographical origin of accessions:W(West of the Great Rift Valley) and E(East of the Great Rift Valley)cTable5Partitioning of genetic diversity generated by121 SSR bands within and between groups of Coffea arabica accessions.H¢pop,H¢sp and G¢ST are the average per locus values allGroups analyzed H¢pop H¢sp G¢ST(1)All accessions0.0820.2100.577(2)All accessions without Eritrea0.0930.2100.526(3)Spontaneous and subspontaneousaccessions0.0980.1790.464 (4)Spontaneous and subspontaneousaccessions without Eritrea0.1140.1750.349with frequencies between0.2and0.8)revealed a diversity degree intermediate between that iden-tified by Anthony et al.(2001)and that found by Chaparro et al.(2004),with17and39.6%of alleles with frequencies between0.2and0.8, respectively.Proportion of polymorphic loci and Shannon’s index values estimated in this study can be considered in the same range of a similar analysis of arabica coffee in natural populations from Ethiopia(Aga et al.,2003).These authors determined P and H¢values ranging from37% to73%and0.2to0.4,respectively,in9plants per population.However,P and H¢were calcu-lated based on C.arabica amplified bands while in the present study all amplified bands,includ-ing those specific of diploid species and mono-morphic to C.arabica were included in the index calculation.On the other hand,if only C.arabica amplified bands were considered for calculating P and H¢values,these would be for Kaffa group,for example,P=55.6%and H¢= 0.328,identical to that observed by Aga et al. (2003).Besides this,observed values of genetic distances among accessions were similar in both studies.Therefore,these results suggest that there is a significant genetic diversity in the coffee collec-tion of IAC.Furthermore,the genetic diversity estimated for Ethiopian accessions was higher than that of cultivated plants.Thus there is a large variation that can be source for introgression of desirable characteristics in commercial cultivars that has already been used by the coffee breeding program of IAC(Bettencourt and Carvalho, 1968;Moraes et al.,1974;Fazuoli,1981;Silvarolla et al.,2004).Genetic structureResults of amplification of4-1CTG locus in C.arabica,C.eugenioides and C.canephora and analysis of species relationship observed in this work are in agreement with the hypothesis about the botanic origin of C.arabica species as a natural hybrid between C.canephora and C.eugenioides(Lashermes et al.,1999).Despite contrasting results concerning which of both species is closer to C.arabica,several molecular markers as well as phylogenetics studies have recognized C.canephora and C.eugenioides closer related to C.arabica than other Coffea species(Lashermes et al.,1993,1997;Cros et al., 1998;Ruas et al.,2000,2003).These diversity analyses also identified C.racemosa as the most genetically distant species of C.arabica.According to Bussel(1999)calculation of G’ST using the Shannon’s index are in accordance with G ST estimated by other methods,such as AMOVA and modified F-statistics.Also,G’ST is a good estimate to evaluate genetic structure of tetraploid,autogamous collections such as this of C.arabica plants,where heterozygosity cannot be assessed and Hardy–Weinberg equilibrium assumptions cannot be considered.G’ST values of C.arabica observed in this workfitted into expected values based on the breeding system.In that case,according to Bussel(1999),G’ST values for autogamous species from natural populations is around60%and around15%for allogamous species.Results of G¢ST for C.arabica accessions associated with cluster analysis indicated a strong genetic structure in the species.Therefore,the genetic diversity was observed among groups rather than within groups.Cluster analysis clearly showed the separation of cultivated plants from Ethiopian and Eritrean spontaneous and sub-spontaneous accessions.Besides,the analysis allowed distinguishing a morphologic type of Yemen(Tessawi)and Yemen accessions from Brazilian cultivars,although both groups exhib-ited a very low genetic diversity.These results are in agreement with the well-described narrow genetic basis of cultivated plants of C.arabica (Lashermes et al.,1996;Anthony et al.,2001; Moncada and McCouch2004;Maluf et al.,2005) and historical data.Brazilian coffee originated from a few plants introduced in the early18th century and these plants were originated from the first cultivated plants in Yemen(Chevalier and Dagron,1928;Carvalho,1945).Partitioning of genetic diversity of the sponta-neous and subspontaneous accessions showed a lower value of G¢ST(0.464)than that observed when all accessions were analyzed.However,the G¢ST value still indicated a strong genetic struc-ture in these accessions.Hence,accessions of。
关于同源多倍体与异源多倍体的有关问题

关于同源多倍体与异源多倍体的有关问题同一物种经过染色体加倍形成的多倍体,称为同源多倍体。
同源多倍体在植物界是比较常见的。
由于大多数植物是雌雄同株的,两性配子有可能同时发生减数分裂异常,结果使配子中染色体数目不减半,然后通过自交形成多倍体。
多倍体在动物中比较少见,这是因为动物大多数是雌雄异体,染色体稍微不平衡,就容易引起不育,甚至使个体不能生存,所以多倍体动物个体通常只能依靠无性生殖来传代。
例如,有一种甲壳动物,它的二倍体个体进行有性生殖,而四倍体个体则进行无性生殖。
此外,在蝾螈、蛙以及家蚕等动物中,也发现过三倍体和四倍体的个体,但是都没有能够连续传代。
同源多倍体中最常见的是同源四倍体和同源三倍体。
同源四倍体是正常二倍体通过染色体加倍形成的。
例如,马铃薯就是一个天然的同源四倍体。
人为地用化学药剂秋水仙素等处理发芽的水稻种子,可以获得人工同源四倍体水稻。
大麦、烟草、油菜等用化学药剂处理,也可以获得同源四倍体。
同源四倍体与二倍体相比,大多表现出细胞体积的增大,有时出现某些器官的巨型化。
这种巨型化一般都表现在花瓣、果实和种子等有限生长的器官上。
但是多倍体化却很少导致整个植株的巨型化,有时甚至相反。
这是因为植株的体积不仅取决于细胞的体积,还取决于生长期间所产生的细胞的数目。
通常情况下,同源多倍体的生长速率比其二倍体亲本低,因而大大限制了生长过程中细胞数目的增加。
在自然条件下,同源三倍体的出现,大多是因减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。
香蕉是天然的三倍体植物。
它一般只有果实,种子退化,以营养体进行无性繁殖。
采用人工手段使同种植物的四倍体与正常二倍体杂交,也可以获得同源三倍体植物。
在减数分裂过程中,三倍体植物由于染色体配对发生紊乱,通常很难正常分裂并形成有功能的配子。
例如,在分裂前期,每种染色体有三条,它们既可以组成三价体(三条染色体连在一起),也组成二价体(两条染色体连在一起)和单价体(一条染色体单独存在)。
同源多倍体与异源多倍体的比较

同源多倍体与异源多倍体的比较一、同源多倍体1、同源多倍体:指增加地染色体组来自同一物种,一般是由二倍体地染色体直接加倍产生的。
同一物种经过染色体加倍形成的多倍体,称为同源多倍体。
同源多倍体在植物界是比较常见的。
由于大多数植物是雌雄同株的,两性配子可能有同时发生异常减数分裂的机会,使配子中染色体数目不减半,然后通过自交形成多倍体。
同源多倍体中最常见的是同源四倍体和同源三倍体多倍体在动物中比较少见。
这是因为动物大多数是雌雄异体,染色体稍微不平衡,就容易引起不育,甚至使个体不能生存,所以多倍体动物个体通常只能依靠无性生殖来传代。
例如,在甲壳动物中有一种丰年鱼,它的二倍体个体进行有性生殖,而四倍体个体则进行无性生殖。
此外,在蝾螈、蛙以及家蚕等动物中,也发现过三倍体和四倍体的个体,但是都没有能够连续传代。
同源多倍体中最常见的是同源四倍体和同源三倍体。
同源四倍体是正常二倍体通过染色体加倍形成的。
例如,马铃薯就是一个天然的同源四倍体。
人为地用化学药剂秋水仙素等处理发芽的水稻种子,可以获得人工同源四倍体水稻。
大麦、烟草、油菜等用化学药剂处理,也可以获得同源四倍体。
同源四倍体与二倍体相比,大多表现出细胞体积的增大,有时出现某些器官的巨型化。
这种巨型化一般都表现在花瓣、果实和种子等有限生长的器官上。
但是多倍体化却很少导致整个植株的巨型化,有时甚至相反。
这是因为植株的体积不仅取决于细胞的体积,还取决于生长期间所产生的细胞的数目。
通常情况下,同源多倍体的生长速率比二倍体亲本低,因而大大限制了生长过程中细胞数目的增加。
2、形成原因在自然条件下,同源三倍体的出现,大多是由于减数分裂不正常,由未经减数分裂的配子与正常的配子结合而形成的。
香蕉是天然的三倍体植物。
它一般只有果实,种子退化,以营养体进行无性繁殖。
人们采用人工的方法,在同种植物中将同源四倍体与正常二倍体杂交,可以获得同源三倍体植物。
三倍体植物由于染色体的配对发生紊乱,不能正常地进行减数分裂。
园林植物同源四倍体的遗传特性(一)

园林植物同源四倍体的遗传特性(一)摘要多倍体在园林植物中广泛存在,由于多倍体具有一些独特的特征,已逐渐成为广大遗传育种学家研究的热点。
就同源四倍体与相应二倍体核DNA、雌雄配子育性、受精过程的差异;同源四倍体结实率(或育性)降低的原因及其随世代推移的变化;叶绿体、线粒体与核基因的关系等方面进行了总结和探讨。
关键词园林植物;同源四倍体;多倍化;遗传特性一个物种生物体内细胞染色体组数达到3组或3组以上时,称为多倍体。
多倍体作为高等植物中存在的一种普遍现象,在园林植物中广泛存在,如景天科、蔷薇科、锦葵科、禾本科、鸢尾科内多倍体种特别多。
细胞核内染色体组加倍以后,常带来一些形态和生理上的变化,这些改变都与基因剂量有关。
一般表现在叶大、茎粗、花大、色浓;育性低;抗逆性强;碳水化合物、蛋白质、维生素、植物碱等表现偏高。
如四倍体紫罗兰、桂竹香芳香性强、蜜腺多。
自然界的多倍体的产生多出现在分布区的一些边缘地带,多在气候条件恶劣的地区,这些地区多倍体的出现常伴随着抗逆性的相对提高,如报春花原产温带,我国云南很多,原始种为二倍体,而新生的异源四倍体分布在二倍体区域内的高山上,三倍体和八倍体分布在更北或更南的高山上,而十四倍体生长在极地。
20世纪30年代,自人们发现用秋水仙素诱导多倍体的方法以来,育种家们在植物倍性育种方面作出了较多的探索,形成了一些人工多倍体的商业品种。
在花卉方面,矮牵牛、金鱼草、鸡冠花等多倍体植物多表现为叶片肥厚、花色艳丽、花期长、花瓣多等特点,观赏价值得到了提高;林木方面,四倍体桑树及刺槐在生长量及抗逆性方面都较之二倍体对照有了较大提高。
同源四倍体育性的降低是由多方面原因引起的,既有同源四倍体核内染色体在减数分裂时,染色体间配对不正常致使育性降低,也有其他原因。
植物的育性主要受核内染色体减数分裂及雌雄配子的育性、授粉受精过程等方面的影响。
由于染色体倍性的变化,植物同源四倍体在前述几个方面较其起源二倍体均有所差异。
同源四倍体水稻成熟胚囊的结构及异常现象

同源四倍体水稻成熟胚囊的结构及异常现象
同源四倍体水稻成熟胚囊的结构及异常现象
应用整体染色透明激光扫描共聚焦显微术(WCLSM),对包括籼稻、粳稻及爪哇稻在内的13份同源四倍体水稻的成熟胚囊结构进行了观察.同源四倍体水稻多数子房(平均62.90%)胚囊结构正常,与二倍体的正常蓼型的相似,一些子房(平均37.10%)胚囊结构出现异常,异常包括雌性生殖单位退化、极核异常、胚囊退化、卵器退化、异常小胚囊和"双套结构"胚囊等6类.这些异常胚囊都可能影响受精,从而导致结实率降低.不同类型的同源四倍体水稻间异常结构胚囊的频率差异极显著.籼稻与粳稻比较,总的趋势是粳稻异常胚囊的频率高于籼稻,其中粳稻平均为25.66%,籼稻平均为19.34%.同一品种内异常类型的频率也存在明显的差异,显示异常结构胚囊的形成可能与品种的基因型有密切关系.
作者:郭海滨刘向东卢永根冯九焕 GUO Hai-bin LIU Xiang-dong LU Yong-gen FENG Jiu-huan 作者单位:华南农业大学,广东省植物分子育种重点实验室,广东,广州,510642 刊名:中国水稻科学 ISTIC PKU英文刊名:CHINESE JOURNAL OF RICE SCIENCE 年,卷(期):2006 20(3) 分类号:Q943 Q944.45 S511.01 关键词:同源四倍体水稻结构胚囊结实率。
第七章 同源四倍体

后Ⅱ,着丝点一裂为二,复制的两成员(染色单体)彼 此分向两极,这叫均衡分离。减数分离的前后两次细胞分裂, 分别称为前减数和后均衡。
当二价体中,基因与着丝点之间发生交换时,结果就使 二价体中的每条染色体上,既有姐妹染色单体,又有交换 来的非姊妹染色单体。对于非交换段来说,减数分裂过程 仍为前减数,后均衡;而对于交换区段来说(带有目标基 因)则与此相反,后Ⅰ,姐妹染色单体区段彼此分向两极, 后Ⅱ,非姐妹染色单体区段分向两极,即前均衡,后减数。
水果、蔬菜,维生素C含量4n>2n;种子植物蛋白质含 量4n>2n;玉米,类胡萝卜素含量4n>2n,高43%
3、对环境条件要求改变
4、改变自交不亲和性 二倍体自交不亲和系(2n)加倍→4n→自交不亲和性
变弱或消灭,在配子体不亲和性中表现更甚。
§7-2 同源四倍体的细胞学行为及可育性 一、同源四倍体的细胞学行为 二、同源四倍体可育性
一、同源四倍体的细胞学行为
1、联合与分离
同源四倍体的同源染色体之间存在相同的亲合力,但 由于同源区段只能两两相互配对,所以,存在如下联合 形式:
Ⅳ
分离:2/2 3/1
Ⅱ+Ⅱ
2/2
Ⅲ+Ⅰ
2/2 3/1 2/1
Ⅱ+Ⅰ+Ⅰ
2/2 3/1 2/1 1/1
不同数目的交叉,中Ⅰ形成Ⅳ的构象:
不同生物,Ⅳ出现频率:
引起花粉和胚珠不育的原因不尽相同: 花粉育性:取决于小孢子发生过程 结实性:取决于(1)大孢子发生过程;
(2)胚囊发育过程; (3)合子发育过程。
2、可育性降低的原因
1/染色体数目不平衡
➢ 染色体总数不平衡 例如,4n玉米,小孢子(n=20)只占42%,后代 中整倍体植株只有51.7~62.2%。
同源四倍体荞麦的细胞遗传学研究

( 一)从许多文献报道看, 不同作物的同源
四倍体的结实率是不相同的,即使同一作物的
质[ ad p ] 4 。R no h石研尤中发现, l 四倍儿中的不 育性,不可能归于与多价体有关的减数分砚的 不规则性, 高度可育和高度不育的玉米, 减数分 裂的染色体行为以及其配子体的染色体数最关
大。如榆林县 18 9 7年荞麦盛花期时遇到严 重
干旱,又伴有 4 天 3-3℃ 的高温,结果 -5 0 5 二倍体荞麦和四倍体荞麦的结实率都明显低于 18 96年 ( 3。同一品种开花多时结实率低, 表 ) 开花少时结实率高。四倍体荞麦与二倍体的结 实率比较无明显差异, 有时还有提高 ( 30 表 )
45 8 - 61 6 .3 .7 7 7 7. 0 5 7 7. 5
38。1 9 8. 77 72.1 . 0
大麦
莫斯 科 1 1 2
和稻 4 2 2 水稻
粉育性结果表明, 四倍体荞麦花粉育性为8 %, 5 二倍体荞麦的花粉育性: 9 q( I, X 3 表 ) _ '
表 1 四倍体 荞麦和二 倍体荞麦花 粉母 细胞减数 分裂时 染色体行为及花 粉育性比较
不同品种的同原四倍体的结实率也有差异 ( 表 系基本上是相 同的〔 。减数分裂中都是二价休 ) 3 1 2。从表2中可以看出, ) 高粱、 大麦、水稻同源 的同源四倍体一希却是高度不育的「 首 切。文献报 四倍沐的结买率都高于二倍体荞麦的结实 率, 道,影响水稻同沁四倍体结实率的主要因索是 可见养麦本身均结实率极低。 遗传因素,在理论上肯定了选择的效果f 事 , , 。 ( 二)荞麦结实率极 低与减数分裂 不 规 则 实上对于同源四倍体荞麦逐代进行选择也是有 性没有规律性的联系。观察四倍体荞麦的花粉 效果的f。但是影响荞炭结实率的主要因素不 ‘ 。 〕 母细胞减数分裂过程中具落后染色体的细胞数 是配子肩一 性。 及不育花粉率均高于二倍休荞麦( 1,这是 表 ) ( 三)荞麦 ( 包括同源四倍体荞麦) 结实率 极低的主要原因是由荞麦自身的花器结怡,外 母细胞只占4 %, . 2 0 不育花粉率也只占1%, 5 如 哭气候等外界决定的。国内也有学者认为荞麦 果不育胚囊也占同样的百分数,则在理论上由 产量不高的主要原因,除了亲本的遗传基础和 此造成的不实率应为 4 一巧%之间, . 2 0 但事实 外界自然条件之外,与 花器的形态结构和开花 上, 无论是四倍体荞麦还是二倍体荞麦, 不实率 生物学 特性 关系也很 大〔。 习 均在 9呢 以上,远远超过不育胚囊的百分数。 0 ( 四)四倍体荞麦比二倍体荞麦渭 产的 主
同源四倍体 的 参考基因组

同源四倍体的参考基因组同源四倍体的参考基因组是现代生物学领域的一个重要研究课题,它涉及到植物遗传和进化的许多重要问题。
以下将借此机会,系统地介绍同源四倍体的参考基因组的研究进展和相关问题。
一.同源四倍体的概念同源四倍体是指染色体组中含有四套来自于同一个基础物种的染色体,这是一种特殊的多倍体类型,一般来说,同源四倍体生物的基因组大小和普通的二倍体相同。
二.同源四倍体的参考基因组的研究进展现今,基因组学技术已经成为植物研究的重要手段,为准确、高效的研究同源四倍体基因组提供了很多先进技术。
在过去几年中,研究人员提出了两个主要的策略来解决同源四倍体的参考基因组组装问题。
第一种是直接使用第二代测序和基于组装的方法,这种方法以较小的基因组大小和对许多样本的相对便宜的测序为优势。
第二种是使用第三代长读取的测序技术,这种技术已经在许多论文中被证明可在短时间内高质量的完成同源四倍体的基因组组装。
在2018年11月29日,连云港华东理工大学的张巍教授领导的研究团队提出了组装出了疫车前四倍体参考基因组,并公开了其研究成果。
三.同源四倍体的参考基因组的应用同源四倍体的参考基因组的研究将为遗传学、分子生物学等相关领域的研究提供重要支持。
同源四倍体的参考基因组有着很高的应用价值和广泛的应用范围,例如:1.提供基因表达和生物学功能的研究材料。
2.为同源多倍体植物群体遗传图谱的构建提供基础材料。
3.为进一步研究同源四倍体植物的遗传、进化机制提供材料。
4.在植物基因组修饰和繁殖培育等方面提供有力的技术支持。
四.同源四倍体的参考基因组的未来发展同源四倍体的参考基因组研究还面临着很多挑战和困难。
特别是对于杂交同源体系的研究仍然处于探索初期。
此外,如何解决同源四倍体的基因组组装和序列组装的问题,也仍然是研究人员面临的重大挑战。
未来的研究工作应当注重如何更好地挖掘同源四倍体参考基因组的应用潜力,以及解决同源四倍体植物的进化、生态等问题。
同源四倍体青花菜花粉活力及结籽性研究

其 结 籽 性 。结 果 表 明 :1 T C染 色试 验 中 四倍 体 与 二 倍 体 花 粉 可 染 率 分 别 为 4 . % 和 6 . ,差 异 显 著 。 2 ) T 86 08 ) 离体 萌发 试 验 中 4 花 粉 在 4h时 萌 发 率 最 大 ,达 6 . 5 , 4h后 萌 发 率 稳 定 ;2 在 5 X 6 4 X h时 萌 发 率 最 大 , 达
we e sg i c n l ifr n ;2 t e i ir o l n g r n to a e o h u o er p o d r a h d a ma i m f r i n f a ty d fe e t i ) h n v to p l e mi a in r t f t e a t t t a l i e c e x mu o e 6.5 6 4 i h a d lv ld o fa t r r n 4 n e ee f fe wa d,wh l h to h i l i e k d a 9 4 i ta ftedpod p a e t6 . e i h a d t e e ee f ;3 n 5 n h n lv ld o f )
Po ln i b lt n e d Fo m a i n o le V a iiy a d S e r to fAut t ta O d Br c o i o e r pl i o c l
ZHANG h - ig ,Z ANG i ,S S unn H Je UN e g z e ,W ANG inj n Ch n —h n Ja -u ( . S a e e b r tr f Cr p Ge eisa d Ge mp a m h n e n ,Na jn 1 t t y La oa o yo o n tc n r l s En a cme t K n g Agrc lu a ie st i iu t r lUn v riy。
同源四倍体水稻糯性基因的遗传分析1)

H R D S ei ) 0 ) - 1 18 E E fA ( i g 1 ( :9 1 8 Bj n 1 - 9
同 倍体水稻糯性基因的遗传分析” 源四
宋 文昌 陈 勇 张 华 吴 瑜 志 玉 德
〔 中国农业科 学院作物所 . 北京)
系 H 8, 4 H 9 杂交, : 86 H 9 和 76 8 F代种子为非 传。他们指出糯性胚乳是单基因隐性 遗 传的。 糯, 用碘液染呈蓝黑色 。播种后从F 植株上得 : ,代种子, 以株为单位收获脱粒, 用小型鲁 二倍体杂种 W 。 的自交后代有 3 x 种基因型, 到 F 显隐性比例为31 : 。同源四倍体糯稻在 。 二位 谷机碾出糙米,先从外观上将糯米与非糯米区 点上有4 个等位基因,它与非糯稻的杂种后代 分开,而将难以区别的米粒顶端切去一些,用 的基因型种类和表现型比例要比二倍体复杂得 I I溶液鉴别。分别统计每株的糯、 - K 非糯的位
1 。如果是同一大样本分布中左右两极端部分
的偏差,那么这两个偏差的非糯之和与糯米之 和的比例理论上仍应为 3 :。计算结果, 1 51 这 7 株共有非糯米 59 粒、糯米 18 90 6 粒,比 例为
- 30
一14 -28
16 2
192 5 65 330 63 427 651 232 237 245 255 29 7 69 4 544 1 0 00
一7
50 江米 XH76 0拉 9 50 0 粒江 米 X 76 H 9 50 江米 XH76 0粒 9 50 江米 XH76 0粒 9
35 6 1909 971
345 1858 941 14 46
11 51 30 34
024 .41 103 .92 019 .50 000 .03
同源四倍体荞麦的研究I.同源四倍体荞麦与二倍体普通荞麦的外部形态及细胞学比较

裹 1 同派四倍体荞麦和二倍 体荞麦细胞大小比较‘ ’
类 别 长 () 拼
二倍 体
2 5 8. 4 0 3.
叶片保卫 细胞
%
1 00 150. 9
根 尖分生细 胞
%
100 122. 8
花粉粒
%
100
宽 () w
22.8 28. 0
细胞直 径 () P
29. 7
呱
10 0
147. 8
核直径 () P
1 7 6. 1. 98
16)先后报道在普通荞麦 ( 92 甜荞)中诱导出
同源四倍体。 苏联 B E . .皮萨列夫、B B . . 萨哈洛夫等人也在从事同源四倍 体 的诱 导工 作【0 51 , ,四倍体荞麦已在苏联农业生产中利用。 1 混选四号荞麦品系初步试验表明比对照品种增
结果 和 讨 论
( 一)综上所述, 混选四号品系与二倍体普 通荞麦比较, 不仅植株增高, 叶片变大、 增厚, 花 器、 籽粒均显著变大, 而且花粉粒、叶片保卫细 胞、 根尖分生组织细胞都增大, 最主要的是染色 体由普通荞麦的 2 - n 2 1 x二 6经秋水仙素诱 变后已加倍成 2 = n 4 x二 3 ,以及组型分析 2 结果都证明了混选四号品系确为同源四倍体。 ( 二)混选四号品系的细胞核不稳定 性 的 问题。混选四号品系虽为同源四倍体 ,但其细 胞核具有不稳定性。核不稳定性在某些间期核 中表现为具有多核仁及不规则核仁现象;在根 尖分生组织细胞有丝分裂过程中表现出多于或 少于 3 条染色体的非整倍性现象, 2 出现这种现 象的原因是诱导时秋水仙素的作用和减数分裂 不正常所致。Bnet ent指出, 非整倍体常常在小 麦和大麦里引起结实性下降,细胞核不稳定性 若发生在多核胚乳中,有丝分裂异常是不实性 和畸形粒的常见起因〔 上述所指也是混选四 1 8 。
石榴同源四倍体诱导及评价

•农林与科技•PANZHIHUA SCI - TECH&INFORMATION石榴同源四倍体诱导及评价潘宏兵\罗玲2,冯娟3,李贵利\杜邦1,黄云11.攀枝花市农林科学研究院;2.四川省农业科学研究院园艺研究所;3.四川省农业广播电视学校攀枝花市中心分校摘要“紫美”石榴种子为试验材料,用秋水仙素溶液浸泡诱导多倍体,并对诱变材料进 行倍性鉴定和评价。
结果表明:〇.3%秋水仙素处理萌发石榴种子24h诱导效果最好,四倍体诱 导率为1•11 % ;二倍体染色体数目为2n=2x= 16,四倍体染色体数目为2n =4x =32;二倍和四 倍体植株叶、花、果主要性状差异均达到极显著水平,四倍体的叶气孔、叶、花变大、叶绿素含量 增加、果皮增厚以及籽粒百粒质量增加,而四倍体的籽粒颜色变浅和变硬;四倍体萌芽期、始花 期、成熟期和落叶期均晚于二倍体。
综合认为四倍体“紫美”石榴可作为育种新材料加以评价 利用。
关键词“紫美”石榴;秋水仙素;四倍体;诱导;评价石榴(?1111&8^1^_1^)原产中亚地区,在世界热带、亚热带区域广泛栽培,引入国内 栽培有2000多年历史,已保存石榴品种类型 280余个[1]。
目前,石榴新品种选育较多采用杂交、芽变、辐射诱变和实生选育,存在育 种周期长、效率低和目标性状不确定等不足。
而倍性育种操作简单,不受季节和环境等条件限制,且培育出多倍体通常具果实大、品质 好、抗逆性强及适应性广等优点,已成为果树 种质创新和新品种选育的一种重要育种方法[2]。
多倍体自然发生主要通过自然芽变和 实生种子筛选途径获得,例如鸭梨品种“天 海”[3]、葡萄品种“红太阳”[4]等四倍体由自 然芽变选育而来,而枳品种“灌云1号”[5]、枇杷品种“B431”[6]四倍体由实生种子筛选获得。
多倍体人工诱导主要通过物理、生物 学和化学诱变途径获得,例如SMITH等[71用7射线照射小种矮型香蕉品种获得了其突变 型四倍体,通过原生质体融合、配子染色体加倍、胚乳培养、有性杂交等技术在猕猴桃[8]、柑橘%、苹果[1°]、枇杷[n]、香蕉[12]、枣[13]等 植物上获得了多倍体,通过秋水仙素或氨磺乐灵诱导种子、芽、愈伤组织在枣[14]、蓖 麻[15]、草毒_、樹橘m、罗汉果W、欧李[19]、石榴[2°]等植物上获得了多倍体,其中 石榴多倍体为四倍体月季石榴,是观赏石榴 品种,未见作为果树栽培石榴品种的多倍体诱导研究报道。
菜薹同源四倍体的诱导与分析(

家术原均等【4q’人就人工诱导出了同源四倍体西瓜,并用四倍体与二倍体杂交方式首次培育出了三倍体无籽西瓜,为世界卜西瓜生产开拓了新的领域。
我吲于1957年首次育出了四倍体两瓜~新秋31¨7并用它生产了三倍体无籽西瓜。
70年代以来,我国的西瓜多倍体育种有了很大进展,先后培育出了一批优良的i倍体无籽西瓜,如北京红花、旭马等【“。
90年代,谭素英等Ⅲ1培育出了‘系列无籽西瓜新品种,普遍具有植株生长旺盛、抗病、耐湿、耐储运以及品质优良等优点。
目前,西瓜多倍体研究的重点是解决采种量低、种予发芽率低和成苗率低等“三低”问题。
安水亲等m1人报道,利用二倍体西瓜为母本与四倍体西瓜杂交可获得当代无籽果实,不仪开辟了一条无耔西瓜生产的新途径,而且还可以有效地克服无籽西瓜生产中存在的“三低”现象。
房超等口3’利用组织培养手段诱导四倍体西瓜,并通过组织培养微体扩繁获得四倍体植株,从而加速四倍体西瓜育种进程,缩短育种周期,同时也为其它瓜类多倍体的诱变育种提供了新的方法。
1.2茄果类蔬菜茄果类蔬菜多倍体育种研究工作开展最多最早的是番茄四倍体的研究。
本世纪30年代前苏联就培育出了大果的四倍体番茄Ⅲl。
80年代我国的遗传育种家邹道谦先生从事番茄多倍体育种研究,选育出的大果四倍体番茄一凤毛,颜色鲜艳、风味和品质具佳;选育出的小果四倍体番茄一奇丽,果肉厚、水分少、耐贮藏,特别适合罐装和制酱,其缺点是结籽率降低,生育期延迟。
刘艳俊等i”’人诱导出了座果多而果实大的四倍体番茄。
国外曾报道,四倍体辣椒从产量上并不Lg--倍体具有优点,但果实的营养成分提高,维生素C(Vc)增加15%~70%,C.代干物重和粗蛋白的含量亦有提高,但未发现氨基酸含量的差异”“。
1.3根菜类蔬菜根菜类蔬菜是以块根为食用器官,由二倍体诱变成多倍体后,肉质根的品质和产量往往有所提高。
前东德、日本、瑞典、以及原西德等国家对萝f、的多倍体育种获得了显著的成效。
植物同源四倍体生殖特性及DNA遗传结构的变异

遗 传HEREDITAS (Beijing ) 28(9): 1185~1190, 2006专论与综述收稿日期: 2005-09-28; 修回日期: 2006-04-24基金项目: 国家自然科学基金项目(编号: 30471412)、北京林业大学研究生基金项目(编号: 05jj038) [Supported by National Nature Science Foundation of China (No.30471412)and Financially supported by Graduate Fund of Beijing Forestry University ( No.05jj038)]作者简介: 姜金仲(1958—), 男, 河南上蔡人, 硕士, 高级讲师, 研究方向: 遗传育种, 生物技术。
jjz9911@ 植物同源四倍体生殖特性及DNA 遗传结构的变异姜金仲, 李 云, 程金新(北京林业大学生物科学与技术学院, 林木花卉遗传育种教育部重点实验室, 北京 100083)摘 要: 由于染色体加倍过程中的加倍因素和非加倍因素的影响, 同源四倍体的DNA 遗传结构较其起源二倍体产生了变异, 进而导致其表现型发生相应的变异。
和其起源二倍体相比, 同源四倍体的表现型变异表现在以下几个方面: 雌雄配子育性降低; 花粉(2n)的体积明显增大; 部分胚囊内卵细胞、助细胞及反足细胞数目有所增减; 自交繁殖过程中, 花粉的萌发及生长速度较慢、花粉管的形态部分畸形、部分极核受精过程及受精细胞(与精核结合的极核或卵)的进一步发育状况异常; 大多数育性或结实率会有不同程度的降低, 但降低的程度有因自交繁殖世代的推移而逐渐减小的趋势; 就一些植物种类而言, 同源四倍体有较好的远缘杂交亲和性。
关键词: 同源四倍体; 生殖; 同功酶; 分子标记 中文分类号: Q943 文献标识码: A文章编号: 0253-9772(2006)09-1185-06Variation of Both DNA Genetic Structure and ReproductionTraits of Plant AutotetraploidJIANG Jin-Zhong, LI Yun, CHENG Jin-Xing(College of Biological Science and Biotechnology , Beijing Forestry University , Key Laboratory of Genetics and Breeding ofForest tree and Ornamental Plant , MOE , Beijing 100083, China )Abstract: Due to the effect of chromosome doubling, the DNA genetic structures of autotetraploid vary from its original diploid, and thus autotetraploid phenotype changes correspondingly. Compared with original diploid, the phenotype changes of autotetraploid were as follows. The part of its male and female gametes was of abortion. Its pollen (diplo-haplont) was significantly bigger. The number of egg cells or synergids or antipodal cells in its embryo sacs increases or reduces. While self-crossing procreation of it , pollen tubes and the fertilization processes of polar nucleus and the fertilized cells development were partly abnormal. Its reproductive capacity (or seed setting rate) dropped to some extents, which can be gradually improved with generations. For some plant species, it has a better cross-compatibility in distant hybridizations.Key word: autotetraploid; procreation; isozymes; molecular marker植物同源四倍体的生殖特性包括其雌雄配子的育性、受粉受精过程、减数分裂、远缘杂交亲和性等方面的内容, 由于染色体倍性的变化, 植物同源四倍体在前述几个方面(表现型)较其起源二倍体均有所差异, 是为生殖特性变异。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅱ式联会交换的结果,每条染色体上基因成员分别为:
① A1a3/ ②a3A1/③a2a4/④a4a3(即为① Aa/ ③Aa/②aa/ ④aa) 分离结果同Ⅰ式 Ⅲ式联会交换的结果,每条染色体上基因成员分别为: ① A1a4/ ②a4A1/③a2a3/④a3a2(即为① Aa/ ④Aa/②aa/ ③aa) 分离结果同Ⅰ式 所以,Aaaa总的完全均衡分离结果为:1AA:10Aa:13aa
§7-2 同源四倍体的细胞学行为及可育性 一、同源四倍体的细胞学行为 二、同源四倍体可育性
一、同源四倍体的细胞学行为
1、联合与分离
同源四倍体的同源染色体之间存在相同的亲合力,但 由于同源区段只能两两相互配对,所以,存在如下联合 形式:
Ⅳ
分离:2/2 3/1
Ⅱ+Ⅱ
2/2
Ⅲ+Ⅰ
2/2 3/1 2/1
归纳:
• AAAa完全均衡分离结果 • 同理推出AAaa结果 • Aaaa结果
AA:Aa:aa = 13:10:1 AA:Aa:aa = 2:5:2 AA:Aa:aa = 1:10:13
2) AAaa完全均衡分离:可改写为A1A2a3a4
如果都发生交换的话: Ⅰ式联会交换的结果,每条染色体上基因成员分别为: ① A1A2/ ②A2A1/③ a3a4/ ④a4a3 (即为① AA/ ②AA/③ aa/ ④aa)
(2)秋水仙加倍处理分生组织
(3)组培 + 秋水仙处理 可提高再生株中4n的频率
(4)体细胞杂交 两种体细胞原生质体融合→诱发再生植株→异源四倍体。 烟草、茄科和十字花科植物已获成功。
二、表型效应
1、巨大型: 同源四倍体,细胞体积变大,分生组织更明显,使
器官和组织变大。 2、代谢活性改变
四倍体细胞成份有所改变,如,水份、蛋白质、叶 绿素、纤维素、生长素等(有增有减)。
双减数?
对于同源四倍体来说,如果联合成Ⅳ,2/2分离, 减数分裂的结果,每个子细胞中含有两条染色单 体的基因,因而,当发生交换后,对于交换区段 上所含有的基因来说,后Ⅰ,姐妹染色单体交换 区段,可能随另一条同源染色体进一同一极子细 胞,发生第一次不分离(前减数),后Ⅱ,同样 有可能进入同一个子细胞,发生第二次不分离 (后减数),产生如aa的配子,这即为双减数。
(2)减数分裂异常 性母细胞(2n)→2n配子→有性结合→少数4n个体
不同物种或基因型产生2n配子频率不同:
例如,芸苔属
产生2n花粉频率 07%
茄子
3-99%
玉米杂交种 产生2n卵频率 0.058-0.523%
(3)某些核基因促进2n配子产生
例如,玉米、曼陀罗、棉花、小麦等中曾报道有不联会基因,产生部分2n 配子及4n后代。
子传递率高,也即整倍体配子通过花粉传递率高。
同源四倍体后代当中,染色体数目存在差异:
例如,Randolph 1935 报告
4n玉米后Ⅰ20/20分离的占2/3
后代中 2n = 40
占50%
=37-39
18.5
=41-42
31.5
苏联4n黑麦 2n = 28
89.5%
2n≠28
10.5%
二、同源四倍体可育性
: 1) AAAa基因型的完全均衡式分离
当发生6,7线交换时,I式中
从上看出,在③④间发生交换情况只有Ⅰ式分离,在后 Ⅰaa进入同一极(前减数)占1/3机会,后Ⅱ又有1/2机会进 入同一子细胞(后减数),最终形成的双隐性配子aa,即 为双减数的结果。
所以,当都形成Ⅳ,并发生交换情况下,最大双减数值:
同源四倍体后代染色体数的不同及部分不育。
有人曾观察,具40条染色体的4n玉米,产生的雄配 子中含有20条染色体的占42%,其余均为非整倍体。
Dawson(1962)研究,同源四倍体番茄的花粉 (n=24)只占75%,其它25%的花粉含有多于或少于
n=24的染色体数。
○
2、配子传递
产生的非整倍体配子,雌雄配子成活率相近,但 传递率不同,因为雄配子有竞争作用,所以没有雌配
一、染色体随机分离
当基因距着丝点近,基因与着丝点之间无交换时,将 发生染色体随机分离。 1、AAAa
2、AAaa
3、Aaaa
二、染色单体随机分离
当目标基因距着丝点远,基因与着丝点之间发生交换 时,便进行染色单体随机分离。 假定仍联合为Ⅳ,2/2式分离 1、AAAa 经复制,应有8个染色单体成员,其中6个A,2个a
2、AAaa
3、Aaaa
表7-4 同源四倍体以染色体和染色单体分离后代预期结果
上述分离结果只是理论上的,而实际分离 结果往往更接近后者。因为基因与着丝点之 间总有一定的距离,要发生一定的交换,而 交换也并非所有的性母细胞中都发生交换, 所以也不可能都按染色单体进行随机分离, 因而出现下面第三种分离情况。
三、完全均衡式分离(最大均衡式分离或双减数)
1、双减数的概念 在了解此概念之前,应先弄清什么是减数分离,什么是
均衡分离? 减数分离时,配对的二价体中,每条染色体上有两条姐
妹染色单体,在后Ⅰ,它们要随着同一个着丝点移向同一 极,即分到同一个子细胞中,另一条染色体的两个成员相 应分到另一极,即另一子细胞中,这叫减数分离。
Ⅱ+Ⅰ+Ⅰ
2/2 3/1 2/1 1/1
不同数目的交叉,中Ⅰ形成Ⅳ的构象:
不同生物,Ⅳ出现频率:
四倍体 玉米、黑麦,中Ⅰ Ⅳ占2/3;
鸭跖草
Ⅳ占1/2以上;
茄属植物等
几乎无Ⅳ出现。
如果Ⅳ的每一臂上都有交叉,终变期和中Ⅰ可能形成 O4,如果有一臂无交叉,则成C4。 除Ⅱ+Ⅱ联会进行2/2均衡分离外,其它联合, 都有可能发生不均衡分离(3/1,2/1),因而造成
➢ 4n玉米整倍体和4n非整倍体间,花粉育性和结实性 各自间均存在显著差异。(见P200 表7-8)
➢ 染色体组内不同染色体间的不平衡影响配子和合子 生理失衡,导致败育。 例如,同为4n玉米,即是细胞中为40条染色体,但同源染色 体有的可能5条,有的可能3条,虽然数目相互补偿,但内部 出现了不平衡,影响育性。
3种分离形式结果同Ⅱ式:AA:Aa:aa = 1:2:1 当各种联会分离机会相等的话: 则AAaa总的完全均衡分离结果为:
AA:Aa:aa =2:5:2
3)Aaaa完全均衡分离:
Ⅰ式联会交换的结果,每条染色体上基因成员分别为:
① A1a2/ ②a2A1/③a3a4/④a4a3(即为① Aa/ ②Aa/③aa/ ④aa)
每种联会又有3种分离方式:
Ⅱ式联会交换的结果,每条染色体上基因成员分别为: ① A1a3/ ②a3A1/③ A2a4/ ④a4A2 (即为Aa/ Aa/ Aa/ Aa)
Ⅲ式联会交换的结果,每条染色体上基因成员分别为:
① A1a4/ ④a4A1/② A2a3/ ③a3A2 (即为① Aa/ ④Aa/② Aa/ ③Aa)
引起花粉和胚珠不育的原因不尽相同: 花粉育性:取决于小孢子发生过程 结实性:取决于(1)大孢子发生过程;
(2)胚囊发育过程; (3)合子发育过程。
2、可育性降低的原因
1/染色体数目不平衡
➢ 染色体总数不平衡 例如,4n玉米,小孢子(n=20)只占42%,后代 中整倍体植株只有51.7~62.2%。
表7-5 同源四倍体不同基因型杂合体完全均衡分离遗传结果
结果表明:与染色体随机分离相比,双减数使其后代隐性 频率进一步提高。
2、根据α值计算配子比率
设同源四倍体的Ⅳ上,一对等位基因的四个成员分别为a、 b、c、d,它们与着丝点相距50%的遗传距离。
在随机交换情况下,产生两类配子如下: 1/.双减数配子(4种): 即姐妹染色单体组合的配子 aa= bb= cc= dd=α/4 2/.非双减数配子(6种): 即非姐妹染色单体组合的配子 ab、ac、ad、bc、bd、cd,各占(1-α)/6
➢ 增加4n杂合性,通过选择,可提高结实率
例如,Swaminathan & Sulbha 1959用油菜试验: 经19代选择,结果平均
结实数(4N)由 C1 的1.5粒提高到C19的16.8粒,但随之变化的是Ⅳ ↓ , Ⅱ↑。
§7-3 同源四倍体的基因分离
一、染色体随机分离 二、染色单体随机分离 三、完全均衡式分离
表7-6 AAAa产生的配子类型及用α值表示的频率
注意:
从AAAa产生的全部配子中,只有双隐性配子aa是可识别的 双减数配子,占α/4,而其它与非双减数配子混在一起,无 法区别,但知道AA配子包括3·α/4和3·(1-α)/6两部分。 所以,以α值表示的三种配子比率如下: AA=3α/4+3(1-α)/6=(2+α)/4 Aa=3(1-α)/6=(2-2α)/4 aa=α/4 同理可推出AAaa 和Aaaa产生各类配子的比率,归纳如下表:
例如,生长素含量 4n<2n ∴一般4n生长缓慢,花期推迟,分蘖和分枝减少。大多数
水果、蔬菜,维生素C含量4n>2n;种子植物蛋白质含 量4n>2n;玉米,类胡萝卜素含量4n>2n,高43%
3、对环境条件要求改变
4、改变自交不亲和性 二倍体自交不亲和系(2n)加倍→4n→自交不亲和性
变弱或消灭,在配子体不亲和性中表现更甚。
§7 同源四倍体
§7-1 同源四倍体的产生途径及表型效应 §7-2 同源四倍体的细胞学行为及可育性 §7-3 同源四倍体的基因分离
§7-1 同源四倍体的产生途径及表型效应
一、产生途径 二、表型效应
一、产生途径
1、自然产生
(1)2n体细胞自然加倍→4n细胞或局部组织→无性繁殖(扦插或嫁接)
4n新种
2/.遗传原因---试验依据如下:
➢ 4n纯合体败育率 > 4n杂合体 败育率与遗传基础有关 例如,自交系(2n)加倍→ 4n 败育率高