第5章约束优化
管理会计应用指引第504号——约束资源优化
附件4:管理会计应用指引第504号——约束资源优化第一章总则第一条约束资源优化,是指企业通过识别制约其实现生产经营目标的瓶颈资源,并对相关资源进行改善和调整,以优化企业资源配置、提高企业资源使用效率的方法。
约束资源,是指企业拥有的实际资源能力小于需要的资源能力的资源,即制约企业实现生产经营目标的瓶颈资源,如流动资金、原材料、劳动力、生产设备、技术等要素及要素投入的时间安排等。
第二条约束资源优化一般适用于企业的投融资管理和营运管理等领域。
第二章应用环境第三条企业应用约束资源优化工具方法,约束资源的缺口一般应相对稳定。
第四条企业应用约束资源优化工具方法,相关数据一般应完整并可获取,必要时提供信息技术的支持。
第三章应用程序第五条企业应用约束资源优化工具方法,一般按照识别约束资源、寻找突破方法、协同非约束资源、评价实施效果等程序进行。
第六条企业应用约束资源优化工具方法,应识别出管理过程中制约既定目标实现的约束资源,并对约束资源进行定量分析。
在约束资源难以进行定量分析时,可以通过内部评审法、专家评价法等,识别出管理过程中的约束资源。
内部评审法,是指企业通过内部组织开展评议、审查识别约束资源的方法。
企业通常应组建满足约束资源识别所需的,由财务部门、生产部门和其他相关部门人员组成的内部评审小组或类似评审组织,通过集中研讨等方式,识别出管理过程中的约束资源。
专家评价法,是指利用专家的经验、知识等识别约束资源的方法。
对于企业既定目标的实现形成重大制约影响的约束资源,企业通常采用此方法进行综合评判。
第七条在识别约束资源的基础上,企业应比较约束资源的资源能力差距,搜集约束资源的相关数据等信息,系统分析约束资源形成的原因和涉及的实施责任主体,制定约束资源优化的实施方案,建立实现约束资源优化的长效机制,促进约束资源的资源能力提升。
(一)当约束资源是流动资金时,通常采取企业资金内部调剂、缩短应收账款回收周期、加快存货周转、延长付款周期等方法消除流动资金缺口,也可以通过外部融资扩大企业的资金来源,如债务融资、权益融资等。
约束问题的最优化方法
可用于处理等式约束。
§5.3 外点惩罚函数法
三. 几个参数的选择:
r(0) 的选择:
r(0) 过大,会使惩罚函数的等值线变形或偏心,求极值困难。r (0) 过小,迭代次数太多。
建议 :r0 max ru0 u 1,2,...m
其中:ru0
m gu
0.02 x0 f
x0
x(0) 的选择:
2
若均满足,停止迭代,有约束优化问题的最优点为 x* = xk*; 若有一个准则不满足,则令 x(0) xk * (r(k) ),r(k1) c r(k) , k k 1 并转入第 3 步,继续计算。
§5.2 内点惩罚函数法
算法框图
§5.2 内点惩罚函数法
四. 几个参数的选择: 1. 惩罚因子初始值 r(0) 的选择:
§5.1 引言
有解的条件: ① f(x) 和 g(x) 都连续可微; ② 存在一个有界的可行域; ③ 可行域为非空集; ④ 迭代要有目标函数的下降性和设计变量的可行性。
三. 间接解法的基本思想: 目的:将有约束优化问题转化为无约束优化问题来解决。
方法:以原目标函数和加权的约束函数共同构成一个新的目标函数
(略) 2. 数学模型:
设计变量 : X x1,x2 T t f ,h T
目标函数 : min. f x 120x1 x2
单位长度的质量
§5.2 内点惩罚函数法
约束函数 : g1x x1 0 g 2 x x2 0 g3 x 1 0.25x2 0
g4
x
1
7 45
x1x2
0
g5
x
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想:
外点法将新目标函数 Φ( x , r ) 构筑在可行域 D 外, 随着惩罚因子 r(k) 的不断递增, 生成一系列新目标函数 Φ(xk ,r(k)),在可行域外逐步迭 代,产生的极值点 xk*(r(k)) 序 列从可行域外部趋向原目标函 数的约束最优点 x* 。
机械优化设计第5章 约束优化方法
是
X*=XL ,F*=F(XL)
否
XC 1 K Xj, j H K 1 j 1
结 束
是
X R X C ( X C X H ), FR F ( X R )
FR<F(XH)
是 否
XR∈D
否
否
α =0.5α
是
找出次坏点XSH ,XH=XSH
轧机
§5-5 可行方向法
研究室
轧机
CAD/CAM/CAE
直接法搜索路线
间接法框图
研究室
间接法是目前在机械优化设计中得到广泛应用的一种有效方 法。
轧机
CAD/CAM/CAE
研究室
§5-2 约束坐标轮换法
一.基本思路
1.依次沿各坐标轴方向---e1,e2,…,en方向搜索; 2.将迭代点限制在可行域内. •①可取定步长、加速步长和收缩步长,但不能取 最优步长; ②对每一迭代点均需进行可行性和下降性检查.
若仍不可行, 则重 复此步骤, 直至进入 可行域为止.
X
X
( q 1)
轧机
CAD/CAM/CAE
研究室
三. 终止判别条件
各顶点与好点函数值之差的均方根应不大于误差限
1 { [ F ( X ( j ) ) F ( X L )] } k j 1
k
1 2 2
不是十分可靠, 可改变 重作, 看结果是否相同.
给定内点X 0 , 0 , m,
α =α 0, F0=F(X0)
K=0, j=0
研究室
0 初始步长;
m 在一迭代点处允许产生 的方向数;
终止误差限(步长)
产生随机方向
工程设计中的优化方法
箱形梁优化设计的数学模型
min f (X), X∈R4 s.t. gj(X)≤0, j=1, 2, ···, 6 属约束非线性规划问题。选用可行方向法求解。
优化结果:取出三种跨度的优化结果见表5-1。
所用数据为:F1=120kN, F2=12kN,[σ]=140MPa
表5-1 箱形梁设计结果比铰
跨度 l(cm)
优化目标函数就是求目标函数的极小值或极大
值,即
min f (X) 或 max f (X)。
• 用效果函数(如性能指标、利润等)作目标函数,则是求极大值; • 用费用函数(如能源、材料、经费等)作目标函数,则求极小值。
单目标和多目标优化问题
• 单目标优化问题:只包含一个优化目标的问题 • 多目标优化问题:存在两个或两个以上优化目
常规设计(mm)
x1
x2
x3
x4
1050 760 340 6 10 1350 880 390 6 10 1650 1010 440 6 10
优化设计(mm)
x1
x2
x3
x4
790 310 5
8
870 380 6
6
1020 370 6
8
减轻自 重
(%)
19.8 18.8 13.7
3. 优化设计的计算方法
• 可行域 域内设计点(设计 方案)满足所有约束条件。
gu(X)=0
可行域
可行域内的设计点称为可行点。 不可行域
• 不可行域 域内的设计点
设计空间
不满足或不全满足约束条件。不可行域内的设计点
称为不可行点,一般是工程实际不能接受的方案。
约束优化设计中,最优点一般是约束区域的边界点, 即设计点位于某个约束面上: gu(X)=0 (1≤u≤p)
约束问题的优化方法
XR
变形的复合形
可行的新点,用新点代替最坏点, 构成新的复合形,复合形的形状 每改变一次,就向最优点移动一
XC
XL
初始复合形
步,直至逼近最优点。从复合形
法工作原理可看出,实现复合形 法最关键的是:构造复合形和复 合形变换等问题。
XH
0
x1
图4-4复合形法的算法原理
《车辆优化设计与实践》教学课件
4.3.2 方法实现的关键技术
初始点更优的新点,至此完成一
轮迭代。然后,以新点为新的初
始点,即令 X 0 X 。重复以
0
上过程,经过若干次迭代计算后,
最终取得约束最优解。
X X
X1 X0
x1 图4-1 随机方向法的原理
《车辆优化设计与实践》教学课件
4.2.2 方法实现的关键技术
实现随机方向法的关键包括初始点的选择,可行搜方 向的产生和搜索步长的选择等问题。 (1)初始点形成 随机方向法的初始点 X 0必须是一个可行点,即满足全 部不等式约束条件:g j (X 0 ) 0 ( j 1, 2, , m)。当约束条件 较为复杂,用人工不易选择可行初始点时,可用随机 选择的方法来产生。计算随机点的步骤如下: 1)输入设计变量的下限值和上限值,即
式计算随机单位向量 e j
ej
1
rr12jj
1
n
i 1
rij
22
rnj
( j 1, 2, , k)
(4-3)
《车辆优化设计与实践》教学课件
2)取一X 试j 验X步0 长0e0,j 按(4下-4式)计算K个随机点 显然,K个随机点分布在以初始点X 0为中心,以试验 步长 0为半径的超球面上。 3)检验K个随机点X j( j 1, 2, , k)是否为可行点,除 去非可行点,计算余下的可行随机点的目标函数值, 比较其大小,选出目标函数值最小的点 X L。 4)比较X L 和 X 0两点的目标函数值,若 f (X L ) f (X 0 ),则 取X L 和X 0的连线方向 f ( X L ) f ( X 0 ) 作为可行搜索方向 为止。如果缩小到很小(例如 0 106),仍然找不到 一个X L 使 f (X L ) f (X 0 )则说明 X 0 是一个局部极小点,此 时可更换初始点,转步骤1)。
数学建模:第五章 运筹与优化模型
max c j x j
n
s.t aij x j bi
j 1
n
j 1
i 1.2 m
xj 0
j 1.2 n
8
二、整数规划模型
n min f c j x j j 1 n aij x j bi j 1 x j 0
对于线性规划:
22
二、货机装运
问题 某架货机有三个货舱:前仓、中仓、后仓。三个 货舱所能装载的货物的最大重量和体积都有限制,如表 3所示。并且,为了保持飞机的平衡,三个货舱中实际 装载货物的重量必须与其最大容许重量成比例。
重量限制 (吨)
前仓 中仓 后仓 10 16 8 6800 8700 5300
体积限制 (米3)
5
解:设x ij 表示 Ai (i=1.2)煤厂提供给 B j (j=1.2.3)居民区的煤量; f表示总运输费 此问题归结为:
min f 10 x11 5 x12 6 x13
s.t
x11 x12 x13 60 x21 x22 x23 100 x11 x21 50
s.t gi ( X ) 0
hi ( X ) 0
(1)
(2)
(3)
i 1,2,, m .
j 1,2,, l .
X D
其中X ( x1 , x2 ,, xn )T , D R n为可行集
f(X)为目标函数,(2)、(3)为约束条件, (2)为不等式约束,(3)为等式约束; 若只有(1)称为无约束问题。
max f x1 x2 15 x1 12 x2 85 如 5 x1 11 x , x 0 1 2 x1 , x2 为整数
Ch5_综合的约束与优化
`第五章综合的约束与优化综合的一个很重要的概念就是:单纯的映射是远远不够的,更重要的是设计的整体优化。
一方面设计工程师为综合规定必要的约束,例如对面积、速度、功耗的要求等,从而使优化有所依据;另一方面选择合适的综合器是优化程度的决定性因素。
同一个设计使用不同的综合器所得到的优化结果可以相差3~5倍。
第一节综合约束5-1-1 概述综合约束是对可测量的电路特性所定义的设计目标,比如面积、速度和电容等。
如果没有这些约束,Design Compiler工具将不能有效地对你的设计进行最优化。
在对设计进行优化时,Design Compiler支持两种类型的约束:●设计规则约束(Design rule constraints)●最优化约束(Optimization constraints)设计规则约束是固有的,在工艺库里定义;这些约束条件是为了保证设计的功能正确性,适用于使用工艺库的每一个设计;可以使这些约束比最优化约束更为严格。
最优化约束是外在的,由设计者自己定义;最优化约束描述设计指标,在整个dc_shell 工作期间应用于当前设计;它们必须接近于现实情况。
D esign Compiler试图同时满足设计规则约束和最优化约束,但设计规则约束必须首先被满足。
设计者可以以命令行形式交互式的指定约束或者在一个约束文件里指令约束。
图5.1显示了主要的设计规则约束和最优化约束,以及如何用dc_shell界面命令来设置这些约束。
图5.1 Major Design Compiler Constraints第二节设置设计规则约束这一节将讨论最常用的设计规则约束:•转换时间(Transition time)•扇出负载(Fanout load)•电容(Capacitance)Design Compiler给设计对象赋予属性来表示这些设计规则约束。
表5.1列出了每一个设计规则约束对应的属性名。
表5.1 设计规则属性Design Rule Constraint Attribute NameTransition time max_transitionFanout load max_fanoutCapacitance max_capacitancemin_capacitanceCell degradation cell_degradationConnection class connection_class 设计规则约束是工艺库里指定属性,你也可以明确地、随意地指定这些约束。
运筹学-约束最优化方法
若AT的各个行向量线性无 关.根据Kuhn-Tucker条件, 在该线性规划的最优点y* 处存在乘子向量x*≥0,使得
即Ax*=b 对偶规划约束条件 及(ATy*-c)T x*=0 线性规划互补松弛条件
29
5.1.3 一般约束问题的最优性条件
定理1.3.1 在上述问题中,若 (i)x*为局部最优解, 有效集I*={i|ci(x*)=0,i∈I}; (ii)f(x),ci(x)(1≤i≤m)在x*点可微; (iii)对于i∈E∪I*, 线性无关, 则存在向量l*=(l1*,· · · ,lm*)使得
解:本问题是求点(1,1)T到如图三角形区域的最短 距离.显然唯一最优解为x*=(1/2,1/2)T.
19
例题(Fritz-John条件)
min f(x)=(x1-1)2+(x2-1)2 s.t. c1(x1,x2)=(1-x1-x2)3≥0 c2(x)=x1≥0 c3(x)=x2≥0 即
35
惩罚函数法
惩罚是手段,不是目的
KT条件中li*ci(x*)=0 称为互补松弛条件. 它表明li*与ci(x*)不能 同时不为0.
28
线性规划情形
对于线性规划问题 min f(y)=-bTy s.t. -ATy≥-c 其中 y∈Rm,A∈Rm×n, b∈Rm,c∈Rn 问题有n个约束条件. 各个约束条件关于y 的梯度为-AT的行向 量(-pi).
借助于Farkas引理,可推出存在li*≥0(i∈I*), 使得
类似与Fritz-John条件的证明,可以证明KuhnTucker条件. 有效约束函数的梯度线性无关称为KuhnTucker约束规范. 如果该约束规范不满足,最优点不一定是KT点.
第五章惩罚函数法详解
㈣关于几个参数的选择
⑴初始罚因子r(0)的选取
如果 值选得太大,则在一开始罚函数的惩罚项的 值将远远超出原目标函数的值,因此,它的第一次无约束极 小点将远离原问题的约束最优点。在以后的迭代中,需要很 长时间的搜索才能使序列无约束极小点逐渐向约束最优点逼近。
如果 值选得太小,则在一开始惩罚项的作用甚小,
而在可行域内部惩罚函数
与原目标函数F(x)很相近,
只在约束边界附近罚函数值才突然增高。这样,使其罚函数
在在约束边界附近出现深沟谷地,罚函数的性态变得恶劣。
如下图,对于有深沟谷地性态差的函数,不仅搜索所需的 时间长,而且很难使迭代点进入最优的邻域,以致极易使 迭代点落入非可行域而导致计算的失败。
或
r(0)=1~50
函数
的一系(x,列r(k最) ) 优点,
xk* (k 0,1,2, )
显见,无约束最优点序列将逐渐趋近于原约
束优化问题的最优点x*。
㈡内点罚数法的形式及特点
⑴具有不等式约束的优化问题的数学模型
S.T. :
u=1,2……,p
⑵构造如下形式的内点罚函数
p
(x, r (k) ) F (x) r (k)
而且,当x越趋近于约束边界时,由于惩罚项 r(k) 1
增大,所以罚函数 (x, r(的k) )值越大。当x←b时,罚g1函(x)
数的值将趋近于+∞。因此,当初始点取在可行域内,求
函数 (x, r(k)的) 极小值时,只要适当控制搜索步长,
防止迭代点跨入非可行域,则所搜索到的无约束极小点 x*必可保持在可行域内。
⑹由终止准则,若满足则转步骤⑺,否则转⑸⑺,输出最优解(x*,F*)
入口
给定:x(0) ∈D,r(0),C,ε1,ε2
第5章 约束优化方法
可行域D为凸集
可行域D为非凸集
根据求解方式的不同,约束优化设计问题可分为:直接 解法、间接解法。 (1)直接法
这种方法主要用于求解仅含不等式约束条件的最 优化问题。其基本思想是在可行域内按照一定的原则 直接探索出它的最优解,而不需要将约束最优化问题 转换成无约束问题去求优。设计一个直接解法的迭代 程序,除应具有下降性、收敛性外,还必须具有可行 性,即每次迭代后得到的新点都应在可行域内。 直接法包括:随机试验法、随机方向探索法、复 合形法、可行方向法、可变容差法和简约梯度法等。
若
rr 1
则
r r r1 ;
则
q r/r 1
q 为(0,1)区间内的伪随机数。利用q,容易求 得任意区间(a,b)内的伪随机数,其计算公式 为:
x a q(b a)
二、 随机产生初始点: ① 输入设计变量的上、下限值:
ai≤ x i ≤bi ,(i=1,2,…n);
② 在区间[0,1]中产生n个伪随机数 {qi },计算x的 各分量 xi ai qi (bi ai )(i 1, 2, n) ③ 判断随机点是否可行,若随机点x为可行点, 则取初始点 x 0 x ;若随机点x为非可行 点,则转步骤②重新计算,直到产生的随机点 是可行点为止。
0
随机方向法评价
优点 1、对函数无性态要求
2、收敛快
3、不受维数影响,维数愈高,愈体现优点 缺点 1、对于严重非线性函数,只能得到近似解 2、对于非凸函数,有可能收敛于局部解
§5-3 复合形法
复合形法是求解约束非线性最优化问题的一种
重要的直接方法。它来源于用于求解无约束非线性最
优化问题的单纯形法,实际上是单纯形法在约束问题 中的发展。 如前所述,在求解无约束问题的单纯形法中,不 需计算目标函数的梯度,而是靠选取单纯形的顶点并
第5章 优化问题
第5章 优化问题5.1 线性规划问题线性规划问题是目标函数和约束条件均为线性函数的问题,MA TLAB6.0解决的线性规划问题的标准形式为:min n R x x f ∈'sub.to :b x A ≤⋅b e q x A e q =⋅ub x lb ≤≤其中f 、x 、b 、beq 、lb 、ub 为向量,A 、Aeq 为矩阵。
其它形式的线性规划问题都可经过适当变换化为此标准形式。
在MA TLAB6.0版中,线性规划问题(Linear Programming )已用函数linprog 取代了MA TLAB5.x 版中的lp 函数。
当然,由于版本的向下兼容性,一般说来,低版本中的函数在6.0版中仍可使用。
函数 linprog格式 x = linprog(f,A,b) %求min f ' *x sub.to b x A ≤⋅线性规划的最优解。
x = linprog(f,A,b,Aeq,beq) %等式约束beq x Aeq =⋅,若没有不等式约束b x A ≤⋅,则A=[ ],b=[ ]。
x = linprog(f,A,b,Aeq,beq,lb,ub) %指定x 的范围ub x lb ≤≤,若没有等式约束beq x Aeq =⋅ ,则Aeq=[ ],beq=[ ]x = linprog(f,A,b,Aeq,beq,lb,ub,x0) %设置初值x0x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) % options 为指定的优化参数[x,fval] = linprog(…) % 返回目标函数最优值,即fval= f ' *x 。
[x,lambda,exitflag] = linprog(…) % lambda 为解x 的Lagrange 乘子。
[x, lambda,fval,exitflag] = linprog(…) % exitflag 为终止迭代的错误条件。
第五章约束问题的最优化方法
g1 ( x) [ 1 , 1 ]T
g2 ( x) x1 ,
g2 ( x) [ 1 , 0 ]T 。
g3 ( x) x2 ,
g3 ( x) [ 0 , 1 ]T 。
18
由K T条件得
x1 3 1 1 0 x 3 1 1 2 0 3 1 0 2
第七讲 约束非线性规划
约束极值及最优性条件
等式约束 不等式约束 一般约束问题
约束极值问题的算法
外点法 内点法 乘子法
1
一 、约束极值问题的最优性条件
1、约束极值问题的表示 min f ( x ) hi ( x ) 0 i 1 , 2 ,, m s .t . g j ( x ) 0 j 1 , 2 , , l
8
2 g3 ( x ) 0。 2
I ( x ) { 1 , 2 }。
x2 g2 ( x ) 0
g3 ( x ) 0
O
g1 ( x ) 0
x
x1
②如何判断一个方向是可行方向?
9
定理1:
给 定 点x Q , 记 点 x 的 积 极 约 束 指 标 集 为 I ( x )。 给 定 向 量 d , 如果对任意的 i I ( x ) 有 gi ( x )T d 0 , 则 d 是 点 x 的 可 行 方 向 。
则 向 量d 是 点 x 处 的 可 行 下 降 方 向 。
证略
③极值点的必要条件: 定理3:
设 x* Q, I ( x*)是其积极约束指标集。
f ( x) 和 gi ( x) (i I ( x*)) 在点x * 处可微,
《机械优化设计》教学大纲
《机械优化设计》教学大纲大纲说明课程代码:3335047总学时:48学时(讲课40学时,上机8学时)总学分:3课程类别:专业模块选修课适用专业:机械设计制造及其自动化专业预修要求:高等数学、线性代数、BASIC或其它适于科学计算的高级语言、工程力学、机械设计基础一、课程的性质、目的、任务:机械优化设计是在电子计算机广泛应用的基础上发展起来的一门先进技术.它是根据最优化原理和方法,以电子计算机为计算工具,寻求最优设计参数的一种现代设计方法。
该课程是为高年级设置的专业课,可供机械类或近机类专业的学生学习。
该课程的主要目的和任务在于培养学生:1)了解和基本掌握机械优化设计的基本知识2)扩大视野,并初步具有应用机械优化设计的基本理论和基本方法解决简单工程实际问题的素质。
二、课程教学的基本要求:课堂讲授:课堂讲授主要以导学式教学为主,启发引导学生的学习兴趣,通过实例及典型例题加深学生对课堂内容的理解。
实践性环节基本要求:本课程的实践性环节主要是上机编制和调试程序(8学时)1)目的和要求上机调试并通过教材上已有的或是自行编制的计算程序,达到巩固某些基本的重要算法的目的2)内容编制并调试一维收索方法、无约束优化方法、约束优化方法及机械零件设计优化计算程序,上机练习并输出计算结果。
课程考核要求:期末考试成绩占总成绩的60—70%,平时成绩占30-40%。
三、大纲的使用说明:课程总学时:课堂教学+上机时数 = 40+8大纲正文第一章绪论学时:1学时(讲课1学时)本章讲授要点:1)明确本课程的研究对象、内容、性质、任务;2)明确优化的含义、机械优化设计的内容及目的.重点:了解机械优化设计的一般过程。
难点:机械优化设计的一般步骤。
第二章优化设计概述学时:3学时(讲课3学时)本章讲授要点:通过机械设计优化问题示例,使学生了解机械优化设计的基本概念和基本术语、优化设计的数学模型、优化问题的几何描述、优化设计的基本方法。
重点:掌握可行域与非可行域、等值线(面)的概念及在优化方法中的重要意义。
第五章 约束优化方法
只有当目标函数是凸函数,约束构成的可行域是凸集 时,则满足K-T条件的点 是全局极小点的必要而充 分条件。
讨论: 约束最优解的必要条件——几何条件
当迭代点 有两个起作用约束,写出目标函数与 约束集的关系如下:
区域内
5.3.1 约束坐标轮换法
一、约束坐标轮换法与无约束坐标轮换法的区别
约束坐标轮换法的基本思想与无约束坐标轮换 法基本相同,其主要区别如下:
1、沿坐标方向搜索的迭代步长采用加速步长, 而不是采用最优步长。因为按照最优步长所得到的迭 代点往往超出了可行域。
2、对于每一个迭代点,不仅要检查目标函数值 是否下降,而且必须检查是否在可行域内,即进行适 用性和可行性的检查。
2、将非可行点移入可行域
用上述方法的随机点不一定是可行点。但是只 要它们中至少有一个点在可行域内,就可以用一定 的方法将非可行点移入可行域。如果k个随机点没 有一个是可行点,则应重新产生随机点,直至其中 有至少一个是可行点为止。
对于具有等式约束的优化问题,若出现两个或两个
以上的局部最优点,此时全局最优点是全部局部最优点 中函数值最小的一个。
对于具有一般约束的优化问题,若出现两个或两个 以上的局部最优点,此时全局最优点是全部局部最优点 中函数值最小且同时满足等式约束与不等式约束的一个。 例如:设数学模型为
该优化问题的最优点如下图所示,对于这两个局部最小
5.3.2 随机方向法
参看右图 预先选定可行初始点 , 利用随机函数构成随机方 向S1,按给定的初始步长
,沿S1方向取得 试探点
检查x点的适用性和可行性
若满足
继续按下面的迭代式在S1方向上获取新点。重复上 述步骤,迭代点可沿S1方向前进。直至到达某迭代点 不
约束问题的最优化方法
3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0
§5.3 外点惩罚函数法
二. 惩罚函数的形式:
①
x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:
机械优化设计(张翔,陈建能编著)PPT模板
2.6优化设 计的约束极
值条件
2.4函数的 凸性
2.5目标函 数的无约束
极值条件
2.1本章导 读
2.2向量、 矩阵的若干
概念
2.3目标函 数的性态分
析基础
第2章优化设计的 理论基础
2.7优化设计的数值解法及终止 准则 2.8习题
第3章一维优化 方法
第3章一维优化方 法
3.1引言 3.2确定搜索区间的进退法 3.3黄金分割法 3.4二次插值法 3.5习题
第9章优化设计实例
9.1复演预期函数机构的
1
设计
9.2圆柱齿轮减速器的优
化设计
2
9.3圆柱螺旋压缩弹簧的
3
优化设计
9.4椭圆齿轮-曲柄摇杆-
轮系引纬机构的设计
4
9.5手脚联控机构的多目
5
标优化设计
9.6应用的扩展——两个
非工程设计的应用实例
6
第9章优化设计实 例
9.7习题
参考文献
参考文献
附录混合罚函数优化 程 序 与 M AT L A B 使 用 示例
附录混合罚函数优化程序 与 M AT L A B 使 用 示 例
F1混合罚函数调用Powell法求 优参考程序
F 2 M AT L A B 优 化 工 具 使 用 示 例
2020
感谢聆听
换
05
7.5优化计 算结果的分
析
03
7.3建模中 数表和图线
的程序化
06
7.6习题
第8章现代优化计算 方法与优化工具软件 应用概述
第8章现代优化计算方法与优化 工具软件应用概述
8.1现代优化计算方法 8 . 2 M AT L A B 优 化 工 具 应 用 概 述 8.3习题
第5章 优化(Optimizer)工具的使用
第5章优化(Optimizer)工具的使用电路模拟(仿真)是非常重要的,它辅助工程师设计了各种电路。
但与期望的EDA还有距离,人们是从两方面解决这个问题。
一是基于数学的最优化算法;一是基于知识信息系统,二者都有很大发展。
PSpice/Optimizer是基于前者,这就需要读者了解一些数学的最优化算法,本章只做一些简介,主要是介绍优化(Optimizer)工具的使用方法。
5.1 优化(Optimizer)工具的工作流程优化(Optimizer)工具的工作流程如图5-1所示。
图5-1 优化工具(Optimizer)的工作流程图中:1.设置电路图(与第4章相同);2.调用PSpice进行电路特性模拟(与第4章相同);3.确定电路特性函数,(与第4章相同);4.检验电路特性函数模拟结果(与第4章相同);5.运行灵敏度分析,确定最关键的元器件(选作项目这与读者本身知识和经验有关);6.确定最关键的元器件的参数;7.设置优化特性函数,PSpice提供有53个电路特性函数(Measurement);8.确定优化目标函数;9.确定约束条件和目标函数的权重;10.选用优化引擎(Engine);11.运行优化工具;12.判断电路是否满足设计要求,有3项选择:13.否!调整优化过程;14.否!修改修改元器件参数或电路;15.是!已满足,依此,更新电路中元器件参数值;16.打印输出17.保存文件从流程图中可以看出,优化程序是在分析的基础上进行的,优化的方法涉及到了数学的最优化算法,下面先介绍有关优化算法的基本知识。
然后再按优化工作流程具体介绍优化(Optimizer)工具的使用方法。
5.2 优化的基本概念5.2.1 设计变量优化问题离不开设计变量、目标函数和约束条件等三个方面的问题。
而首当其冲的就是如何选择设计变量。
设计变量:就是在优化设计中出现的各个可以选择取值的变动参数。
例:一个RC单管放大电路如图-2所示。
在工作时,有一个100pf的寄生负载电容。
第五章-优化设计方法课件
一、目标与过程
•目 标:
•方案的价值系数:
v F ——功能 C ——成本
方案优化法:
➢以功能分析为基础 ➢运用创造技巧
总体优化的过程:
➢确定优化对象
➢最大程度降低成本 ➢努力提高功能
➢ 优化方案的建立
➢寻求最大价值系数
➢ 优化方案的评选
第五章-优化设计方法
二、优化对象的确定
产品返修率高 次品率、废品率高 产品赔偿率,退换率高
效果显著 具备各种改善条件 有改善潜力 情报资料齐全 无需大量人力物力 牵涉面不广
•具体方法
•1 .从技术角度选择优化对象 •(1)经验分析法 •(2)综合分析法
确定评价指标 计入权重 专家评分 按加权总评分决策
第五章-优化设计方法
案例:某产品有A、B、C、D4个组成部分。经过企业有关人 士的分析,决定以可靠性、操作性、维修性、工艺性、生产 效率和安全性等6项指标来评价每一部分的技术水平,并根 据6项指标对产品的不同工艺重要性赋予不同的权重
• 2)针对难以处理性态不好的问题、难以求得全局最 优解等弱点,发展了一批新的方法,如:模拟退火法、 遗传算法、人工神经网络法、模糊算法、小波变换法、 分形几何法等。
• 3)在数学模型描述能力上,由仅能处理连续变量、 离散变量,发展到能处理随机变量、模糊变量、非数 值变量等,在建模方面,开展了柔性建模和智能建模 的研究。
• 2)建模难度大,技术性高,数学模型描述 能力低,数学模型误差大。
• 3)方法程序的求解能力有限,难以处理复 杂问题和性态不好的问题,难以求得全局最 优解。
第五章-优化设计方法
现 为了提高最优化方法的综合求解能力,人们探索: 状
• 1)引入了人工智能、专家系统技术,增加了最优化 方法中处理方案设计、决策等优化问题的能力,在优 化方法中的参数选择时借助专家系统,减少了参数选 择的盲目性,提高了程序求解能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5-1 约束最优解及其必要条件
推广到n维设计空间的具有m个不等式约束的问题,
即为检验约束优化问题局部最优点的著名的K-T条件:
f ( x
(k )
) u g u ( x ( k ) )
u 1
J
u 0
或:
u 1,2,, J
J g u ( x ( k ) ) f ( x ( k ) ) u xi xi u 1
约束优化方法
第五章
约束优化方法
5-1 约束最优解及其一阶必要条件
5-2 随机方向法
5-3 复合形法
5-4-1 内惩罚函数法
5-4-2 外惩罚函数法 5-4-3 混合惩罚函数法
§5-1 约束最优解及其必要条件
约束最优解(a)
§5-1 约束最优解及其必要条件
约束最优解(b)
§5-1 约束最优解及其必要条件
随机方向法的计算步骤:
5)从初始点x0出发,沿可行搜索方向d以步长进行迭
代计算,直到搜索到一个满足全部约束条件,且目标 函数值不再下降的新点x。
6)若收敛条件
满足,迭代终止。约束最优解为x*=x,否则,x0=x, 转到步骤2。
例:用随机方向法求解下面问题的约束最优解:
min s.t.
2 f ( x1 , x2 ) ( x1 3) 2 x2
答案:乘子无解,故非最优点。
§5-1 约束最优解及其必要条件
对于仅有等式约束的优化设计问题,以一个
等式约束为例:
h( x ) 0
可以写成:
h ( x) 0 h( x ) 0
从而得出等式约束问题的K-T条件:
f ( x ) h( x ) h( x )
0
验证其可行性和适用性:不可行性
8)产生k个随机方向(k=3)计算各随机点:
e1 e2 0.8 0.99 2 2 0.1 (0.8) 0.1 0.12 1 0.2 0.32 2 2 0.6 (0.6) 0.2 0.95 1
2 f ( x1 , x 2 ) ( x1 2) 2 x 2
g1 ( x1 , x 2 ) x1 0 g 2 ( x1 , x 2 ) x 2 0 g 3 ( x1 , x 2 ) 1 x12 x 2 0
§5-1 约束最优解及其必要条件
min s.t.
g1 ( x1 , x2 ) x1 1 0 g 2 ( x1 , x2 ) x2 0 g 3 ( x1 , x2 ) 4 x12 x2 0
解:1)确定初始点:
1
x(0) [0
0]T
f ( x ( 0) ) 9
2)产生k个随机方向(k=3):
e1 0.3 0.6 2 2 0. 4 0. 8 (0.3) 0.4 0.7 0.76 2 2 0.6 0.65 (0.6) 0.7 1
同样方法计算出k个随机单位向量(k≥n) 2)取一试验步长,按下式计算k个随机点:
x j x0 e j
( j 1,2,, k )
§5-2 随机方向法
3)检验k个随机点的可行性,比较其大小,选 出目标函数值最小的点xL。 4)比较两点xL和x0的目标函数值(适用性): 若 则 若
f ( x L ) f ( x ( 0) )
§5-1 约束最优解及其必要条件
约束优化设计问题数学模型为:
min f ( x ), x R s.t. g j ( x ) 0 j 1,2,, m hk ( x ) 0 k 1,2,, l
n
§5-1 约束最优解及其必要条件
g ( x (k ) )
x(k)不是约束最优点
即: f ( x ) h( x )
§5-1 约束最优解及其必要条件
从而得出多个等式约束问题
hv ( x ) 0 v 1, , p
K-T条件:
f ( x ) vhv ( x )
v 1 p
§5-1 约束最优解及其必要条件
因此,容易得出对于具有等式约束和不
1 0,
2 0
它的几何意义:如果x*是一个局部极小点,则该点 的目标函数梯度应落在该点起作用约束的梯度所组成 的锥角之内。
§5-1 约束最优解及其必要条件
几何意义:如果x(k)是一个局部极小点,则该点的目 标函数梯度应落在该点起作用约束的梯度所组成的锥 角之内。
x(k)不是约束最优点
x(k)是约束最优点
0 g 2 ( x ) 1
(k )
2 0 2 0 2 1 3 1
解得:
g 3 ( x
(k )
2 x1 2 ) 1 x ( k ) 1
2 1,
3 1
因此判断该点是约束最优点。
f ( x (k ) )
g 2 ( x (k ) )
f ( x (k ) )
x(k)是约束最优点
x(k)不是约束最优点
两个起作用约束条件极小点的必要条件
§5-1 约束最优解及其必要条件
若x(k)为约束最优点x*,约束条件极小点的必要条件 可以表示成:
f ( x () ) 1g1 ( x () ) 2 g 2 ( x () )
解:1)判断该点起作用约束:
g1 ( x1 , x2 ) 1 0 g 2 ( x1 , x2 ) 0
g 3 ( x1 , x2 ) 0
0 g 2 ( x ) 1
(k )
g 3 ( x
(k )
2 x1 2 ) 1 x ( k ) 1
约束最优解(c)
§5-1 约束最优解及其必要条件
约束优化问题的最优性条件:在满足等式和不等式约束 条件下,其目标函数值最小的点所必需满足的条件。
(局部最优解)
最优点可能出现的情况:
1)在可行域内部
2)在约束边界上
约束最优解
§5-1 约束最优解及其必要条件
约束最优解的搜索路线
约束优化问题的最优性条件:在满足等式和不等式约束 条件下,其目标函数值最小的点所必需满足的条件。
§5-1 约束最优解及其必要条件
min s.t. f ( x1 , x2 ) ( x1 2) 2 x22 g1 ( x1 , x2 ) x1 0 g 2 ( x1 , x2 ) x2 0 g3 ( x1 , x2 ) 1 x12 x2 0
§5-1 约束最优解及其必要条件
随机方向法基本原理
1 初始点的选择
1) 人为确定; 2) 随机选择:
(1)输入设计变量的下限值和上限值,即
ai≤xi≤bi (i=1,2,…,n) (2)产生n个随机数qi. ( 0≤ qi ≤ 1) xi=ai+qi(bi-ai) (3)计算随机点x的各分量:
(4)判别随机点x是否可行,若随机点x为可行点,则取初始
d xL x
0
f ( xL ) f ( x )
( 0)
则将步长缩小,转步骤2)重新计算
随机方向法的计算步骤:
1)选择一个可行的初始点x0。 2)产生k个n维随机单位向量。 3)取试验步长,计算出k个随机点。
4)在k个随机点中,根据可行性和适用性,找出可行
搜索方向。 5)从初始点x0出发,沿可行搜索方向d以步长进行迭 代计算,直到搜索到一个满足全部约束条件,且目标 函数值不再下降的新点x。
0]T
1 1 2 x x 0 d x 3 d 0 0 0
验证其可行性和适用性: f ( x) (2 3)2 02 1
f ( x) f 3
7)从可行点沿着可行方向前进:
2 1 3 x x d x d 0 0 0
2 f ( x1 , x2 ) ( x1 2) 2 x2
g1 ( x1 , x2 ) x1 0 g 2 ( x1 , x2 ) x2 0 g 3 ( x1 , x2 ) 1 x12 x2 0
2)计算目标函数及起作用 约束在该点梯度: 2( x1 2) 2 (k ) f ( x ) 2 x2 x( k ) 0
u 0
u 1,2,, J
即只有当λ u为非负乘子时, x(k)才是约束最优点x*。
§5-1 约束最优解及其必要条件
K-T条件对于约束问题的重要性在于: 1)检验某点是否为约束最优点; 2)检验一种搜索方法是否可行。
例1:判断x(k)=[1 0]T是否为下列约束优化问题最优点:
min s.t.
1 e 0
3
4)判断k个随机点的可行性:
x1 x 3
5)判断可行搜索方向:
f 1 (0.6 3) 2 0.82 13.6 f 3 (1 3)2 02 4
f 3 f ( x ( 0) )
d x3 x (0) [1
6)从可行点沿着可行方向前进:
条件,以用来作为约束极值的判断条件。
对于目标函数和约束函数都是凸函数的情 况, 符合K-T条件的点一定是全局最优点。这种
情况K-T条件即为多元函数取得约束极值的充分 必要条件。
约束优化设计问题求解方式:
(1)直接法 直接法是在满足不等式约束的可行设计区域内直 接搜索问题的最优解x*和f(x*)。 (2)间接法 间接法是将优化问题转化为一系列无约束优化问 题来求解。
x(k)是约束最优点
单起作用约束条件极小点的必要条件
§5-1 约束最优解及其必要条件
因而得出单约束条件极小点的必要条件可以 表示成: