第十一章 非参数检验简述

合集下载

非参数检验的基本原理

非参数检验的基本原理

非参数检验的基本原理非参数检验是一种利用统计方法来检验假设的一种方法,与参数检验相比,非参数检验不需要对总体的分布做出假设,更为灵活。

本文将介绍非参数检验的基本原理。

一、概述非参数检验是一种统计方法,既不要求数据符合特定分布,也不对总体参数做出假设。

与之相反,参数检验通常假设数据服从特定的分布,例如正态分布。

非参数检验的主要优点是可以更全面地处理数据,更适用于复杂的情况。

然而,非参数检验的统计效率通常较低,需要更多的样本来达到相同的置信水平。

二、基本原理1. 秩次转换非参数检验通常使用秩次转换来处理数据。

所谓秩次转换是将原始的数值转换为它们在样本中的秩次,从而消除数值的大小差异。

对于同一组数据,秩次转换后,可以应用更广泛的统计方法。

2. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数检验方法,主要应用于配对样本或者两组独立样本之间的差异比较。

它的基本思想是对每个观测值计算它们的符号秩,然后通过比较两组样本的秩和来判断差异是否显著。

3. Mann-Whitney U检验Mann-Whitney U检验是一种非参数检验方法,用于比较两组独立样本之间的差异。

它的基本原理是将两组样本中的所有观测值汇总,然后对这些观测值进行秩次转换,并计算两组样本排名和。

通过比较两组样本排名和的大小来判断差异是否显著。

4. Kruskal-Wallis H检验Kruskal-Wallis H检验是一种非参数的方差分析方法,用于比较三组或以上独立样本之间的差异。

它的基本原理是将所有样本的观测值汇总,然后进行秩次转换,并计算各组样本排名和的平均值。

通过比较平均排名和的大小来判断差异是否显著。

三、案例研究为了更好地理解非参数检验的原理,我们以某家公司销售部门的两个月销售额作为例子进行案例研究。

假设第一个月公司销售额为[100, 80, 120, 90, 110],第二个月公司销售额为[95, 85, 115, 100, 105]。

非参数检验方法

非参数检验方法

非参数检验方法一、什么是非参数检验非参数检验(Nonparameteric Tests)是指检验假设(比如均值、方差、分布类型)不依赖样本参数的方法,也可以称为不参数检验,将数据的描述性统计量和判别量作为假设检验的基本工具,而不主张假设服从某个具体的概率分布。

二、非参数检验的优点1、可以使用描述性统计量作为假设检验的基本工具,而不主张数据服从某个具体的概率分布,使得检验更加简单。

2、非参数检验的统计量倪比较有针对性,无论样本量大小,无论是否假定样本服从某个具体概率分布,它都能比较有效计算统计量的有效性、准确性。

3、非参数检验的抽样复杂度较低,当数据量较小时,可以获得较精确的结果。

4、非参数检验可以应用于连续变量或离散变量检验假设,使得非参数检验成为一种常见的统计检验方法。

三、常见的非参数检验方法1、Wilcoxon符号秩检验:Wilcoxon符号秩检验是用于比较两组数据之间不同水平上的秩和的检验,它的统计量是组间的秩和比,假设多个样本的总体服从同一分布,可以用来检验两组数据间的均值或中位数的差异性,即表明两个样本的分布是否有差异。

2、Kruskal-Wallis H检验:Kruskal-Wallis H检验是一种无序秩检验,它能检验总体中多组数据间的均值或中位数的比较,即用来检验多个样本构成的总体是否服从同一分布,要求多组样本的体积相等。

3、Friedman检验:Friedman检验是一种用于多个样本比较的非参数检验,它的检验统计量是秩求和检验,可以检验多个样本构成的总体是否服从相同的分布,从而比较多个样本之间的均值,中位数或众数相对应的所有统计量。

4、Spearman秩相关系数:Spearman秩相关系数是一种测量两个变量相关性程度的方法,它不要求变量服从某种分布,仅要求变量是分类变量或连续变量。

5、Cochran Q检验:Cochran Q检验是变量若干观测值服从同一分布的依赖性检验,可以检验多组数据的差异性是否具有统计学意义,一般用于比较不同实验组间的得分或响应相对于对照组的得分或响应的差异性。

非参数检验

非参数检验

非参数检验非参数检验是一种利用数据的分布情况,来判断总体参数是否存在差异的统计学方法。

它通过对样本数据进行排序、秩次差分等计算,不依赖于总体的任何分布假设,从而有效地避免了假设检验的潜在问题。

非参数检验是一种不依赖于正态分布等总体分布假设的统计方法。

它常用于处理那些无法明确表达总体分布的数据,例如顺序等级或名目类别等数据。

非参数检验能够帮助研究者在不了解总体分布情况的情况下,对样本数据所代表的总体参数进行有效估计和推断。

为什么要使用非参数检验?通常情况下,研究者在进行实验或调查时,只能获得小规模样本数据,无法获得完整的总体数据。

而传统的参数检验方法可能会假设总体分布具有特定形态的分布假设,这在某些情况下可能会导致假设检验的错误推断。

因此,非参数检验成为了一个更为可靠的方法,它不需要任何对总体分布的预设,可以适用于各种数据类型的场景。

在以下情况下,非参数检验的使用是非常适合的:1. 样本数据不属于正态分布。

2. 样本数据中包含异常值。

3. 样本数据中存在较大的离散差异。

4. 样本规模较小,总体参数无法得到明确描述。

在非参数检验的应用中,根据所比较的数据类型和检验目的的不同,可以经常使用以下几种检验方法:1. Wilcoxon符号秩检验:用于检验有序对数据是否存在显著性差异。

2. Mann-Whitney U检验(也称为Wilcoxon秩和检验):用于比较两个独立样本之间的差异。

3. Kruskal-Wallis H检验:用于比较多个独立样本之间的差异。

5. McNemar检验:用于比较配对样本之间的差异。

以上非参数检验方法的应用范围非常广泛,不同场景中的应用也有所不同。

结论总体来看,非参数检验是一种常用的在小样本数据分析中应用广泛的方法。

它不依赖于总体分布的假设,能够在多种数据类型的场景中发挥作用,并且在误差推断方面也有很好的应用前景。

虽然相比于参数检验来说,非参数检验设置较为繁琐,计算也较为耗时,但在实际操作中,它被广泛运用于各种实验、调查和模拟中。

统计学习题 第十一章 非参数检验

统计学习题 第十一章  非参数检验

第十一章非参数检验第一节符号检验符号检验的方法·符号检验的特点和作用第二节配对符号秩检验配对符号秩检验的方法·配对符号秩检验的效力第三节秩和检验秩和检验的方法·秩和检验的近似第四节游程检验游程的概念·游程检验的方法·差符号游程检验第五节累计频数检验累计频数检验的方法·累计频数检验的应用一、填空1.非参数检验,泛指“对分布类型已知的总体进行参数检验”()的所有检验方法。

2.符号检验的零假设就是配对观察结果的差平均起来等于()。

3.理论研究表明,对于配对样本非正态分布的差值d,()是最佳检验。

4.秩和检验检验统计量U是U1和U2中较()的一个。

5.秩尺度之统计量的均值和标准差只取决于()。

6.()常被用作经验分布与理论分布的比较。

7.绝对值相等的值,应将它们的秩()。

8.符号检验,在分布自由检验中称为()。

9.符号检验和配对符号秩检验,都只适用于()样本。

10.数据序列ABBABAAABABBABBAAAAAB的总游程数是()二、单项选择1.下列检验中,不属于非参数统计的方法的是()。

A总体是否服从正态分布 B 总体的方差是否为某一个值C 样本的取得是否具有随机性D 两组随机变量之间是否相互独立2.下列情况中,最适合非参数统计的方法是()。

A反映两个大学新生成绩的差别B 反映两个大学新生家庭人均收入的差别C 反映两个大学三年级学生对就业前景的看法差别D反映两个大学在校生消费水平的差别3.不属于非参数检验的是()。

A符号检验B游程检验C累计频数检验 D F检验4.在累计频数检验中,卡方的自由度为()。

A n1B 2C n2D n1+n25.配对符号秩检验的效力( )。

A 小于符号检验B 大于t 检验C 介于符号检验与t 检验之间D 无法与符号检验及t 检验比较 6.如果我们说非参数检验的效力是80%,下列哪种解释正确。

( )A 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要80个数据;B 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要80个数据;C 如果用参数检验需要100个数据,那么在同等的检验效力下,非参数检验只要20个数据;D 如果用非参数检验需要100个数据,那么在同等的检验效力下,参数检验只要20个数据;7.对于秩和检验,U 1、U 2和n 1、 n 2的关系是( )。

10_非参数检验

10_非参数检验

第三节 完全随机化设计多组独立样本 的秩和检验
例10-5 某研究者欲研究A、B两个菌种对小 鼠巨噬细胞吞噬功能的激活作用,将60只 小鼠随机分为三组,其中一组为生理盐水 对照组,用常规巨噬细胞吞噬功能的监测 方法,获得三组的吞噬指数,试比较三组 吞噬指数有无差别?
23
表10-5 不同菌种对小鼠巨噬细胞的吞噬指数
第八章
基于秩次的非参数检验
1
参数与非参数统计方法
参数统计(parametric statistics) 例如:t 检验和方差分析。
非参数统计(nonparametric statistics) 例如:秩和检验(rank sum test)。
2
非参数检验的适用场合:
1. 样本来自的总体分布形式未知; 2. 不能或未加精确测量的资料,如等级资料;
例10-1 某研究者欲研究保健食品对小鼠抗 疲劳作用,将同种属的小鼠按性别和年龄相 同、体重相近配成对子,共10对,并将每对 中的两只小鼠随机分到保健食品两个不同的 剂量组,过一定时期将小鼠杀死,测得其肝 糖原含量(mg/100g),结果见表10-1, 问 不同剂量组的小鼠肝糖原含量是否不同?
5
3. 某些分组数据一端或两端是不确定值的;
4. 参数检验条件得不到满足的,如非正态资料、
样本例数较少分布类型显示不清的资料、不能
进行数据转换的资料。
3
第一节
配对设计和单样本资料的 符号秩和检验
1. 配对设计资料的符号秩和检验 ; 2. 一组样本资料的符号秩和检验 。
4
一、配对设计资料的符号秩和检验
=0.05
2.编秩 均秩次。
将各组数据混合,由小到大排序并编秩,如遇有相等数值则取平

第十一章非参数检验

第十一章非参数检验

第一节 非参数检验的基本概念及特点一、非参数检验(一)什么是“非参数”非参数模型:缺乏总体分布模式的信息。

(二)非参数检验的定义非参数检验:不需要假设总体是否为正态分布或方差是否为齐性的假设检验称非参数检验. (三)非参数检验的优点和缺点: 1、优点:一般不涉及总体参数,其假设前提也比参数假设检验少得多,适用面较广。

计算简便。

2、缺点:统计效能远不如参数检验方法。

由于当数据满足假设条件时,参数统计检验方法能够从其中广泛地充分地提取有关信息.非参数统计检验方法对数据的限制较为宽松,只能从中提取一般的信息,相对参数统计检验方法会浪费一些信息。

(四)非参数检验的特点: 1、它不需要严格的前提假设; 2、特别适用于顺序数据; 3、适用于小样本,且方法简单;4、最大的不足是不能充分利用资料的全部信息;5、不能处理“交互作用”,即多因素情况。

第二节 两个独立样本的非参数检验方法一、秩和检验法秩和即秩次的和或等级之和。

秩和检验法也叫Mann —Whitney —Wilcoxon 检验,它常被译为曼-惠特尼-维尔克松检验,简称M —W-W 检验,也称Mann-Whitney U 检验。

秩和检验法与参数检验法中独立样本的t 检验法相对应。

当“总体正态”这一前提不成立时,不能用t 检验,可以用秩和检验法。

(一)秩统计量秩统计量指样本数据的排序等级.假设从总体中反复抽取样本,就能得到一个对应于样本容量1n 和2n 的秩和U 的分布.这是一个间断而对称的分布,当1n 和2n 都大于10时,秩和T 的分布近期近似正态分布,其平均数和标准差分别为()21211++=n n n T μ ()1212121++=n n n n T σ其检验值为TT σμ-=T Z(二)计算过程1、小样本:两个样本容量均小于10(n 1£10,n 2£10)例11—1:在一项关于模拟训练的实验中,以技工学校的学生为对象,对5名学生用针对某一工种的模拟器进行训练,内外让6名学生下车间直接在实习中训练,经过同样的时间后对两组人进行该工种的技术操作考核,结果如下:模拟器组:56,62,42,72,76实习组:68,50,84,78,46,92假设两组学生初始水平相同,则两种训练方式有无显著差异?表11—1 两种训练方式的成绩考核成绩 成绩排列 等级 等级和模拟器组 (5人) 56 42 1 251=T62 56 4 42 62 5 72 72 7 76 76 8 实习组 68 46 2 412=T(6人) 50 50 3 84 68 6 78 78 9 46 84 10929211检验过程:1.建立假设 0H :∑∑=21R R ,即两样本无显著差异 aH :∑∑≠21R R ,即两样本有显著差异2.计算统计量1)将数据从小到大排列,见上表。

非参数检验

非参数检验

非参数检验非参数检验是一种统计方法,用于比较两组或多组数据的差异或关联性,它并不依赖于数据的分布假设。

相比于参数检验,非参数检验通常更为灵活,可应用于各种数据类型和样本量,尤其在数据不满足正态分布的情况下表现优势。

本文旨在介绍非参数检验的基本原理、应用领域以及常见方法。

首先,非参数检验的基本原理是依赖于样本中的秩次,即将原始数据转化为秩次数据进行统计分析。

秩次是数据在全体中的相对位置,将数据转化为秩次可以消除异常值对统计结果的影响,并使数据的分布不再成为限制因素。

非参数检验的应用领域广泛,包括但不限于以下几个方面。

一、假设检验非参数检验可用于假设检验,比如检验两组样本的中位数是否存在差异。

常见的方法有Wilcoxon符号秩检验、Mann-Whitney U检验等。

在实际应用中,如果数据的分布无法满足正态分布假设,非参数检验则是一种理想的选择。

二、相关性分析非参数检验可用于判断两个变量之间的关联性。

常见的方法有Spearman秩相关系数检验、Kendall秩相关系数检验等。

这些方法的核心思想是将原始数据转化为秩次数据,通过秩次数据之间的比较来判断两个变量之间是否存在显著相关。

三、分组比较非参数检验可用于比较多个样本之间的差异。

常见的方法有Kruskal-Wallis检验、Friedman检验等。

这些方法可用于比较三个以上的样本组之间的差异,而不依赖于数据的分布假设。

在实际应用中,非参数检验需要注意以下几个问题。

一、样本容量非参数检验对样本容量的要求相对较低,适用于小样本和大样本。

然而,在样本容量较小的情况下,非参数检验可能会产生较大的误差,因此应根据实际情况选择合适的方法。

二、数据类型非参数检验可应用于各种数据类型,包括连续型数据和离散型数据。

但对于有序分类数据、定序数据和名义数据,非参数检验相较于参数检验有更好的适用性。

三、分布假设非参数检验不需要对数据的分布做出假设,这使得它更加灵活。

但是,如果数据满足正态分布假设,参数检验也是一种较为有效的选择。

非参数检验培训课件(ppt 29页)

非参数检验培训课件(ppt 29页)
独立样本的非参数检验 秩和检验法 中数检验法 相关样本的非参数检验 符号检验法 符号等级检验法
秩和(等级和)检验法
适用于两独立样本差异显著性的检验,等 总体分布非正态或分布不清,现通过检验 两样本间的差异,来达到判断两总体分布 是否相同的目的。此时不能用t检验,我们 使用两样本比较的秩和检验。5 1 3 .5
2 1 .5 2 9 .5
2 1 .5 1 9 .5
1 3 .5 1 7
4 17
1 1 .5 2 5
1 1 .5 2 9 .5
17 31
6
27
2 3 .5
解:
T 1.5 23.5 3 27 1.5 8.5 8.5 21.5 21.5
13.5 4 11.5 11.5 17 174
果。男女生的注意稳 定性有无显著差异?
男女 19 25 32 30 21 28 34 34 19 23 25 25 25 27 31 35 31 30 27 29 22 29 26 33 26 35 29 37
24 34 32


1 .5 8 .5
2 3 .5 1 9 .5
3 15
27 27
1 .5
秩和检验法的步骤
有两种情况
一、小样本
:两个样本容量均小于10(n1<10,n2<10)
(1)建立检验假设
虚无假设:两总体分布相同
备择假设:两总体分布不同
(2)设检验水平
(3)计算检验统计量 秩和(T值)
T值的求法
1、编秩次:将两组样本数据混合在一起,由 小到大排列成等级(秩次),最小的为1,若 遇到相同的数据,则按其所占位置平均计算秩 次
查表可知T1= 20 < T < T2= 45 因此两班成绩无显著差异

非参数检验

非参数检验
非参数检验又称为任意分布检验 (distribution-free test),它不考虑 研究对象总体分布具体形式,也不对总体 参数进行统计推断,而是通过检验样本所 代表的总体分布形式是否一致来得出统计 结论。
非参数检验的优点:
①适用范围广,不论样本来自的 总体分布形式如何,都可适用;
②某些非参数检验方法计算简便, 研究者在急需获得初步统计结果时可 采用;
的总体分布不同。 α=0.05
2.混合编秩
依据两组数值由小到大编秩,结果 见上表。
3.求秩和并确定检验统计量T
把两组秩次分别相加求出两组的秩 和值,R1=315.5,R2=149.5。因乳 酸钙组样本含量较小,故 T=R2=149.5。
4.确定P值和作出推断结论 以较小样本含量为n1,n1=14, n2n1=2,查附表6,两样本比较秩和检验 用T界值表(双侧)。
当n1>20或(n2-n1)>10时,附表6 中查不到P值,则可采用正态近似法求u 值来确定P值,其公式如下:
u T n1(N 1) / 2 0.5 n1n2(N 1) 12
上式中T为检验统计量值,n1、n2 分别为两样本含量,N=n1+n2,0.5这 连续性校正数。上式为无相同秩次时使 用或作为相同秩次较少时的近似值。当 两样本相同秩次较多(超过总样本数的 25%)时,应按下式进行校正,u经校 正后可略增大,P值则相应减小。
式中,Ri为各组的秩和,ni为各组 样本含量,N为总样本含量。
当各组相同秩次较多时,可对H值进 行校正,按下式求值。
Hc H c
C 1
(t
3 j
t
j
)
(N3 N)
4.确定P值和作出推断结论
当组数K=3,每组样本含量ni≤5时, 可查附表7(H界值表)得到P值。若 k>3或ni>5时,H值的分布近似于自 由度为k-1的χ2分布,此时可查附表 4χ2界值表得到P值。最后按P值作出 推断结论。

非参数检验

非参数检验

➢ 编秩:数据相等则取平均秩,
➢ 求秩和
➢ 计算检验统计量H值
H 12 N(N 1)
Ri2 3( N 1) ni
出生体重(kg)xij ABCD
相应秩次 Rij A BCD
2.7 2.9 3.3 3.5
3
4
7 11
2.4 3.2 3.6 3.6
2 5.5 12.5 12.5
2.2 3.2 3.4 3.7
χ 2 12
R
2 i
3(N1)
N(N1) ni
χ2
12 14(14 1)
152
4
152 3
37.52 4
37.52 3
3(14
1)
χ 2 9.375
χ
2 c
1
χ2
(t
3 j
t
j
)
n3 n
1
(23
9.375 2) (33 3) (23
143 14
2)
9.50
四、随机区组设计资料的秩和检验 (Friedman test)
正态近似法
如果n1或n2-n1超出附表的范围,可按下式 计算u值:
u | T n1(N 1) / 2 | 0.5 n1n2 (N 1) / 12
在相同秩次较多时,应用下式进行校正:
uC u / C
C 1
(t
3 j
t
j
)
/(N
3
N)
tj为第j组相同秩次的个数
频数表资料(或等级资料)两样本资料比较
xi (2) 86 71 77 68 91 72 77 91 70 71 88 87
12 对双胞胎兄弟心理测试结果
后出生者得分 差 值

非参数检验

非参数检验

第十一章非参数检验本章讲述某些用于定序尺度的双样本检验。

与上一章所讲的检验不同,使用这类方法不需要对总体分布作任何事先的假定(例如正态总体)。

同时从检验的内容来说,也不是检验总体分布的某些参数(例如均值、成数、方差等),而是检验总体某些有关的性质,所以称为非参数检验。

非参数检验,泛指“对分布类型已知的总体进行参数检验”之外的所有检验方法。

与均值差等检验比较,非参数检验有什么优点呢?在对均值差进行t检验时,不仅要有定距尺度的假定,还要有正态总体的假定。

当然,对于大样本,正态总体的假定可以放松。

但正是对于小样本,这种假定最容易出问题。

因此,在满足下面两条件之一时,我们期望用非参数检验代替均值差检验:①没有根据采用定距尺度,但可以安排数据的顺序(即秩);②样本小且不能假定具有正态分布。

由于非参数检验不能充分利用全部现有的资料信息。

因此,如果有根据采用定距尺度,并且如果对于小样本能够假定其具有正态性,或对大样本能够放松对正态性假定的要求,一般宁愿使用均值差检验,而不用非参数检验。

非参数检验,无需做出经典统计所必要的关于分布的任何假设。

唯一需要的假设是:全部数据或数据对都出自相同的基本总体,且取样是随机的、相互独立的。

基于这种原因,非参数检验又称为分布自由(或无分布)检验。

“无分布”不是指总体真的无分布,而是指虽有时对总体分布一无所知,但仍可以进行分析。

不仅如此,这些很容易理解的方法还可以用于处理等级的资料和定性的信息。

很显然,如果把从一个正态总体中抽取的数据用分布自由来处理,其效果肯定不如相应的参数检验有力。

我们一般用下述指标来确定非参数检验的“效率”E n =nn非参数检验中的参数检验中的0第一节符号检验“符号检验”是针对观察结果之差的符号来作估价的。

在单一实验组的实验中,对于样本中每个个体的前测与后测,如果我们并不关心(X1―X0)的具体数值,而只关心是增大了还是减小了。

符号检验的零假设就是配对观察结果的差平均起来等于零:人们期望这些差中有一半小于零(负号),而另一半大于零(正号),因此符号检验就是对差分布之中位数为零的零假设检验。

第十一章 非参数检验

第十一章 非参数检验
第十一章 非参数检验

假设检验的方法有两种:参数检验(parametric
test)和非参数检验(non – parametric test)。

各种参数检验的共同特点:
是对总体参数的推论(包括参数估计与假设检验),
要求样本所属的总体呈正态分布、总体方差齐性 等等。 参数检验主要适用于等距变量和比率变量的资料。
计算:n+=7,n-=3,因此 N=n++n-=10,r=3 查表: N=10时,r0.05=1,本题r=3,差异不显著
练习

研究者想调查特殊训练是否可以提高领导力, 取了两组智力相当的被试进行匹配,其中一组 进行特殊训练,一组不进行训练,问:受过特 殊训练的被试的领导力是否优于没有受过训练 的被试。
对照组X2 13 20 24 10 27 17 21
8 15 11
6 22
关于五种颜色命名得分的符号检验计算表 序号 1 2 3 4 5 6 7 8 9 10 11 12 实验组X1 18 对照组X2 13 差数符 号 + 20 26 14 25 25 21 12 14 17 20 19 20 24 10 27 17 21 0 + + + 0 8 15 11 + + 6 22 + -
4.非参数检验最大的不足是未能充分利用资料
的全部信息,检验精度比参数检验要差。
5.非参数方法目前还不能处理“交互作用”。
非参数假设检验方法

两独立样本均值差异的非参数检验

秩和检验法 (Mann-Whitney-U检验)

两相关样本均值差异的非参数检验


符号检验法 符号秩和检验法( Wilcoxon Signed–Rank test )

第十一章非参数检验

第十一章非参数检验

第十一章 非参数检验前面有关章节讨论的参数检验都要求总体服从一定的分布,对总体参数的检验是建立在这种分布基础上的。

例如,两样本平均数比较的t 检验和多个样本平均数比较的F 检验,都要求总体服从正态分布,推断两个或多个总体平均数是否相等。

本章引入另一类检验——非参数检验(non-parametric test )。

非参数检验是一种与总体分布状况无关的检验方法,它不依赖于总体分布的形式,应用时可以不考虑被研究的对象为何种分布以及分布是否已知。

非参数检验主要是利用样本数据之间的大小比较及大小顺序,对两个或多个样本所属总体是否相同进行检验,而不对总体分布的参数如平均数、标准差等进行统计推断。

当样本观测值的总体分布类型未知或知之甚少,无法肯定其性质,特别是观测值明显偏离正态分布,不具备参数检验的应用条件时,常用非参数检验。

非参数检验具有计算简便、直观,易于掌握,检验速度较快等优点。

非参数检验法从实质上讲,只是检验总体分布的位置(中位数)是否相同,所以对于总体分布已知的样本也可以采用非参数检验法,但是由于它不能充分利用样本内所有的数量信息,检验的效率一般要低于参数检验方法。

例如,非配对资料的秩和检验,其效率为t 检验的86.4%,就是说以相同概率判断出差异显著,t 检验所需的样本个数要少13.6%。

非参数检验内容很多,本章只介绍常用的符号检验(sign test ),秩和检验(rank-sum test )和等级相关分析(rank correlation analysis )三种。

第一节 符号检验一、配对资料的符号检验(一)配对资料符号检验的意义 配对资料符号检验是根据样本各对数据之差的正负符号多少来检验两个总体分布位置的异同,而不去考虑差值的大小。

每对数据之差为正值用“+”表示,负值用“-”表示。

可以设想如果两个总体分布位置相同,则正或负出现的次数应该相等。

若不完全相等,至少不应相差过大,否则超过一定的临界值就认为两个样本所来自的两个总体差异显著,分布的位置不同。

非参数检验

非参数检验
本例n=11,T=11.5,查附表9,得双侧0.05<P<0.10,按 =0.05水准不拒绝H0,尚不能认为两法测谷-丙转氨酶结果有差 别。
若n>50,超出附表9的范围,可用正态近似法作u检验,按 下式计算u值。
对秩的差值,省略所有差值为0的对子数,令余下的有效对子数
为n;最后按n个差值编正秩和负秩,求正秩和或负秩和。但对 于等级资料,相同秩多,小样本的检验结果会存在偏性,最好 用大样本。
的多个独立样本所来自的多个总体分布是否有差别。在理论
上检验假设H0应为多个总体分布相同,即多个样本来自同一 总体。由于H检验对多个总体分布的形状差别不敏感,故在实
际应用中检验假设H0可写作多个总体分布位置相同。对立的
备择假设H1为多个总体分布位置不全相同。
1.原始数据的多个样本比较
方法步骤见例8-5.
样本所来自的两个总体中位数是否有差别。方法步骤见例8l。
例8-1 对12份血清分别用原方法(检测时间20分钟)和新 方法(检测时间10分钟)测谷-丙转氨酶,结果见表8-1的(2)、 (3)栏。问两法所得结果有无差别?
血清谷-丙转氨酶不知是否符合正态分布,本例为小样 本资料,其配对差值经正态性检验得0.1<P<0.2,虽可用配对t 检验,为保守起见,现用Wilcoxon符号秩检验。
用于推断计量资 料或等级资料的两个独立样本所来
自的两个总体分布是否有差别。
在理论上检验假设H0应为两个总体分布相同,即 两个样本来自同一总体。由于秩和检验对于两个总体分布 的形状差别不敏感,对于位置相同形状不同但类似的两个 总体分布,如均数相等、方差不等的两个正态分布,推断
不出两个总体分布(形状)有差别,故对立的备择假设Hl不

十一章节非参数检验

十一章节非参数检验
方法:—将观察值按由小到大的次序排列, —编定秩次, —求出秩和进行假设检验。
一、配对试验资料的符号秩和检验 二、非配对试验资料的秩和检验 三、多个样本比较的秩和检验 四、多个样本两两比较的秩和检验
一、配对试验资料的符号秩和检验 (Wilcoxon配对法)
1、建立假设 HO:差值d总体的中位数=0; HA:差值d总体的中位数≠0。 2、秩次和符号 求配对数据的差值d; 按d绝对值从小到大编秩次; 根据原差值正负在各秩次前标上正负号
134.1, 124.3, 147.9, 143.0(cm)。 问该
地成年公黄牛胸围与该品种胸围平均数是否 有显著差异?
表11-2 成年公黄牛胸围测定值符号检验表
牛号 1
23
4
56
7
8
9 10
胸围 128.1 144.4 150.3 146.2 140.6 139.7 134.1 124.3 147.9 143
3、统计推断
由 n = 10 , 查 附 表 11, 得
K0.05(10)=1,K>K0.05(10) ,P>0.05,不能否定HO ,表明样本
平均数与总体平均数差异不显著,可以认为该地成年公黄牛
胸围的平均数与该品种胸围总体平均数相同。
第二节 秩和检验
秩和检验也叫做符号秩和检验(signed rank-sum test),或称Wilcoxon检验,其统 计效率远较符号检验为高。秩和检验与符号检验法 不同,要求差数来自某些对称分布的总体,但并不 要求每一差数来自相同的分布。
3、确定统计量T
将两个样本重新分开,计算各自的秩和。将较
小的样本含量作为n1,其秩和作为检验的统计量T。 若n1=n2,则任取一组的秩和为T。
4、统计推断

非参数检验教学课件

非参数检验教学课件

如果多个配对样本得分布存在显著得差异, 那么数值普遍偏大得组秩和必然偏大,数值普 遍偏小得组,秩和也必然偏小,各组得秩之间就 会存在显著差异。如果各样本得平均秩大致相 当,那么可以认为各组得总体分布 没有显著差 异。
2、多配对样本得Kendall协同系数检验
多配对样本得Kendall协同系数检验和 Friedman检验非常类似,也就是一种多配对样 本得非参数检验,但分析得角度不同。多配对 样本得Kendall协同系数检验主要用在分析评 判者得判别标准就是否一致公平方面。她将每 个评判对象得分数都看作就是来自多个配对总 体得样本。一个评判对象对不同被判定对象得 分数构成一个样本,其零假设为:样本来自得多 个配对总体得分布无显著差异,即评判者得评 判标准不一致。
非参数检验教学课件
但许多调查或实验所得得科研数据,其总 体分布未知或无法确定。因为有得数据不就是 来自所假定分布得总体,或者数据根本不就是 来自一个总体,还有可能数据因为某种原因被 严重污染,这样在假定分布得情况下进行推断 得做法就有可能产生错误得结论。此时人们希 望检验对一个总体分布形状不必作限制。
非参数检验根据样本数目以及样本之间得关系 可以分为单样本非参数检验、两独立样本非参数检 验、多独立样本非参数检验、两配对样本非参数检 验和多配对样本非参数检验几种。
6、1 SPSS单样本K-S检验
6、1、1 统计学上得定义和计算公 式 定义:单样本K-S检验就是以两位前苏联数
学家Kolmogorov和Smirnov命名得,也就是一种 拟合优度得非参数检验方法。单样本K-S检验 就是利用样本数据推断总体就是否服从某一理 论分布得方法,适用于探索连续型随机变量得 分布形态。
Kendall协同系数检验中会计算Friedman 检验方法,得到friedman统计量和相伴概率。 如果相伴概率小于显著性水平,可以认为这10 个节目之间没有显著差异,那么可以认为这5个 评委判定标准不一致,也就就是判定结果不一 致。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不如参数检验。
• 两独立样本非参数检验方法
– 秩和检验法
– 中数检验法
• 两相关样本非参数检验方法
– 符号检验法 – 符号等级检验法 • 克—瓦式单向方差分析
第一节 两独立样本非参数检验方法
一、秩和检验 • 两个样本的容量都小于或等于10时
– 将所有数据由小到大赋予秩次 – 求样本容量较小的一组数据的秩次之和“T” – 将T值与临界值作比较。若 T1 < T < T2 则差异 不显著
Z T n ( n 1) / 4 n ( n 1)( 2 n 1) 24
第三节 单向秩次方差分析
• 方法:将所有样本的数据合在一起,按从 小到大编秩次,然后计算各样本的秩次和。 如果各组没有显著性差异,各组秩次和应 当相等或趋于相等;如果各组秩次和相差 较大,那么各组有显著性差异的可能性较 大。
例题
序号
1 2 3 4 5 n
甲校 128 114 103 92 85 5
原始分数 乙校 90 91 106
丙校 89 80 101
3
3
• 2.37
Z ( r 0 .5 ) n / 2 1 2 n ( 9 0 . 5 ) 31 / 2 1 2 31 2 . 16
二、符号秩次检验
• 威尔科克松(F.Wilcoxon)提出了既考虑差 数符号,又考虑差数大小的符号秩次检验 法。
• 当样本容量n<25时,可用查表法进行符 号秩次检验。 • 当样本容量n>25时,可用正态分布近似 处理。检验统计量为:
Z
( r 0 .5 ) n / 2 1 2 n
例题
• 32名被试中有1名被试对两种包装打出相 同的分数,有22名被试认为A包装比B包 装好,另有9名被试认为B包装比包装A好。 问:被试对两种包装的偏好程度有无显 著差异?
• 根据题意,正号有22个,负号有9个,n = 22 + 9 = 31为大样本。将符号数较小的一个记为r, 故r = 9。
第十一章 非参数检验
• 参数检验:利用样本信息对总体参数进行的假设检验。其 前提条件是总体呈正态分布、两个或多个总体方差齐性,
特别适用于等距或等比性质的资料。 常用的Z检验、t检验、
F检验均属于参数检验。 • 非参数检验:不对总体参数进行假设检验,对总体分布形 态及方差是否齐性也无严格要求,特别适用于名义和顺序 性质的资料。它主要包括2检验、秩和检验、中位数检验、 符号检验、符号等级检验、克—瓦氏单向方差分析。 • 非参数检验比参数检验应用范围广,但其灵敏性和精确度
例:
班级 成绩 实验班 对照班 42 38 35 41 32 56 49 60 43 38 55

6 3.5 2
5 1
10 8
11
7 3.5 9
• 两个样本容量均大于10时
T Z n1 n1 n 2 1 2
n1 n 2 n1 n 2 1 12
• P348
二、中数检验
• 将两样本数据混排并求出中位数
• 分别求出每一样本中大于中位数及小于中 位数的数据个数,并列成四格表 • 进行2检验
第二节 两相关样本非参数检验方法
一、符号检验
• 符号检验是通过对两个相关样本的每对数 据之差的符号(正号或负号)进行检验, 以比较两个样本差异的显著性。
配对 得 A组 分 B组 符号
1 18 13 +
2 3 4 5 20 26 14 25 20 24 10 27 0 + + -
6 25 17 +
7 21 21 0
8 12 8 +源自9 14 15 -10 17 11 +
11 20 6 +
12 19 22 -
• 计算正负号个数中较小的一个,并记作r
– 当样本容量较小,n < 25 时,可用查表法进 行符号检验。 – 当样本容量较大,即n>25时,可以用正态 分布近似处理,检验统计量为:
相关文档
最新文档