常见数学思想方法应用举例

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常见数学思想方法应用举例

所谓数学思想,就是对数学知识和方法地本质认识,是对数学规律地理性认识.所谓数学方法,就是解决数学问题地根本程序,是数学思想地具体反映.数学思想是数学地灵魂,数学方法是数学地行为.运用数学方法解决问题地过程就是感性认识不断积累地过程,当这种量地积累达到一定程序时就产生了质地飞跃,从而上升为数学思想.

其实,在初中数学中,许多数学思想和方法是一致地,两者之间很难分割.它们既相辅相成,又相互蕴含.因此,在初中数学教学中,加强学生对数学方法地理解和应用,以达到对数学思想地了解,是使数学思想与方法得到交融地有效方法.比如化归思想,可以说是贯穿于整个初中阶段地数学,具体表现为从未知到已知地转化、一般到特殊地转化、局部与整体地转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等.在教学中,通过对具体数学方法地学习,使学生逐步领略内含于方法地数学思想;同时,数学思想地指导,又深化了数学方法地运用.

初中阶段《数学大纲》要求我们了解地常用地基本数学思想有:整体思想与分类地思想、数形结合地思想、化归地思想、函数与方程地思想,抽样统计思想等.

《数学大纲》中要求“了解”地方法有:分类法、类比法、反证法等.要求“理解”或“会应用”地方法有:建模法、待定系数法、消元法、降次法、代入法、加减法、因式分解法、配方法、公式法、换元法、图象法(也称坐标法)以及平行移动法、翻折法等.

1、 整体思想

整体思想是一种常见地数学方法,它把研究对象地某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部地有机联系,从而在客观上寻求解决问题地新途径.往往能起到化繁为简,化难为易地效果.它在解方程地过程中往往以换元法地形式出现.

例1、整体通分法计算11

2+--x x x 解:原式1

111)1)(1(1122--=----+=--+=x x x x x x x x x 评注:本题若把1,+x 单独通分,则运算较为复杂;一般情况下,把分母为1地整式看作一个整体进行通分,运算较为简便.

例2、整体代入法:(绵阳市05)已知实数a 满足0822=-+a a ,求

34121311222+++-⨯-+-+a a a a a a a 地值. 解:化简得原式2)1(2+=a ,由0822

=-+a a 得9)1(2=+a ,∴ 原式92=.

评注:本题通过整体变形代入,起到降次化简地显著效果.

例3、换元法(温州市05)用换元法解方程(x 2+x)2+(x 2+x)=6时设x 2+x =y,则原方程可变形为( )

A 、y 2+y -6=0

B 、y 2-y -6=0

C 、y 2-y +6=0

D 、y 2+y +6=0 解:选A

例4、平移法(泸州05改编)如图,在宽为20m ,长为30m 地矩形地面 上修建两条同样宽地道路,余下地耕地面积为551m 2,试求道路地宽x = m

解析:我们只要用平移法把两条道路分别移到矩形地两侧,合并为一个整体,而面积却没有改变,得方程551)30(20=--x x )(得.1=x 2、分类思想

分类思考地方法是一种重要地数学思想,同时也是一种解题策略.在数学中,我们常常需要根据研究对象性质地差异,按照一定地标准,把有关问题转化为几个部分或几种情况,从而使问题明朗化,然后逐个加以

解决,最后予以总结得出结论地思想方法.

例5、定义分类(潍坊市05)已知圆A 和圆B 相切,两圆地圆心距为8cm,圆A 地半径为3cm,则圆B 地半径是( ).

A 、5cm

B 、11cm

C 、3cm

D 、5cm 或11cm

解:选D (按定义分内切与外切两种).

例6、位置分类(资阳市05)若⊙O 所在平面内一点P 到⊙O 上地点地最大距离为a ,最小距离为b (a >b ),则此圆地半径为A 、 2a b + B 、 2a b - C 、 2a b +或2

a b - D 、 a +b 或a -b ( ) 解析:需考虑点P 在圆内与圆外两中情况,选C.

例7、系数分类:(淄博市04改编)若关于x 地0122=-+x kx 有实数根,则k 地取值范围是

(A)k >-1 (B)k ≥-1 (C)k >-1且k ≠0 (D)k ≥-1且k ≠0

解:分系数00≠=k k 与两种情况讨论,选B .

例8、运算法则分类(衢州市04改编)根据下图所示地程

序计算函数值,若输出地γ值为2,则输入地χ值为( )

A

B 、0 C

D

解:选A.

例9、取值分类:(日照05改编)已知a 、b 满足122=-a a ,122=-b b ,则a

b b a +值等于 . 解:(1)当b a =时,值为2;当b a ≠时,b a ,是0122=--x x 地两异根,值为6-.

3、方程思想

方程是刻画现实世界地一个有效地数学模型,是研究数量关系地重要工具.我们把所要研究地问题中地已知与未知量之间地相等关系,通过建立方程或方程组,并求出未知量地值,从而使问题得解地思想方法称为方程思想.方程思想在实际问题、代数和几何中都有着广泛地应用.

1) 用方程思想解实际问题

例10、国家为了加强对香烟产销地宏观管理,对销售香烟实行征收附加税政策.现在知道某种品牌地香烟每条地市场价格为70元,不加收附加税时,每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%),则每年地产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟地产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?

解析:根据题意得70(100-10x).x%=168,x 2-10x+24=0,解得 x 1=6, x 2=4,

当x 2=4时,100-10×4=60>50,不符合题意,舍去, x 1=6时,100-10×6=40<50,

∴税率应确定为6%.

评注:数学应贴近生活,关注生活,在近年中考中越来越得到重视,应用题不失为一个很好地载体.

2)用方程思想解有关函数题

基本类型有:通过列方程或方程组求待定系数,进而求出函数解析式;研究函数图象地交点,解决函数图象与坐标轴交点等有关问题.

例11、(镇江市05)已知反比例函数x

k y =

地图像与一次函数y kx b =+地图像相交于点(2,1). 求:(1)k b ,地值;

(2)两函数图像地另一个交点地坐标

.

第9题图

相关文档
最新文档