山东大学硕士研究生2011年工程数学(科学计算部分)试题及答案
2011-工程数学-科学计算部分
一、 填空题 (每题3分, 共15分)1. 取3.14159作为π的近似值,则其具有 6 位有效数字.2. 矩阵A 1302⎡⎤=⎢⎥⎣⎦的-∞条件数cond (A)∞= 10 . 3. 对函数()(1)(2)f x x x x =--, 差商[0,1,2,3]f = 1 . 4. 求积分21()f x dx ⎰的Simpson 公式为321((1)4()(2))6f f f ++ . 5.求解常微分方程5dyx dx=的隐式Euler 公式为115)n n n y y x ++=++.二、 计算题 (共35分)1. (15分) 对方程组123410312120145x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, (1) 用Gauss 消去法求解方程组, 并写出由此得到的Doolittle 三角分解LU A =.(2) 写出对应的Jacobi 迭代格式, 并求迭代矩阵的谱半径. 该格式是否收敛?解:(1) 7711114444242477410341034103121201010145014500---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 解得1231x x x === 其LU 分解为71444247741010041012110010140100--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(2) Jacobi 迭代格式为(1)()3111441122513344000100k k x x x x x x +⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦其迭代矩阵的特征方程1421122141()040λλλλλ--=-=, 故其谱半径12, 收敛.2. (12分) 已知函数)(x f 满足(1)1,(2)3,(3)7,f f f ===求其二次插值多项式. 若再补充条件(1)f '=3, 求其三次插值多项式.解:利用Lagrange 插值公式,或Newton 插值公式,皆可得二次插值多项式2()1L x x x =-+. 设三次插值多项式2()1(1)(2)(3)H x x x x x x α=-++---,则(1)123H α'=+=, 得1α=. 于是2()1(1)(2)(3)H x x x x x x =-++---325105x x x =-+-.2. (8分) 对3()f x dx ⎰的近似求积公式39()(0)(2)44Q f f f =+, 求其代数精确度. 解:令2()1,,f x x x =代入,精确成立令3()f x x =代入不精确成立. 故代数精确度为2.。
2011考研数学一真题及答案解析
2011年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线234(1)(2)(3)(4)y x x x x =−−−−的拐点是( )(A) (1,0). (B) (2,0). (C) (3,0). (D) (4,0). (2) 设数列{}n a 单调减少,lim 0n n a →∞=,1(1,2,)nn kk S an ===∑ 无界,则幂级数1(1)nn n a x ∞=−∑的收敛域为( )(A) (1,1]−. (B) [1,1)−. (C) [0,2). (D) (0,2]. (3) 设函数()f x 具有二阶连续导数,且()0f x >,(0)0f '=,则函数()ln ()z f x f y =在点(0,0)处取得极小值的一个充分条件是( )(A) (0)1f >,(0)0f ''>. (B) (0)1f >,(0)0f ''<. (C) (0)1f <,(0)0f ''>. (D) (0)1f <,(0)0f ''<.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K <<. (B) I K J <<. (C) J I K <<. (D) K J I <<.(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A =( ) (A) 12PP . (B) 112P P −. (C) 21P P . (D) 121P P −.(6) 设1234(,,,)A αααα=是4阶矩阵,*A 为A 的伴随矩阵,若(1,0,1,0)T是方程组0Ax =的一个基础解系,则*0A x =的基础解系可为( )(A) 13,αα. (B) 12,αα. (C) 123,,ααα. (D) 234,,ααα.(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x ,2()f x 是连续函数,则必为概率密度的是( )(A)12()()f x f x . (B)212()()f x F x .(C)12()()f x F x . (D)1221()()()()f x F x f x F x +.(8) 设随机变量X 与Y 相互独立,且()E X 与()E Y 存在,记{}max ,U X Y =,{}min ,V X Y =则()E UV =( )(A)()()E U E V ⋅. (B)()()E X E Y ⋅. (C)()()E U E Y ⋅. (D)()()E X E V ⋅.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 曲线0tan (0)4π=≤≤⎰xy tdt x 的弧长s = .(10) 微分方程cos xy y e x −'+=满足条件(0)0y =的解为y = .(11) 设函数2sin (,)1xytF x y dt t =+⎰,则222x y F x ==∂=∂ .(12) 设L 是柱面方程221x y +=与平面=+z x y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分22L y xzdx xdy dz ++=⎰ .(13) 若二次曲面的方程22232224x y z axy xz yz +++++=,经过正交变换化为221144y z +=,则a = .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0N μμσσ,则()2E X Y = .三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)求极限110ln(1)lim()x e x x x−→+.(16)(本题满分9分)设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可导且在1x =处取得极值(1)1g =,求211x y zx y==∂∂∂.(17)(本题满分10分)求方程arctan 0k x x −=不同实根的个数,其中k 为参数.(18)(本题满分10分)(Ⅰ)证明:对任意的正整数n ,都有111ln(1)1n n n<+<+ 成立. (Ⅱ)设111ln (1,2,)2n a n n n=+++−=,证明数列{}n a 收敛.(19)(本题满分11分)已知函数(,)f x y 具有二阶连续偏导数,且(1,)0f y =,(,1)0f x =,(,)Df x y dxdy a =⎰⎰,其中{}(,)|01,01D x y x y =≤≤≤≤,计算二重积分''(,)xy DI xy f x y dxdy =⎰⎰.(20)(本题满分11分)设向量组123(1,0,1)(0,1,1)(1,3,5)T T T ααα===,,,不能由向量组1(1,1,1)T β=,2(1,2,3)T β=,3(3,4,)T a β=线性表示.(I) 求a 的值;(II) 将123,,βββ由123,,ααα线性表示.(21)(本题满分11分)A 为三阶实对称矩阵,A 的秩为2,即()2r A =,且111100001111A −⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭.(I) 求A 的特征值与特征向量; (II) 求矩阵A . (22)(本题满分11分)设随机变量X 与Y且{}221P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ.(23)(本题满分 11分) 设12,,,n X X X 为来自正态总体20(,)μσN 的简单随机样本,其中0μ已知,20σ>未知.X 和2S 分别表示样本均值和样本方差.(I) 求参数2σ的最大似然估计量2σ∧; (II) 计算2()E σ∧和2()D σ∧.2011年全国硕士研究生入学统一考试数学一试题答案一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1)【答案】(C).【解析】记1111,1,0y x y y '''=−==,2222(2),2(2),2,y x y x y '''=−=−= 32333(3),3(3),6(3),y x y x y x '''=−=−=− 432444(4),4(4),12(4),y x y x y x '''=−=−=− (3)()y x P x ''=−,其中(3)0P ≠,30x y =''=,在3x =两侧,二阶导数符号变化,故选(C).(2)【答案】(C).【解析】观察选项:(A),(B),(C),(D)四个选项的收敛半径均为1,幂级数收敛区间的中心在1x =处,故(A),(B)错误;因为{}n a 单调减少,lim 0n n a →∞=,所以0n a ≥,所以1nn a∞=∑为正项级数,将2x =代入幂级数得1nn a∞=∑,而已知S n =1nkk a=∑无界,故原幂级数在2x =处发散,(D)不正确.当0x =时,交错级数1(1)nn n a ∞=−∑满足莱布尼茨判别法收敛,故0x =时1(1)nn n a ∞=−∑收敛.故正确答案为(C).(3)【答案】(A). 【解析】(0,0)(0,0)|()ln ()|(0)ln (0)0zf x f y f f x∂''=⋅==∂, (0,0)(0,0)()|()|(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=, 2(0,0)(0,0)2|()ln ()|(0)ln (0)0,zA f x f y f f x∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]|()|0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂222(0,0)(0,0)22()()[()][(0)]|()|(0)(0).()(0)z f y f y f y f C f x f f y f y f ''''∂−''''==⋅=−=∂ 又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>.(4)【答案】(B). 【解析】因为04x π<<时, 0sin cos 1cot x x x <<<<,又因ln x 是单调递增的函数,所以ln sin ln cos ln cot x x x <<. 故正确答案为(B). (5)【答案】 (D).【解析】由于将A 的第2列加到第1列得矩阵B ,故100110001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 即1AP B =,11A BP −=.由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭, 即2,P B E =故122B P P −==.因此,121A P P −=,故选(D).(6)【答案】(D).【解析】由于(1,0,1,0)T 是方程组0Ax =的一个基础解系,所以(1,0,1,0)0TA =,且()413r A =−=,即130αα+=,且0A =.由此可得*||A A A E O ==,即*1234(,,,)A O =αααα,这说明1234,,,αααα是*0A x =的解.由于()3r A =,130αα+=,所以234,,ααα线性无关.又由于()3r A =,所以*()1r A =,因此*0A x =的基础解系中含有413−=个线性无关的解向量.而234,,ααα线性无关,且为*0A x =的解,所以234,,ααα可作为*0A x =的基础解系,故选(D).(7)【答案】(D). 【解析】选项(D)1122()()()()f x F x f x F x dx +∞−∞⎡⎤+⎣⎦⎰2211()()()()F x dF x F x dF x +∞−∞⎡⎤=+⎣⎦⎰21()()d F x F x +∞−∞⎡⎤=⎣⎦⎰12()()|F x F x +∞−∞=1=. 所以1221()()f F x f F x +为概率密度.(8)【答案】(B).【解析】因为 {},,max ,,,X X Y U X Y Y X Y ≥⎧==⎨<⎩ {},,min ,,Y X Y V X Y X X Y ≥⎧==⎨<⎩.所以,UV XY =,于是()()E UV E XY = ()()E X E Y =.二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)【答案】(ln 1+.【解析】选取x 为参数,则弧微元sec ds xdx ===所以440sec ln sec tan ln(1s xdx x x ππ==+=+⎰. (10)【答案】sin xy e x −=.【解析】由通解公式得(cos )dx dxx y e e x e dx C −−⎰⎰=⋅+⎰(cos )x e xdx C −=+⎰(sin )xe x C −=+.由于(0)0,y =故C =0.所以sin xy e x −=.(11)【答案】4. 【解析】2sin 1()F xy y x xy ∂=⋅∂+, 22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+, 故2(0,2)2|4Fx∂=∂. (12)【答案】π.【解析】取22:0,1S x y z x y +−=+≤,取上侧,则由斯托克斯公式得,原式=22SS dydz dzdx dxdyydydz xdzdx dxdy x y z y xzx∂∂∂=++∂∂∂⎰⎰⎰⎰.因'',1, 1.x y z x y z z =+==由转换投影法得221[(1)(1)1]Sx y ydydz xdzdx dxdy y x dxdy +≤++=⋅−+−+⎰⎰⎰⎰.221(1)x y x y dxdy π+≤=−−+=⎰⎰221x y dxdy π+≤==⎰⎰.(13)【答案】1a =.【解析】由于二次型通过正交变换所得到的标准形前面的系数为二次型对应矩阵A 的特征值,故A 的特征值为0,1,4.二次型所对应的矩阵1131111a A a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,由于310ii A λ===∏,故113101111a a a =⇒=.(14)【答案】()22μμσ+.【解析】根据题意,二维随机变量(),X Y 服从()22,;,;0N μμσσ.因为0xy ρ=,所以由二维正态分布的性质知随机变量,X Y 独立,所以2,X Y .从而有()()()()()()22222E XY E X E Y D Y E Y μμμσ⎡⎤==+=+⎣⎦. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)【解析】110ln(1)lim[]x e x x x−→+0ln(1)1lim[1].1x x x x e e →+−−=2ln(1)limx x xx e →+−=22201()2lim x x x o x x x e→−+−=22201()2lim x x o x x e→−+=12e −=.(16)(本题满分9分) 【解析】[],()z f xy yg x =[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ [][]211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''=++∂∂ []{}21222(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+. 因为()g x 在1x =可导,且为极值,所以(1)0g '=,则21111121|(1,1)(1,1)(1,1)x y d zf f f dxdy =='''''=++. (17)(本题满分10分)【解析】显然0x =为方程一个实根. 当0x ≠时,令(),arctan xf x k x=−()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1x g x x x R x =−∈+,()()()222222211220111x x x x g x x x x +−⋅'=−=>+++, 即(),0x R g x '∈>. 又因为()00g =,即当0x <时,()0g x <; 当0x >时,()0g x >. 当0x <时,()'0f x <;当0x >时,()'0f x >.所以当0x <时,()f x 单调递减,当0x >时,()f x 单调递增 又由()00lim lim1arctan x x xf x k k x→→=−=−,()lim lim arctan x x xf x k x→∞→∞=−=+∞, 所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −≥时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根.当1k ≤时,原方程有一个根.(18)(本题满分10分)【解析】(Ⅰ)设()()1ln 1,0,f x x x n ⎡⎤=+∈⎢⎥⎣⎦显然()f x 在10,n⎡⎤⎢⎥⎣⎦上满足拉格朗日的条件,()1111110ln 1ln1ln 1,0,1f f n n n n n ξξ⎛⎫⎛⎫⎛⎫⎛⎫−=+−=+=⋅∈ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭所以10,n ξ⎛⎫∈ ⎪⎝⎭时, 11111111101n n n nξ⋅<⋅<⋅+++,即:111111n n n ξ<⋅<++, 亦即:111ln 11n n n⎛⎫<+< ⎪+⎝⎭. 结论得证.(II )设111111ln ln 23nn k a n n n k==++++−=−∑. 先证数列{}n a 单调递减.()111111111ln 1ln ln ln 1111n n n n k k n a a n n k k n n n n ++==⎡⎤⎡⎤⎛⎫⎛⎫−=−+−−=+=−+ ⎪ ⎪⎢⎥⎢⎥+++⎝⎭⎝⎭⎣⎦⎣⎦∑∑,利用(I )的结论可以得到11ln(1)1n n <++,所以11ln 101n n ⎛⎫−+< ⎪+⎝⎭得到1n n a a +<,即数列{}n a 单调递减.再证数列{}n a 有下界.1111ln ln 1ln nnn k k a n n k k ==⎛⎫=−>+− ⎪⎝⎭∑∑,()11112341ln 1ln ln ln 1123nnk k k n n k k n ==++⎛⎫⎛⎫⎛⎫+==⋅⋅=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∏,()1111ln ln 1ln ln 1ln 0nnn k k a n n n n k k ==⎛⎫=−>+−>+−> ⎪⎝⎭∑∑.得到数列{}n a 有下界.利用单调递减数列且有下界得到{}n a 收敛.(19)(本题满分11分) 【解析】11''(,)xy I xdx yf x y dy =⎰⎰11'0(,)x xdx ydf x y =⎰⎰()()111'000,|,x x xdx yf x y f x y dy ⎡⎤'=−⎢⎥⎣⎦⎰⎰ ()11''0(,1)(,)x x xdx f x f x y dy =−⎰⎰.因为(,1)0f x =,所以'(,1)0x f x =.11'(,)xI xdx f x y dy =−⎰⎰11'0(,)x dy xf x y dx =−⎰⎰111000(,)|(,)dy xf x y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100(1,)(,)dy f y f x y dx ⎡⎤=−−⎢⎥⎣⎦⎰⎰ Dfdxdy =⎰⎰a =.(20)(本题满分11分)【解析】(I)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123113101(,,,,,)12401313115a ⎛⎫ ⎪= ⎪⎪⎝⎭βββααα113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭. 当5a =时,1231231(,,)2(,,,)3r r ββββββα=≠=,此时,1α不能由123,,βββ线性表示,故123,,ααα不能由123,,βββ线性表示.(II)对123123(,,,,,)αααβββ进行初等行变换:123123101113(,,,,,)013124115135⎛⎫ ⎪= ⎪ ⎪⎝⎭αααβββ101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭ 1002150104210001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭, 故112324βααα=+−,2122βαα=+,31235102βααα=+−.(21)(本题满分11分)【解析】(I)由于111100001111A −⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,设()()121,0,1,1,0,1T T αα=−=,则()()1212,,A αααα=−,即1122,A A αααα=−=,而120,0αα≠≠,知A 的特征值为121,1λλ=−=,对应的特征向量分别为()1110k k α≠,()2220k k α≠.由于()2r A =,故0A =,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()3123,,Tx x x α=,则13230,0,T T⎧=⎨=⎩αααα即13130,0x x x x −=⎧⎨+=⎩. 解此方程组,得()30,1,0Tα=,故30λ=对应的特征向量为()3330k k α≠.(II) 由于不同特征值对应的特征向量已经正交,只需单位化:))()3121231231,0,1,1,0,1,0,1,0T T Tαααβββααα==−====. 令()123,,Q βββ=,则110TQ AQ −⎛⎫⎪=Λ= ⎪ ⎪⎝⎭, TA Q Q =Λ22122001102201022⎛−⎛⎫⎪ ⎪−⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎪ ⎪− ⎪⎪⎝⎭ ⎪⎝⎭220012200000002210001022⎛−⎛⎫− ⎪ ⎪⎛⎫⎪ ⎪ ⎪==⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭.(22)(本题满分11分)【解析】(I)因为{}221P X Y==,所以{}{}222210≠=−==P X Y P X Y.即{}{}{}0,10,11,00P X Y P X Y P X Y==−=======.利用边缘概率和联合概率的关系得到{}{}{}{}1 0,000,10,13P X Y P X P X Y P X Y====−==−−===;{}{}{}11,110,13P X Y P Y P X Y==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y====−===.即,X Y的概率分布为(II)Z的所有可能取值为1,0,1−.{}{}111,13P Z P X Y=−===−=.{}{}111,13P Z P X Y=====.{}{}{}101113P Z P Z P Z==−=−=−=.Z XY=的概率分布为(III)因为XY Cov XY E XY E X E Y ρ−⋅==其中()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=.所以()()()0−⋅=E XY E X E Y ,即X ,Y 的相关系数0ρ=XY . (23)(本题满分 11分)【解析】因为总体X 服从正态分布,故设X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞.(I) 似然函数22002211()()22222211()(;)](2)ni i i x nnnx i i i L f x eμμσσσσπσ=−−−−−==∑===∏∏;取对数:222021()ln ()ln(2)22ni i x n L μσπσσ=−=−−∑; 求导:22022221()ln ()()22()ni i x d L nd μσσσσ=−=−+∑2202211[()]2()nii x μσσ==−−∑.令22ln ()0()d L d σσ=,解得22011()n i i x n σμ==−∑. 2σ的最大似然估计量为02211()ni i X n σμ∧==−∑.(II) 方法1:20~(,)μσi X N ,令20~(0,)i i Y X N μσ=−,则2211n i i Y n σ=∧=∑.2212221()()()()[()]n i i i i i E E Y E Y D Y E Y n σσ=∧===+=∑.2222212221111()()()()n i n i i D D Y D Y Y Y D Y n nnσ∧===+++=∑442244112{()[()]}(3)σσσ=−=−=i i E Y E Y n n n. 方法2:20~(,)μσi X N ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑.()()222222011111()n i i E E X E Y E Y n n n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.()()22444022222111112()2n i i D D X D Y D Y n nn n n n μσσσσσ=∧⎛⎫⎡⎤=−===⋅= ⎪⎢⎥⎣⎦⎝⎭∑.。
2011考研数学(一二三)真题(含答案)
(B) 1,2 .
(C) 1,2,3 . (D) 2 ,3,4 .
【解析】由 x 0 的基础解系只有一个知 r(A) 3 ,所以 r( A) 1,
f
(0),
B
2z xy
|(0,0)
f
(x)
f ( y) f (y)
|(0,0)
[
f (0)]2 f (0)
0,
C
2z y2
|(0,0)
f
(x)
f
( y) f
(y) [ f f 2(y)
( y)]2
|(0,0)
f (0) [ f (0)]2 f (0)
较强。
观察选项:(A),(B),(C),(D)四个选项的收敛半径均为 1,幂级数收敛区间的中心在 x 1 处,
故(A),(B)错误;
因为
an
单调减少,lim n
an
0 ,所以 an
0 ,所以
n1
an
为正项级数,将
x
2 代入幂级数得
n1
an
,
n
而已知 Sn ak 无界,故原幂级数在 x 2 处发散,(D)不正确. k 1
2011 年全国硕士研究生入学 统一考试
数学(一、二、三) 试题及解析
山东考研辅导专家 苏老师
1
2011 年全国硕士研究生入学统一考试
数学(一)试题
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个选项符合题目要 求,请将所选项前的字母填在答.题.纸.指定位置上.
2
2011年全国硕士研究生入学统一考试数学(一)真题及答案解析
f (0) f (0)
f (0) 0 , zxx
x0
f (0) ln
f (0) ,
y0
y0
z
yy
x0
f (0)
f (0) f (0) ( f (0))2 f 2 (0)
f (0) .
y0
要使得函数 z f (x)ln f ( y) 在点(0,0)处取得极小值,仅需
f (0) ln f (0) 0 , f (0) ln f (0) f (0) 0 ,
0
0
5.【答案】
【解】由初等矩阵与初等变换的关系知
AP1
B
,P2 B
E
,所以
A
BP11
P2
P 1 1 1
P2 P11
,
故选 D.
6.【答案】D
【解】由 x 0 的基础解系只有一个知 r( A) 3 ,所以 r( A) 1,又由 A A A E 0 知,
1,2 ,3,4 都是 x 0 的解,且 x 0 的极大线生无关组就是其基础解系,又
0
2
2
.
13.【答案】 1
【解】本题等价于将二次型 f (x, y, z) x2 3y2 z2 2axy 2xz 2 yz 经正交变换后化为
了 f y12 4z12 .由正交变换的特点可知,该二次型的特征值为1, 4, 0 .
1 a 1
该二次型的矩阵为
A
a
3
1 ,可知 A a2 2a 1 0 ,因此 a 1 。
an
单调减少,
lim
n
an
0 ,说明级数
an
n 1
1n
收敛,可知幂级数
an
n 1
x 1n
2011年全国硕士研究生入学统一考试数学一试题解析
所以当 1 k 0 时,由零点定理可知 f x 在 ( , 0) , (0, ) 内各有一个零点; 当 1 k 0 时,则 f x 在 ( , 0) , (0, ) 内均无零点. 综上所述,当 k 1 时,原方程有三个根.当 k 1 时,原方程有一个根.
d F1 ( x) F2 ( x) F1 ( x) F2 ( x) | 1 .
所以 f1F2 ( x) f 2 F1 ( x) 为概率密度. (8)【答案】(B).
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -2-
【解析】因为 U max X , Y
X , X Y, Y , X Y ,
Y, X Y, V min X , Y X , X Y.
所以, UV XY ,于是 E (UV ) E ( XY ) E ( X ) E (Y ) . 二、填空题:9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸 指定位置上. ... (9)【答案】 ln 1 2 . 【解析】选取 x 为参数,则弧微元 ds 1 y dx 1 tan xdx sec xdx
钻石卡高级辅导系统——全程、全方位、系统化解决考研所有问题,成功率趋近 100% -5-
所以当 x 0 时, f
x 单调递减,当 x 0 时, f x 单调递增
又由 lim f x lim
x k 1 k , x 0 x 0 arctan x x lim f x lim k , x x arctan x
y ( x 3) P ( x) ,其中 P(3) 0 , y
2011年考研数学二真题及答案解析
x2 f x x2 f 0 2 f x3 2 f 0
lim x0
x3
f x f 0 f x3 f 0
lim x0
x
2
x3
f 0 2 f 0 f 0.
故答案选(B). (3)【答案】(C).
1
1
2
1 O
1
x
x2 y2 1 1
图1
(21) (本题满分 11 分)
已知函数 f (x, y) 具有二阶连续偏导数,且 f (1, y) 0 ,f (x,1) 0 , f (x, y)dxdy a ,
D
其中 D (x, y) | 0 x 1,0 y 1 ,计算二重积分 I xy fxy (x, y)dxdy .
(6)【答案】(B).
【解析】因为 0 x 时, 0 sin x cos x 1 cot x , 4
又因 ln x 是单调递增的函数,所以 ln sin x ln cos x ln cot x .
故正确答案为(B). (7)【答案】 (D).
【解析】由于将 A 的第 2 列加到第 1 列得矩阵 B ,故
xyd .
D
(14) 二次型 f (x1, x2, x3) x12 3x22 x32 2x1x2 2x1x3 2x2x3 ,则 f 的正惯性指数
为
.
三、解答题(15~23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文
.
xy x1
y 1
(18) (本题满分 10 分)
数学(二)试题 第 2 页 (共 13 页)
设函数 y(x) 具有二阶导数,且曲线 l : y y(x) 与直线 y x 相切于原点,记 为曲线 l
2011-数二真题、标准答案及解析
0
0
0
小关系是( )
(A) I J K . (B) I K J . (C) J I K . (D) K J I . (7) 设 A 为 3 阶矩阵,将 A 的第 2 列加到第 1 列得矩阵 B ,再交换 B 的第 2 行与第 3
1 0 0
1 0 0
行得单位矩阵,记
P1
=
1
1
0
,
P2
2 = (1, 2,3)T , 3 = (3, 4, a)T 线性表示. (I) 求 a 的值; (II) 将 1, 2 , 3 由1,2 ,3 线性表示.
(23) (本题满分 11 分)
1 1 −1 1
A 为三阶实对称矩阵,
A
的秩为
2,即 r ( A)
=
2 ,且
A
0
0
=
0
0 .
−1 1 1 1
(A) k = 1, c = 4 . (B) k = 1, c = −4 . (C) k = 3, c = 4 . (D) k = 3, c = −4 .
( ) x2 f ( x) − 2 f x3
(2) 已知 f ( x) 在 x = 0 处可导,且 f (0) = 0 ,则 lim x→0
x3
=(
)
(A) −2 f (0) . (B) − f (0) .
(C) f (0) .
(D) 0.
(3) 函数 f (x) = ln (x −1)(x − 2)(x − 3) 的驻点个数为( )
(A) 0.
(B) 1.
(C) 2.
(4) 微分方程 y − 2 y = ex + e−x ( 0) 的特解形式为( )
2011数三考研真题
2011数三考研真题2011年的数学三科考研真题涉及了多个知识点和题型,包括线性代数、概率统计、微分方程、实变函数等。
本文将按照真题的顺序,逐一进行分析和解答。
1.线性代数题目1:已知n阶方阵A满足A²+A+E=O,则下列哪个判断必为真?选项:A. A为满秩方阵B. det(A)≠0C. 0为A的特征值D. A可对角化解答:根据已知条件,我们可以对方程A²+A+E=O进行求解。
首先,根据矩阵乘法的定义,我们可以得到A²+A=E-A。
然后,我们将方程两边同时加上E,得到A²+A+E=E。
再进一步移项,可得A(A+I)=O。
由于方阵A与单位矩阵I可互相抵消,所以有A(A+I)=O可以推出A+I=O。
因此,A的行列式det(A)=(-1)^n det(A+I)=0。
由行列式为0可知A不是满秩方阵,所以选项A错误。
又因为矩阵A的行列式为0,所以选项B正确。
由推导过程可知0不是A的特征值,所以选项C错误。
最后,由于A不是满秩方阵,所以A不可对角化,所以选项D错误。
综上所述,选项B是正确答案。
2. 概率统计题目2:设X1,X2,…,Xn为来自总体X—泊松分布,参数λ(λ>0),X1,X2,…,Xn相互独立。
已知X1+X2+…+Xn=k(k为正整数),则X1,X2,…,Xn的最大似然估计为选项:A. kλ/nB. nλ/kC. k/nD. λ/n解答:根据题目所给条件,我们可以确定样本X1,X2,…,Xn来自泊松分布。
而泊松分布的概率密度函数为P(X=k)=e^(-λ)λ^k/k!。
根据最大似然估计的原理,我们需要找到能使得样本观测值出现概率最大的参数值。
对于泊松分布来说,参数λ即为泊松分布的均值和方差。
所以,我们需要找到使λ最大的值。
而已知样本X1,X2,…,Xn的总和为k,因此λ=k/n。
所以最大似然估计为λ/n,即选项D为正确答案。
3. 微分方程题目3:已知微分方程dy/dx+x(1+y²)=0的特解y=y(x)满足y(0)=0,若x(x≠0)时,y(x)的表达式为选项:A. x/(1+x²)B. 1/(1+x²)C. 1/xD. x解答:根据已知的微分方程,我们可以使用分离变量的方法进行求解。
2011年全国硕士研究生入学统一考试数学(三)真题及解析
2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x →时,()3sin sin3f x x x =-与k cx 是等价无穷小,则 ( )(A ) k=1, c =4 (B ) k=1,c =-4 (C ) k=3,c =4 (D ) k=3,c =-4 (2) 已知函数()f x 在x =0处可导,且()0f =0,则()()2332limx x f x f x x →-= ( )(A) -2()0f ' (B) -()0f ' (C) ()0f ' (D) 0.(3) 设{}n u 是数列,则下列命题正确的是 ( ) (A)若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛 (B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛 (D) 若2121()n n n u u ∞-=-∑收敛,则1n n u ∞=∑收敛(4) 设40ln sin I x dx π=⎰,4ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K << (B) I K J << (C) J I K << (D) K J I <<(5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = ( )(A) 12P P (B) 112P P - (C) 21P P (D) 121-P P(6) 设A 为43⨯矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为( )(A)23121()2k ηηηη++-(B)23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+- (D)23121231()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度的是 ( )(A) 1()f x 2()f x (B) 22()f x 1()F x(C) 1()f x 2()F x (D) 1()f x 2()F x +2()f x 1()F x (8) 设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥为来自该总体的简单随机样本,则对于统计量111n i i T X n ==∑和121111n i n i T X X n n -==+-∑,有 ( )(A) 1ET >2ET ,1DT >2DT (B) 1ET >2ET ,1DT <2DT (C) 1ET <2ET ,1DT >2DT (D) 1ET <2ET ,1DT <2DT二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 设()()0lim 13xtt f x x t →=+,则()f x '= .(10) 设函数1x yx z y ⎛⎫=+⎪⎝⎭,则()1,1=dz .(11) 曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭在点()0,0处的切线方程为 . (12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为 .(13) 设二次型()123,,T f x x x x Ax =的秩为1,x Q y =下的标准形为 .(14) 设二维随机变量(),X Y 服从正态分布(,μN三、解答题:15~23小题,共94分.证明过程或演算步骤. (15) (本题满分10分)求极限0x →(16) (本题满分10分)已知函数(),f u v 具有连续的二阶偏导数,()1,12f =是(),f u v 的极值,()(,,)z f x y f x y =+.求()21,1zx y∂∂∂(17) (本题满分10分)求不定积分(18) (本题满分10分)证明方程44arctan 03x x π-+=恰有两个实根.(19)(本题满分10分)设函数()f x 在区间[]0,1具有连续导数,(0)1f =,且满足'()()+=⎰⎰⎰⎰ttD D f x y dxdy f t dxdy , {}(,)0,0(01)=≤≤-≤≤<≤tD x y y t x x t t ,求()f x 的表达式.(20) (本题满分11分)设向量组()11,0,1Tα=,()20,1,1T α=,()31,3,5T α= 不能由向量组()11,1,1β=T,()21,2,3T β=,()33,4,β=Ta 线性表出.(I)求a 的值 ;(II)将1β,2β,3β用1α,2α,3α线性表出. (21) (本题满分11分)A 为3阶实对称矩阵,A 的秩为2,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(I) 求A 的所有特征值与特征向量;(II) 求矩阵A . (22)(本题满分11分)设随机变量与的概率分布分别为且22()1P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ. (23)(本题满分11分)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=与0y =所围成的三角形区域.(I) 求X 的概率密度()X f x ; (II) 求条件概率密度|(|)X Y f x y .2011年全国硕士研究生入学统一考试数学三试题及答案解析一、选择题:1~8小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸...指定位置上. (1) 已知当0x →时,()3sin sin3f x x x =-与kcx 是等价无穷小,则 ( )(A ) k=1, c =4 (B ) k=1,c =-4 (C ) k=3,c =4 (D ) k=3,c =-4 【答案】 (C)【详解】本题涉及到的主要知识点: 当0x →时,sin x x 在本题中,03sin sin 3limk x x x cx →-03sin sin cos 2cos sin 2limkx x x x x xcx →--= ()20sin 3cos 22cos limkx x x x cx →--=2103cos 22cos lim k x x xcx -→--= ()22132cos 12cos limk x x xcx -→---=22110044cos 4sin lim lim k k x x x x cx cx --→→-== 304lim 14,3k x c k cx -→==⇒==,故选择(C).(2) 已知函数()f x 在x =0处可导,且()0f =0,则()()2332limx x f x f x x→-= ( )(A) -2()0f ' (B) -()0f ' (C) ()0f ' (D) 0. 【答案】(B)【详解】本题涉及到的主要知识点: 导数的定义 0000()()lim ()x f x x f x f x x→+-'=在本题中,()()()()()()232233320220limlimx x x f x f x x f x x f f x f xx→→---+=()()()()()()()33000lim 20200x f x f f x f f f f x x →⎡⎤--'''⎢⎥=-=-=-⎢⎥⎣⎦故应选(B)(3) 设{}n u 是数列,则下列命题正确的是 ( )(A)若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛 (B) 若2121()n n n u u ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛 (D) 若2121()n n n u u ∞-=-∑收敛,则1n n u ∞=∑收敛【答案】(A)【详解】本题涉及到的主要知识点: 级数的基本性质 若级数1nn u∞=∑收敛,则不改变其项的次序任意加括号,并把每个括号内各项的和数作为一项,这样所得到的新级数仍收敛,而且其和不变. 在本题中,由于级数2121()n n n uu ∞-=+∑是级数1n n u ∞=∑经过加括号所构成的,由收敛级数的性质:当1nn u∞=∑收敛时,2121()n n n uu ∞-=+∑也收敛,故(A )正确.(4) 设4ln sin I x dx π=⎰,40ln cot J x dx π=⎰,40ln cos K x dx π=⎰,则,,I J K 的大小关系是( )(A) I J K << (B) I K J << (C) J I K << (D) K J I << 【答案】(B)【详解】本题涉及到的主要知识点: 如果在区间[,]a b 上,()()f x g x ≤,则()()bbaaf x dxg x dx ≤⎰⎰()a b <在本题中,如图所示: 因为04x π<<,所以0sin cos 1cot <<<<x x x又因ln x 在(0,)+∞是单调递增的函数,所以lnsin lncos lncot x x x << (0,)4x π∈4440ln sin ln cos ln cot x dx x dx x dx πππ⇒<<⎰⎰⎰即I K J <<.选(B ).(5) 设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记1100110001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A = ( )(A) 12P P (B) 112P P - (C) 21P P (D) 121-P P 【答案】(D)【详解】本题涉及到的主要知识点:设A 是一个m n ⨯矩阵,对A 施行一次初等行变换,相当于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,相当于在A 的右边乘以相应的n 阶初等矩阵.在本题中,由于将A 的第2列加到第1列得矩阵B ,故100110,001A B ⎛⎫ ⎪= ⎪ ⎪⎝⎭即111,AP B A BP -==故由于交换B 的第2行和第3行得单位矩阵,故100001010B E ⎛⎫⎪= ⎪ ⎪⎝⎭即2,P B E =故122,B P P -==因此,1112121,A P P P P ---==故选(D)(6) 设A 为43⨯矩阵,123,,ηηη是非齐次线性方程组Ax β=的3个线性无关的解,12,k k 为任意常数,则Ax β=的通解为( )(A)23121()2k ηηηη++-(B)23121()2k ηηηη-+-(C) 23121231()()2k k ηηηηηη++-+-(D) 23121231()()2k k ηηηηηη-+-+-【答案】(C)【详解】本题涉及到的主要知识点:(1)如果1ξ,2ξ是Ax b =的两个解,则12ξξ-是0Ax =的解; (2)如n 元线性方程组Ax b =有解,设12,,,t ηηη是相应齐次方程组0Ax =的基础解系,0ξ是Ax b =的某个已知解,则11220t t k k k ηηηξ++++是Ax b =的通解(或全部解),其中12,,,t k k k 为任意常数.在本题中,因为123,,ηηη是Ax β=的3个线性无关的解,那么21ηη-,31ηη-是0Ax =的2个线性无关的解.从而()2n r A -≥,即3()2()1r A r A -≥⇒≤ 显然()1r A ≥,因此()1r A =由()312n r A -=-=,知(A )(B )均不正确. 又232311222A A A ηηηηβ+=+=,故231()2ηη+是方程组Ax β=的解.所以应选(C ).(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x 与2()f x 是连续函数,则必为概率密度的是 ( )(A) 1()f x 2()f x (B) 22()f x 1()F x(C) 1()f x 2()F x (D) 1()f x 2()F x +2()f x 1()F x 【答案】(D)【详解】本题涉及到的主要知识点: 连续型随机变量的概率密度()f x 的性质:()1f x dx +∞-∞=⎰在本题中,由于1()f x 与2()f x 均为连续函数,故它们的分布函数1()F x 与2()F x 也连续.根据概率密度的性质,应有()f x 非负,且()1f x dx +∞-∞=⎰.在四个选项中,只有(D )选项满足[]1221()()()()f x F x f x F x dx +∞-∞+⎰2112()()()()F x dF x F x dF x +∞+∞-∞-∞=+⎰⎰121212()()()()()()F x F x F x dF x F x dF x +∞+∞+∞-∞-∞-∞=-+⎰⎰1=故选(D ).(8) 设总体X 服从参数为(0)λλ>的泊松分布,12,,,(2)n X X X n ≥为来自该总体的简单随机样本,则对于统计量111n i i T X n ==∑和121111n i n i T X X n n -==+-∑,有 ( ) (A) 1ET >2ET ,1DT >2DT (B) 1ET >2ET ,1DT <2DT (C) 1ET <2ET ,1DT >2DT (D) 1ET <2ET ,1DT <2DT 【答案】(D)【详解】本题涉及到的主要知识点: (1)泊松分布()XP λ 数学期望EX λ=,方差DX λ=(2)()E cX cEX =,()E X Y EX EY +=+,2()D cX c DX =,()D X Y DX DY +=+(X 与Y 相互独立) 在本题中,由于12,,,n X X X 独立同分布,且0i i EX DX λ==>,1,2,,i n =,从而()()111111()()n ni i i i E T E X E X n E X n n nλ=====⋅⋅=∑∑,()112111111()()11--==⎛⎫=+=+ ⎪--⎝⎭∑∑n n i n in i i E T E X X E X E X n n n n 11(1)()()1=⋅-+-i n n E X E X n n ()()111λ⎛⎫=+=+ ⎪⎝⎭E X E X n n 故()()12<E T E T又()()1121((11))λ===⋅⋅==∑n i i D T D n D X D X n n X n n,()12221111()(1)1(1)n i n i D T D X X n n n n n λλ-==+=⋅-⋅+--∑12()1D T n n n λλλ=+>=-,故选(D ).二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9) 设()()0lim 13xtt f x x t →=+,则()f x '= .【答案】()313xex +【详解】本题涉及到的主要知识点: 重要极限公式 10lim(1)xx x e →+=在本题中,()()()31300lim 13lim 13x t xtt tt t f x x t x t ⋅→→⎡⎤=+=+⎢⎥⎣⎦3x x e =⋅所以有()()313'=+xf x ex .(10) 设函数1x yx z y ⎛⎫=+⎪⎝⎭,则()1,1=dz .【答案】()()12ln 2dx dy +- 【详解】用对数求导法.两边取对数得ln ln(1)x x z y y=+, 故11[ln(1)]z x x z x y y x y ∂=++∂+,21[ln(1)]z x x x z y y y x y∂=-++∂+ 令1x =,1y =,得(1,1)2ln 21z x ∂=+∂,(1,1)(2ln 21)zy ∂=-+∂, 从而()()(1,1)12ln 2dz dx dy =+-(11) 曲线tan 4yx y e π⎛⎫++= ⎪⎝⎭在点()0,0处的切线方程为 . 【答案】2y x =- 【详解】方程变形为arctan()4y x y e π++=,方程两边对x 求导得211yye y y e ''+=+,在点(0,0)处(0)2y '=-,从而得到曲线在点(0,0)处的切线方程为2y x =-.(12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积为 . 【答案】43π【详解】本题涉及到的主要知识点: 设有连续曲线()y f x =()a x b ≤≤,则曲线()y f x =与直线x a =,x b =及x绕x 轴旋转一周产生的旋转体的体积2(bx aV f π=⎰在本题中,()222223111141().33V y dx x dx x x ππππ==-=⋅-=⎰⎰(13) 设二次型()123,,T f x x x x Ax =的秩为1,A 中各行元素之和为3,则f 在正交变换x Q y =下的标准形为 .【答案】213y【详解】本题涉及到的主要知识点: 任给二次型,1()nij ijijji i j f a x x aa ===∑,总有正交变换x Py =,使f 化为标准形2221122n n f y y y λλλ=+++,其中12,,,n λλλ是f 的矩阵()ij A a =的特征值.在本题中,A 的各行元素之和为3,即1112131112132122232122233132333132333,13113,1313113113a a a a a a a a a a a a A a a a a a a ++=⎧⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=⇒=⇒=⎨⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++=⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎩ 所以3λ=是A 的一个特征值.再由二次型Tx Ax 的秩为10λ⇒=是A 的2重特征值. 因此,正交变换下标准形为:213y .(14) 设二维随机变量(),X Y 服从正态分布()22,;,;0μμσσN ,则()2E XY = .【答案】22()μμσ+【详解】本题涉及到的主要知识点:(1)如果随机变量X 和Y 的相关系数0XY ρ=,则称X 与Y 不相关.(2)若随机变量X 与Y 的联合分布是二维正态分布,则X 与Y 独立的充要条件是X 与Y不相关.(3)如果随机变量X 与Y 相互独立,则有()E XY EXEY = 在本题中,由于(),X Y 服从正态分布()22,;,;0μμσσN,说明X ,Y 独立同分布,故X与2Y 也独立.由期望的性质有22()E XY EX EY =⋅,又EX μ=,2222()EY DY EY σμ=+=+,所以222()()E XY μμσ=+三、解答题:15~23小题,共94分.请将解答写在答题纸...指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15) (本题满分10分)求极限x →【详解】本题涉及到的主要知识点: 当0x →时,ln(1)x x +在本题中,0x →201lim x x x →-=000x x x →→→===01.2x x →→==-=-(16) (本题满分10分)已知函数(),f u v 具有连续的二阶偏导数,()1,12f =是(),f u v 的极值,()(,,)z f x y f x y =+.求()21,1zx y∂∂∂【详解】本题涉及到的主要知识点:极值存在的必要条件 设(,)z f x y =在点00(,)x y 具有偏导数,且在点00(,)x y 处有极值,则必有00(,)0x f x y '=,00(,)0y f x y '=. 在本题中,(,(,))z f x y f x y =+121(,(,))(,(,))(,)zf x y f x y f x y f x y f x y x∂'''=+++⋅∂ 2111221(,(,))(,(,))(,)(,)zf x y f x y f x y f x y f x y f x y x y∂''''''=++++∂∂ ()21222212[(,(,))(,(,))(,)](,(,)),f x y f x y f x y f x y f x y f x y f x y f x y ''''''''+++++⋅()1,12f =为(),f u v 的极值 ()()121,11,10f f ''∴==211212(1,1)2,2(2,2)(1,1)z f f f x y ∂'''''∴=+⋅∂∂(17) (本题满分10分)求不定积分【详解】本题涉及到的主要知识点: (1)()x t ϕ=,1()[()]()()[()]f x dx f t t dt G t C G x C ϕϕϕ-'==+=+⎰⎰;(2)udv uv vdu =-⎰⎰; (3)[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.在本题中,令t =,2x t =,2dx tdt =∴2arcsin ln 2t t tdt t +=⋅⎰()22arcsin ln t t dt =+⎰ 2222arcsin 22ln 2tt t t t t dt t=⋅-+⋅-⋅⎰222arcsin 2ln 4t t t t t=⋅+⋅+-22arcsin 2ln 4t t t t t C=⋅+⋅++x C =+,其中C 是任意常数.(18) (本题满分10分)证明方程44arctan 03x x π-+=恰有两个实根. 【详解】本题涉及到的主要知识点:(1)零点定理 设函数()f x 在闭区间[,]a b 上连续,且()f a 与()f b 异号(即()()0f a f b ⋅<),那么在开区间(,)a b 内至少有一点ξ,使()0f ξ= (2)函数单调性的判定法 设函数()y f x =在[,]a b 上连续,在(,)a b 内可导. ①如果在(,)a b 内()0f x '>,那么函数()y f x =在[,]a b 上单调增加; ②如果在(,)a b 内()0f x '<,那么函数()y f x =在[,]a b 上单调减少.在本题中,令4()4arctan 3f x x x π=-+-,'24()11f x x=-+当x >'()0f x <,()f x 单调递减;当x <时,'()0f x >,()f x 单调递增.4(4arctan((03f π=-+=.当x <()f x 单调递减,∴(,x ∈-∞,()0f x >;当x <<()f x 单调递增,∴(x ∈,()0f x >x ∴=()f x在(-∞上唯一的零点.又因为48033f ππ==-> 且()4lim lim 4arctan .3x x f x x x π→+∞→+∞⎛=-+-=-∞ ⎝∴由零点定理可知,)0x ∃∈+∞,使()00f x =,∴方程44arctan 03x x π-+=恰有两个实根.(19)(本题满分10分)设函数()f x 在区间[]0,1具有连续导数,(0)1f =,且满足'()()+=⎰⎰⎰⎰ttD D f x y dxdy f t dxdy , {}(,)0,0(01)=≤≤-≤≤<≤tD x y y t x x t t ,求()f x 的表达式.【详解】本题涉及到的主要知识点: 一阶线性微分方程()()dyP x y Q x dx+=的通解()()(())P x dx P x dx y e Q x e dx C -⎰⎰=+⎰. 在本题中,因为()()tt t xD f x y dxdy dx f x y dy -''+=+⎰⎰⎰⎰,令x y u +=,则()()()()t xtx f x y dy f u du f t f x -''+==-⎰⎰()(()())()()tttD f x y dxdy f t f x dx tf t f x dx '+=-=-⎰⎰⎰⎰201()()()()2ttD tf t f x dx f t dxdy t f t ∴-==⎰⎰⎰.两边对t 求导,得 2()()02'+=-f t f t t ,解齐次方程得212()(2)--⎰==-dt t C f t Ce t由(0)1f =,得4C =. 所以函数表达式为24()(01)(2)f x x x =≤≤-.(20) (本题满分11分)设向量组()11,0,1T α=,()20,1,1T α=,()31,3,5T α= 不能由向量组()11,1,1β=T,()21,2,3T β=,()33,4,β=Ta 线性表出.(I)求a 的值 ;(II)将1β,2β,3β用1α,2α,3α线性表出. 【详解】本题涉及到的主要知识点: 向量组12,,,l b b b 能由向量组12,,,m a a a 线性表示的充分必要条件是 121212(,,,)(,,,,,,,)m m l r a a a r a a a b b b =(I)因为123101,,01310115ααα==≠,所以123,,ααα线性无关.那么123,,ααα不能由123,,βββ线性表示⇒123,,βββ线性相关,即123113113,,1240115013023a aa βββ===-=-,所以5a =(II)如果方程组112233(1,2,3)j x x x j αααβ++==都有解,即123,,βββ可由123,,ααα线性表示.对123123,,,,,αααβββ()作初等行变换,有123123,,,,,αααβββ()=101113013124115135⎛⎫⎪ ⎪ ⎪⎝⎭101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪--⎝⎭1002150104210001102⎛⎫⎪→ ⎪ ⎪--⎝⎭ 故112324βααα=+-,2122βαα=+,31235102βααα=+-(21) (本题满分11分)A 为3阶实对称矩阵,A 的秩为2,且111100001111A -⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(I) 求A 的所有特征值与特征向量;(II) 求矩阵A .【详解】本题涉及到的主要知识点: (1)(0)A αλαα=≠λ为矩阵A 的特征值,α为对应的特征向量(2)对于实对称矩阵,不同特征值的特征向量互相正交. (I )因()2r A =知0A =,所以0λ=是A 的特征值.又111000111A -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,110011A ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 所以按定义1λ=是A 的特征值,1(1,0,1)Tα=是A 属于1λ=的特征向量;1λ=-是A 的特征值,2(1,0,1)T α=-是A 属于1λ=-的特征向量.设3123(,,)Tx x x α=是A 属于特征值0λ=的特征向量,作为实对称矩阵,不同特征值对应的特征向量相互正交,因此131323130,0,T Tx x x x αααα⎧=+=⎪⎨=-=⎪⎩ 解出3(0,1,0)Tα= 故矩阵A 的特征值为1,1,0-;特征向量依次为123(1,0,1),(1,0,1),(0,1,0)T T Tk k k -,其中123,,k k k 均是不为0的任意常数.(II)由12312(,,)(,,0)A ααααα=-,有1112123*********(,,0)(,,)000001000110110100A ααααα---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦.(22)(本题满分11分)且22()1P X Y ==.(I) 求二维随机变量(,)X Y 的概率分布; (II) 求Z XY =的概率分布; (III) 求X 与Y 的相关系数XY ρ. 【详解】本题涉及到的主要知识点:(1)协方差 ()()()()cov ,X Y E XY E X E Y =-⋅ (2)相关系数cov ,XY X Y ρ=(I)设(,)X Y 的概率分布为根据已知条件{}221P XY ==,即{}{}{}0,01,11,11P X Y P X Y P X Y ==+==-+===,可知1221231p p p ++=,从而110p p p ===,1p p p ===,即(,)X Y 的概率分布为(II) Z XY =的所有可能取值为-1,0,1 .{}{}111,13P Z P X Y =-===-={}{}111,13P Z P X Y ====={}{}{}101113P Z P Z P Z ==-=-=-=Z XY =的概率分布为(3) 23EX =,0EY =,0EXY =,故(,)0Cov X Y EXY EX EY =-⋅=,从而0XY ρ=.(23)(本题满分11分)设二维随机变量(,)X Y 服从区域G 上的均匀分布,其中G 是由0,2x y x y -=+=与0y =所围成的三角形区域.(I) 求X 的概率密度()X f x ; (II) 求条件概率密度|(|)X Y f x y . 【详解】本题涉及到的主要知识点:(1)X 、Y 是连续型随机变量,边缘概率密度为()(,)X f x f x y dy +∞-∞=⎰,()(,)Y f y f x y dx +∞-∞=⎰;(2)在Y y =的条件下X 的条件概率密度(,)()()X Y Y f x y f x y f y =; (3)设G 是平面上的有界区域,其面积为A .若二维随机变量(,)X Y 具有概率密度1,(,),(,)0,x y G f x y A ⎧∈⎪=⎨⎪⎩其他则称(,)X Y 在G 上服从均匀分布.(I)(,)X Y 的联合密度为1,(,),(,)0,(,).x y G f x y x y G ∈⎧=⎨∉⎩当01x ≤<时,0()(,)1x X f x f x y dy dy x +∞-∞===⎰⎰; 当12x ≤≤时,20()(,)12x X f x f x y dy dy x +∞--∞===-⎰⎰;当0x <或2x >时,()0X f x =.所以 , 01,()2, 12,0, X x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其它.(II)|(,)(|)()X Y Y f x y f x y f y =当01y ≤<时,2()122yY yf y dx y -==-⎰;当0y <或1y ≥时,()0Y f y =.所以|1, 2,01,22(|)0, X Y y x y y y f x y ⎧<<-≤<⎪-=⎨⎪⎩其他.。
数1--11真题答案
2011年考研数学(一)试题答案速查一、选择题(1)C (2)C (3)A (4)B (5)D (6)D (7)D (8)B 二、填空题(9)ln(1+ (10)esin xx − (11)4 (12)π(13)1 (14)22()μμσ+ 三、解答题 (15)12e−. (16)11112(1,1)(1,1)(1,1)f f f '''''++. (17)1k >时,原方程有三个根.1k 时,原方程有一个根. (18)略. (19)a .(20)(Ⅰ)5=a .(Ⅱ)112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(Ⅰ)1112223331231101,0,1,0,0,1,0110p k p k p k k k k λλλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=−=====≠ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭.(Ⅱ)001000100⎛⎫⎪= ⎪ ⎪⎝⎭A .(22)(Ⅰ)(Ⅱ)(Ⅲ)0ρ=XY .(23)(Ⅰ)22011()n i i X n σμ==−∑.(Ⅱ)22()E σσ=,422()D nσσ=.2011年全国硕士研究生入学统一考试数学(一)参考答案一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)【答案】C .【解答】易知该曲线与x 轴有四个交点(1,0),(2,0),(3,0),(4,0),且1x <时,0y >;当12x <<时,0y <;当34x <<时,0y >;当4x >时,0y >. 根据以上结论描绘出曲线y 的大致图形为: 故选择答案C .(2)【答案】C . 【解答】因为1nn a∞=∑发散,而1(1)nn n a ∞=−∑收敛,所以1n n n a x ∞=∑的收敛域是[1,1)−,因此1(1)nn n a x ∞=−∑的收敛域是[0,2)故选择答案C .(3)【答案】A . 【解答】(0,0)(0,0)()ln ()|(0)ln (0)0zf x f y f f x ∂''=⋅==∂(0,0)(0,0)()()(0)0,()z f y f x f y f y '∂'=⋅==∂故(0)0f '=22(0,0)(0,0)()ln ()(0)ln (0)0,z A f x f y f f x ∂''''==⋅=⋅>∂22(0,0)(0,0)()[(0)]()0,()(0)z f y f B f x x y f y f ''∂'==⋅==∂∂22222(0,0)(0,0)()()[()][(0)]()(0)(0).()(0)z f y f y f y f C f x f f yf y f ''''∂−''''==⋅=−=∂又22[(0)]ln (0)0,AC B f f ''−=⋅>故(0)1,(0)0f f ''>>. 故正确答案选A. (4)【答案】B . 【解答】当π04x <<时,有0sin cos 1cot x x x <<<<,所以ln sin ln cos ln cot x x x <<,应选B . (5)【答案】D .【解答】易知100110,001⎛⎫⎪= ⎪⎪⎝⎭A B 100001010⎛⎫ ⎪ ⎪ ⎪⎝⎭B =E 即12,=AP B P B =E ,所以1112121−−−A =P P =P P ,选答案D . (6)【答案】D .【解答】易知**,()3,()1r r ==AA =O A A ,*=A x 0的基础解系有3个线性无关的向量,1234,,,αααα是*=A x 0的解;又因为T (1,0,1,0)是方程组0Ax =的一个基础解系,即13+=0αα,所以13,αα线性相关,则方程组*=A x 0的基础解系为234,,ααα,选答案D . (7)【答案】D . 【解答】122112[()()()()]d ()()1f x F x f x F x x F x F x +∞+∞−∞−∞+==⎰,故选答案D .(8)【答案】B .【解答】因为{}{}()()max ,,min ,,22X Y X Y X Y X YU X Y V X Y ++−+−−====所以UV XY =. 又,X Y 相互独立,所以()E UV =EX EY ⋅,故答案选B .二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)【答案】(ln 1.【解答】(ππ440sec d ln |sec tan |ln 1s x x x x ===+=+⎰.(10)【答案】e sin xy x −=.【解答】d d e (e cos e d )x x xy x x C −−⎰⎰=⋅+⎰e (cos d )x x x C −=+⎰e (sin )x x C −=+由于(0)0,y =故0C =,所以esin xy x −=.(11)【答案】4.【解答】2sin 1()F xy y x xy ∂=⋅∂+,22222cos sin 2[1()]F y xy xy xy y x xy ∂−⋅=⋅∂+,故2(0,2)2|4F x ∂=∂. (12)【答案】π.【解答】设S 是平面=+z x y 上位于柱面221x y +=内的部分,S 在xOy 平面上的投影为22{(,)|1}D x y x y =+,由斯托克斯公式,得22d d d d d d d d d 22L Sy z z x x yy xz x x y z x y z y xzx∂∂∂++=∂∂∂⎰⎰⎰d d d d d d (1)d d πSDy y z x z x x y x y x y =++=−−=⎰⎰⎰⎰.(13)【答案】1.【解答】二次型矩阵为1131111a a ⎛⎫⎪= ⎪ ⎪⎝⎭A ,其特征值为0,1,4,所以0,1a =|A |=.(14)【答案】22()μμσ+.【解答】因为(,)X Y 服从二维正态分布22(,;,;0)N μμσσ,不相关,所以,X Y 相互独立,故22222()()()E XY EXEY EX E Y DY μμσ==+=+.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分)解:1e 10ln(1)lim x x x x −→+⎡⎤⎢⎥⎣⎦0ln(1)1lim[1].e 1e x x x x →+−−=2ln(1)limex x xx →+−=22201()2lim ex x x o x x x →−+−=12e .−=(16)(本题满分10分) 解:[][]12,(),()()zf xy yg x y f xy yg x yg x x∂'''=⋅+⋅∂ []211112,()(,())(,())()zf xy yg x y f xy yg x x f xy yg x g x x y∂'''''⎡⎤=++⎣⎦∂∂[]{}22122(),()()[,()][,()]()g x f xy yg x yg x f xy yg x x f xy yg x g x '''''''+⋅+⋅+ 又()g x 在1x =可导,且为极值,所以(1)0g '=,所以21111211d (1,1)(1,1)(1,1).d d x y zf f f x y=='''''=++(17)(本题满分10分)解:易知0x =为方程的一个实根.当0x ≠时,令(),arctan xf x k x=−则()()22arctan 1arctan xx x f x x −+'=. 令()2arctan 1=−+xg x x x ,则 ()()()222222211220111x x x x g x x x x +−⋅'=−=>+++,()g x 单调递增.又(0)0g =,所以当0x <时,有()0g x <,从而()'0f x <; 当0x >时,有()0g x >,从而()'0f x >. 又,()00lim lim1arctan x x x f x k k x →→=−=−,()lim lim arctan x x xf x k x→±∞→±∞=−=+∞,所以当10k −<时,由零点定理可知()f x 在(,0)−∞,(0,)+∞内各有一个零点; 当10k −时,则()f x 在(,0)−∞,(0,)+∞内均无零点.综上所述,当1k >时,原方程有三个根;当1k 时,原方程有一个根.(18)(本题满分10分) 证:(Ⅰ)设1()ln(1),[0,]f x x x n=+∈. 显然()f x 在1[0,]n上满足拉格朗日中值定理:111111()(0)ln(1)ln1ln(1),(0,)1f f n n n n nξξ−=+−=+=⋅∈+当1(0,)nξ∈时,11111111101n n n nξ⋅<⋅<⋅+++,即111111n n n ξ<⋅<++, 111ln 11n n n⎛⎫<+< ⎪+⎝⎭. (Ⅱ)利用(Ⅰ)的结论,可以得到11ln(1)1n n<++,所以11ln(1)01n n −+<+得到1n n a a +<,即数列{}n a 单调递减.因为,1111ln ln(1)ln nnn k k a n n k k ===−>+−∑∑,而,11112341ln(1)ln ()ln()ln(1)123nnk k k n n k k n==+++==⋅⋅=+∑∏, 所以,11111ln ln(1)ln ln(1)ln 0nnn k k a n n n k k n ===−>+−>+−>∑∑.因此,数列{}n a 有下界. 由单调有界定理可知,数列{}n a 收敛.(19)(本题满分11分) 解:110d (,)d xyI x x yf x y y ''=⎰⎰1100d (,)d x x x ydf x y y '=⎰⎰ ()()111000d ,,d x x x x yf x y f x y y ⎡⎤''=−⎢⎥⎣⎦⎰⎰ ()11d (,1)(,)d x x x x f x f x y y ''=−⎰⎰因为(,1)0f x =,所以(,1)0x f x '=110d (,)d x I x x f x y y '=−⎰⎰1100d (,)d x y xf x y x '=−⎰⎰111000d (,)(,)d y x f x y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰1100d (1,)(,)d y f y f x y x ⎡⎤=−−⎢⎥⎣⎦⎰⎰ d (,)d Df x y x y =⎰⎰a =.(20)(本题满分11分)解: (Ⅰ)由于123,,ααα不能由123,,βββ线性表示,对123123(,,,,,)βββααα进行初等行变换:123123(,,,,,)βββααα= 11310112401313115a ⎛⎫ ⎪ ⎪ ⎪⎝⎭113101011112023014a ⎛⎫ ⎪→− ⎪ ⎪−⎝⎭113101011112005210a ⎛⎫ ⎪→− ⎪ ⎪−−⎝⎭当5a =时,1231231(,,)2(,,,)3r r =≠=ββββββα,此时,1α不能由123,,βββ线性表示,故5a =.(Ⅱ)对123123(,,,,,)αααβββ进行初等行变换123123(,,,,,)=αααβββ101113013124115135⎛⎫ ⎪ ⎪ ⎪⎝⎭101113013124014022⎛⎫ ⎪→ ⎪ ⎪⎝⎭101113013124001102⎛⎫ ⎪→ ⎪ ⎪−−⎝⎭1002150104210001102⎛⎫⎪→ ⎪ ⎪−−⎝⎭. 故112324=+−βααα,2122=+βαα,31235102=+−βααα.(21)(本题满分11分)解: (Ⅰ)设()()TT121,0,1,1,0,1=−=αα,则()()1212,,=−ααααA ,即1122,=−=ααααA A ,从而A 有特征值121,1λλ=−=,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α. 由于()2r =A ,所以30λ=.由于A 是三阶实对称矩阵,故不同特征值对应的特征向量相互正交,设30λ=对应的特征向量为()T3123,,x x x =α,则T 13T2300⎧=⎨=⎩αααα,即131300x x x x −=⎧⎨+=⎩ 解此方程组,得()T30,1,0=α,故30λ=对应的特征向量为()3330k k ≠α.故A 的所有特征值为1231,1,0λλλ=−==,对应的特征向量分别为()1110k k ≠α,()2220k k ≠α和()3330k k ≠α.(Ⅱ)由于不同特征值对应的特征向量已经正交,只需单位化:))()T T T3121231231,0,1,1,0,1,0,1,0==−====αααβββααα. 令()123,,=βββQ ,则T110−⎛⎫⎪== ⎪ ⎪⎝⎭ΛQ AQ , T =A Q QΛ022012200110220010022⎛⎫−⎛⎫ ⎪ ⎪ ⎪−⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪ ⎪− ⎪ ⎪⎝⎭⎪⎝⎭022022000022010022⎛⎫−⎛⎫ ⎪− ⎪ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭001000100⎛⎫ ⎪= ⎪⎪⎝⎭. (22)(本题满分11分) 解:(Ⅰ)因为{}221P XY ==,所以有{}{}222210P X Y P X Y ≠=−==,即{}{}{}0,10,11,00P X Y P X Y P X Y ==−=======. 利用边缘概率和联合概率的关系得到{}{}{}{}10,000,10,13P X Y P X P X Y P X Y ====−==−−===;{}{}{}11,110,13P X Y P Y P X Y ==−==−−==−=;{}{}{}11,110,13P X Y P Y P X Y ====−===;即(),X Y 的概率分布为(Ⅱ)Z 的所有可能取值为1,0,1−,{}{}111,13P Z P X Y =−==−=−=,{}{}111,13P Z P X Y =====,{}{}{}101113P Z P Z P Z ==−=−=−=.所以,Z XY =的概率分布为(Ⅲ) cov XY XY E XY E X E Y ρ−⋅==由(I )中(),X Y 的联合分布可知()()1111010333E XY E Z ==−⋅+⋅+⋅=,()1111010333E Y =−⋅+⋅+⋅=,()()()0E XY E X E Y −⋅=,所以cov 0XY XY E XY E X E Y ρ−⋅===.(23)(本题满分11分) 解:总体X 的概率密度为202()2()x f x μσ−−=,x −∞<<+∞(Ⅰ)似然函数 202()22211()(;)i x nn i i i L f x μσσσ−−==⎡⎤==⎥⎥⎦∏∏, 取对数 222211ln ()ln(2π)ln ()222nii n n L x σσμσ==−−−−∑,求导 22022221d ln ()1[()]d()22()nii L n x σμσσσ==−+−∑,令22d ln ()0d()L σσ=,解得22011()n i i x n σμ==−∑, 故2σ的最大似然估计量为22011()ni i X n σμ==−∑.(Ⅱ)20~(,)i X N μσ,则~(0,1)i X N μσ−,得到()2201~ni i X Y n μχσ=−⎛⎫= ⎪⎝⎭∑,即()2201ni i Y X σμ==−∑. ()()()222222011111().n i i E E X E Y E Y n n n n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑ ()()()22244402222111112()2.n i i D D X D Y D Y n n nn n n σμσσσσ=⎡⎤=−===⋅=⎢⎥⎣⎦∑。
2011年考研数学真题及标准答案解析(考研必备!)
2011年考研数学真题试卷及标准答案解析---------------------心若在,梦就在,谨以此献给2012考研的同学们!!一选择题1.曲线y=(x-1)(x-2)^2(x-3)^3(x-4)^4拐点A (1,0)B (2,0)C (3,0)D (4,0)2设数列{}n a 单调减少,∑=∞→⋯===nk k n n n n a S a 1,2,1(,0lim )无界,则幂级数∑=-nk nk x a 1)1(的收敛域 A(-1,1] B[-1,1) C[0,2) D(0,2]3.设函数)(x f 具有二阶连续导数,且0)0(,0)(>'>f x f ,则函数)(ln )(y f x f z =在点(0,0)处取得极小值的一个充分条件A 0)0(,1)0(>''>f fB 0)0(,1)0(<''>f fC 0)0(,1)0(>''<f fD 0)0(,1)0(<''<f f4.设⎰⎰⎰===444000cos ln ,cot ln ,sin ln πππxdx K xdx J xdx I 的大小关系是、、则K J IA I<J<KB I<K<JC J<I<KD K<J<I5.设A 为3阶矩阵,将A 的第二列加到第一列得矩阵B ,再交换B 的第二行与第一行得单位矩阵。
记p1=10则A=A 21P PB 211P P -C 12P PD 112P P -6.设),,,(4321αααα=A 是4阶矩阵,*A 是A 的伴随矩阵,若T )0,1,0,1(是方程组0=Ax 的一个基础解系,则0*=x A 的基础解系可为 A 31,αα B 21,αα C 321,,ααα D 432,,ααα7.设)(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是A )()(21x f x fB )()(222x F x fC )()(21x F x fD )()()()(1221x F x f x F x f +8.设随机变量X 与Y 相互独立,且EX 与EY 存在,记U=max{x,y},V={x,y},则E(UV)=A EUEVB EXEYC EUEYD EXEV 二填空题9.曲线)40(tan 0⎰≤≤=xx tdt y π的弧长s=____________10.微分方程x e y y x cos -=+'满足条件y(0)=0的解为y=____________ 11.设函数⎰+=xydt t ty x F 021sin ),(,则__________022=∂∂=x x F12.设L 是柱面方程为122=+y x 与平面z=x+y 的交线,从z 轴正向往z轴负向看去为逆时针方向,则曲线积分⎰=++___________22dz y xdy xzdx13.若二次曲面的方程为42223222=+++++yz xz axy z y x ,经正交变换化为442121=+z y ,则=a _______________ 三解答题15求极限110))1ln((lim -→+x e x xx 16设))(,(x yg xy f z =,其中函数f 具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求1,12==∂∂∂y x yx z17求方程0arctan =-x x k 不同实根的个数,其中k 为参数。
2011年研究生入学统一考试数学二试题及解析
2011年全国硕士研究生入学统一考试数学二试题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在答题纸指定位置上.1、已知当0x →时,函数()3sin sin 3f x x x =-与k cx 等价无穷小,则(A )1,4k c == (B )1,4k c ==- (C ) 3,4k c == (D )3,4k c ==- 【分析】本题考查等价无穷小的有关知识.可以利用罗必达法则或泰勒公式完成。
【详解】法一:由题设知 13sin sin 33cos 3cos 31=lim=limkk x x x xx xcxkcx-→→--233sin 9sin 33cos 27cos 3=lim=lim(1)(1)(2)k k x x x x x x k k cxk k k cx--→→-+-+---324=lim(1)(2)k x k k k cx-→--从而(1)(2)243k k k c k --=⎧⎨=⎩,故3,4k c ==。
从而应选(C )。
法二:333333(3)()3(())(3())4()3!3!xx f x x o x x o x x o x =-+--+=+所以3,4k c ==。
,从而应选(C )。
2、已知()f x 在0x =处可导,且(0)0f =,则233()2()limx x f x f x x→-=(A )2'(0)f - (B )'(0)f - (C ) '(0)f (D )0【分析】本题考查导数的定义。
通过适当变形,凑出()f x 在0x =点导数定义形式求解。
【详解】23223333()2()()(0)()(0)limlim[2]x x x f x f x x f x x f f x f xxx→→---=-()22333()(0)()(0)lim2lim'0x x x f x x f f x f f xx→→--=-=-故应选(B )。
2011考研数学真题+答案
2 z 所以 xy
f1 (1,1) f11 (1,1) f12 (1,1) .
(17)(本题满分 10 分) 求方程 k arctan x x 0 不同实根的个数,其中 k 为参数. 解:令 f ( x) k arctan x x ,则 f ( x) 是 (, ) 上的奇函数,且
2011 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2011 年数学试题答案和评分参考
1 1 ln n (n 1, 2,) ,证明数列 {an } 收敛. 2 n 解: (I)根据拉格朗日中值定理,存在 (n, n 1) ,使得 1 1 1 1 1 1 ln(1 ) ln(n 1) ln n ,所以 ln(1 ) . n n 1 n n 1 1 (II)当 n 1 时,由(I)知 an1 an ln(1 ) 0 , n 1 n 1 1 1 1 且 an 1 ln n ln(1 1) ln(1 ) ln(1 ) ln n 2 n 2 n ln(1 n) ln n 0 ,所以数列 {an } 单调下降且有下界,故 {an } 收敛.
(A) P1P2 (B) P11P2 (C) P2 P1
*
(D)
(D) P2 P11
T
(6) 设 A (1,2 ,3 ,4 ) 是 4 阶矩阵, A 为 A 的伴随矩阵.若 (1, 0,1, 0) 是方程组 Ax 0
* 的一个基础解系, 则 A x 0 的基础解系可为
(D) (D)
(A) (B) f (0) 1, f (0) 0 (D) f (0) 1, f (0) 0
(4) 设 I 4 ln sin xdx , J 4 ln cot xdx , K 4 ln cos xdx , 则 I , J , K 的大小关系为 (B)
2011年全国硕士研究生入学统一考试数学三试题及答案
(5) 设 A 为 3 阶矩阵,将 A 的第二列加到第一列得矩阵 B ,再交换 B 的第二行与第三行得
⎛1 0 0⎞
⎛1 0 0⎞
单位矩阵,记
P1
=
⎜ ⎜
1
1
0
⎟ ⎟
,
P2
=
⎜ ⎜
0
0
1
⎟ ⎟
,则
A
=
(
)
⎜⎝ 0 0 1 ⎟⎠
⎜⎝ 0 1 0 ⎟⎠
(A) P1P2
(B) P1 −1P2
(C) P2P1
两个线性无关的解,即 Ax = 0 的基础解系中至少有 2 个线性无关的解,所以可排除 A,B
选项.
又因为 Aη2 −η3 = 0 ,所以 η2 −η3 是 Ax = 0 的解,不是 Ax = β 的解,故排除 D 选项,
2
2
因此选 C.
事实上,由于η1,η2 ,η3 是 Ax = β 的三个线性无关的解,所以η3 −η1,η2 −η1 是 Ax = 0 的
两个线性无关的解,即 Ax = 0 的基础解系中至少有 2 个线性无关的解,亦即 3 − r( A) ≥ 2 ,
故 r( A) ≤ 1.由于 A ≠ 0 ,所以 r( A) ≥ 1,故 r( A) = 1.这样, Ax = 0 的基础解系中正好有 2
个线性无关的解,由此知η3 −η1,η2 −η1 是 Ax = 0 的一个基础解系.
数学(三)试题 第 5页 (共 4 页)
全日制个性化考研辅导
(11)
曲线
tan
⎛ ⎜
⎝x+来自y+π 4
⎞ ⎟ ⎠
=
e
y
在点
(
0,0
2011年全国硕士研究生入学统一考试数学三试题及答案详解
【详解一】 lim
x →0
1 + 2sin x − x − 1 1 + 2sin x − x − 1 = lim x →0 x ln(1 + x) x2
cos x − 1 + 2sin x cos x − 1 + 2sin x = lim x →0 x →0 2x 2 x 1 + 2sin x 1 cos x 1 )=− = lim(− sin x − 2 x →0 2 1 + 2sin x = lim
(B)
+ k2 (η 2 − η1 ) ; 2 η − η3 (D) 2 + k1 (η3 − η1 ) + k2 (η 2 − η1 ) . 2
η 2 − η3
η3 − η1,η 2 − η1 为 AX = 0 的基础解系.非齐次线性方程组解的线性组合若系数和为 1 是非
齐次线性方程组解,从而
η 2 + η3
2 2 2
.
【答案】 μ ( μ + σ )
2 2
【详解】 由题知 X 与 Y 的相关系数 ρ XY = 0 , 即 X 与 Y 不相关.在二维正态分布条件下,X 与 Y 不相关与 X 与 Y 独立等价,所以 X 与 Y 独立,则有
EX = EY = μ , DX = DY = σ 2 EY 2 = DY + ( EY ) = μ 2 + σ 2
第 5 页 共 11 页
【详解二】 lim
x →0
1 + 2sin x − x − 1 1 + 2sin x − ( x + 1) 2 = lim x →0 2 x ln(1 + x) x 1 + 2sin x − x − 1
工程数学试题答案
《工程数学》试题 第1页(共6页) 《工程数学》试题 第2页(共6页)成 都 大 学2011级《工程数学》结业试卷一、选择题(每小题1分,共20分)下列各小题的四个选项中有1个选项是正的,请你将正确选项前的字母选出来,多选和漏选均不得分1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则( C )A.P 连续 B .(,)f x y 在P 可微 C . 00lim (,)x x f x y →及 00lim (,)y y f x y →都存在 D .00(,)(,)lim(,)x y x y f x y →存在2.若x y z ln =,则dz 等于( D ).ln ln ln ln .xxyy yy A xy+ln ln .xyy B xln ln ln .ln xxyy C yydx dy x+ln ln ln ln .xxyy yxD dx dy xy+3.设Ω是圆柱面222x y x +=及平面01,z z ==所围成的区域,则(),,(=⎰⎰⎰Ωdxdydz z y x f C ).21200cos .(cos ,sin ,)A d dr f r r z dzπθθθθ⎰⎰⎰212cos .(cos ,sin ,)B d rdr f r r z dz πθθθθ⎰⎰⎰2122cos .(cos ,sin ,)C d rdr f r r z dzπθπθθθ-⎰⎰⎰21cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ⎰⎰⎰. 4.若1(1)n n n a x ∞=-∑在1x =-处收敛,则此级数在2x =处( A ).A . 条件收敛B . 绝对收敛C . 发散D . 敛散性不能确定5.曲线222x y z z x y-+=⎧⎨=+⎩在点(1,1,2)处的一个切线方向向量为( B ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)D .()()f x dx f x '=⎰.6.函数()21xf x x=+( C ). A .在(),-∞+∞内单调增加; B .在(),-∞+∞内单调减少;C .在()11,-内单调增加;D .在()11,-内单调减少.7.若()f u 可导,且()x y f e =,则( B ). A .()x dy f e dx '=; B .()x x dy f e e dx '=;C .()x x dy f e e dx =;D .()x x dy f e e dx '⎡⎤=⎣⎦.8.2|1|x dx -=⎰( C ).A .0 ;B .2 ;C .1 ;D .1-.9.方程sin y x '''=的通解是( A ).A .21231cos 2y x C x C x C =+++; B .21231sin 2y x C x C x C =+++;C .1cos y x C =+;D .2sin 2y x =.10.曲线xe y =与该曲线过原点的切线及y 轴围成的图形的面积为( A ). A .1()x e ex dx -⎰ ; B .1(ln ln )ey y y dy -⎰;《工程数学》试题 第3页(共6页) 《工程数学》试题 第4页(共6页)C .1()e x xe xe dx-⎰; D .1(ln ln )y y y dy-⎰.二、填空题(每空2分,共20分)1.设()lim 1tt x f x t →+∞⎛⎫=+ ⎪⎝⎭()0x ≠,则=)3(ln f 3 .2.设x e x sin +是()f x 的一个原函数,则()f 'x = sin xe x - .3.曲线16623-+=x x y 的拐点坐标是()2,0- . .4.若02121A dx x-∞=+⎰,则A = 1π .5.21lim (2)cos2x x x →-=- 0 .6.交 换ln 1(,)ex I dx f x y dy =⎰⎰的积分次序后, I =1(,)yeedy f x y dx ⎰⎰7.22z xy u -=,则u 在点)1,1,2(-M 处的梯度为→→→-+-k j i 2428.函数332233z x y x y =+--的极小值点是 1(1)!n n n xn +∞=-∑.9.已知0!nxn xe n ∞==∑,则xxe-= (2,2)10.220x y xyz +-=,则'(1,1)x z =-1一二题每题6分,三题8分。
2011年数学二真题解析
【解析】由通解公式得
y edx ( ex cos x edxdx C)
ex ( cos xdx C)
ex (sin x C) .
由于 y(0) 0, 故 C =0.所以 y ex sin x .
(11)【解析】选取 x 为参数,则弧微元 ds 1 y2 dx 1 tan2 xdx sec xdx
x0
xa
ax x0
a1
ax a x0
a1 x0
所以 3 a 0 即 a 3 .
又因为 0 lim x
x ln(1 t2 )dt
0
xa
ln(1 x2 )
lim
x
axa1
2x
lim
x
1 x2 a(a 1)x
a2
2 a(a 1)
x3a
lim
x
1
x2
所以 3 a 2 ,即 a 1,综合得1 a 3 .
(15) (本题满分 10 分)
【解析】如果 a 0 时, lim
x ln(1 t2 )dt
0
lim xa
x ln(1 t2 )dt ,
x
xa
x
0
显然与已知矛盾,故 a 0 .
当 a 0 时,又因为 lim
x ln(1 t2 )dt
0
lim
ln(1
x2 )
lim
x2
lim 1 x3a 0 .
g(x) f2xy, yg(x) yg(x) f12[xy, yg(x)] x f22[xy, yg(x)]g(x).
因为 g(x) 在 x 1 可导,且为极值,所以 g(1) 0 ,则
d2z dxdy
|x1
y 1
2011年考研数学(二)及参考答案
2011年考研数学试题(数学二)一、选择题1. 已知当时,函数A k=1,c=4B k=a, c=-4C k=3,c=4D k=3,c=-42.A B C D03. 函数的驻点个数为A0 B1 C2 D34. 微分方程A BC D5设函数具有二阶连续导数,且,则函数在点(0,0)处取得极小值的一个充分条件A BC D6.设A I<J<KB I<K<JC J<I<KD K<J<I7.设A为3阶矩阵,将A的第二列加到第一列得矩阵B,再交换B的第二行与第一行得单位矩阵。
记则A=A B C D8设是4阶矩阵,是A的伴随矩阵,若是方程组的一个基础解系,则的基础解系可为A B C D二、填空题9.10. 微分方程11.曲线的弧长s=____________12.设函数 ,则13.设平面区域D由y=x,圆及y轴所组成,则二重积分14.二次型,则f的正惯性指数为________________三、解答题15. 已知函数,设,试求的取值范围。
16. 设函数y=y(x)有参数方程,求y=y(x)的数值和曲线y=y(x)的凹凸区间及拐点。
17. 设,其中函数f具有二阶连续偏导数,函数g(x)可导,且在x=1处取得极值g(1)=1,求18. 设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点,记是曲线l在点(x,y)外切线的倾角,求y(x)的表达式。
19.证明:1)对任意正整数n,都有2)设,证明收敛。
20.一容器的内侧是由图中曲线绕y旋转一周而成的曲面,该曲面由连接而成。
(1)求容器的容积。
(2)若从容器内将容器的水从容器顶部全部抽出,至少需要多少功?(长度单位:m;重力加速度为;水的密度为)21.已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,,其中,计算二重积分。
22.X01P1/32/3Y-101P1/31/31/3求:(1)(X,Y)的分布;(2)Z=XY的分布;(3)23.A为三阶实矩阵,,且(1)求A的特征值与特征向量;(2)求A参考答案选择题:CBCC ABDD填空题:9. 10. 11. 12. 13 14. 解答题:15. 解:16.解:sss17.解:18. 解:19.解:20. 解:21. 解:22. 解:23. 解:。
2011年考研数学试题(数学一)答案解析
2011年全国硕士研究生入学统一考试数学一试题答案解析一、选择题1、【答案】C 【考点分析】本题考查拐点的判断。
直接利用判断拐点的必要条件和第二充分条件即可。
【解析】由()()()()4324321----=x x x x y 可知1,2,3,4分别是()()()()23412340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''===(2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。
2、【答案】C 【考点分析】本题考查幂级数的收敛域。
主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。
【解析】()∑===n k kn n a S 12,1 无界,说明幂级数()11nnn a x ∞=-∑的收敛半径1R ≤;{}n a 单调减少,0lim =∞→nn a ,说明级数()11nn n a ∞=-∑收敛,可知幂级数()11nn n a x ∞=-∑的收敛半径1R ≥。
因此,幂级数()11nn n a x ∞=-∑的收敛半径1R =,收敛区间为()0,2。
又由于0x =时幂级数收敛,2x =时幂级数发散。
可知收敛域为[)0,2。
3、【答案】C 【考点分析】本题考查二元函数取极值的条件,直接套用二元函数取极值的充分条件即可。
【解析】由)(ln )(y f x f z =知()()ln (),()()x y f x z f x f y z f y f y ''''==,()()()xy f x z f y f y ''''= ()ln ()xx z f x f y ''''=,22()()(())()()yy f y f y f y z f x f y '''-''=所以00(0)(0)0(0)xy x y f z f f ==''''==,00(0)ln (0)xx x y z f f ==''''=,2200(0)(0)((0))(0)(0)(0)yy x y f f f z f f f =='''-''''==要使得函数)(ln )(y f x f z =在点(0,0)处取得极小值,仅需(0)ln (0)0f f ''>,(0)ln (0)(0)0f f f ''''⋅>所以有0)0(1)0(>''>f f ,4、【答案】B 【考点分析】本题考查定积分的性质,直接将比较定积分的大小转化为比较对应的被积函数的大小即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 填空题 (每题3分, 共15分)
1. 取3.14159作为π的近似值,则其具有 6 位有效数字.
2. 矩阵A 1302⎡⎤
=⎢⎥
⎣⎦的-∞条件数cond (A)∞= 10 . 3. 对函数()(1)(2)f x x x x =--, 差商[0,1,2,3]f = 1 . 4. 求积分2
1()f x dx ⎰的Simpson 公式为
321
((1)4()(2))6
f f f ++ . 5.
求解常微分方程5dy
x dx
=的隐式Euler 公式为
115)n n n y y h x ++=+ .
二、 计算题 (共35分)
1. (15分) 对方程组
123410312120145x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
, (1) 用Gauss 消去法求解方程组, 并写出由此得到的Doolittle 三角分解LU A =.
(2) 写出对应的Jacobi 迭代格式, 并求迭代矩阵的谱半径. 该格式是否收敛?
解:(1) 771111444
424
247
74103410
3410
3121201010145014
500---⎡⎤
⎡⎤⎡⎤⎢⎥
⎢⎥⎢⎥-→→⎢⎥⎢⎥⎢
⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
, 解得1231x x x === 其LU 分解为71
44424
774101
0041012110010140100--⎡⎤⎡⎤
⎡⎤⎢⎥⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
(2) Jacobi 迭代格式为
(1)
()
311144112222513344000100k k x x x x x x +⎡⎤
⎡⎤⎡⎤
⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦
⎣⎦⎣⎦⎣⎦
其迭代矩阵的特征方程14
211
2
2
14
1()040
λ
λ
λλλ
--=-=, 故其谱半径1
2
, 收敛.
2. (12分) 已知函数)(x f 满足(1)1,(2)3,(3)7,f f f ===求其二次插值多项式. 若再补充条件(1)f '=3, 求其三次插值多项式.
解:利用Lagrange 插值公式,或Newton 插值公式,皆可得二次插值多项式
2()1L x x x =-+. 设三次插值多项式2()1(1)(2)(3)H x x x x x x α=-++---, 则(1)123H α'=+=, 得1α=. 于是2()1(1)(2)(3)H x x x x x x =-++---
325105x x x =-+-.
2. (8分) 对3
()f x dx ⎰的近似求积公式39
()(0)(2)44
Q f f f =
+, 求其代数精确度. 解:令2()1,,f x x x =代入,精确成立
令3()f x x =代入不精确成立. 故代数精确度为2.。