高考数学试题分类汇编直线的方程

合集下载

(完整版)全国高考数学直线与圆的方程试题汇编

(完整版)全国高考数学直线与圆的方程试题汇编

全国高考数学试题汇编——直线与圆的方程一、选择题:1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为( D )A .1B .3C .2D .52.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的( C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所得到的直线为( A )A .1133y x =-+B .113y x =-+C .33y x =-D .113y x =+解析:本题有新意,审题是关键.旋转90︒则与原直线垂直,故旋转后斜率为13-.再右移1得1(1)3y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换.4.(全国I 卷理科10)若直线1x ya b+=通过点(cos sin )M αα,,则 ( B )A .221a b +≤B .221a b +≥C .22111a b+≤D .22111a b +≥ 5.(重庆理科7)若过两点P 2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为( A )A .-13B .-15C .15D .13(重庆文科4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是( A )A .-32B .-12C .12D .36.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( C )A .[B .(C .[D .( 7.(辽宁文、理科3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是 ( C )A .(k ∈B .(,)k ∈-∞⋃+∞C .(k ∈D .(,)k ∈-∞⋃+∞8.(陕西文、理科5)0y m -+=与圆22220x y x +--=相切,则实数m 等于( C )A B . C .- D .-9.(安徽文科11)若A为不等式组0,0,2xyy x⎧⎪⎨⎪-⎩≤≥≤表示的平面区域,则当a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( C )A.34B.1C.74D.210.(湖北文科5)在平面直角坐标系xOy中,满足不等式组,1x yx⎧⎪⎨<⎪⎩≤的点(,)x y的集合用阴影表示为下列图中的( C )11.(辽宁文科9)已知变量x、y满足约束条件10,310,10,y xy xy x+-⎧⎪--⎨⎪-+⎩≤≤≥则z=2x+y的最大值为( B ) A.4 B.2 C.1 D.-412.(北京理科5)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=3x+y的最小值是( B )A.0 B.1 C.3D.9(北京文科6)若实数x,y满足10x yx yx-+⎧⎪+⎨⎪⎩≥≥≤,则z=x+2y的最小值是( A )A.0 B.21C.1 D.213.(福建理科8)若实数x、y满足错误!,则错误!的取值范围是( C )A.(0,1) B.(0,1]C.(1,+∞) D.[1,+∞)(福建文科10)若实数x、y满足20,0,2,x yxx-+⎧⎪>⎨⎪⎩≤≤则yx的取值范围是( D )A.(0,2)B.(0,2)C.(2,+∞) D.[2,+∞)14.(天津理科2文科3)设变量y x ,满足约束条件0121x y x y x y -⎧⎪+⎨⎪+⎩≥≤≥,则目标函数y x z +=5的最大值为A .2B .3C .4D .5 ( D )15.(广东理科4)若变量x 、y 满足24025000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,则32z x y =+的最大值是( C )A .90B .80C .70D .4016.(湖南理科3)已知变量x 、y 满足条件1,0,290,x x y x y ⎧⎪-⎨⎪+-⎩≥≤≤则x+y 的最大值是( C )A .2B .5C .6D .8(湖南文科3)已知变量x 、y 满足条件120x y x y ⎧⎪⎨⎪-⎩≥≤≤,,,则x +y 是最小值是( C )A .4B .3C .2D .117.(全国Ⅱ卷理科5文科6)设变量x ,y 满足约束条件:,22,2y x x y x ⎧⎪+⎨⎪-⎩≥≤≥则y x z 3-=的最小值为( D )A .-2B 。

直线的方程(解析版)

 直线的方程(解析版)

直线的方程题型一:倾斜角、斜率问题典例1、直线3310x y ++=的倾斜角为( )A .150B .120C .30D .60答案: A解析: 求出直线斜率,可得倾斜角.【详解】 直线3310x y ++=的斜率为33k =-,所以倾斜角为150°. 故选:A.【点睛】本题考查直线的倾斜角,解题时可先求得直线斜率,由斜率与倾斜角关系得倾斜角. 典例2、如果过P (-2,m ),Q (m ,4)两点的直线的斜率为1,那么m 的值是( )A .1B .4C .1或3D .1或4答案: A解析: 根据直线的斜率公式,列出方程,即可求解,得到答案.【详解】由题意,过过P (-2,m ),Q (m ,4)两点的直线的斜率为1,根据直线的斜率公式,可得41(2)m m -=--,解得1m =. 故选:A.【点睛】本题主要考查了直线的斜率公式的应用,其中解答中熟记直线的斜率公式,准确运算是解答的关键,着重考查了计算能力,属于基础题.典例3、直线2x ﹣3y+1=0的一个方向向量是( )A .(2,﹣3)B .(2,3)C .(﹣3,2)D .(3,2) 答案: D解析: 由题意可得:直线2x ﹣3y+1=0的斜率为k=,所以直线2x ﹣3y+1=0的一个方向向量=(1,),或(3,2)故选D .典例4、直线l 的一个法向量(cos 1)n θ=,(θ∈R ),则直线l 倾角α的取值范围是_______。

答案: 3[0][)44πππ⋃,,解析: 依题意可得,直线l 的方向向量为(1,cos )θ-,则tan cos [1,1]αθ=-∈-,所以3[0,][,)44ππαπ∈⋃典例5、已知线段AB 的端点()()2,1,1,4A B -,直线l 过原点且与线段AB 不相交,则直线l 的斜率k 的取值范围是__________________答案: (-∞,-4+∞)解析: 求出直线,OA OB 的斜率,观察线段AB 是否过y 轴,即可得。

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)

高中数学直线与方程精选题目(附答案)高中数学直线与方程精选题目(附答案)1.经过A (2,0),B (5,3)两点的直线的倾斜角为( ) A .45° B .135° C .90°D .60°解析:选A ∵A (2,0),B (5,3),∴直线AB 的斜率k =3-05-2=1. 设直线AB 的倾斜角为θ(0°≤θ<180°),则tan θ=1,∴θ=45°.故选A.2.点F (3m +3,0)到直线3x -3my =0的距离为( ) A. 3 B.3mC .3D .3m解析:选A 由点到直线的距离公式得点F (3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3= 3.3.和直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y +5=0 B .3x +4y -5=0 C .-3x +4y -5=0D .-3x +4y +5=0解析:选A 设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线3x -4y +5=0上,所以3x +4y +5=0.4.若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3x -y =33的倾斜角的2倍,则( )A .m =-3,n =1B .m =-3,n =-3C .m =3,n =-3D .m =3,n =1解析:选D 依题意得:直线3x -y =33的斜率为3,∴其倾斜角为60°.∴-3n =-3,-mn=tan 120°=-3,得m =3,n =1.5.直线y =ax +1a的图象可能是( )解析:选B 根据斜截式方程知,斜率与直线在y 轴上的截距同正负. 6.已知两点A (3,0),B (0,4),动点P (x ,y )在线段AB 上运动,则xy ( ) A .无最小值且无最大值 B .无最小值但有最大值 C .有最小值但无最大值D .有最小值且有最大值解析:选D 线段AB 的方程为x 3+y4=1(0≤x ≤3),于是y =41-x 3(0≤x ≤3),从而xy =4x 1-x 3=-43x -322+3,显然当x =32∈[0,3]时,xy 取最大值为3;当x =0或3时,xy 取最小值0.7.已知直线x -2y +m =0(m >0)与直线x +ny -3=0互相平行,且它们间的距离是5,则m +n =( )A .0B .1C .-1D .2解析:选A 由题意,所给两条直线平行,∴n =-2.由两条平行直线间的距离公式,得d =|m +3|12+(-2)2=|m +3|5=5,解得m =2或m =-8(舍去),∴m +n =0. 8.若动点A(x 1,y 1),B (x 2,y 2)分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则线段AB 的中点M 到原点的距离的最小值为( )A .2 3B .3 3C .3 2D .4 2解析:选C 由题意知,M 点的轨迹为平行于直线l 1,l 2且到l 1,l 2距离相等的直线l ,故其方程为x +y -6=0,∴M 到原点的距离的最小值为d =62=3 2.9.直线l 过点(-3,0),且与直线y =2x -3垂直,则直线l 的方程为( ) A .y =-12(x -3)B .y =-12(x +3)C .y =12(x -3)D .y =12(x +3)解析:选B 因为直线y =2x -3的斜率为2,所以直线l 的斜率为-12.又直线l 过点(-3,0),故所求直线的方程为y =-12(x +3),选 B.10.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( ) A .3x -y -13=0 B .3x -y +13=0 C .3x +y -13=0D .3x +y +13=0解析:选C 由已知可知,l 是过A 且与AB 垂直的直线,∵k AB =2-4-3-3=13,∴k l =-3,由点斜式得,y -4=-3(x -3),即3x +y -13=0.11.等腰直角三角形ABC 的直角顶点为C (3,3),若点A (0,4),则点B 的坐标可能是( ) A .(2,0)或(4,6) B .(2,0)或(6,4) C .(4,6)D .(0,2)解析:选A 设B 点坐标为(x ,y ),根据题意知?k AC ·k BC =-1,|BC |=|AC |,∴3-43-0×y -3x -3=-1,(x -3)2+(y -3)2=(0-3)2+(4-3)2,解得 x =2,y =0或x =4,y =6.12.已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( ) A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=0 解析:选D 依题意,设直线l :y -4=k (x -3),即kx -y +4-3k =0,则有|-5k +2|k 2+1=|k +6|k 2+1,因此-5k +2=k +6,或-5k +2=-(k +6),解得k =-23或k =2,故直线l 的方程为2x +3y -18=0或2x -y -2=0.13.若直线x -2y +5=0与直线2x +my -6=0互相垂直,则实数m =________. 解析:∵直线x -2y +5=0与直线2x +my -6=0互相垂直,∴12×-2m =-1,∴m =1. 答案:114.若x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,则k =________. 解析:∵直线x +ky =0,2x +3y +8=0和x -y -1=0三条直线交于一点,解方程组 2x +3y +8=0,x -y -1=0,得x =-1,y =-2,∴直线x +ky =0过点(-1,-2),解得k =-12.答案:-1215.若过点P (1-a,1+a )与点Q (3,2a )的直线的倾斜角是钝角,则实数a 的取值范围是________.解析:k =2a -(1+a )3-(1-a )=a -1a +2<0,得-2<1.<="" p="">答案:(-2,1)16.已知直线l 的斜率为16,且和坐标轴围成的三角形的面积为3,则直线l 的方程为________________.解析:设直线l 的方程为x a +y b =1,∴12|ab |=3,且-b a =16,解得a =-6,b =1或a =6,b =-1,∴直线l 的方程为x -6+y =1或x6-y =1,即x -6y +6=0或x -6y -6=0.答案:x -6y +6=0或x -6y -6=017.(本小题满分10分)已知直线l 的倾斜角为135°,且经过点P(1,1). (1)求直线l 的方程;(2)求点A (3,4)关于直线l 的对称点A ′的坐标.解:(1)∵k =tan 135°=-1,∴l :y -1=-(x -1),即x +y -2=0.(2)设A ′(a ,b ),则b -4a -3×(-1)=-1,a +32+b +42-2=0,解得a =-2,b =-1,∴A ′的坐标为(-2,-1).18.(本小题满分12分)在x 轴的正半轴上求一点P ,使以A (1,2),B (3,3)及点P 为顶点的△ABP 的面积为5.解:设点P 的坐标为(a,0)(a >0),点P 到直线AB 的距离为 D.由已知,得S △ABP =12|AB |·d =12(3-1)2+(3-2)2·d =5,解得d =2 5. 由已知易得,直线AB 的方程为x -2y +3=0,所以d =|a +3|1+(-2)2=25,解得a =7或a =-13(舍去),所以点P 的坐标为(7,0).19.(本小题满分12分)已知直线l :y =kx +2k +1. (1)求证:直线l 恒过一个定点.(2)当-3<="" 的取值范围.="" 解:(1)证明:由y="" 轴上方,求实数k="" +1,得y="" +2).="" +2k="" -1=k="" =kx="">(2)设函数f (x )=kx +2k +1,显然其图象是一条直线(如图).若当-3<="">f (-3)≥0,f (3)≥0.即-3k +2k +1≥0,3k +2k +1≥0,解得-15≤k ≤1.所以实数k 的取值范围是-15,1. 20.(本小题满分12分)已知点A (m -1,2),B (1,1),C (3,m 2-m -1). (1)若A ,B ,C 三点共线,求实数m 的值; (2)若AB ⊥BC ,求实数m 的值.解:(1)因为A ,B ,C 三点共线,且x B ≠x C ,则该直线斜率存在,则k BC =k AB ,即m 2-m -22=1m -2,解得m =1或1-3或1+ 3.(2)由已知,得k BC =m 2-m -22,且x A -x B =m -2.①当m -2=0,即m =2时,直线AB 的斜率不存在,此时k BC =0,于是AB ⊥BC ;②当m -2≠0,即m ≠2时,k AB =1m -2,由k AB ·k BC =-1,得1m -2·m 2-m -22=-1,解得m =-3.综上,可得实数m 的值为2或-3.21.(本小题满分12分)直线过点P43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线满足下列条件:①△AOB 的周长为12;②△AOB 的面积为6.若存在,求出方程;若不存在,请说明理由.解:设直线方程为x a +yb =1(a >0,b >0),由条件①可知,a +b +a 2+b 2=12.由条件②可得12ab =6.又直线过点P 43,2,∴43a +2b =1,联立,得a +b +a 2+b 2=12,12ab =6,43a +2b=1,解得?a =4,b =3.∴所求直线方程为x 4+y3=1.22.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点O 的距离为2的直线的方程;(2)求过点P 且与原点O 的距离最大的直线的方程,并求出最大距离;(3)是否存在过点P 且与原点O 的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)①当直线的斜率不存在时,方程x =2符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为 y +1=k (x -2),即kx -y -2k -1=0. 根据题意,得|2k +1|k 2+1=2,解得k =34.则直线方程为3x -4y -10=0.故符合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P 且与原点的距离最大的直线应为过点P 且与OP 垂直的直线.则其斜率k=2,所以其方程为y+1=2(x-2),即2x-y-5=0.最大距离为 5.(3)不存在.理由:由于原点到过点(2,-1)的直线的最大距离为5,而6>5,故不存在这样的直线.。

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】(举一反三)(人教A版2019选择性必修

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】(举一反三)(人教A版2019选择性必修

专题2.2 直线的方程(一):直线方程的几种形式【八大题型】【人教A版(2019)】【题型1 直线的点斜式方程及辨析】 (2)【题型2 直线的斜截式方程及辨析】 (2)【题型3 直线的两点式方程及辨析】 (3)【题型4 直线的截距式方程及辨析】 (4)【题型5 直线的一般式方程及辨析】 (5)【题型6 直线一般式方程与其他形式之间的互化】 (6)【题型7 求直线的方向向量】 (7)【题型8 根据直线的方向向量求直线方程】 (7)【知识点1 直线的点斜式、斜截式方程】1.直线的点斜式方程(1)直线的点斜式方程的定义:设直线l经过一点,斜率为k l的点斜式方程.(2)点斜式方程的使用方法:①已知直线的斜率并且经过一个点时,可以直接使用该公式求直线方程.②当已知直线的倾斜角时,若直线的倾斜角,则直线的斜率不存在,其方程不能用点斜式表示,但因为l上每一个点的横坐标都等于x1,所以直线方程为x=x1;若直线的倾斜角,则直线的斜率,直线的方程为.2.直线的斜截式方程(1)直线的斜截式方程的定义:设直线l的斜率为k,在y轴上的截距为b,则直线方程为y=kx+b,这个方程叫作直线l的斜截式方程.(2)斜截式方程的使用方法:已知直线的斜率以及直线在y轴上的截距时,可以直接使用该公式求直线方程.【题型1 直线的点斜式方程及辨析】【例1】(2023春·江西九江·高二校考期中)过两点(0,3),(2,1)的直线方程为()A.x−y−3=0B.x+y−3=0C.x+y+3=0D.x−y+3=0【变式1-1】(2023·上海·高二专题练习)过点P(−5,7),倾斜角为135°的直线方程为()A.x−y+12=0B.x+y−2=0C.x+y−12=0D.x−y+2=0【变式1-2】(2023秋·广东广州·高二校考期末)经过点(1,2),且斜率为2的直线方程是()A.2x−y=0B.2x+y=0C.x−2y+1=0D.x+2y−3=0【变式1-3】(2023·全国·高二专题练习)方程y=k(x−2)表示()A.通过点(2,0)的所有直线B.通过点(2,0)且不垂直于y轴的所有直线C.通过点(2,0)且不垂直于x轴的所有直线D.通过点(2,0)且除去x轴的所有直线【题型2 直线的斜截式方程及辨析】【例2】(2022·全国·高二专题练习)直线2x+y−3=0用斜截式表示,下列表达式中,最合理的是()【变式2-1】(2022秋·高二校考课时练习)与直线y=−x+2垂直,且在x轴上的截距为2的直线的斜截式方程为().A.y=x+2B.y=x−2C.y=−x+2D.y=−x+4A.y=x+1B.y=x−1C.y=−x−1D.y=−x+1【变式2-3】(2023秋·江西吉安·高二校考期中)与直线2x−y−1=0垂直,且在y轴上的截距为4的直线的斜截式方程是()(1)直线的两点式方程的定义:设直线l经过两点(),则方程l的两点式方程.(2)两点式方程的使用方法:①已知直线上的两个点,且时,可以直接使用该公式求直线方程.②当().③当(2.直线的截距式方程(1)直线的截距式方程的定义:设直线l在x轴上的截距为a,在y轴上的截距为b,且a≠0,b≠0,则方程l的截距式方程.(2)直线的截距式方程的适用范围:选用截距式方程的条件是a≠0,b≠0,即直线l在两条坐标轴上的截距非零,所以截距式方程不能表示过原点的直线,也不能表示与坐标轴平行(或重合)的直线.(3)截距式方程的使用方法:①已知直线在x轴上的截距、y轴上的截距,且都不为0时,可以直接使用该公式求直线方程.②已知直线在x轴上的截距、y轴上的截距,且都为0时,可设直线方程为y=kx,利用直线经过的点的坐标求解k,得到直线方程.【题型3 直线的两点式方程及辨析】【例3】(2023·全国·高三专题练习)已知直线l过点G(1,−3),H(−2,1),则直线l的方程为()A.4x+y+7=0B.2x−3y−11=0C.4x+3y+5=0D.4x+3y−13=0【变式3-1】(2023秋·浙江温州·高二统考期末)过两点A(3,−5),B(−5,5)的直线在y轴上的截距为()【变式3-2】(2022秋·浙江杭州·高二校联考期中)已知直线l过点G(1,−3),H(2,1),则直线l的方程为()A.4x+y+7=0B.4x−y−7=0C.2x−3y−11=0D.4x−y+7=0【变式3-3】(2022·高二课时练习)已知直线l经过(−2,−2)、(2,4)两点,点(1348,m)在直线l上,则m的值为()A.2021B.2022C.2023D.2024【题型4 直线的截距式方程及辨析】【例4】(2023春·上海闵行·高二校考阶段练习)经过点A(5,2),并且在两坐标轴上的截距相等的直线l有()条A.0B.1C.2D.3【变式4-1】(2023秋·吉林·高二校联考期末)过点(3,−6)且在两坐标轴上截距相等的直线的方程是()A.2x+y=0B.x+y+3=0C.x−y+3=0D.x+y+3=0或2x+y=0【变式4-2】(2023·全国·高二专题练习)若直线l过点A(−2,0),B(0,3),则直线l的方程为()A.3x−2y+6=0B.2x−3y+6=0C.3x−2y−6=0D.3x+2y−6=0【变式4-3】(2023秋·安徽六安·高二校考期末)已知直线l过A(−2,1),且在两坐标轴上的截距为相反数,那么直线l的方程是().A.x+2y=0或x−y+3=0B.x−y−1=0或x−y+3=0C.x−y−1=0或x+y−3=0D.x+2y=0或x+y−3=0【知识点3 直线的一般式方程】1.直线的一般式方程(1)直线的一般式方程的定义:在平面直角坐标系中,任何一个关于x,y的二元一次方程都表示一条直线.我们把关于x,y的二元一次方程Ax+By+C=0(其中A,B不同时为0)叫作直线的一般式方程.对于方程Ax+By+C=0(A,B不全为0):当B≠0时,方程Ax+By+C=0可以写成y=它表示斜率为在y轴上的截距为线.特别地,当A=0时,它表示垂直于y轴的直线.当B=0时,A≠0,方程Ax+By+C=0可以写成x=,它表示垂直于x轴的直线.(2)一般式方程的使用方法:直线的一般式方程是直线方程中最为一般的表达式,它适用于任何一条直线.2.辨析直线方程的五种形式【题型5 直线的一般式方程及辨析】【例5】(2023秋·高二课时练习)经过点(0,−1),且倾斜角为60°的直线的一般式方程为()1=0【变式5-1】(2023·全国·高二专题练习)在直角坐标系中,直线x−2y+3=0经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【变式5-2】(2023秋·北京西城·高二校考期末)已知直线l过点A(−3,1),且与直线x−2y+3=0垂直,则直线l的一般式方程为()A.2x+y+3=0B.2x+y+5=0C.2x+y−1=0D.2x+y−2=0【变式5-3】(2023秋·广东江门·高二统考期末)直线Ax+By+C=0(A,B不同时为0),则下列选项正确的是()A.无论A,B取任何值,直线都存在斜率B.当A=0,且B≠0时,直线只与x轴相交C.当A≠0,或B≠0时,直线与两条坐标轴都相交D.当A≠0,且B=0,且C=0时,直线是y轴所在直线【题型6 直线一般式方程与其他形式之间的互化】A.2x+3y+3=0B.2x+3y−3=0C.2x+3y+2=0D.3x−2y−2=0【变式6-1】(2023秋·江苏盐城·高二校考期末)如果AB<0,BC<0,那么直线Ax+By+C=0不经过()A.第一象限B.第二象限C.第三象限D.第四象限A.1B.−1C.2D.−2【变式6-3】(2023秋·甘肃兰州·高二校考期末)已知直线l过点(2,4),且在x轴上的截距是在y轴上的截距的2倍,则直线l的方程为()A.x+2y−10=0B.x+2y+10=0C.2x−y=0或x+2y−4=0D.2x−y=0或x+2y−10=0【知识点4 方向向量与直线的参数方程】1.方向向量与直线的参数方程除了直线的点斜式、斜截式、两点式、截距式、一般式方程外,还有一种形式的直线方程与向量有紧密的联系,它由一个定点和这条直线的方向向量唯一确定,与直线的点斜式方程本质上是一致的.如图1,设直线l经过点,=(m,n)是它的一个方向向量,P(x,y)是直线l上的任意一点,则向量与共线.根据向量共线的充要条件,存在唯一的实数t,使=t,即)=t(m,n),所以①.在①中,实数t是对应点P的参变数,简称参数.由上可知,对于直线l上的任意一点P(x,y),存在唯一实数t使①成立;反之,对于参数t的每一个确定的值,由①可以确定直线l上的一个点P(x,y).我们把①称为直线的参数方程.【题型7 求直线的方向向量】【例7】(2023·上海·高二专题练习)直线x−2y+1=0的一个方向向量是()A.(2,1)B.(1,2)C.(2,−1)D.(1,−2)【变式7-1】(2023秋·广东肇庆·高二统考期末)直线2mx+my−3=0的一个方向向量是()A.(1,2)B.(2,−1)C.(2,1)D.(1,−2)【变式7-2】(2023秋·北京丰台·高二统考期末)已知经过A(0,2),B(1,0)两点的直线的一个方向向量为(1,k),那么k=()【变式7-3】(2022秋·高二课时练习)已知直线l:mx+2y+6=0,且向量(1−m,1)是直线l的一个方向向量,则实数m的值为()A.−1B.1C.2D.−1或2【题型8 根据直线的方向向量求直线方程】【例8】(2023春·河南开封·高二统考期末)已知直线l的一个方向向量为(2,−1),且经过点A(1,0),则直线l的方程为()A.x−y−1=0B.x+y−1=0C.x−2y−1=0D.x+2y−1=0【变式8-1】(2022秋·广东广州·高二校联考期中)直线l的方向向量为(2,3),直线m过点(1,1)且与l垂直,则直线m的方程为()A.2x+3y−5=0B.2x−3y+1=0C.3x+2y−5=0D.3x−2y−1=0【变式8-2】(2022秋·北京·高二校考期末)已知直线l:(2m+1)x+(m+1)y+m=0经过定点P,直线l′经过点P,且l′的方向向量a⃗=(3,2),则直线l′的方程为()A.2x−3y+5=0B.2x−3y−5=0C.3x−2y+5=0D.3x−2y−5=0【变式8-3】(2023秋·重庆渝中·高二校考期中)已知直线l1的方向向量为a⃑=(1,3),直线l2的方向向量为b⃑⃑=(-1,k),若直线l2过点(0,5),且l1①l2,则直线l2的方程是()A.x+3y-5=0B.x+3y-15=0C.x-3y+5=0D.x-3y+15=0。

高中 直线的方程

高中 直线的方程

直线的方程一、单选题1.直线320x y -=的斜率是()A .32-B .32C .23-D .232.已知直线l 方程为(),0f x y =,()111,P x y 和()222,P x y 分别为直线l 上和l 外的点,则方程()()()1122,,,0f x y f x y f x y --=表示()A .过点1P 且与l 垂直的直线B .与l 重合的直线C .过点2P 且与l 平行的直线D .不过点2P ,但与l 平行的直线3.直线1l :60x ay ++=和直线2l :()2320a x ay a -++=.若12//l l ,则a 的值为()A .0或5B .0C .5D .非上述答案4.经过点()1,1-,倾斜角是直线22y x =-的倾斜角的2倍的直线方程是()A .1x =-B .1y =C .)11y x -=+D .)11y x -=+5.下列四个命题中,正确的是()A .经过定点()000,P x y 的直线都可以用方程()00y y k x x -=-表示B .不经过原点的直线都可以用方程1x ya b+=表示C .经过定点()0,A b 的直线都可以用方程y kx b =+表示D .对于直线()()211a y a x -=--,无论a 为何值,直线总过第一象限6.直线2y kx k =-恒过定点()A .()0,2-B .()0,2C .()2,0-D .()2,07.m R ∈,动直线1:10l x my +-=过定点A 动直线2:230l mx y m --+=过定点B ,若1l 与2l 交于点P (异于点A ,B ),则PA PB +的最大值为AB.CD.8.已知()111P a b ,与()122P a b ,是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是()A .无论12k P P 、、如何,总是无解B .无论12k P P 、、如何,总有唯一解C .存在12k P P 、、,使之恰有两解D .存在12k P P 、、,使之有无穷多解二、填空题9.若动点11(,)A x y ,22(,)B x y 分别在直线1:70l x y +-=和2:50l x y +-=上移动,则线段AB 的中点M 到原点的距离的最小值为____________.10.已知直线1l 过点1(2)P ,且与直线2l :1y x =+垂直,则1l 的点斜式方程为.11.已知三条直线1:220()l x my m R ++=∈,2:210l x y +-=,3:10()l x ny n R ++=∈,若1213//,l l l l ⊥,则m n +的值为______.12.已知点1(,)2M m m -和点1(,)2N n n -()m n ≠,若线段MN 上的任意一点P 都满足:经过点P 的所有直线中恰好有两条直线与曲线21:2C y x x =+(13)x -≤≤相切,则||m n -的最大值为___.参考答案1.B2.C3.A4.D5.D6.D7.B8.B9.10.y-1=-(x-2).11.1 12..。

高考数学分类汇编直线方程与圆的方程

高考数学分类汇编直线方程与圆的方程

2012年高考数学分类汇编 直线方程与圆的方程一、选择题1 .(2012年高考(陕西理))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能2 .(2012年高考(天津理))设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是( )A .[1B .(,1[1+3,+)-∞-∞C .[2-D .(,2[2+22,+)-∞-∞3 .(2012年高考(重庆文))设A,B 为直线y x =与圆221x y += 的两个交点,则||AB =( )A .1BCD .24 .(2012年高考(陕西文))已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则 ( )A .l 与C 相交B .l 与C 相切 C .l 与C 相离D .以上三个选项均有可能5 .(2012年高考(山东文))圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A .内切B .相交C .外切D .相离6 .(2012年高考(辽宁文))将圆x 2+y 2-2x-4y+1=0平分的直线是 ( )A .x+y-1=0B .x+y+3=0C .x-y+1=0D .x-y+3=07 .(2012年高考(湖北文))过点(1,1)P 的直线,将圆形区域{}22(,)|4x y xy +≤分两部分,使得这两部分的面积之差最大,则该直线的方程为 ( )A .20x y +-=B .10y -=C .0x y -=D .340x y +-=8 .(2012年高考(广东文))(解析几何)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于( )A .B .CD .19 .(2012年高考(福建文))直线20x +-=与圆224x y +=相交于,A B 两点,则弦AB的长度等于 ( )A .B .CD .110 .(2012年高考(大纲文))正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC上,13AB BF ==动点P 从E 出发沿直线向F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P 第一次碰到E 时,P 与正方形的边碰撞的次数为 ( )A .8B .6C .4D .311.(2012年高考(安徽文))若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是 ( )A .[3,1]--B .[1,3]-C .[3,1]-D .(,3][1,)-∞-+∞12 .(2012年高考(重庆理))对任意的实数k,直线y=kx+1与圆222=+y x 的位置关系一定是( ) A .相离 B .相切 C .相交但直线不过圆心D .相交且直线过圆心二、填空题13.(2012年高考(浙江文))定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l的距离,已知曲线C 1:y=x 2+a 到直线l:y=x 的距离等于曲线C 2:x 2+(y+4)2=2到直线l:y=x 的距离,则实数a=_______.14.(2012年高考(天津文))设,m n R ∈,若直线:10l mx ny +-=与x 轴相交于点A ,与y 轴相交于B ,且l 与圆224x y +=相交所得弦的长为2,O 为坐标原点,则AOB ∆面积的最小值为_________.15.(2012年高考(上海文))若)1,2(=是直线l 的一个方向向量,则l 的倾斜角的大小为__________(结果用反三角函数值表示). 16.(2012年高考(山东文))如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为____.17.(2012年高考(江西文))过直线0x y +-=上点P 作圆221x y +=的两条切线,若两条切线的夹角是60︒,则点P 的坐标是__________。

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析

高三数学直线方程试题答案及解析1.过点且斜率为的直线与抛物线相交于,两点,若为中点,则的值是.【答案】【解析】直线,设,,则由有B为AC中点,则,∴,则带入直线中,有,∴.【考点】直线方程、中点坐标公式.2.直线l经过点(3,0),且与直线l′:x+3y-2=0垂直,则l的方程是______________.【答案】3x-y-9=0【解析】直线l′:x+3y-2=0的斜率为k′=-,由题意,得k′k=k=-1,则k=3.所以l 的方程为y=3(x-3),即3x-y-9=0.3.求经过点A(2,m)和B(n,3)的直线方程.【答案】当n≠2时,y-m=(x-2),当n=2时x=2.【解析】(解法1)利用直线的两点式方程.直线过点A(2,m)和B(n,3).①当m=3时,点A的坐标是A(2,3),与点B(n,3)的纵坐标相等,则直线AB的方程是y=3.②当n=2时,点B的坐标是B(2,3),与点A(2,m)的横坐标相等,则直线AB的方程是x=2.③当m≠3,n≠2时,由直线的两点式方程得.(解法2)利用直线的点斜式方程.①当n=2时,点A、B的横坐标相同,直线AB垂直于x轴,则直线AB的方程为x=2.②当n≠2时,过点A,B的直线的斜率是k=.又∵过点A(2,m),∴由直线的点斜式方程y-y1=k(x-x1),得过点A,B的直线的方程是y-m=(x-2).4.直线l经过点(3,2),且在两坐标轴上的截距相等,求直线l的方程.【答案】2x-3y=0或x+y-5=0.【解析】解法1:(借助点斜式求解)由于直线l在两轴上有截距,因此直线不与x、y轴垂直,斜率存在,且k≠0.设直线方程为y-2=k(x-3),令x=0,则y=-3k+2;令y=0,则x=3-.由题设可得-3k+2=3-,解得k=-1或k=.故l的方程为y-2=-(x-3)或y-2=(x-3).即直线l的方程为x+y-5=0或2x-3y=0.解法2:(利用截距式求解)由题设,设直线l在x、y轴的截距均为a.若a=0,则l过点(0,0).又过点(3,2),∴l的方程为y=x,即l:2x-3y=0.若a≠0,则设l为=1.由l过点(3,2),知=1,故a=5.∴l的方程为x+y-5=0.综上可知,直线l的方程为2x-3y=0或x+y-5=0.5. 已知直线l :+4-3m =0.(1)求证:不论m 为何实数,直线l 恒过一定点M ;(2)过定点M 作一条直线l 1,使夹在两坐标轴之间的线段被M 点平分,求直线l 1的方程. 【答案】(1)见解析(2)2x +y +4=0 【解析】(1)证明:∵m +2x +y +4=0, ∴由题意得∴直线l 恒过定点M.(2)解:设所求直线l 1的方程为y +2=k(x +1),直线l 1与x 轴、y 轴交于A 、B 两点,则A,B(0,k -2).∵AB 的中点为M ,∴解得k =-2.∴所求直线l 1的方程为2x +y +4=0.,6. 已知直线的点斜式方程为y -1=- (x -2),则该直线另外三种特殊形式的方程为______________,______________,______________. 【答案】y =-x +,,【解析】将y -1=- (x -2)移项、展开括号后合并,即得斜截式方程y =-x +. 因为点(2,1)、均满足方程y -1=- (x -2),故它们为直线上的两点.由两点式方程得,即.由y =-x +知,直线在y 轴上的截距b =,又令y =0,得x =.故直线的截距式方程为7. 将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线方程为________________________________________________________________________. 【答案】y =-x +【解析】将直线y =3x 绕原点逆时针旋转90°得到直线y =-x ,再向右平移1个单位,所得到的直线方程为y =- (x -1),即y =-x +.8. 直线ax +y +1=0与连结A(2,3)、B(-3,2)的线段相交,则a 的取值范围是________. 【答案】(-∞,-2]∪[1,+∞)【解析】直线ax +y +1=0过定点C(0,-1),当直线处在AC 与BC 之间时,必与线段AB 相交,即应满足-a≥或-a≤,得a≤-2或a≥1.9. 点A (1,3)关于直线y =kx +b 对称的点是B (-2,1),则直线y =kx +b 在x 轴上的截距是( ) A .-B .C .-D .【答案】D【解析】由题意知,解得k=-,b=,∴直线方程为y=-x+,其在x轴上的截距为.10.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是()A.y=2x-1B.y=-2x+1C.y=-2x+3D.y=2x-3【答案】D【解析】在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B 关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为=,即y=2x-3,故选D.11.过点A(2,3)且垂直于直线2x+y-5=0的直线方程为()A.x-2y+4=0B.2x+y-7=0C.x-2y+3=0D.x-2y+5=0【答案】A【解析】方法一,设所求直线方程为x-2y+C=0,将点A代入得2-6+C=0,所以C=4,所以所求直线方程为x-2y+4=0,选A.方法二,直线2x+y-5=0的斜率为-2,设所求直线的斜率为k,则k=,代入点斜式方程得直线方程为y-3= (x-2),整理得x-2y+4=0,选A.12.直线过点(-1,2)且在两坐标上的截距相等,则的方程是________.【答案】或【解析】当过原点时,设直线方程为:,又因为过点,则,∴直线方程为;当直线不过原点时,设直线方程为:,代点得,则直线方程为.【考点】直线的截距式方程.13.若直线与幂函数的图象相切于点,则直线的方程为 .【答案】【解析】幂函数的图象相切于点,则,解得,所以,则,故直线的方程为,化简得.【考点】1.直线的切线方程.14.已知两条直线,且,则=A.B.C.-3D.3【答案】C【解析】根据题意,由于两条直线,且,则可知3+a=0,a=-3,故可知答案为选C.【考点】两直线的垂直点评:根据两条直线垂直的充要条件,就是,这是解题的关键,属于基础题。

2025届高三数学专题复习:直线方程重难点专题(解析版)

2025届高三数学专题复习:直线方程重难点专题(解析版)

直线的方程重难点专题常考结论及公式结论一:两直线平行与垂直的充要条件若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2;①l 1∥l 2⇒k 1=k 2⇒≠b 2;②l 1⊥l 2⇔k 1k 2=-1.若l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,且A 1、A 2、B 1、B 2都不为零.①l 1∥l 2⇒A 1A 2=B 1B 2≠C 1C 2;l 1与l 2重合⇒A 1A 2=B 1B 2=C1C 2;②l 1⊥l 2⇔A 1A 2+B 1B 2=0.结论二:到角公式和夹角公式(1)l 1到l 2的角公式①tan α=k 2-k 11+k 2k 1.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)(2)夹角公式①tan α=k 2-k 11+k 1k 2.(l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,k 1k 2≠-1);②tan α=A 1B 2-A 2B 1A 1A 2+B 1B 2.(l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,A 1A 2+B 1B 2≠0)直线l 1⊥l 2时,直线l 1与l 2的夹角是π2.结论三:四种常用直线系方程(1)定点直线系方程:经过定点P 0(x 0,y 0)的直线系方程为y -y 0=k (x -x 0)(除直线x =x 0),其中k 是待定的系数;经过定点P 0(x 0,y 0)的直线系方程为A (x -x 0)+B (y -y 0)=0,其中A 、B 是待定的系数.(2)共点直线系方程:经过两直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的交点的直线系方程为l 1:(A 1x +B 1y +C 1)+λ(A 2x +B 2y +C 2)=0(除l 2),其中λ是待定的系数.(3)平行直线系方程:直线y =kx +b 中当斜率k 一定而b 变动时,表示平行直线系方程.与直线Ax +By +C =0平行的直线系方程是Ax +By +λ=0(λ≠0),λ是参变量.(4)垂直直线系方程:与直线Ax +By +C =0(A ≠0,B ≠0)垂直的直线系方程是Bx -Ay +λ=0,λ是参变量.结论四:与对称有关的一些结论(1)点P (u ,v )关于点Q (s ,t )的对称点的坐标为:(2s -u ,2t -v ),特别地,点P (u ,v )关于原点的对称点的坐标为:(2×0-u ,2×0-v ),即(-u ,-v ).(2)直线Ax +By +C =0关于点P (-u ,-v )对称的直线的方程为:(2u -x )+B (2v -y )+C =0.(3)直线Ax +By +C =0关于原点、x 轴、y 轴对称的直线的方程分别为:A (-x )+B (-y )+C =0,Ax +B (-y )+C =0,A (-x )+By +C =0.(4)直线Ax +By +C =0关于直线x =u ,y =v 对称的直线的方程分为:A (2u -x )+By +C =0,Ax +B (2v -y )+C =0.(5)曲线f (x ,y )=0关于点P (u ,v )对称的直线的方程为:f (2u -x ,2v -y )=0.(6)点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:s -2A ∙As +Bt +C A 2+B 2,t -2B ∙As +Bt +CA 2+B2.特别地,当A =B ≠0时,点P (s ,t )关于直线Ax +By +C =0的对称点的坐标为:-Bt +C A,-As +CB .点P (s ,t )关于x 轴、y 轴,直线x =u ,直线y =v 的对称点的坐标分别为(s ,-t ),(-s ,t ),(2u -s ),(s ,2v -t ).题型一直线的倾斜角与斜率关系问题例1.直线x cos θ+y sin θ=0,θ∈0,5π6的斜率的取值范围为()A.-∞,3B.2,+∞C.-∞,0 ∪0,3D.-∞,2【答案】A【分析】求出直线的斜率的表达式,通过角的范围求解斜率的范围即可.【详解】由x cos θ+y sin θ=0,θ∈0,5π6 可得直线的斜率为:k =-cos θsin θ=-1tan θ.因为θ∈0,5π6 ,所以tan θ∈-∞,-33 ∪0,+∞ ,所以k =-1tan θ∈-∞,0 ∪0,3 当θ=π2时,易得k =0。

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解

高中数学直线的方程练习题及讲解### 练习题1:点斜式方程题目:已知直线过点A(3,4),且斜率为-2,求该直线的方程。

解答:根据点斜式方程 \( y - y_1 = m(x - x_1) \),其中 \( m \) 是斜率,\( (x_1, y_1) \) 是已知点。

代入已知值:\( m = -2 \),\( (x_1, y_1) = (3, 4) \)。

得到方程:\( y - 4 = -2(x - 3) \)。

### 练习题2:斜截式方程题目:若直线的斜率为3,且在y轴上的截距为-5,求该直线的方程。

解答:斜截式方程为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是y轴截距。

代入已知值:\( m = 3 \),\( b = -5 \)。

得到方程:\( y = 3x - 5 \)。

### 练习题3:两点式方程题目:求经过点B(-1,6)和点C(4,-1)的直线方程。

解答:两点式方程为 \( \frac{y - y_1}{y_2 - y_1} = \frac{x -x_1}{x_2 - x_1} \)。

代入点B和点C的坐标:\( \frac{y - 6}{-1 - 6} = \frac{x - (-1)}{4 - (-1)} \)。

化简得到:\( 7(y - 6) = -5(x + 1) \)。

### 练习题4:截距式方程题目:若直线与x轴交于点(4,0),与y轴交于点(0,-3),求该直线的方程。

解答:截距式方程为 \( \frac{x}{a} + \frac{y}{b} = 1 \),其中 \( a \) 和 \( b \) 是x轴和y轴的截距。

代入截距:\( a = 4 \),\( b = -3 \)。

得到方程:\( \frac{x}{4} - \frac{y}{3} = 1 \)。

### 练习题5:一般式方程题目:将直线方程 \( 3x + 4y - 12 = 0 \) 转换为斜截式。

高考直线方程题型归纳

高考直线方程题型归纳

高考直线方程题型归纳知识点梳理 1.点斜式方程设直线l 过点P 0(x 0,y 0),且斜率为k ,则直线的方程为y -y 0=k (x -x 0),由于此方程是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否. (1)当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.(2)当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0.(3)当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点(0,b )且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否.(1)并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.(2)直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.(3)直线的斜截式方程是直线的点斜式方程的特例。

要注意它们之间的区别和联系及其相互转化.3.直线的两点式方程若直线l 经过两点A (x 1,y 1),B (x 2,y 2),(x 1≠x 2),则直线l 的方程为112121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程.注意(1)当直线没有斜率(x 1=x 2)或斜率为零(y 1=y 2)时,不能用两点式112121y y x x y y x x --=--表示它的方程;(2)可以把两点式的方程化为整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1),就可以用它来求过平面上任意两点的直线方程; 如过两点A (1,2),B (1,3)的直线方程可以求得x =1,过两点A (1,3),B (-2,3)的直线方程可以求得y =3.(3)需要特别注意整式(x 2-x 1)(y -y 1)= (y 2-y 1)(x -x 1)与两点式方程112121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展。

五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)

五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)

五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)一、单选题1.(2022·全国·统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A .32B .22C .12D .132.(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021·全国·统考高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+的距离为2p =( ) A .1B .2C .22D .44.(2020·全国·统考高考真题)点(0,﹣1)到直线()1y k x =+距离的最大值为( ) A .1B 2C 3D .25.(2020·浙江·统考高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =234x -|OP |=( )A .222B .4105C .7D .106.(2020·山东·统考高考真题)直线2360x y +-=关于点1,2对称的直线方程是( )A .32100x y --=B .32230x y --=C .2340x y +-=D .2320x y +-=7.(2020·山东·统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.(2018·全国·高考真题)已知双曲线22221(00)x y C a b a b -=>>:,2,则点(4,0)到C 的渐近线的距离为A 2B .2C 32D .29.(2018·北京·高考真题)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .410.(2019·北京·高考真题)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65二、多选题11.(2022·全国·统考高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( ) A .直线AB 的斜率为6B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒三、填空题12.(2022·全国·统考高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.13.(2022·全国·统考高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.14.(2021·全国·统考高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.15.(2021·全国·统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 16.(2019·江苏·高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.四、解答题17.(2018·全国·高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.18.(2018·全国·高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.19.(2019·江苏·高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小..于圆..O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.五、双空题20.(2020·北京·统考高考真题)已知双曲线22:163x yC-=,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.参考答案:1.A【分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b+=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a == A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a == A.2.D【分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项. 【详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 3.B【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d ==解得:2p =(6p =-舍去). 故选:B. 4.B【分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题. 5.D【分析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a=-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =由()22103y x x y ⎧⎪⎨->==⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩OP == 故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题. 6.D【分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点1,2对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【详解】设对称的直线方程上的一点的坐标为()x y ,, 则其关于点1,2对称的点的坐标为(2,4)x y ---,因为点(2,4)x y ---在直线2360x y +-=上, 所以()()223460x y --+--=即2320x y +-=. 故选:D. 7.D【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D. 8.D【详解】分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.详解:e c a ===1b a∴= 所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d==故选D点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题. 9.C【分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【详解】22cos sin 1θθ+=∴,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化. 10.D【分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l的距离65d ==,故选D. 【点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查. 11.ACD【分析】由AF AM =及抛物线方程求得3(4p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,3p B ,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅<,0MA MB ⋅<求得AOB ∠,AMB ∠为钝角即可判断D 选项.【详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=, 代入抛物线可得2233242p y p p =⋅=,则3(4p A ,则直线AB的斜率为2342p p =-A 正确;对于B,由斜率为AB的方程为2px y =+,联立抛物线方程得220y py p -=, 设11(,)B x y1p y p +=,则1y =212p x ⎛=⋅ ⎝⎭,解得13p x =,则6(,)33p p B -, 则22673332p p p p OB OF ⎛⎫⎛⎫=+-=≠= ⎪ ⎪ ⎪⎝⎭⎝⎭,B 错误; 对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确; 对于D ,23663663(,)(,)0423343234p p p p p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又26262665(,)(,)0423343236p p p p p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠=,则180OAM OBM ∠+∠<,D 正确. 故选:ACD.12.13,32⎡⎤⎢⎥⎣⎦【分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上, 所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦13.22(1)(1)5x y -++=【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】[方法一]:三点共圆 ∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R, ==R , 222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++= [方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线210x y +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y-++= 14【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【详解】由已知,3c ==,所以双曲线的右焦点为(3,0), 所以右焦点(3,0)到直线280x y +-===15.0,1【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N ,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ,同理2B x N ,所以()10,1x e NAM B ===∈. 故答案为:0,1 【点睛】关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 16.4.【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4.【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题. 17.(1)AM的方程为2y x =-y =(2)证明见解析. 【分析】(1)根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为=1x ,代入椭圆方程求得点A的坐标为⎛ ⎝⎭或1,⎛ ⎝⎭,利用两点式求得直线AM 的方程; (2)方法一:分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【详解】(1)由已知得()1,0F ,l 的方程为=1x .由已知可得,点A的坐标为⎛ ⎝⎭或1,⎛⎝⎭. 所以AM的方程为y x =y x =. (2)[方法一]:【通性通法】分类+常规联立 当l 与x 轴重合时,0OMA OMB ∠=∠=.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,1122,,,A x y B x y ,则12x x MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+. 从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.[方法二]:角平分线定义的应用当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 点A 关于x 轴的对称点()11,N x y -,则直线BN 的方程为()()()()121121y y x x y y x x +-=+-.令=0y ,()()22121121************2122222222mm y x x my y y y x y x y m m x x m y y y y y y m -⋅--+++++=+====-++++,则直线BN 过点M ,OMA OMB ∠=∠. [方法三]:直线参数方程的应用设直线l 的参数方程为=1+cos =sin x t y t αα⎧⎨⎩(t 为参数).(*)将(*)式代入椭圆方程2212x y +=中,整理得()221sin 2cos 10t t αα++-=.则12211sin t t α-⋅=+,1222cos 1sin t t αα+=-+. 又()()11221cos ,sin ,1cos ,sin A t t B t t αααα++,则MA MB k k +=1212sin sin 1cos 21cos 2t t t t αααα+=+-+-1212sin sin cos 1cos 1t t t t αααα+=--()(()()122112sin cos 1+sin cos=cos 1cos 1t t t t t t αα-αα-α-()()()1212122sin cos sin cos 1cos 1t t t t t t ααααα-+=--()()22122sin cos 2sin cos 1sin 1sin 0cos 1cos 1t t αααααααα-+++=--, 即MA MB k k =-.所以OMA OMB ∠=∠. [方法四]:【最优解】椭圆第二定义的应用 当直线l 与x 轴重合时,0OMA OMB ∠=∠=︒.当直线l 与x 轴不重合时,如图6,过点A ,B 分别作准线=2x 的垂线,垂足分别为C ,D ,则有AC BD x ∥∥轴.由椭圆的第二定义,有e AF AC =,||e ||BF BD =,得||||||||AF BF AC BD =,即||||||||AF AC BF BD =.由AC BD x ∥∥轴,有||||||||AF BF CM DM =,即||||||||AF CM BF DM =,于是||||||||AC CM BD DM =,且90ACM BDM ∠=∠=︒.可得AMC BMD ∠=∠,即有∠=∠AMO BMO .[方法五]:角平分线定理逆定理+极坐标方程的应用 椭圆22:12x C y +=以右焦点为极点,x 轴正方向为极轴,得2cos ρθ=+设()()12,,,A B ρθρθπ+.22221122||12cos ,||12cos AM BM ρρθρρθ=+-=++.所以2211112cos ||3cos ||AM AF ρρθθ+-==-22220212cos ||3cos ||BM BF ρρθθ++==-由角平分线定理的逆定理可知,命题得证. [方法六]:角平分线定理的逆定理的应用设点O (也可选点F )到直线,MA MB 的距离分别为12,d d ,根据角平分线定理的逆定理,要证OMA OMB ∠=∠,只需证12d d =. 当直线l 的斜率为0时,易得120d d ==.当直线l 的斜率不为0时,设直线l 的方程为:()()11221,,,,x my A x y B x y =+.由方程组22+=1,2=+1,x y x my ⎧⎪⎨⎪⎩得()222210,Δ0m y my ++-=>恒成立,12222m y y m +=-+.12212y y m =-+. 直线MA 的方程为:()()1111122112220,2y y x x y y d y x ---==+-因为点A 在直线l 上,所以111x my =+,故()1122112121y d m y my =+-+.同理,2d =.()()()()12121222122222112242121121y y y y my y d d m y my m y my -+-⎡⎤⎣⎦-=⎡⎤⎡⎤+-++-+⎣⎦⎣⎦.因为()121222222022m m y y my y m m +-=-+=++,所以22120d d -=,即12d d =. 综上,OMA OMB ∠=∠.[方法七]:【通性通法】分类+常规联立当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 所以()()()1212121212121220221111MA MB my y y y y y y y k k x x my my my my -++=+=+==------, 故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. [方法八]:定比点差法设()0,1AF FB λλ=≠±,1122,,,A x y B x y , 所以1212+1=1++0=1+x x y y λλλλ⎧⎪⎪⎨⎪⎪⎩,由22112222222+=12+=2x y x y λλλ⎧⎪⎪⎨⎪⎪⎩作差可得,()12121212112111x x x x y y y y λλλλλλλλ+-+-⨯+⨯=+-+-,所以, ()1221x x λλ-=-,又121x x λλ+=+,所以,()121113,322x x λλ⎛⎫=-=- ⎪⎝⎭,故()1222120111221122MA MB y y y y k k x x λλλ-+=+=+=--⎛⎫-+-+ ⎪⎝⎭,MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠.当1λ=时,l 与x 轴垂直,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 故OMA OMB ∠=∠.【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;方法二:根据角平分线的定义可知,利用点A 关于x 轴的对称点N 在直线BM 上,证直线AN 过点M 即可;方法三:利用直线的参数方程证明斜率互为相反数;方法四:根据点M 是椭圆的右准线=2x 与x 轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择; 方法六:类比方法五,角平分线定理的逆定理的应用; 方法七:常规联立,同方法一,只是设直线的方程形式不一样; 方法八:定比点差法的应用. 18.(1)112y x =+或112y x =--;(2)证明见解析.【分析】(1)根据题意可得直线l 的方程为=2x ,从而得出点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)方法一:设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立.【详解】(1)当l 与x 轴垂直时,l 的方程为=2x ,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--;(2)[方法一]:【通性通法】韦达定理+斜率公式 设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由2=+2=2x ty y x ⎧⎨⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠. [方法2]:【最优解】斜率公式+三点共线的坐标表示因为M ,N 在抛物线上,可设()2112,2M t t ,()2222,2N t t ,故()21122,2AM t t =-,()22222,2AN t t =-.而A ,M ,N 共线,故AM AN ∥,即()()2221122222220t t t t -⋅--⋅=,化简得()()1221410t t t t +-=.而M ,N 是不同的点,故12t t ≠,可得1210t t +=.这样()()()()121212222212121220222211BM BN t t t t t t k k t t t t +++=+==++++.故ABM ABN ∠=∠. 【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解. 19.(1)15(百米); (2)见解析;(3)17+. 【分析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.【详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====.因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,连结AD ,由(1)知2210AD AE ED =+, 从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,2222156321CQ QA AC =-=-此时,线段QA 上所有点到点O 的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=321时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+321.因此,d最小时,P,Q两点间的距离为17+321(百米).解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),22(134)(93)15PB=-+++=.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-.在线段AD上取点M(3,154),因为22221533454OM⎛⎫=++=⎪⎝⎭,所以线段AD上存在点到点O的距离小于圆O的半径. 因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a =>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+因此,d 最小时,P ,Q 两点间的距离为17+.【点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力. 20. ()3,0 【分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.答案第17页,共17页。

高中数学训练题及解析——直线的方程

高中数学训练题及解析——直线的方程

平面解析几何——直线的方程一、选择题1.已知直线l的倾斜角为α,且sinα+cosα=15,则直线l的斜率是()A.-43B.-34C.-43或-34D.±43答案 A解析∵α为倾斜角,∴0≤α<π.∵sinα+cosα=15,∴sinα=45,cosα=-35∴tanα=-4 3.2.两直线xm-yn=1与xn-ym=1的图象可能是图中的哪一个()答案 B3.若直线ax+by+c=0,经过第一、二、三象限,则() A.ab>0且bc>0 B.ab>0且bc<0C.ab<0且bc<0 D.ab<0且bc>0答案 C解析显然b≠0,∴y=-ab x-cb∵直线过一、二、三象限,∴-ab>0,-cb>0∴ab<0且bc<0,故选C4.过点M(1,-2)的直线与x轴、y轴分别交于P、Q两点,若M恰为线段PQ的中点,则直线PQ的方程为()A.2x+y=0 B.2x-y-4=0C.x+2y+3=0 D.x-2y-5=0答案 B解析设P(x0,0),Q(0,y0),∵M(1,-2),为线段PQ中点∴x0=2 y0=-4,∴直线PQ的方程为x 2+y-4=1.即2x-y-4=0.5.直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是() A.1 B.-1C.-2或-1 D.-2或1答案 D解析 由条件得a +2=a +2a 解之得a =-2或1.6.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13C .-32 D.23答案 B解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎨⎧ a +7=2b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13,选B. 二、填空题7.若过点P (1-a,1+a )和Q (3,2a )的直线的倾斜角α为钝角,则实数a 的取值范围为________.答案 (-2,1)解析 k =tan α=a -12+a<0 ∴-2<a <1.8.直线ax +by +c =0(a ≠0)的倾斜角为α,则直线ax -by +c =0(a ≠0)的倾斜角为__________.答案 π-α9.过点(1,3)作直线l ,若经过点(a,0)和(0,b ),且a ∈N *,b ∈N *,则可作出的l 的条数为________.答案 2解析 解法一 由题意1a +3b =1⇒(a -1)(b -3)=3.有两个解⎩⎨⎧ a =2b =6或⎩⎨⎧a =4b =4解法二 利用斜率相等知3-b 1=31-a⇒(a -1)(b -3)=3.以下同解法一.10.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则α的取值范围是________答案 [0,π2)∪[3π4,π)解析 设P (x ,y ),y ′=3x 2-1,∴tan α=3x 2-1∈[-1,+∞).∴0≤α<π2或3π4≤α<π.11.过点P (1,2),在x 轴,y 轴上截距相等的直线方程为______________. 答案 y =2x 或x +y -3=0解析 设所求直线l 在x 轴,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(1,2),∴l 方程为y =2x ;若a ≠0,设l 方程为x +y =a ,则a =1+2=3,∴l 方程为x +y -3=0.12.直线x +a 2y -a =0(a >0),当此直线在x ,y 轴上的截距和最小时,a 的值为________.答案 2解析 方程可化为x a +y 1a=1,因为a >0,所以截距之和t =a +1a ≥2,当且仅当a =1a ,即a =1时取等号,故a 的值为2.评析 本题考查直线的方程、截距以及由基本不等式求最值等数学基础知识,属于目前高考选择题中典型的小综合题.三、解答题13.一束光线从点P (0,1)出发,射到x 轴上一点A ,经x 轴反射,反射光线过点Q (2,3),求点A 的坐标.解析 Q (2,3)关于x 轴的对称点为Q ′(2,-3)则P 、A 、Q ′三点共线,设A (x 0,0)则-1x 0=1-(-3)0-2,∴x 0=12,即 A (12,0) 14.在△ABC 中,已知A (1,1),AC 边上的高线所在直线方程为x -2y =0,AB 边上的高线所在直线方程为3x +2y -3=0.求BC 边所在直线方程.解析 K AC =-2,K AB =23∴AC :y -1=-2(x -1),即2x +y -3=0AB :y -1=23(x -1),即2x -3y +1=0由⎩⎨⎧ 2x +y -3=03x +2y -3=0得C (3,-3) 由⎩⎨⎧2x -3y +1=0x -2y =0得B (-2,-1) ∴BC :2x +5y +9=0.15.已知实数x ,y 满足2x +y =8(2≤x ≤3),试求2y 2x -5(x ≠52)的取值范围. 解析如图,设P(x,y).∵2x+y=8,且2≤x≤3,∴P(x,y)在线段AB上移动.易得A(2,4),B(3,2),因2y2x-5=yx-52的几何意义是直线MP的斜率,且M(52,0).∵k MA=-8,k MB=4,由图象知,k MP≤-8或k MP≥4,∴2y2x-5的取值范围是(-∞,-8]∪[4,+∞).。

高考数学直线方程知识点总结

高考数学直线方程知识点总结

高考数学直线方程知识点总结高考数学直线方程是高中数学中的一项基础知识,也是高考数学试题中经常出现的考点。

直线方程的掌握程度直接影响到解题的准确性和速度。

下面将对高考数学直线方程的知识点进行总结,希望对你的学习有所帮助。

一、直线的一般式方程直线的一般式方程表示为Ax+By+C=0。

通过两个点P(x1, y1)和Q(x2, y2)的坐标可以确定一条直线的一般式方程。

当直线过点P(x1, y1)且斜率存在时,直线的一般式方程可以表示为y-y1=k(x-x1),其中k为直线的斜率。

二、直线的斜截式方程直线的斜截式方程表示为y=kx+b。

其中k为直线的斜率,b为直线在y轴上的截距。

通过直线的斜截式方程可以确定一条直线在平面直角坐标系中的位置。

三、直线的点斜式方程直线的点斜式方程表示为y-y1=k(x-x1)。

其中k为直线的斜率,(x1, y1)为直线上的一点。

通过直线的点斜式方程可以确定一条直线在平面直角坐标系中的位置。

四、直线的截距式方程直线的截距式方程表示为x/a+y/b=1。

其中a、b为直线在x轴和y轴上的截距。

通过直线的截距式方程可以确定一条直线在平面直角坐标系中的位置。

五、直线的平行和垂直关系1. 平行关系:两条直线的斜率相等时,两条直线平行。

2. 垂直关系:两条直线的斜率的乘积为-1时,两条直线垂直。

六、直线的截线式方程直线的截线式方程表示为x/a+y/b=1。

其中a、b为直线在x轴和y轴上的截距。

通过直线的截截式方程可以确定一条直线在平面直角坐标系中与坐标轴的交点。

七、直线的交点和距离1. 直线的交点:两条直线的交点可以通过联立方程求解得到。

2. 直线的距离:设直线L的一般式方程为Ax+By+C1=0,点P(x0, y0)到直线L的距离为d=|Ax0+B y0+C1|/√(A²+B²)。

八、直线的性质和常见问题1. 直线的斜率和方向角:直线的斜率k=tanθ,其中θ为直线的方向角。

高考数学专题《直线与直线方程》习题含答案解析

高考数学专题《直线与直线方程》习题含答案解析

专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件【答案】C 【解析】直线x +y =0和直线x−ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C 2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( )ABC.D【答案】C 【解析】原点到直线40x y +-==故选C.3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ().A.过点)2-BC .倾斜角为60°D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解【详解】点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l的斜率tan k θ==60°,故B ,C 正确;由1y =-,知直线l 在y 轴上的截距为1-,故D 错误.故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是().A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.【详解】当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误;∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m =m =B 选项正确;直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-,令11m m m-=-,得1m =±,故D 选项正确.故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是().A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0°【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案.【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确;对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确;对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误;对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确.故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______.【答案】32-43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距.【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43.故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y =【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可.【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒,又因为直线2l 和直线3l 都经过点()1,2,所以直线2l 和直线3l 的方程分别为1x =,2y =.故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________.【答案】-4;2【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //,334a -∴=,解得4a =-;∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________.【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34.因为直线2l 的方程为6810x y --=即为13402x y --=,所以直线1l 与2l 平行,则直线1l 与2l310.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|PA |+|PB |=a 的取值范围是 ___________.【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围.【详解】因为||AB ==||||PA PB +=,由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1),画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3,所以直线l 的斜率为k =2a ,令2123aa ⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( )A .8B .9C .16D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解.【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=,又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,练提升即2b a =时取“=”,由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,2N ,那么||MN 的最小值为( )A .2B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3),所以动点M 在以PQ5,2=圆心的坐标为3(1,)2-,所以点N3=,所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,,则直线方程为:故选l θ1sin(22p q-=l 20y --=40y +-=0x -=360y +-=122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-23πθ=tan θ=1y x -=-40y +-=B4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A.B.C.D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________.【答案】240x y -+= (0,1)-【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行,所以设方程为()201x y n n -+=≠,因为直线过点(2,1)M -,代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程;(2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=.7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1)求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ;(2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程.【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2.【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求.【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2),即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m 2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意,综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,()4,B n -在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值;(2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式.【答案】(1)2(2)0(3)2y x =+【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4),把A (2,4)代入ky x=得k =2×4=8,所以反比例函数解析式为8y x=,把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上,所以4m =k ,﹣4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==,在Rt △BOF 中,tan 4BF nBOF OF -∠==,而tan ∠AOD +tan ∠BOC =1,所以144m n-+=,而m +n =0,解得m =2,n =﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析.【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=.(2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,=,而6>10.(2021·全国高三专题练习)AOB V 是等腰直角三角形,||AB =l 过点(1,1)P 与AOB V 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标;(2)试写出表示AMN V 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标;(2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMN S V 的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解.【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k +=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭.(2)当1k …时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭,1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭.当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,当1k …时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+.综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ).A .1或3B .1或5C .3或5D .1或2【答案】C 【解析】练真题由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5,故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是()A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=,所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( )A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解.【详解】点(0,1)-到直线3410x y -+=的距离为515d =,故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即 111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=-0,求得 b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标b a--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >1,故有1b 13<.综上可得b 的取值范围应是 112⎛⎫-⎪ ⎪⎝⎭,,故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果与都是无理数,则直线不经过任何整点③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数⑤存在恰经过一个整点的直线【答案】①③⑤【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;②令直线为:,则直线经过整点,②错误;③令直线为:,过两个不同的整点,则,两式作差得:即直线经过整点x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --直线经过无穷多个整点,③正确;④令直线为:,则不过整点,④错误;⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤∴l l 1132y x =+ll y =()0,0。

高考数学直线方程知识点总结(2篇)

高考数学直线方程知识点总结(2篇)

高考数学直线方程知识点总结1.直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2.直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3.⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线.②在和的斜率都存在的前提下得到的.因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥.⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在.②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要条件)4.直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5.过两直线的交点的直线系方程为参数,不包括在内)____点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为,则有.注:1.两点P1(____1,y1)、P2(____2,y2)的距离公式:.特例:点P(____,y)到原点O的距离:2.定比分点坐标分式。

高考数学专题复习:直线的方程

高考数学专题复习:直线的方程

高考数学专题复习:直线的方程一、单选题1.对于任意的实数k ,直线1y kx k =-+恒过定点P ,则点P 的坐标为( ) A .()1,1--B .()1,1-C .()1,1-D .()1,12.直线()110ax a y a +++-=过定点( ) A .()2,1B .()2,3-C .()2,1-D .()2,3-3.过点P -且倾斜角为135的直线方程为( )A .30x y --B .0x y -=C .0x y +=D .0x y +=4.已知直线l 经过点()1,2-,且与直线2310x y 垂直,则l 的方程为( ) A .2340x y ++=B .2380x y +-=C .3270x y --=D .3210x y --=5.已知)(111,P a b 与)(222,Pa b 是直线2y kx =+(k 为常数)上两个不同的点,则关于111:20l a x b y +-=和222:20l a x b y +-=的交点情况是( ) A .无论k ,1P ,2P 如何,总有唯一交点 B .存在k ,1P ,2P 使之有无穷多个交点 C .无论k ,1P ,2P 如何,总是无交点D .存在k ,1P ,2P 使之无交点6.若630kxy x y -+-=表示两条直线,则实数k 的值为( ) A .3B .2C .1D .07.在直角坐标系中,直线230x y -+=经过( ) A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限8.“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件9.直线l 过点(3,4)A ,且与点(3,2)B -的距离最远,则直线l 的方程是( ) A .350x y --=B .390x y -+=C .3130x y +-=D .3150x y +-=10.直线2360x y --=在y 轴上的截距为( ) A .2B .2-C .3D .3-11.过点(1,3)-且与直线230x y -+=平行的直线方程是( ) A .250x y --=B .270x y -+=C .210x y +-=D .250x y +-=12.若直线0Ax By C ++=(220A B +≠)经过第一、二、三象限,则系数A B C ,,满足的条件为( )A .ABC ,,同号 B .00AB BC <<, C .00AC BC <>,D .00AB AC ><, 二、填空题13.直线31y kx k =++经过的定点为________.14.已知实数m ,n 满足21m n -=,则直线30mx y n -+=必过定点________. 15.过点()1,3P -且倾斜角为3π的直线方程是________. 16.已知两点()1,2A -,()5,0B ,则线段AB 的垂直平分线方程为________. 三、解答题17.已知直线l 经过点(2,3)P(1)若()1,1A 在直线l 上,求l 的方程;(2)若直线l 与直线2310x y -+=垂直,求l 的方程.18.已知直线l :(2)(12)430.m x m y m ++-+-=(1)求证:不论m 为任何实数,直线l 恒过一定点,并求出定点坐标;(2)过点(1,2)M --作一条直线1l ,使1l 夹在两坐标轴之间的线段被M 点平分,求直线1l 的方程.19.设直线l 的方程为()()130a x y a a R ++-+=∈. (1)若l 在两坐标轴上的截距相等,求a 的值; (2)若l 不经过第三象限,求a 的取值范围.20.已知直线l 的方程为2440,x my m m R +--=∈,点P 的坐标为(1,0)-. (1)求证:直线l 恒过定点,并求出定点坐标;(2)设点Q 为直线l 上的动点,且PQ l ⊥,求||PQ 的最大值,及取到最大值时m 的值.21.已知直线:3470l x y +-=,求 (1)求直线l 的斜率:(2)若直线m 与l 平行,且过点(0,2),求直线m 的方程.22.已知三角形ABC 的三个顶点是A (1,1),B (-1,3),C (3,4). (1)求边BC 的高所在直线l 1的方程;(2)若直线l 2过点C ,且A 、B 到直线l 2的距离相等,求直线l 2的方程.参考答案1.D 【分析】令参数k 的系数等于0,即可得,x y 的值,即为定点P 的坐标. 【详解】由1y kx k =-+可得()11y k x -=-, 令10x -=可得1x =,此时1y =, 所以直线1y kx k =-+恒过定点()1,1P , 故选:D. 2.C 【分析】将直线方程变形,可得出关于x 、y 的方程组,即可解得定点坐标. 【详解】直线方程可化为()110a x y y +++-=,由1010x y y ++=⎧⎨-=⎩,解得21x y =-⎧⎨=⎩,因此,直线()110ax a y a +++-=过定点()2,1-. 故选:C. 3.D 【分析】由倾斜角为135求出直线的斜率,再利用点斜式可求出直线方程 【详解】解:因为直线的倾斜角为135,所以直线的斜率为135tan 1k =︒=-,所以直线方程为(y x +=-,即0x y +=, 故选:D 4.C 【分析】求出直线l 的斜率,利用点斜式可得出直线l 的方程.直线l 与直线2310x y 垂直,且直线2310x y 的斜率为23-,所以直线l 的斜率为32,又因为直线l 经过点()1,2P -,所以直线l 的方程为()3212y x +=-, 化简得3270x y --=. 故选:C . 5.A 【分析】根据1,P 2P 在直线2y kx =+可得()21,2i i b ka i =+=,从而可得12,l l 有唯一交点,从而可得正确的选项. 【详解】因为)(111,P a b 与)(222,P a b 是直线2y kx =+(k 为常数)上两个不同的点, 所以()21,2i i b ka i =+=即()()1201,2i i a k b i ⨯-+⨯-==, 故(),1k -既在直线1l 上,也在直线2l 上.因为)(111,P a b 与)(222,P a b 是两个不同的点,故1l 、2l 不重合, 故无论k ,1P ,2P 如何,总有唯一交点(),1k -. 故选:A. 6.B【分析】由题可得方程左边一定可以表示为两个一次式的乘积,设()()63kxy x y ax b cy d -+-=++比较系数可求出.【详解】若630kxy x y -+-=表示两条直线,则其左边一定可以表示为两个一次式的乘积,又因缺少22,x y 项,则可设()()63kxy x y ax b cy d -+-=++,即63kxy x y acxy adx bcy bd -+-=+++,则163k acad bc bd =⎧⎪=-⎪⎨=⎪⎪=-⎩,解得2k =.【点睛】关键点睛:解决本题的关键是判断出方程左边一定可以表示为两个一次式的乘积,可设为()()63kxy x y ax b cy d -+-=++.7.A 【分析】根据直线方程得到其与坐标轴的交点,从而可得出结果. 【详解】由230x y -+=,令0x =可得,32y =;令0y =可得3x =-; 即直线230x y -+=过点30,2⎛⎫⎪⎝⎭,()3,0-,所以直线230x y -+=经过一、二、三象限. 故选:A. 8.A 【分析】直线10x ay +-=与直线10ax y -+=相互垂直得到a R ∈,再利用充分必要条件的定义判断得解. 【详解】因为直线10x ay +-=与直线10ax y -+=相互垂直, 所以1()(1)0a a ⨯+⨯-=, 所以a R ∈.所以1a =时,直线10x ay +-=与直线10ax y -+=相互垂直,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分条件;当直线10x ay +-=与直线10ax y -+=相互垂直时,1a =不一定成立,所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的非必要条件.所以“1a =”是“直线10x ay +-=与直线10ax y -+=相互垂直”的充分非必要条件. 故选:A 【点睛】方法点睛:充分必要条件的判定,常用的方法有:(1)定义法;(2)集合法;(3)转化法. 要根据已知条件灵活选择方法求解.9.C 【分析】由已知求得直线的斜率,再运用直线的点斜式可求得直线的方程. 【详解】线l 过点(3,4)A 且与点(3,2)B -的距离最远,∴直线l 的斜率为:1134233AB k --==--+,∴直线l 的方程为43(3)y x -=--,即3130x y +-=, 故选:C . 10.B 【分析】直接令0x =,求出y 即可. 【详解】直线2360x y --=, 令0x =,得2y =-.∴直线2360x y --=在y 轴上的截距为2-. 故选:B. 11.B 【分析】设直线方程为20x y c -+=,(3)c ≠,将点(1,3)-代入即可求解. 【详解】设直线方程为20x y c -+=,(3)c ≠, 直线过点(1,3)-,∴代入直线方程的1230c --⨯+=,得7c =, 则所求直线方程为270x y -+=, 故选:B . 12.B 【分析】将直线方程转化为斜截式,再利用直线斜率与截距的意义即可得出. 【详解】由题意得,直线0Ax By C ++=,即A C y x B B=--, 直线经过第一、二、三象限, 所以0A B ->,0CB->,即0AB <,0BC <, 故选:B. 13.(3,1)- 【分析】把直线31y kx k =++化为1(3)y k x -=+,结合方程组3010x y +=⎧⎨-=⎩,即可 求解.【详解】由题意,直线31y kx k =++可化为1(3)y k x -=+,又由3010x y +=⎧⎨-=⎩,解得3,1x y =-=,即直线过定点(3,1)-.故答案为:(3,1)-. 14.12,3⎛⎫-- ⎪⎝⎭【分析】将21n m =-代入直线30mx y n -+=得()()2310x m y ++--=,由20310x y +=⎧⎨--=⎩即可得结果.【详解】由已知得21n m =-,代入直线30mx y n -+=得3210mx y m -+-=, 即()()2310x m y ++--=, 由20310x y +=⎧⎨--=⎩,解得213x y =-⎧⎪⎨=-⎪⎩,∴直线必过定点12,3⎛⎫-- ⎪⎝⎭,故答案为:12,3⎛⎫-- ⎪⎝⎭.1530y -= 【分析】先求出斜率,再用点斜式写出直线方程,最后化简即可得出答案. 【详解】∵直线倾斜角为3π,∴斜率tan 3k π==∵直线过点()1,3P -,∴直线方程为:)3130y x y -+-=.30y -=. 16.250x y +-= 【分析】先由两点坐标求出线段中点坐标,再由斜率公式以及垂直关系,得到所求直线的斜率,根据点斜式,即可得出直线方程. 【详解】因为()1,2A -,()5,0B 的中点坐标为1520,22+-+⎛⎫⎪⎝⎭,即()3,1-; 又021512AB k +==-, 所以线段AB 的垂直平分线所在直线的斜率为12ABk k =-=-, 因此所求直线方程为()123y x +=--,即250x y +-=. 故答案为:250x y +-=.17.(1) 210x y --=; (2)32120x y +-= . 【分析】(1)利用待定系数法求直线l 方程;(2)利用两直线垂直求出直线l 的斜率,再用点斜式写方程整理得一般方程. 【详解】(1) 设直线l 的方程为y kx b =+,因为直线l 过点(2,3)P 和()1,1A ,所以23,1k b k b +=⎧⎨+=⎩,解得2,1k b =⎧⎨=-⎩. 所以直线l 的方程为21y x =-,即210x y --= . (2) 设直线l 的斜率为k ,直线2310x y -+=斜率为23,因为直线l 与直线2310x y -+=垂直,所以213k ⨯=- ,32k =- .又直线l 经过点(2,3)P ,所以直线l 的方程为()3322y x -=--, 整理得32120x y +-=.18.(1)证明见解析,定点坐标为()1,2--;(2)直线1:240l x y ++=. 【分析】(1)将直线方程整理为()()24230x y m x y +++--=,据此可求定点坐标. (2)求出1l 的截距后可求直线1l 的方程. 【详解】(1)直线l : ()()24230x y m x y +++--=即为()()24230x y m x y +++--=,由240230x y x y ++=⎧⎨--=⎩可得12x y =-⎧⎨=-⎩,故直线过定点且定点坐标为()1,2--.(2)由题设可得直线1l 的横截距和纵截距均存在且不为零, 设直线1:1x yl a b+=,则该直线与x 轴交点的坐标为(),0a , 与y 轴交点的坐标为()0,b ,故012022a b +⎧=-⎪⎪⎨+⎪=-⎪⎩即24a b =-⎧⎨=-⎩,故直线1:240l x y ++=.19.(1)3a =或0a =;(2)13a -≤≤. 【分析】(1)分截距都为0,与截距都不为0两种情况讨论可得;(2)直线不经过第三象限则斜率小于等于0,纵截距大于等于0,即可得到不等式组,解得即可; 【详解】(1)当截距都不为0,则斜率()11a -+=-时,即0a =,:30l x y +-=符合题意; 当截距都为0,即纵截距30a -=时,即3a =,:40l x y +=符合题意; 故3a =或0a =(2)因为()()130a x y a a R ++-+=∈,即()13y a x a =-++-,若l 不经过第三象限,则()1030a a ⎧-+≤⎨-≥⎩,解得13a -≤≤, 故实数a 的取值范围为13a -≤≤.20.(1)定点()2,4;(2)||PQ 的最大值为5,83m =.【分析】 (1)将直线方程化为()()2440x m y -+-=,由24040x y -=⎧⎨-=⎩可求出定点; (2)可得当且仅当点Q 为定点()2,4时,||PQ 取得最大值,由此即可得出所求.【详解】(1)将直线方程化为()()2440x m y -+-=,由24040x y -=⎧⎨-=⎩可得24x y =⎧⎨=⎩,故直线l 恒过定点()2,4; (2)设直线l 的定点()2,4M ,则由PQ l ⊥可得5PQ PM ≤=当且仅当点Q 为定点()2,4时,||PQ 取得最大值为5,此时044123PQ k -==--, PQ l ⊥,234l k m ∴=-=-,解得83m =, 故||PQ 的最大值为5,取到最大值时m 的值为83. 【点睛】关键点睛:本题考查定点到动直线距离的最值,解题的关键是得出当且仅当点Q 为定点()2,4时,||PQ 取得最大.21.(1)34-;(2)3480x y +-=. 【分析】(1)根据直线方程,直接写出斜率即可;(2)由两线平行斜率相等,结合所过的点坐标写出直线方程.【详解】(1)由直线方程知:3744y x =-+,即直线l 的斜率为34k =-; (2)由(1),根据直线m 与l 平行,且过点(0,2),则直线m :324y x =-+, ∴直线m 一般形式为3480x y +-=.22.(1)450x y +-=;(2)70x y +-=或2360x y -+=.【分析】(1)利用斜率计算公式、相互垂直的直线斜率之间的关系、点斜式即可得出. (2)利用斜率计算公式、中点坐标公式、直线平行的性质、点斜式即可得出.【详解】(1)431314BC k -==+,114l BC k k =-=-, ∴直线1l 的方程是4(1)1y x =--+,即450x y +-=.(2)直线2l 过C 点且A 、B 到直线2l 的距离相等,∴直线2l 与AB 平行或过AB 的中点M ,31111AB k -==---,∴直线2l 的方程是(3)4y x =--+,即70x y +-=, AB 的中点M 的坐标为(0,2), ∴422303CM k -==-,∴直线2l 的方程是2(3)43y x =-+,即2360x y -+=, 综上,直线2l 的方程是70x y +-=或2360x y -+=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年高考数学试题分类汇编:直线的方程
【考点阐述】
直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.
【考试要求】
(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.
【考题分类】
(一)选择题(共3题)
1.(全国Ⅱ卷理11)等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )
A .3
B .2
C .13-
D .12- 【答案】A
【解析】1,02:11-==-+k y x l ,71,047:22=
=--k y x l ,设底边为kx y l =:3 由题意,3l 到1l 所成的角等于2l 到3l 所成的角于是有
371711112211+-=-+⇒+-=+-k k k k k k k k k k k 再将A 、B 、C 、D 代入验证得正确答案是A
【高考考点】两直线成角的概念及公式
【备考提示】本题是由教材的一个例题改编而成。

(人教版P49例7)
2.(全国Ⅱ卷文3)原点到直线052=-+y x 的距离为( )
A .1
B .3
C .2
D .5 【答案】D 【解析】5215
2=+-=d
【高考考点】点到直线的距离公式
3.(四川卷理4文6)直线3y x =绕原点逆时针旋转0
90,再向右平移1个单位,所得到的直线为( )
(A)1133y x =-
+ (B)113y x =-+ (C)33y x =- (D)113
y x =+ 【解】:∵直线3y x =绕原点逆时针旋转090的直线为13
y x =-,从而淘汰(C),(D ) 又∵将13y x =-向右平移1个单位得()113y x =--,即1133y x =-+ 故选A ; 【点评】:此题重点考察互相垂直的直线关系,以及直线平移问题;
【突破】:熟悉互相垂直的直线斜率互为负倒数,过原点的直线无常数项;重视平移方法:“左加右减”;
(二)填空题(共2题)
1.(江苏卷9)如图,在平面直角坐标系
xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO
上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为01111=⎪⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y a p x c b ,请你完成直线OF
的方程: ( ▲ )011=⎪⎪⎭⎫ ⎝⎛-+y a p x 。

【解析】本小题考查直线方程的求法.画草图,由对称性可猜想填11c b
-.事实上,由截距式可得直线AB :1x y b a +=,直线CP :1x y c p += ,两式相减得11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭
,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程. 【答案】11c b
- 2.(上海春卷12)已知(1,2),
(3,4)A B ,直线1l :20,:0x l y == 和3:l x +3y 10-=. 设i P 是i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 .
解析:设P 1(0,y ),则P 1A 2+P 1B 2=(0-1)2+(y-2)2+(0-3)2+(y-4)2 =2(y-3)2+12,于是当y=3
时P 1与A 、B 两点距离平方和最小,故P 1(0,3)。

同理,设P 2(x ,0),则P 1A 2+P 1B 2=(x-1)2+(0-2)2+(x-3)2+(0-4)2 =2(x-2)2+22,于是当x=2
时P 2与A 、B 两点距离平方和最小,故P 2(2,0)。

同理,设P 3(1-3y ,y ),则P 1A 2+P 1B 2=(1-3y -1)2+(y-2)2+(1-3y -3)2+( y -4)2 =2y 2+24,于
是当y=0时P 3与A 、B 两点距离平方和最小,故P 3(1,0)。

所以231113||||(21)3222S P P OP =
=-=.。

相关文档
最新文档