数学建模:课程安排优化问题
数学建模优化问题的求解方法
数学建模优化问题的求解方法
数学建模优化问题的求解方法有很多。
下面列举几种常见的方法:
1. 数学规划方法:包括线性规划、整数规划、非线性规划、动态规划等。
这些方法通过数学模型和约束条件来描述问题,并通过寻找最优解来优化问题。
2. 图论方法:将问题抽象成图或网络,并利用图论算法来求解最优解。
常见的算法有最短路径算法、最小生成树算法、最大流算法等。
3. 近似算法:对于复杂的优化问题,往往很难找到精确的最优解。
近似算法通过寻找接近最优解的解来近似优化问题。
常见的近似算法有贪心算法、近邻算法、模拟退火算法等。
4. 遗传算法:模拟生物进化的过程,通过选择、交叉和变异等操作来搜索问题的解空间,并逐步优化解。
遗传算法适用于复杂问题和无法直接求解的问题。
5. 物理方法:将优化问题转化为物理模型,利用物理规律求解。
比如蚁群算法模拟蚂蚁找食物的行为,粒子群算法模拟鸟群觅食的行为等。
以上只是数学建模优化问题求解方法的几种常见方法,实际问题求解时要根据问题的特点选择适合的方法,并结合领域知识和实际情况进行调整和优化。
新课程背景下高中数学建模教学的现状、问题及对策
新课程背景下高中数学建模教学的现状、问题及对策摘要:高中数学新课程将建模思想作为学科核心素养之一,主要原因是建模是学生学好、学深数学知识的关键素质,是数学思维性的集中体现,为此需要教师加强开展建模教学。
本文首先阐述了高中数学建模教学的现状,接着总结出教师在建模教学中存在意识不高、指导不够、评价不科学等问题,最后论述了教师要在教学过程中重视渗透建模教学、教会学生掌握建模步骤、实施过程性评价,以此强化建模教学,培养学生建模意识与素质,从而助力学生深度学习数学知识,有效实现新课标关于建模教学的要求。
关键词:高中数学;建模教学;有效策略根据高中数学新课程关于建模教学的描述,建模主要指的是教师教会学生利用模型去探究、理解数学知识,借助模型去分析、解决数学问题,高中数学模型具有工具性、思维性特点,需要学生建立应用的意识与能力。
数学建模具有很强的理论性和技巧性,需要教师实施针对性的教学,为此,探究高中教师数学建模教学的现状、分析其中的不足、寻找有效对策非常有必要。
一、高中数学建模教学的现状当前,广大教师能根据高中数学新课程的要求,以及数学高考新考核标准的指引,转变应试教育理念与方法,关注学生学科核心素养的培养,其中就包括数学建模。
包括刚大学毕业在内的高中数学教师,他们具有先进的教育理念,也具有很强的教学能力,能够适应教学新需要、新要求,这也说明了当前开展数学建模教学的师资力量很充裕。
在新版高中数学教材中,也包含很多的数学建模内容,以适应新课标和新高考的要求,有些建模教学内容比较隐晦,还需要教师多发掘。
高中学校也能根据新课标的要求,组织教师参加新课标内容培训,关注教师对新课标落实情况,对教师的建模教学也会有具体的教学安排,包括听课、说课、集中备课等。
学生对新课程内容总体持支持态度,尤其是教师贯彻新课标要求,将学生从题海战术中解法出来之后,学生会积极参与到教师组织的包括数学建模在内的新课程教学活动中。
由此可见,当前高中数学建模教学有师资力量,有学生基础,学校也比较重视,具备开展高质量建模教学的条件。
数学模型与优化课程设计
数学模型与优化课程设计一、课程目标知识目标:1. 让学生掌握数学模型的基本构建方法和应用,理解数学模型在解决实际问题中的重要性。
2. 使学生掌握线性规划、整数规划等优化方法的基本原理和求解步骤,具备运用这些方法解决实际问题的能力。
3. 帮助学生理解数学与现实生活的联系,提高运用数学知识分析和解决问题的能力。
技能目标:1. 培养学生运用数学软件或工具构建数学模型,解决实际问题的能力。
2. 培养学生运用优化方法对数学模型进行求解,提高问题求解的效率。
3. 培养学生独立思考和团队协作的能力,提高学生在实际问题中运用数学知识进行创新的能力。
情感态度价值观目标:1. 培养学生对数学学科的兴趣和热情,激发学生学习数学的积极性。
2. 培养学生严谨、务实的科学态度,提高学生面对问题时敢于挑战、勇于探索的精神。
3. 培养学生具备良好的合作精神,学会尊重他人意见,形成积极向上的人际关系。
课程性质分析:本课程为数学模型与优化课程,旨在教授学生运用数学知识和方法解决实际问题。
课程内容与实际生活紧密联系,注重培养学生的实践能力和创新精神。
学生特点分析:学生处于高年级阶段,已具备一定的数学基础和问题解决能力。
在此阶段,学生具有较强的求知欲和自主学习能力,同时具有一定的团队合作意识。
教学要求:1. 结合课本内容,注重理论与实践相结合,提高学生的实际操作能力。
2. 注重启发式教学,引导学生主动思考、探索问题,培养学生的创新意识。
3. 注重教学过程中的师生互动,激发学生的学习兴趣,提高教学效果。
二、教学内容本课程教学内容主要包括以下几部分:1. 数学模型基本概念与构建方法- 理解数学模型的定义及分类- 掌握数学模型构建的基本步骤和方法- 分析实际问题时,能够运用所学知识建立数学模型2. 线性规划- 线性规划的基本概念与理论- 线性规划模型的建立与求解方法- 应用线性规划解决实际问题3. 整数规划- 整数规划的基本概念与特点- 整数规划模型的建立与求解方法- 应用整数规划解决实际问题4. 非线性规划简介- 非线性规划的基本概念与理论- 非线性规划模型的建立与求解方法- 非线性规划在实际问题中的应用案例5. 模型优化方法- 优化方法的基本原理与分类- 常见优化算法及其应用- 优化方法在实际问题中的应用案例教学内容安排与进度:第一周:数学模型基本概念与构建方法第二周:线性规划基本理论与求解方法第三周:线性规划应用案例分析第四周:整数规划基本理论与求解方法第五周:整数规划应用案例分析第六周:非线性规划简介第七周:优化方法及其在实际问题中的应用本教学内容与课本章节紧密关联,注重理论与实践相结合,旨在提高学生运用数学知识解决实际问题的能力。
数学建模作业---优化模型
P104页,复习题题目:考虑以下“食谱问题":某学校为学生提供营养套餐,希望以最小的费用来满足学生对基本营养的需求按照营养学家的建设,一个人一天要对蛋白质,维生素A和钙的需求如下:50g蛋白质、4000IU维生素A和1000mg的钙,我们只考虑以不食物构成的食谱:苹果,香蕉,胡萝卜,枣汁和鸡蛋,其营养含量见下表。
制定食谱,确定每种食物的用量,以最小费用满足营养学家建议的营养需求,并考虑:(1)对维生素A的需求增加一个单位时是否需要改变食谱?成本增加多少?如果对蛋白质的需求增加1g呢?如果对钙的需求增加1mg呢?(2)胡萝卜的价格增加Ⅰ角时,是否需要改变食谱?成本增加多少?问题分析:(1)此优化问题的目标是使花费最小.(2)所做的决策是选择各种食物的用量,即用多少苹果,香蕉,胡萝卜,枣汁,鸡蛋来制定食谱。
(3)决策所受限制条件:最少应摄入的蛋白质、维生素和钙的含量(4)设置决策变量:用x1表示苹果的个数、x2表示香蕉的个数、x3表示胡萝卜的个数、x4表示枣汁的杯数量、x5表示鸡蛋的个数(5)x1个苹果花费10·x1角x2个香蕉花费15·x2角x3个胡萝卜花费5·x3角x4杯枣汁花费60·x4角x5个鸡蛋花费8·x5角目标函数为总花费金额:z=10·x1+15·x2+5·x3+60·x4+8·x5 (角)(6)约束条件为:最少摄入蛋白质的含量:0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥50最少摄入维生素A的含量:73x1+96x2+20253x3+890x4+279x5≥4000最少摄入钙的含量:10x1+15x2+5x3+60x4+8x5≥1000非负约束:x 1,x 2,x 3,x 4,x 5≥0优化模型:minz =10x 1+15x 2+5x 3+60x 4+8x 5s.t. 0.3x 1+1.2x 2+0.7x 3+3.5x 4+5.5x 5≥5073x 1+96x 2+20253x 3+890x 4+279x 5≥4000 9.6x 1+7x 2+19x 3+57x 4+22x 5≥1000 x 1,x 2,x 3,x 4,x 5≥0由线性规划模型的定义,容易得到线性规划的性质:1. 比例性 每个决策变量的对目标函数的“贡献”与该决策变量的取值成正比;每个决策变量对每个约束条件右端项的“贡献”,与该决策变量的取值成正比.2. 可加性 各个决策变量对目标函数的“贡献”,与其他决策变量的取值无关;各个决策变量对每个约束条件右端项的“贡献”,与其他决策变量的取值无关.3. 连续性 每个决策变量的取值是连续的. 考察本题,实际上隐含下面的假设 :1.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与各自的用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素、钙的含量是与各自的用量无关的常数.(线性规划性质1—比例性)2.购买苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)的花费是与它们相互间用量无关的常数;苹果、香蕉、胡萝卜、枣汁、鸡蛋每个(杯)所包含的蛋白质、维生素A 、钙的含量是与它们相互间的用量无关的常数. (线性规划性质2—可加性)3. 购买苹果、香蕉、胡萝卜、枣汁、鸡蛋的数量都是实数. (线性规划性质3—连续性) 模型求解:(决策变量是5维的,不适用图解法求解模型)软件求解:线性规划模型:min z=10x1+15x2+5x3+60x4+8x5s.t. 0.3x1+1.2x2+0.7x3+3.5x4+5.5x5≥5073x1+96x2+20253x3+890x4+279x5≥40009.6x1+7x2+19x3+57x4+22x5≥1000x1,x2,x3,x4,x5≥0模型全局最优解:(Global optimal solution)x1=0x2=0x3=49.38272x4=0x5=2.805836z的最优值为269.3603角用LINGO 软件求解,得到如下输出:结果分析:1. 3个约束条件的右端项可视为3种资源:蛋白质含量、维生素A 含量、钙含量.LINGO 的输出项Row Slack or Surplus ,给出了3种资源在最优解下的剩余.2.目标函数可视为“支出(成本)”,紧约束的“资源”增加1单位时,“支出”的增加由LINGO 的输出项 Dual Price 给出。
数学建模:课程安排优化问题
2012年数学建模竞赛参赛队员题目 A题:课程安排优化问题关键词排课问题,优化矩阵,有效矩阵摘要每学期的开学初,总有许多老师对阳光校区的课程安排很有意见,本文选取武汉纺织大学机械设计系的师生情况、课程、教室间数为研究对象,以课程与上课时间之间的关系矩阵为目标矩阵,通过用各影响矩阵优化目标矩阵的方法,对机械设计系的课表进行了重排。
在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。
运用我们建立的数学模型,对武汉纺织大学机械设计系的课表进行重排,将所得新课表与现有的课表进行比较,显然新排的课表更加合理化、人性化。
根据新课表中每节课对应的相关因素(课程名称、教室、老师、班级)进行分析整合,可衍生出新的安排表(如通过对不同时间段上课老师人数的研究安排校车的接送)。
我们以学校、教师和学生对所排课表满意度作为衡量标准,以···大学机械设计系的课表为例,可得学校、教师和学生对我们所排课表的满意度主因素分别为校车接送次数、在阳光校区逗留时间、专业课排在早上,可见对本模型使三方的满意度基本均衡且都超过80%,即做到了三者兼顾的满意最大化。
最后,根据我们建立的模型,分析了模型的优缺点。
一、问题重述我校现有三个校区,有在校学生近25000人,其中阳光校区在校学生人数最多。
阳光校区现有四栋教学楼,分别是3号、6号、7号和8号楼,四栋教学楼之间有较大的距离,如从3号楼到8号楼步行需要约10分钟。
我校的学生作息时间安排中,一天共有13节课,划分为5个时间段,分别是1-2节、3-5节、6-8节、9-10节、11-13节。
按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。
同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。
每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。
如何应用数学建模优化问题
如何应用数学建模优化问题数学建模是一种将实际问题转化为数学模型,并通过数学方法来解决问题的过程。
在许多领域中,数学建模都被广泛应用于优化问题的求解。
本文将探讨如何应用数学建模来优化问题,并介绍一些常见的数学优化方法。
一、问题建模在进行数学优化之前,我们首先需要将实际问题转化为数学模型。
这个过程包括以下几个步骤:1. 确定优化目标:明确你想要优化的目标是什么。
比如,你可能要最小化成本、最大化利润,或者使某个指标达到最佳状态等。
2. 确定决策变量:决策变量是影响优化结果的变量。
根据实际问题,选择适当的决策变量。
例如,如果你想要优化某个产品的生产计划,决策变量可以是生产数量、生产时间等。
3. 建立约束条件:约束条件是限制决策变量取值的条件。
根据实际问题,确定约束条件并将其转化为数学形式。
例如,如果你想要优化配送路线,可能会有时间限制、容量限制等。
二、数学优化方法在问题建模完成后,我们可以使用不同的数学优化方法来求解优化问题。
下面介绍几种常见的优化方法:1. 线性规划:线性规划是在给定线性约束条件下求解线性目标函数的优化问题。
使用线性规划可以解决许多实际问题,例如资源分配、生产计划等。
2. 整数规划:整数规划是线性规划的一种扩展形式,其决策变量需要取整数值。
整数规划适用于那些要求决策变量为整数的问题,如生产装配线优化、旅行商问题等。
3. 非线性规划:非线性规划是在给定非线性约束条件下求解非线性目标函数的优化问题。
非线性规划广泛应用于诸如工程优化、金融投资等领域。
4. 动态规划:动态规划是解决具有重叠子问题特性的优化问题的一种方法。
通过将问题划分为一系列子问题,并将子问题的解缓存起来,可以有效地解决很多动态规划问题。
5. 遗传算法:遗传算法是一种模拟自然选择和遗传机制的优化算法。
通过不断地进化和选择,遗传算法可以搜索到优化问题的全局最优解。
三、应用案例下面通过一个应用案例来说明如何应用数学建模优化问题。
假设你是一家互联网电商平台的运营经理,你想要优化产品的价格策略以最大化销售额。
数学建模中的优化调度问题
数学建模中的优化调度问题在数学建模中,优化调度问题是一个重要的研究领域。
优化调度问题可以通过数学模型和算法来解决,以提高资源利用率、降低成本、提高效率等目标。
本文将介绍数学建模中的优化调度问题,并讨论一些常见的调度算法和应用案例。
一、优化调度问题的定义与形式化描述优化调度问题通常是指在有限的资源和约束条件下,如何合理安排任务和资源的分配,以达到最佳的结果。
优化调度问题可以用数学模型来描述,常见的形式化描述包括:1. 作业调度问题:如何合理安排作业的执行顺序和时间,以最小化总执行时间或最大化作业的完成数量。
2. 机器调度问题:如何安排机器的任务分配和工作时间,以最小化总工作时间或最大化机器的利用率。
3. 运输调度问题:如何合理安排货物的运输路线和车辆的调度,以最小化运输成本或最大化运输效率。
二、常见的调度算法优化调度问题可以借助多种算法来求解,以下是一些常见的调度算法:1. 贪心算法:贪心算法通过每一步的局部最优选择来构建整体最优解。
例如,在作业调度问题中,可以按照作业的执行时间或紧急程度进行排序,然后按顺序进行调度。
2. 动态规划:动态规划通过将问题分解为子问题并记录子问题的最优解,再根据子问题的最优解来求解整体问题的最优解。
例如,在机器调度问题中,可以使用动态规划来确定每个任务在不同机器上的最优执行顺序。
3. 遗传算法:遗传算法是一种模拟进化过程的优化算法,通过模拟自然界的进化过程来寻找问题的最优解。
例如,在运输调度问题中,可以使用遗传算法来优化货物的运输路径和车辆的调度计划。
三、优化调度问题的应用案例优化调度问题广泛应用于生产制造、交通运输、资源分配等领域。
以下是一些优化调度问题的应用案例:1. 生产制造:在工厂生产过程中,如何合理安排设备的使用和任务的执行,以最大化生产效率或最小化成本。
2. 铁路调度:如何安排列车的行动计划和车次的分配,以最大化铁路运输能力和减少列车的延误。
3. 资源分配:如何合理分配有限的资源,如人力、设备和原材料,以最大程度地满足需求和降低成本。
研究生数学建模优化问题
研究生数学建模优化问题
研究生数学建模优化问题可以涉及各种不同的学科和领域。
以下是一些常见的研究生数学建模优化问题的例子:
1. 生产优化问题:如何最大化生产效率,同时最小化生产成本和资源使用。
这包括生产线排程问题、物流和供应链管理等。
2. 资源分配问题:如何最优地分配有限的资源,以满足不同需求。
例如,如何在一所学校中分配教师、教室和学生资源,以实现最佳的学习效果。
3. 运输路径问题:如何找到最短路径或最优路径来满足特定的要求。
这包括最短路径问题、旅行商问题等。
4. 网络优化问题:如何设计最优的网络结构,以实现最大的性能和容量。
例如,如何在一个电信网络中设计最佳的数据传输路由。
5. 风险管理问题:如何评估和管理风险,以保护资产和最小化损失。
这包括投资组合优化、保险精算等问题。
6. 环境优化问题:如何最小化对环境的影响,同时最大化资源保护和可持续发展。
例如,如何设计最优的城市公共交通系统,以减少交通拥堵和空气污染。
以上只是一些研究生数学建模优化问题的例子,实际上,优化问题几乎可以应用于任何领域。
研究生在解决这些问题时,通常需要使用数学模型和优化算法,以寻找最优的解决方案。
数学建模中的优化与控制问题
特点:线性系统 控制具有简单、 易于分析和设计 的优点,适用于 一些较为简单的
系统。
应用场景:在工程、 经济、生物等领域 中,对于一些可以 近似为线性系统的 对象,可以采用线 性系统控制方法进
行优化和控制。
局限性:线性系统 控制对于非线性系 统的描述和控制效 果有限,对于一些 复杂的系统可能需 要采用更为复杂的
特点:整数规划 问题在求解过程 中具有较高的难 度,因为整数约 束使得可行解的 范围大大缩小。
应用领域:整 数规划广泛应 用于组合优化、 生产计划、物 流运输等领域。
求解方法:常 见的整数规划 求解方法包括 穷举法、割平 面法、分支定
界法等。
数学建模中的控制 问题
定义:线性系统控 制是数学建模中的 一种重要方法,通 过建立线性方程组 来描述系统的动态 行为,并采用控制 策略对系统进行调
应用领域:生产计划、物流、金融等
求解方法:单纯形法、分解法等
定义:在数学建模中,非线性规划是寻 找一组变量的最优解,使得某个目标函 数达到最小或最大值,同时满足一系列 约束条件。
应用领域:包括但不限于金融、经济、工 程和科学计算等领域。
特点:目标函数或约束条件至少有一个是 非线性的。
求解方法:常见的求解非线性规划的方法 包括梯度下降法、牛顿法、拟牛顿法等。
案例背景:交通信号灯在城市交通中起着至关重要的作用,如何实现高效、合理的控制 是关键问题。
建模过程:通过建立数学模型,对交通信号灯的配时进行优化,提高道路通行效率。
控制策略:采用智能控制算法,如模糊控制、神经网络等,实现自适应调节。
案例结论:通过实际应用,证明优化后的交通信号灯控制能够有效提高道路通行效率, 减少拥堵。
数学建模中的优化与 控制问题
课程表安排的优化模型
课程表安排的优化模型一类课表安排的优化模型xxx(XXX大学理学院应数班贵阳550025)摘要:本文采用逐级优化、0-1规划的方法,考虑多重约束条件,引入了偏好系数,建立了一个良好的排课模型,并根据题目给的数据,通过MATLA B编程,进行模型验证,求出了所需课表。
且在方案合理性分析中用计算机模拟的方法分析了偏好系数的变化、教室的种类对排课结果的影响。
最后给出了教师、教室的最优配置方案。
关键词:逐级优化;0-1规划;多重约束条件;排课模型1.问题提出用数学建模的方法安排我们峨眉校区合理的课表,做到让老师的教学效率达到最好和学生最有效率地学习,同时做到老师和学生的双向满意。
为了提高老师满意度,就是要让每位家住贵阳和花溪的老师在一周内前往上课的天数尽可能少(家住民院的老师前往学院的次数尽可能少),同时还要使每位老师在学校逗留的时间尽可能少(家住贵阳和花溪的老师每天最多往返学校一次),比如安排尽量少出现像同一天同一位老师上1-2节,7-8节;让同学们满意,可从以下几方面考虑,比如,同一班级同一门课程,至少应隔一天上一次,另外对学生感到比较难学的课程尽量安排在最好的时段。
用数学建模的方法解决以下问题:1) 建立排课表的一般数学模型;2) 利用你的模型对本学期我院课表进行重排,并与现有的课表进行比较; 3) 给出评价指标评价你的模型,特别要指出你的模型的优点与不足之处;4) 对学院教务处排课表问题给出你的建议。
2.问题分析在学校的教务管理工作中,课程表的编排是一项十分复杂、棘手的工作。
排课需要考虑时间、课程、教学区域、教室、院系、班级、教师等等因素。
经优化的排课,可以在任意一段时间内,教师不冲突,授课不冲突,授课的班级不冲突,教室占用不冲突,且综合衡量全校课表在宏观上是合理的。
如何利用有限的师资力量和有限教学资源,排出一个合理的课程安排结果,对稳定教学秩序、提高教学质量有着积极的意义。
某高校现有课程50门,编号为5001~c c ;教师共有48名,编号为4801~t t ;教室28间,编号为2601~r r 。
《数学建模-优化》课件
数学建模广泛应用于自然科学、工程技术、社会科学等多个领域,帮助解决各种实际问题, 优化决策和提高效率。
数学建模的意义
数学建模能够培养学生的综合思考和问题解决能力,提高数学知识的实际运用能力。
优化问题概述
1 什么是优化问题?
优化问题是在满足特定 约束条件下,寻找使目 标函数达到最优或最大 值的解。
4
数值优化问题可以采用模拟退火、爬 山算法和遗传算法等方法来寻找最优
解。
单目标优化问题
单目标优化问题包括最小二乘法、线 性规划、非线性规划和动态规划等方 法。
非线性规划问题
非线性规划问题可以使用一阶可导方 法、二阶可导方法和非平滑优化方法 进行求解。
优化工具使用
MATLAB
MATLAB是一种功能强大的数值计算和数据可 视化软件,经常用于数学建模和优化问题的求 解。
数学建模和优化在社会管理领 域起到重要作用,可以帮助解 决各种社会问题和提高社会管 理效率。
Python
Python是一种流行的编程语言,拥有丰富的数 值计算、优化和数据分析库,适用于数学建模 和优化问题的处理。
应用案例
工业应用
数学建模和优化在工业生产中 有广泛的应用,可以帮助优化 生产流程、减少资源消耗和提 高产品质量。
经济决策
社会管理
数学建模和优化被广泛应用于 经济领域,帮助制定经济决策、 优化资源配置和提高经济效益。
《数学建模-优化》PPT 课件
数学建模-优化课程介绍了数学建模的概念、优化问题的概述以及各种优化方 法的分类和应用。通过本课程,您将深入了解数学建模和优化的重要性。
数学建模简介
数学建模的定义
数学建模是利用数学方法解决实际问题的过程。它将现实问题抽象为数学模型,并通过数 学求解方法得到问题的解决方案。
数学建模优化类问题例子
数学建模优化类问题例子
1.最佳生产计划:有一家汽车零部件制造公司,需要决定该如何安排生产计划以最大化利润。
该公司需要考虑每个零部件的生产成本、供应链的延迟和运输成本等因素,以确定最佳的生产数量和交付时间。
2.最优投资组合:一位投资者有一定资金,希望通过合理的资产配置来最大化投资回报。
该投资者需要考虑不同资产类别的风险和回报率,并使用数学建模优化方法来确定最佳的资产配置比例。
3.旅行销售员问题:一位旅行销售员需要在多个城市之间进行访问,并希望以最小的总行驶距离完成所有访问任务。
通过使用数学建模和优化算法,销售员可以确定最佳的访问顺序,从而减少总行驶距离和时间。
4.最佳路径规划:在一个迷宫中,有一只小老鼠需要找到从起点到终点的最短路径。
通过将迷宫与数学模型相关联,可以使用图论和最短路径算法来确定小老鼠应该采取的最佳行动策略。
以上只是一些例子中的几个,实际上数学建模和优化方法可以应用于各种不同的问题领域,包括金融、物流、能源管理、医疗决策等。
通过数学建模和优化,可以帮助人们做出更明智的决策,提高效率和效果。
课表编排问题 数学建模
魅力数模美丽力建力建学院第六届数学建模竞赛自信坚强团结创新论文题目课表编排0-1规划模型参赛编号 2008tj0804 监制:力建学院团委数学建模协会(2010年11月)力建学院第六届数学建模竞赛承诺书我们仔细阅读了第六届建工数学建模竟赛的竞赛规则。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与本队以外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们愿意承担由此引起的一切后果。
我们的参赛编号为:2008tj0804参赛队员(签名) :队员1:叶庆队员2:靳小龙队员3:胡传鹏课表编排问题第一部分摘要:本文根据制定课表时需考虑的问题,建立了冲突最少的0-1规划模型;求解得课表,并根据所得结果对教师聘用,教室的配置,来做出合理的建议。
考虑目标函数时,分析课表编排要符合的条件为:课程要求、教师课程编排尽量分散、同课程编排尽量分散、教师超出工作量尽量少。
则我们目标函数冲突最少分解为:各门课程各自不符合程度总和最少、各教师各自课程编排分散程度总和最大、各门课程编排分散程度总和最大、各教师超出工作量程度总和最少。
考虑约束条件时,分析附录中的相关数据,得到课程编排的影响因素有,时间,教室,课程等,则可以根据此来约束目标函数。
根据以上考虑因素建立系统递阶图,使目标更清晰。
建立空间向量,已知数据与空间向量一一对应。
根据课程要求与实际编排差距最少原理,建立目标函数。
加上课表编的约束条件,进行优化,用Matlab求解课表.再根据求解得课表与相关系数指标为教师聘用,教室的配置,来做出合理建议.关键词:课表编排系统递阶图空间向量第二部分一、问题重述某高校现有课程40门,编号为C01~C40;教师共有25名,编号为T01~T25;教室18间,编号为R01~R18。
最优化问题的数学建模步骤
最优化问题的数学建模步骤
最优化问题的数学建模步骤可以分为以下几个步骤:
1. 指定目标函数:首先需要明确最优化问题的目标函数,即要优化的量。
这个函数通常是与实际问题相关的一些指标,例如成本、收益、效率等等。
2. 确定决策变量:在确定目标函数后,需要确定决策变量,即可以控制或调整的参数或变量。
这些变量的取值可以影响目标函数的值,因此需要选择最优的取值。
3. 建立约束条件:除了目标函数和决策变量外,还需要考虑一些约束条件。
这些约束条件通常是实际问题的限制条件,例如资源限制、技术限制、法规限制等等。
4. 建立数学模型:将目标函数、决策变量和约束条件用数学语言表达出来,建立数学模型。
这个模型通常是一个优化问题的数学表示形式,可以使用线性规划、非线性规划、整数规划等方法进行求解。
5. 求解最优解:根据建立的数学模型,使用相应的优化方法求解最优解。
这个最优解是指在满足约束条件的前提下,使目标函数取得最大值或最小值的决策变量取值。
6. 验证和分析:最后需要对求解结果进行验证和分析,看看是否符合实际需求,是否满足实际约束条件等等。
如果结果不满足要求,需要重新调整模型或重新选择优化方法进行求解。
以上是最优化问题的数学建模步骤,通过这些步骤可以将实际问题转化为数学问题,并使用数学方法进行求解,得到最优的决策方案。
数学建模中的优化问题
奥运会临时超市网点设计
23
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
22
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
20
奥运会临时超市网点设计
(找关键性语句)
2008 年北京奥运会的建设工作已经进入全面设计 和实施阶段。奥运会期间,在比赛主场馆的周边 地区需要建设由小型商亭构建的临时商业网点, 称为迷你超市( Mini Supermarket, 以下记做 MS ) 网,以满足观众、游客、工作人员等在奥运会期 间的购物需求,主要经营食品、奥运纪念品、旅 游用品、文体用品和小日用品等。在比赛主场馆 周边地区设置的这种 MS ,在地点、大小类型和总 量方面有三个基本要求:满足奥运会期间的购物 需求、分布基本均衡和商业上赢利。
数学建模与优化问题求解的实际案例
数学建模与优化问题求解的实际案例数学建模是一门应用数学的学科,通过建立数学模型来描述和解决实际问题。
在现实生活中,我们经常会遇到各种各样的问题,而数学建模可以帮助我们理清问题的本质,并提供一种科学的方法来解决问题。
优化问题是数学建模中的一个重要方向,它旨在找到最优解或最佳解决方案。
下面,我将通过一个实际案例来说明数学建模与优化问题求解的过程和方法。
假设我们是一家物流公司的经理,负责管理货物的配送。
我们面临的问题是如何合理安排货车的配送路线,以最小化总运输成本。
为了解决这个问题,我们可以采用数学建模的方法。
首先,我们需要收集一些相关的数据。
比如,我们需要知道货车的数量、容量和行驶速度,以及各个货物的重量、体积和目的地等信息。
然后,我们可以将这些数据转化为数学模型。
在这个案例中,我们可以将货车的配送路线看作是一个旅行商问题(Traveling Salesman Problem,TSP)。
TSP是一个经典的优化问题,它要求在给定一组城市和每对城市之间的距离时,找到一条最短路径,使得每个城市都被访问一次且仅访问一次,最后回到出发城市。
在我们的问题中,每个目的地可以看作是一个城市,而货车的行驶路线就是旅行商要访问的路径。
接下来,我们可以使用数学方法来求解这个问题。
常用的方法包括贪婪算法、动态规划和遗传算法等。
在这个案例中,我们可以使用贪婪算法来解决TSP。
贪婪算法的基本思想是每次选择最优的下一步,直到达到目标。
具体来说,我们可以从起始点开始,每次选择离当前位置最近的未访问目的地作为下一个访问点,直到所有目的地都被访问过为止。
然而,贪婪算法并不一定能够得到最优解。
为了进一步优化结果,我们可以引入一些启发式规则或调整算法的参数。
比如,我们可以考虑货物的优先级,优先配送重要的货物或紧急的货物。
另外,我们还可以限制货车的行驶时间或距离,以避免超出预算或满足客户的要求。
除了TSP,数学建模还可以应用于其他优化问题,比如线性规划、整数规划和非线性规划等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年数学建模竞赛参赛队员题目 A题:课程安排优化问题关键词排课问题,优化矩阵,有效矩阵摘要每学期的开学初,总有许多老师对阳光校区的课程安排很有意见,本文选取武汉纺织大学机械设计系的师生情况、课程、教室间数为研究对象,以课程与上课时间之间的关系矩阵为目标矩阵,通过用各影响矩阵优化目标矩阵的方法,对机械设计系的课表进行了重排。
在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。
运用我们建立的数学模型,对武汉纺织大学机械设计系的课表进行重排,将所得新课表与现有的课表进行比较,显然新排的课表更加合理化、人性化。
根据新课表中每节课对应的相关因素(课程名称、教室、老师、班级)进行分析整合,可衍生出新的安排表(如通过对不同时间段上课老师人数的研究安排校车的接送)。
我们以学校、教师和学生对所排课表满意度作为衡量标准,以···大学机械设计系的课表为例,可得学校、教师和学生对我们所排课表的满意度主因素分别为校车接送次数、在阳光校区逗留时间、专业课排在早上,可见对本模型使三方的满意度基本均衡且都超过80%,即做到了三者兼顾的满意最大化。
最后,根据我们建立的模型,分析了模型的优缺点。
一、问题重述我校现有三个校区,有在校学生近25000人,其中阳光校区在校学生人数最多。
阳光校区现有四栋教学楼,分别是3号、6号、7号和8号楼,四栋教学楼之间有较大的距离,如从3号楼到8号楼步行需要约10分钟。
我校的学生作息时间安排中,一天共有13节课,划分为5个时间段,分别是1-2节、3-5节、6-8节、9-10节、11-13节。
按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。
同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。
每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。
每学期我校的课程表排出并开始运行后都会受到师生的抱怨。
有学生说自己的课程分布不均衡,某天要上10节课,而某天又一节课都没有;有的学生抱怨一天中要在不同的教学楼之间反复奔波;有的教师抱怨自己的课程安排太分散,从南湖跑到阳光路上要花近两个小时,却只上两节课,这样太浪费时间。
由此可见,我校的课程安排尚存在一些不太合理的地方,有进一步优化的必要。
针对这一问题,请完成以下任务:一.了解我校师生对课程安排的需求;二.了解我校课程安排的相关规定;三.收集与课程安排相关的数据;四.建立我校课程安排的优化模型,分析模型的优缺点。
二、问题分析首先,解决班级、课程与教师之间的多对多关系,例如当出现多个班级上同一门课而该由多个教师任教时,课程是否合上,由哪几个班级合上、哪位教师任教的问题。
解决上应满足可手动调整的要求。
然后,取出全部班级,求出班级所上课程的优先级总和,按优先级高低排定班级顺序,按此顺序且遵照排课规则为每一个班级的每一门课程安排上课时间与地点。
首先,要进行预排课处理。
预排课处理的目的是要解决两个基本问题: 1) 班级与课程之间的多对多关系,即合班上课的问题; 2) 课程与教师之间的多对多关系,即为每门课程安排任课教师。
在预排课处理完成后,以班级作为外部大循环、以课程作为内部小循环进行正式的排课处理,即先取一个班级,为该班级所上课程按优先级由高到低排定顺序,再按优先级由高到低取一门课程,为该课程安排时间与场地,依此类推,直到全部班级的全部课程排完。
排课处理的目的是要解决两个基本问题: 1) 课程与时间、场地之间的一对一关系; 2) 班级与时间、场地之间的一对一关系; 3) 教师与时间、场地之间的一对一关系。
三、模型假设1、假设每周以5天位单位编排,每天最多只能编排4节课(一节课为两小节或三小节),同类课程尽可能不安排在同一时间。
2、假设晚上不上课,学生自习。
3、假设安排的教室和上课的时间都是不能改变的。
4、假设一门课程在一周内的安排,尽量分散开。
5、假设每门课程只由一位教师上完,每位教师可以上两门课程。
6、假设一周多学时的课程尽量安排在同一间教室。
7、假设课表内容由上课时间、教师、教室、课程组成。
四、符号说明符号说明h:表示班级数;l:表示教室数;x:表示单用教室;y :表示公用教室;m :表示课堂数; a :表示专业课门数;b :表示公共课门数;c :表示选修课门数; n :表示有代课老师数;p :专业课老师数;q :公共课老师数;r :选修课老师数;iG :表示课堂序号,1,,i m =L ;uv J :表示上课时间序号,1,,;1,,20u h v ==L L ;k T :表示老师序号; iW :教室序号;A : 表示老师和课堂之间的关系矩阵;B :表示课堂和上课时间之间的关系矩阵;C :表示老师和上课时间之间的关系矩阵;D :表示上课时间和教室之间的关系矩阵;E :表示老师和教室之间的关系矩阵;1p :学校满意度 2p :老师满意度 3p :学生满意度五、模型的建立与求解问题一:学生希望自己的课程分布更均衡些,而且不希望一天中要在不同的教学楼之间反复奔波;教师希望自己的课程安排集中点,从南湖跑到阳光路上要花近两个小时,尽量多上几节课,提高教学效率。
问题二:我校课程安排的相关规定:按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。
同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。
每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。
问题三:假设我校机械专业有h 个班,n 位代课老师,每个班每周m 堂课(一堂课为两小节),l间教室。
1.建立老师与课程之间的有效矩阵A1.1将一周内的所有课按专业课(a 门),公共课(b 门),选修课(c 门)依次排序,记为i G (1,1,2,21,3,31,3,31,32,i a a a a a a a b a b a b =+++++++L L L L L321,,32a b a b c ++++L )其中32m a b c =++,则1,,i m =L .依此顺序对h 个班的课进行排序可得此专业课堂序号为i G ,1,,,1,,2,,i m m m hm =+L L L ,1.2将n 位代课老师按专业课(p 位),公共课(q 位)选修课(r 位)依次排序,记为k T (1,,,1,,,,1,,k p p p q p q p q r =++++++L L L L ),其中p q r n ++=,则1k n =L , 1.3以老师序号k T 为行,以课堂序号i G 为列,做老师与课堂之间的关系矩阵,1,,;1,,n hm kiA a k n i hm ⨯⎛⎫⎪=== ⎪⎪⎝⎭L L .其中1k 0k i ik a ⎧=⎨⎩老师上i 课老师不上课则所得的矩阵n hmkiA a ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭为老师与课堂之间的有效矩阵。
2.建立课程与时间之间的有效矩阵B2.1给一周内的所有上课时间赋值 (表一)通过上表可得课时向量(1,2,,20)v =L ,依此可得h 个班的课时向量排序为(1,,20,21,,40,,20(1)1,,20)uv J h h =-+L L L L .(1,,;1,,20)u h v ==L L2.2以课堂序号i G 为行,以课时序号uv J 为列,做课堂与上课时间之间的关系矩阵20,1,,;1,,20hm h ijB b i hm j h ⨯⎛⎫⎪=== ⎪⎪⎝⎭L L .其中10i ij j b j ⎧=⎨⎩时间上i 课时间不上课2.3以满足学生要求尽量把课程安排在每天你的最优时段列目标函数:min ij b J 再以下列要求作约束条件;(1) 一个班在一个时间对应一堂课,则有:2011hij j b ==∑(2) 本专业仅有l 个教室,则有:2011hm hij i j b hl ==≤∑∑(3) 每班所有的20堂课必须在20个课时内上完,则有:20220201111(1)11,,,m hmhhm hijijiji j i m j i h m j bm bm bm ===+==-+====∑∑∑∑∑∑L(4) 专业课放在最优时间,则有:(1)1030201011121(1)120(1)1,,,h m a a m a h ijijij i J i m J i h m J h b J J b J J b J J-++-===+==-+=-+≤≤≤∑∑∑∑∑∑L依此建立一个优化类的数学模型,可得课堂与上课时间之间的效矩阵20hm hijB b ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭。
3,老师与时间之间的有效矩阵从1中老师与课程间的有效矩阵n hm A ⨯中任选一个,从2中课程与上课时间之间的有效矩阵20hm h B ⨯任选一个,两矩阵做乘积可得;2020n h n hm hm h C A B ⨯⨯⨯=⨯,显然20n h C ⨯表示老师与课程和时间之间的关系矩阵。
若所得矩阵201,,;1,,20n hkjC c k n j h ⨯⎛⎫ ⎪=== ⎪ ⎪⎝⎭L L , 其中12hm k 0k kj j c j ⎧=⎨⎩L ,老师在时间上课满意指数老师在时间不上课,满足:1)老师逗留是假尽可能的少即:201{21,23,25,27,29,31,,39,,20(1)1,20(1)3,,20(1)9}hkj j c j h h h ==-+-+-+∑L L L ;2)所有非0的ij c 为相同的常数。
则以此矩阵为修正矩阵对B 矩阵中相关元素作修改,根据B 矩阵排出课表,此时课表中每一项中包括科目、代课老师。
4.建立上课时间与教室的有效矩阵D已知l 间教室中有单用教室(x 间),公用教室(y 间)对教室按由小到大依次排序,即为i W (1,1,i x x x y =++L L )其中l x y =+,则1,,i l =L .以课时序号uv J 为行,以教室i W 为列,做上课时间与教室之间的关系矩阵201,,20;1,,h l ijD d i h j l ⨯⎛⎫⎪=== ⎪⎪⎝⎭L L ,其中10ij i d i ⎧=⎨⎩时间在j 教室上课时间不在j 教室上课,(1) 小教室上专业课,则:103020101121120(1)113,3,,3x x h xij ij iji j i j h j d a d a da -====-+=≥≥≥∑∑∑∑∑∑L(2) 大教室上非专业课,一次两个班,则:2011(3)2hliji j x h m a d==+-=∑∑ 5.从3中所得老师与时间的有效矩阵20n h kjC c ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭中任取一个,从4中所得的关系矩阵20h lijD d ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭中任取一个,两个矩阵做乘积可得:2020n l n h h l E C D ⨯⨯⨯=⨯,显然n l E ⨯表示老师和教室之间的关系矩阵。