Discrete Riemann Surfaces
The asymptotic Tian-Yau-Zelditch expansion on Riemann surfaces
Si (x0 )
2 hm
∼ m(1 −
1 )+O 4m
1 mp
for any p > 0. In the current paper, we obtain a more precise result for (1.3) with a rotationally symmetric metric that has constant Gaussian curvature −1. Theorem 1.1. Let M be a Riemann surface of genus greater than 2 and KM be the canonical line bundle endowed with a Hermitian metric h such that the curvature Ric(h) of h defines a K¨ ahler metric g on M . Suppose that this metric g has constant Gaussian curvature −1 and is rotationally symmetric. Then there is a complete asymptotic expansion:
Gik Gkj .
d −1
m Let (Hij ) be the inverse of (Gij ). Then { j =0 Hij Sj } forms an orthonormal basis 0 m of H (M, L ). The left hand side of (1.2) becomes
Our result indicates that the asymptotic expansion (1.3) is in exponential decay. 2. General set up Let (M, g ) be an n-dimensional complex K¨ ahler manifold with a polarized line bundle (L, h) → M . Choose the K -coordinates (z1 , · · · , zn ) on an open neighborhood U of a fixed point x0 ∈ M . Then the K¨ ahler form √ n −1 ωg = gαβ ¯β ¯ dzα ∧ dz 2π
Contents PREFACE to The Mathematica GuideBooks
@ @ Exercises
Computing Wishes and Proposals † Computer Algebra Systems
@ @ Solutions
100 Proposals for Problems to Tackle † Sources of Interesting and Challenging Problems † ISSAC Challenge Problems † 100$–100-Digit Challenge
@ @ References
CHAPTER
2
Structure of Mathematica Expressions
2.0 Remarks 2.1 Expressions
Everything Is an Expression † Hierarchical Structure of Symbolic Expressions † Formatting Possibilities † Traditional Mathematics Notation versus Computer Mathematics Notation † Typeset Forms † Heads and Arguments † Symbols † Nested Heads † Input Form and the Formatting of Programs
Contents
PREFACE
to The Mathematica GuideBooks
CHAPTER 0
Introduction and Orientation
0.1 Overview 0.1.1 Content Summaries 0.1.2 Relation of the Four Volumes 0.1.3 Chapter Structure 0.1.4 Code Presentation Style 0.2 Requirements 0.2.1 Hardware and Software 0.2.2 Reader Prerequisites 0.3 What the GuideBooks Are and What They Are Not 0.3.1 Doing Computer Mathematics 0.3.2 Programming Paradigms 0.4 Exercises and Solutions 0.4.1 Exercises 0.4.2 Solutions 0.5 The Books Versus the Electronic Components 0.5.1 Working with the Notebook 0.5.2 Reproducibility of the Results 0.5.3 Earlier Versions of the Notebooks 0.6 Style and Design Elements 0.6.1 Text and Code Formatting 0.6.2 References 0.6.3 Variable Scoping, Input Numbering, and Warning Messages 0.6.4 Graphics 0.6.5 Notations and Symbols 0.6.6 Units 0.6.7 Cover Graphics
GTM研究生参考书
GTM(Graduate Texts of Mathematics)丛书目录1 Introduction to Axiomatic Set Theory, Gaisi Takeuti, W. M. Zaring2 Measure and Category, John C. Oxtoby (1997, ISBN 978-0-387-90508-2)3 Topological Vector Spaces, . Schaefer, . Wolff (1999, ISBN 978-0-387-98726-2)4 A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, ISBN 978-0-387-94823-2)5 Categories for the Working Mathematician, Saunders Mac Lane (1998, ISBN 978-0-387-98403-2)6 Projective Planes, Hughes, Piper7 A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7)8 Axiomatic Set Theory, Gaisi Takeuti, Zaring9 Introduction to Lie Algebras and Representation Theory, James E. Humphreys (1997, ISBN 978-0-387-90053-7)10 A Course in Simple-Homotopy Theory, M. M. Cohen11 Functions of One Complex Variable I, John B. Conway (1995, ISBN 978-0-387-90328-6)12 Advanced Mathematical Analysis, R. Beals (1973, ISBN 978-0-387-90065-0)13 Rings and Categories of Modules, Frank W. Anderson, Kent R. Fuller (1992, ISBN978-0-387-97845-1)14 Stable Mappings and Their Singularities, Golubitsky, Guillemin15 Lectures in Functional Analysis and Operator Theory, S. K. Berberian16 The Structure of Fields, D. Winter17 Random Processes, M. Rosenblatt18 Measure Theory, Paul R. Halmos (1974, ISBN 978-0-387-90088-9)19 A Hilbert Space Problem Book, Paul R. Halmos (1982, ISBN 978-0-387-90685-0)20 Fibre Bundles, Dale Husemoller (1994, ISBN 978-0-387-94087-8)21 Linear Algebraic Groups, James E. Humphreys (1998, ISBN 978-0-387-90108-4)22 An Algebraic Introduction to Mathematical Logic, Barnes, Mack23 Linear Algebra, Werner H. Greub (1981, ISBN 978-0-387-90110-7)24 Geometric Functional Analysis and Its Applications, Holmes25 Real and Abstract Analysis, Edwin Hewitt, Karl Stromberg (1975, ISBN 978-0-387-90138-1)26 Algebraic Theories, Manes27 General Topology, John L. Kelley (1975, ISBN 978-0-387-90125-1)28 Commutative Algebra I, Oscar Zariski, Pierre Samuel, Cohen (1975, ISBN 978-0-387-90089-6)29 Commutative Algebra II, Oscar Zariski, Pierre Samuel30 Lectures in Abstract Algebra I, Nathan Jacobson31 Lectures in Abstract Algebra II, Nathan Jacobson32 Lectures in Abstract Algebra III, Nathan Jacobson33 Differential Topology, Morris W. Hirsch34 Principles of Random Walk, Frank Spitzer35 Several Complex Variables and Banach Algebras, Herbert Alexander, John Wermer36 Linear Topological Spaces, John L. Kelley, Isaac Namioka37 Mathematical Logic, J. Donald Monk38 Several Complex Variables, Grauert, Fritzsche39 An Invitation to C * -Algebras, William Arveson40 Denumerable Markov Chains, John George Kemeny, Snell, Knapp et al.41 Modular Functions and Dirichlet Series in Number Theory, Tom M. Apostol42 Linear Representations of Finite Groups, Jean-Pierre Serre, Scott43 Rings of Continuous Functions, Gillman, Jerison44 Elementary Algebraic Geometry, K. Kendig45 Probability Theory I, M. Loève46 Probability Theory II, M. Loève47 Geometric Topology in Dimensions 2 and 3, Edwin E. Moise48 General Relativity for Mathematicians, . Sachs, H. Wu49 Linear Geometry, . Gruenberg, . Weir50 Fermat's Last Theorem, Harold M. Edwards51 A Course in Differential Geometry, Klingenberg52 Algebraic Geometry, Robin Hartshorne53 A Course in Mathematical Logic, Yu. I. Manin54 Combinatorics with Emphasis on the Theory of Graphs, Graver, Watkins55 Introduction to Operator Theory I, Brown, Pearcy56 Algebraic Topology: An Introduction, William S. Massey57 Introduction to Knot Theory, Richard H. Crowell, Ralph H. Fox (1977, ISBN 978-0-387-90272-2)58 P-adic Numbers, p-adic Analysis, and Zeta-Functions, Neal Koblitz59 Cyclotomic Fields, Serge Lang60 Mathematical Methods of Classical Mechanics, V. I. Arnold61 Elements of Homotopy Theory, George W. Whitehead62 Fundamentals of the Theory of Groups, Kargapolov, Merzljakov, Burns63 Graph Theory, Béla Bollobás64 Fourier Series I, Edwards65 Differential Analysis on Complex Manifolds, . Wells Jr.66 Introduction to Affine Group Schemes, . Waterhouse67 Local Fields, Jean-Pierre Serre, Greenberg68 Linear Operators on Hilbert Spaces, Weidmann, Szuecs69 Cyclotomic Fields II, Serge Lang70 Singular Homology Theory, William S. Massey71 Riemann Surfaces, Herschel Farkas, Irwin Kra72 Classical Topology and Combinatorial Group Theory, John Stillwell73 Algebra, Thomas W. Hungerford74 Multiplicative Number Theory, Harold Davenport, Hugh Montgomery75 Basic Theory of Algebraic Groups and Lie Algebras, G. P. Hochschild76 Algebraic Geometry, Iitaka77 Lectures on the Theory of Algebraic Numbers, Hecke, Brauer, Goldman et al.78 A Course in Universal Algebra, Burris, Sankappanavar (Online [1])79 An Introduction to Ergodic Theory, Peter Walters80 A Course in the Theory of Groups, Derek . Robinson81 Lectures on Riemann Surfaces, Forster, Gilligan82 Differential Forms in Algebraic Topology, Raoul Bott, Loring Tu83 Introduction to Cyclotomic Fields, Lawrence C. Washington84 A Classical Introduction to Modern Number Theory, Ireland, Rosen (1995, ISBN 0-387-97329-X)85 Fourier Series A Modern Introduction, R. E. Edwards86 Introduction to Coding Theory, . van Lint (3rd ed 1998, ISBN 3-540-64133-5)87 Cohomology of Groups, Kenneth S. Brown88 Associative Algebras, . Pierce89 Introduction to Algebraic and Abelian Functions, Serge Lang90 An Introduction to Convex Polytopes, Arne Brondsted91 The Geometry of Discrete Groups, Alan F. Beardon92 Sequences and Series in Banach Spaces, J. Diestel93 Modern Geometry - Methods and Applications I, Dubrovin, Fomenko, Novikov et al.94 Foundations of Differentiable Manifolds and Lie Groups, Frank W. Warner95 Probability, Shiryaev, Boas96 A Course in Functional Analysis, John B. Conway97 Introduction to Elliptic Curves and Modular Forms, Neal Koblitz98 Representations of Compact Lie Groups, Broecker, Dieck99 Finite Reflection Groups, Grove, Benson100 Harmonic Analysis on Semigroups, Berg, Christensen, Ressel101 Galois Theory, Harold M. Edwards102 Lie Groups, Lie Algebras, and Their Representations, V. S. Varadarajan103 Complex Analysis, Serge Lang104 Modern Geometry - Methods and Applications II, Dubrovin, Fomenko, Novikov et al.105 SL2®, Serge Lang106 The Arithmetic of Elliptic Curves, Joseph H. Silverman107 Applications of Lie Groups to Differential Equations, Peter J. Olver108 Holomorphic Functions and Integral Representations in Several Complex Variables, R. Michael Range109 Univalent Functions and Teichmüller Spaces, O. Lehto110 Algebraic Number Theory, Serge Lang111 Elliptic Curves, Dale Husemöller112 Elliptic Functions, Serge Lang113 Brownian Motion and Stochastic Calculus, Ioannis Karatzas, Steven Shreve114 A Course in Number Theory and Cryptography, Neal Koblitz115 Differential Geometry, Berger, Gostiaux, Levy116 Measure and Integral, John L. Kelley, Srinivasan117 Algebraic Groups and Class Fields, Jean-Pierre Serre118 Analysis Now, Gert K. Pedersen119 An Introduction to Algebraic Topology, Joseph J. Rotman120 Weakly Differentiable Functions, William P. Ziemer121 Cyclotomic Fields I-II, Serge Lang, Karl Rubin122 Theory of Complex Functions, Remmert, Burckel123 Numbers, Lamotke, Ewing, Ebbinghaus et al.124 Modern Geometry - Methods and Applications III, B. A. Dubrovin, Anatoly Timofeevich Fomenko, Sergei Petrovich Novikov et al. (1990, ISBN 978-0-387-97271-8)125 Complex Variables, Berenstein, Gay126 Linear Algebraic Groups, Armand Borel127 A Basic Course in Algebraic Topology, William S. Massey128 Partial Differential Equations, Jeffrey Rauch129 Representation Theory, William Fulton, Joe Harris130 Tensor Geometry, Dodson, T. Poston131 A First Course in Noncommutative Rings, . Lam132 Iteration of Rational Functions, Alan F. Beardon133 Algebraic Geometry, Joe Harris134 Coding and Information Theory, Steven Roman135 Advanced Linear Algebra, Steven Roman136 Algebra, Adkins, Weintraub137 Harmonic Function Theory, Axler, Bourdon, Ramey138 A Course in Computational Algebraic Number Theory, Henri Cohen (1996, ISBN 0-387-55640-0) 139 Topology and Geometry, Glen E. Bredon140 Optima and Equilibria, Jean-Pierre Aubin141 Gröbn er Bases, Becker, Weispfenning, Kredel142 Real and Functional Analysis, Serge Lang, (1993, ISBN 14)143 Measure Theory, . Doob144 Noncommutative Algebra, Farb, Dennis145 Homology Theory, James W. Vick146 Computability, Douglas S. Bridges147 Algebraic K-Theory and Its Applications, Jonathan Rosenberg148 An Introduction to the Theory of Groups, Joseph J. Rotman149 Foundations of Hyperbolic Manifolds, John G. Ratcliffe150 Commutative Algebra with a View Toward Algebraic Geometry, David Eisenbud 151 Advanced Topics in the Arithmetic of Elliptic Curves, Joseph H. Silverman 152 Lectures on Polytopes, Günter M. Ziegler153 Algebraic Topology, William Fulton154 An Introduction to Analysis, Brown, Pearcy155 Quantum Groups, Christian Kassel156 Classical Descriptive Set Theory, Alexander S. Kechris157 Integration and Probability, Malliavin, Airault, Kay et al.158 Field Theory, Steven Roman159 Functions of One Complex Variable II, John B. Conway160 Differential and Riemannian Manifolds, Serge Lang161 Polynomials and Polynomial Inequalities, Borwein, Erdelyi162 Groups and Representations, Alperin, Bell163 Permutation Groups, Dixon, Mortimer164 Additive Number Theory I, Melvyn B. Nathanson165 Additive Number Theory II, Melvyn B. Nathanson166 Differential Geometry, . Sharpe, Shiing-Shen Chern167 Field and Galois Theory, Patrick Morandi168 Combinatorial Convexity and Algebraic Geometry, Guenter Ewald169 Matrix Analysis, Rajendra Bhatia170 Sheaf Theory, Glen E. Bredon171 Riemannian Geometry, Peter Petersen172 Classical Topics in Complex Function Theory, Remmert, Kay173 Graph Theory, Reinhard Diestel174 Foundations of Real and Abstract Analysis, Douglas S. Bridges175 An Introduction to Knot Theory, W. B. Raymond Lickorish176 Riemannian Manifolds, John M. Lee177 Analytic Number Theory , Donald J. Newman178 Nonsmooth Analysis and Control Theory, Clarke, Ledyaev, Stern et. al179 Banach Algebra Techniques in Operator Theory, Ronald G. Douglas180 A Course on Borel Sets, . Srivastava181 Numerical Analysis, Rainer Kress182 Ordinary Differential Equations, Walter, Thompson183 An Introduction to Banach Space Theory, Robert E. Megginson184 Modern Graph Theory, Béla Bollobás185 Using Algebraic Geometry, Cox, Little, O Shea186 Fourier Analysis on Number Fields, Ramakrishnan, Valenza187 Moduli of Curves, Harris, Morrison188 Lectures on the Hyperreals, Robert Goldblatt189 Lectures on Modules and Rings, Tsit-Yuen Lam190 Problems in Algebraic Number Theory, Esmonde, Murty191 Fundamentals of Differential Geometry, Serge Lang192 Elements of Functional Analysis Hirsch, Lacombe, Levy193 Advanced Topics in Computational Number Theory, Henri Cohen (2000, ISBN 0-387-98727-4) 194 One-Parameter Semigroups for Linear Evolution Equations, Engel, Nagel195 Elementary Methods in Number Theory, Melvyn B. Nathanson196 Basic Homological Algebra, M. Scott Osborne197 The Geometry of Schemes, Eisenbud, Harris198 A Course in p-adic Analysis, Alain Robert199 Theory of Bergman Spaces, Hedenmalm, Korenblum, Zhu200 An Introduction to Riemann-Finsler Geometry, David Bao, Shiing-Shen Chern, Zhongmin Shen 201 Diophantine Geometry, Hindry, Joseph H. Silverman (2000, ISBN 978-0-387-98975-4)202 Introduction to Topological Manifolds, John M. Lee203 The Symmetric Group, Bruce E. Sagan204 Galois Theory, Jean-Pierre Escofier205 Rational Homotopy Theory, Yves Félix, Stephen Halperin, Jean-Claude Thomas (2000, ISBN 978-0-387-95068-0)206 Problems in Analytic Number Theory, M. Ram Murty (2001, ISBN 978-0-387-95143-0)207 Algebraic Graph Theory, Godsil, Royle (2001, ISBN 978-0-387-95241-3)208 Analysis for Applied Mathematics, Ward Cheney (2001, ISBN 978-0-387-95279-6)209 A Short Course on Spectral Theory, William Arveson (2002, ISBN 978-0-387-95300-7)210 Number Theory in Function Fields, Michael Rosen (2002, ISBN 978-0-387-95335-9)211 Algebra, Serge Lang212 Lectures on Discrete Geometry, Jiri Matousek213 From Holomorphic Functions to Complex Manifolds, Fritzsche, Grauert214 Partial Differential Equations, Juergen Jost215 Algebraic Functions and Projective Curves, David Goldschmidt216 Matrices, Denis Serre217 Model Theory: An Introduction, David Marker218 Introduction to Smooth Manifolds, John M. Lee (2003, ISBN 978-0-387-95448-6)219 The Arithmetic of Hyperbolic 3-Manifolds, Maclachlan, Reid220 Smooth Manifolds and Observables, Jet Nestruev221 Convex Polytopes, Branko Grünbaum (2003, ISBN 0-387-00424-6)222 Lie Groups, Lie Algebras, and Representations, Brian C. Hall223 Fourier Analysis and its Applications, Anders Vretblad224 Metric Structures in Differential Geometry, Walschap, G., (2004, ISBN 978-0-387-20430-7) 225 Lie Groups, Daniel Bump, (2004, ISBN 978-0-387-21154-1)226 Spaces of Holomorphic Functions in the Unit Ball, Zhu, K., (2005, ISBN 978-0-387-22036-9) 227 Combinatorial Commutative Algebra, Ezra Miller, Bernd Sturmfels, (2005, ISBN978-0-387-22356-8)228 A First Course in Modular Forms, Fred Diamond, J. Shurman, (2006, ISBN 978-0-387-23229-4) 229 The Geometry of Syzygies, David Eisenbud (2005, ISBN 978-0-387-22215-8)230 An Introduction to Markov Processes, Stroock, ., (2005, ISBN 978-3-540-23499-9)231 Combinatorics of Coxeter Groups, Anders Björner, Francisco Brenti, (2005, ISBN978-3-540-44238-7)232 An Introduction to Number Theory, Everest, G., Ward, T., (2005, ISBN 978-)233 Topics in Banach Space Theory, Albiac, F., Kalton, ., (2006, ISBN 978-0-387-28141-4)234 Analysis and Probability · Wavelets, Signals, Fractals, Jorgensen, (2006, ISBN978-0-387-29519-0)235 Compact Lie Groups, M. R. Sepanski, (2007, ISBN 978-0-387-30263-8)236 Bounded Analytic Functions, Garnett, J., (2007, ISBN 978-0-387-33621-3)237 An Introduction to Operators on the Hardy-Hilbert Space, Martinez-Avendano, ., Rosenthal, P., (2007, ISBN 978-0-387-35418-7)238 A Course in Enumeration, Aigner, M., (2007, ISBN 978-3-540-39032-9)239 Number Theory - Volume I: Elementary and Algebraic Methods for Diophantine Equations, Cohen, H., (2007, ISBN 978-0-387-49922-2)240 Number Theory - Volume II: Analytic and Modern Tools, Cohen, H., (2007, ISBN978-0-387-49893-5)241 The Arithmetic of Dynamical Systems, Joseph H. Silverman, (2007, ISBN 978-0-387-69903-5) 242 Abstract Algebra, Grillet, Pierre Antoine, (2007, ISBN 978-0-387-71567-4)243 Topological Methods in Group Theory, Geoghegan, Ross, (2007, ISBN 978-0-387-74611-1)244 Graph Theory, Bondy, ., Murty, (2007, ISBN 978-)245 Complex Analysis: Introduced in the Spirit of Lipman Bers,Gilman, Jane P., Kra, Irwin, Rodriguez, Rubi E. (2007, ISBN 978-0-387-74714-9)246 A Course in Commutative Banach Algebras, Kaniuth, Eberhard, (2020, ISBN 978-0-387-72475-1) 247 Braid Groups, Kassel, Christian, Turaev, Vladimir, (2008, ISBN 978-0-387-33841-5)248 Buildings Theory and Applications, Abramenko, Peter, Brown, Ken (2008, ISBN978-0-387-78834-0)249 Classical Fourier Analysis, Grafakos, Loukas, (2008, ISBN 978-0-387-09431-1)250 Modern Fourier Analysis, Grafakos, Loukas, (2008, ISBN 978-0-387-09433-5)251 The Finite Simple Groups, Wilson, Robert, Parker, Christopher W., (2009, ISBN 978-)252 Distributions and Operators, Grubb, Gerd, (2009, ISBN 978-0-387-84894-5)。
外文翻译数学直觉和认知的根源
Mathematical Intuition and the Cognitive Roots ofMathematicalConceptsGiuseppe Longo • Arnaud ViarougePublished online: 20 January 2010Springer Science+Business Media B.V. 2010AbstractThe foundation of Mathematics is both a logica formal issue and an epistemological one. By the first, we mean the explicitation and analysis of formal proof principles, which, largely a posteriori, ground proof on general deduction rules and schemata. By the second, we mean the investigation of the constitutive genesis of concepts and structures, the aim of this paper. This ‘‘genealogy of concepts’’, is necessary both in order to enrich the foundational analysis with an often disregarded aspect (the cognitive and historical constitution of mathematical structures) and because of the provable incompleteness of proof principles also in the analysis of deduction. For the purposes of our investigation, we will hint here to a philosophical frame as well as to some recent experimental studies on numerical cognition that support our claim on the cognitive origin and the constitutive role of mathematical intuition.Keywords:Numerical cognitionMathematical intuition Foundations of mathematics1 From Logic to CognitionOver the course of the twentieth century, the relationships between Philosophy and Mathematics have been dominated by Mathematical Logic. A most interesting area of Mathematics which, from 1931 onwards, year of one of the major mathematical results of the century (Go ¨delian Incompleteness), enjoyed the double status of a discipline that isboth technically profound and philosophically fundamental. From the foundational point of view, Proof Theory constituted its main aspect, also on account of other remarkable results (Ordinal Analysis, Type Theory in the manner of Church-Go ¨del-Girard, various forms of incompleteness-independence in Set Theory and Arithmetics), and produced spin-offs with far-reaching practical consequences: the functions for the computation of proofs (Herbrand, Go ¨del, Church), the Logical Computing Machine (Turing), and hence our digital machines.The questions having arisen at the end of the nineteenth century, due to the foundational debacle of Euclidean certitudes, motivated the centrality of the analysis of proofs. In particular, the investigation of the formal consistency of Arithmetics (as Formal Number Theory, does it yield contradictions?), and of the (non-euclidean) geometries that can be encoded by analytic tools in Arithmetics(all of them—Hilbert 1899—: are they at least consistent?).For many, during the twentieth century, all of foundational analysis could be reduced to the spillovers produced by these major technical questions (provable consistency and completeness), brought to the limelight, by an immense mathematician, Hilbert.And here we forget that in Mathematics, if it is necessary to produce proofs, as key part of the mathematician’s job, the mathematical activity is first of all grounded on the proposition or on the construction of concepts and structures. In fact, any slightly original proof requires the invention of new concepts and structures; the purely deductive component will follow. Now, as the keenestamong the founding fathers would say, let’s put aside this ‘‘heuristic’’ and rather focus our attention on the a posteriori reconstruction of the logical certitude of proof. An absolutely indispensable program, as we were saying, at the beginning of the twentieth century, following thetechnical richness as well as confusion of the nineteenth—a century having produced many results, among which several were false or unproven or badly stated—a program, however, which excluded from foundational analysis any scientific examination of the constitutive process of mathematical concepts and structures. Such is the aim of the new project regarding the cognitive foundations of Mathematics, which is also anepistemological project. It is certainly not a question of discarding proof, with its logical and formal components, but simply of steering away from the formal(and computational) monom ania, formerly justified and which dominated the previous century. It produced these marvelous logica formal machines surrounding us, acting without meaning. The analysis of the constitution of sense and meaning in Mathematics, through cognition and history, is the purpose of the investigations in Mathematical Cognition, also in order to compensate the provable incompleteness of formalisms.In order to grasp this issue, it is necessary to be precise regarding the term ‘‘formal’’, proper to the formal systems extensively taken to be the only locus for foundation. There exists a very widespread ambiguity, particularly in the field of physics: for a physicist, to ‘‘formalize’’ a physical process means to mathematize it. Since Hilbert’s program, formal instead has meant: a system given by finite sequences of meaningless signs, governed by rules, themselves being finite sequences of signs, which only operate by purely mechanical ‘‘sequence-matching’’ and ‘‘sequence-replacement’’—as do lambda-calculus and Turing machines, for instance, two paradigms for any effective formalism, following the equivalence results. To be fair, some recentrevitalization of Hilbert’s program try to extend this notion of ‘‘formal’’, sometimes in reference to writings by Hilbert as well. One may surely propose new notions, yet the definition of what a formal system is, is formally given by incompleteness theorem and Turing’s work. AsGo ¨del says in his ‘‘added note’’ of 1963, we have, since Turing, a ‘‘certain, precise, adequate notion of the concept of formal system’’. And, not only Turing Machines, but, we stress, also the incompleteness theorem, by its use of the same notion of formal system makes it perfectly stable:definitions, in mathematics, are definitely stabilized by the(important) the orems where they apply.Of course, there is circularity in any formal definition of a formal system, in the same way there is circularity when the notion of word is defined by means of other words: Turing Machines also need to be defined as a formal system (yet, a very basic one). Nothing serious, we are accustomed to this, just as when we do not stop speaking, and wecontinue to talk about sentences using sentences. But there is far more than that: the formalist foundation of Mathematics refers to the absolute certainty of notions such as ‘‘finite’’and ‘‘discrete’’. Yet, as for finiteness, following the Over-spill Lemma in Arithmetics and, more notably, since incompleteness, we know that we cannot formally define the notion of ‘‘finite’’. In fact, an axiom of infinity is required in order to formally ‘‘isolate’’ the standard finite integers. A result which demolishes the core of any finitist certitude, including that which is internal to logical for-malism. In short, the notion of finitude is very complex,requires infinity, if one wants to grasp it formally: it is far from being ‘‘obvious’’, in the Cartesian sense. And it is not an absolute: finiteness makes little absolute sense, for instance, in cosmology—consider the question: Is the Relativistic Universe finite or infinite? The Riemann sphere is finite but unlimited against the Greek identification between finite and limited. Likewise for the notions of continuity (in the manner of Cantor–Dedekind, typically) and of discreteness (the latter to be defined as any structure of which the discrete topology is ‘‘natural’’, we would sayfrom the viewpoint of Mathematics): Do they make sense in Quantum Mechanics, where the discrete energy spectrum has as a counterpart, in space, non-locality, non-separability properties, the opposite of those of discrete topology whose points are well separated, and where a more adapted mathematical continuum should, perhaps, not be made of Cantorian points either?As regards the formal/mathematical, physicists may very well preserve their ambiguity of language, where the formal is identified with the mathematical (‘‘formal’’structures instead of ‘‘mathematical’’ structures, as we said), once the issue has been clarified; because, only through this distinction may the recent results of the mathematical incompleteness of formalisms be understood.In short, in the difference between the formal and the mathematical, there is no less than some of the most important results in Proof Theory of the last 30 years (see Paris and Harrington (1978), see Longo (2002; 2005)for surveys and reflections). In this difference actually lies the structural significance of integers, these entities constituted within our cognitive and historical spaces, the issue under discussion in this text.2 Cognition and InvarianceBeginnin g with Mathematics’ Cognitive Analysis, the perspective assumed here, we stress the epistemological content of this investigation. In our view, any epistemology should also refer to the ‘‘genealogy of concepts’’ following Riemann. What can be said, for instance, about the concept of infinity without making reference to its history? The iterated gesture and the metaphoric mapping of its conclusion (the limit) are informative ideas, yet they do not suffice. There is no constitutive history of this concept without an analysis of the historical debate that brought (actual) infinity to today’s robust conceptual status, from Aristotle to Saint Thomas and Italian Renaissance Painting up to Cantor. Likewise for real numbers in Cantor’s continuum: their objectivity is i n their construction, which is the result of a historical practice, as is their effectiveness.We now arrive at a crucial point; numerous authors refer to the ‘‘great stability and reliability’’ of Mathematics which would need to be accounted for. Wigner’s article, which everybody quotes—due to its so very effective and memorable title—and which very few read, presents examples that are not astounding).Do linguists (cognitivists, for example) consider the following problem: What a miracle! How languages are unreasonably effective! When we talk, we understand one another! Languages were born for purposes of communication and while communicating, to tell each other things possibly non-existing things (this is why human language was invented), to understand one another. As regards stability and invariance, as said extensively in (Bailly and Longo 2006) in connection to Physics’ theoretical principles, we can even define Mathematics as the fragment of our forms of construction of knowledge which is maximally invariant and stable, from a conceptual viewpoint.Now if Mathematics is maximally stable and invariant by construction, among our forms of knowledge and of communication, that is also where its limitations are to be found. It was born around the invariants and transformations which preserve them, beginning with the rotations and translations in Euclid’s geometry. What are the great invariants in Biology? If we refer to Molecular Biology, we do find some invariants, but, despite their being present only within life phenomena, they pertain to Chemistry, notBiology. Life phenomena are very stable,globally,We need to account for this instability/stability, variance/invariance, order/disorder,integration/separation…, which the Mathematics of Physics describes badly (see Longo 2009).One can surely not go into the details of this subsequent questioning, but it is part of the epistemological project: If Mathematics is constituted, it can help us avoid applying everywhere the same tools of Mathematical Physics, as if they were Platonic absolutes or complete formalisms of the world, including for the analysis of life phenomena, where new tools and observables (new invariants) are needed.3 IntuitionThe notion of intuition plays a large part in mathematics,yet the term ‘‘intuition’’ is highly polysemic, and may refer to different meanings depending on the context in which it is used. In particular, a distinction is commonly made between the intuition that takes place in the practice ofmathematics, and the intuition conceived as grounding the constitution of a mathematical concept or the progress of mathematics itself. In both cases the way the notion of mathematical intuition is approached often involves inquiring into its legitimacy, i.e., the extent to which one should rely on it in the practice or, in a more foundational perspective。
斯普林格数学研究生教材丛书
斯普林格数学研究生教材丛书《斯普林格数学研究生教材丛书》(Graduate Texts in Mathematics)GTM001《Introduction to Axiomatic Set Theory》Gaisi Takeuti, Wilson M.Zaring GTM002《Measure and Category》John C.Oxtoby(测度和范畴)(2ed.)GTM003《T opological Vector Spaces》H.H.Schaefer, M.P.Wolff(2ed.)GTM004《A Course in Homological Algebra》P.J.Hilton, U.Stammbach(2ed.)(同调代数教程)GTM005《Categories for the Working Mathematician》Saunders Mac Lane(2ed.)GTM006《Projective Planes》Daniel R.Hughes, Fred C.Piper(投射平面)GTM007《A Course in Arithmetic》Jean-Pierre Serre(数论教程)GTM008《Axiomatic set theory》Gaisi Takeuti, Wilson M.Zaring(2ed.)GTM009《Introduction to Lie Algebras and Representation Theory》James E.Humphreys(李代数和表示论导论)GTM010《A Course in Simple-Homotopy Theory》M.M CohenGTM011《Functions of One Complex VariableⅠ》John B.ConwayGTM012《Advanced Mathematical Analysis》Richard Beals GTM013《Rings and Categories of Modules》Frank W.Anderson, Kent R.Fuller(环和模的范畴)(2ed.)GTM014《Stable Mappings and Their Singularities》Martin Golubitsky, Victor Guillemin (稳定映射及其奇点)GTM015《Lectures in Functional Analysis and OperatorTheory》Sterling K.Berberian GTM016《The Structure of Fields》David J.Winter(域结构)GTM017《Random Processes》Murray RosenblattGTM018《Measure Theory》Paul R.Halmos(测度论)GTM019《A Hilbert Space Problem Book》Paul R.Halmos (希尔伯特问题集)GTM020《Fibre Bundles》Dale Husemoller(纤维丛)GTM021《Linear Algebraic Groups》James E.Humphreys (线性代数群)GTM022《An Algebraic Introduction to Mathematical Logic》Donald W.Barnes, John M.MackGTM023《Linear Algebra》Werner H.Greub(线性代数)GTM024《Geometric Functional Analysis and Its Applications》Paul R.HolmesGTM025《Real and Abstract Analysis》Edwin Hewitt, Karl StrombergGTM026《Algebraic Theories》Ernest G.ManesGTM027《General Topology》John L.Kelley(一般拓扑学)GTM028《Commutative Algebra》VolumeⅠOscar Zariski, Pierre Samuel(交换代数)GTM029《Commutative Algebra》VolumeⅡOscar Zariski, Pierre Samuel(交换代数)GTM030《Lectures in Abstract AlgebraⅠ.Basic Concepts》Nathan Jacobson(抽象代数讲义Ⅰ基本概念分册)GTM031《Lectures in Abs tract AlgebraⅡ.Linear Algabra》Nathan.Jacobson(抽象代数讲义Ⅱ线性代数分册)GTM032《Lectures in Abstract AlgebraⅢ.Theory of Fields and Galois Theory》Nathan.Jacobson(抽象代数讲义Ⅲ域和伽罗瓦理论)GTM033《Differential Topology》Morris W.Hirsch(微分拓扑)GTM034《Principles of Random Walk》Frank Spitzer(2ed.)(随机游动原理)GTM035《Several Complex Variables and Banach Algebras》Herbert Alexander, John Wermer(多复变和Banach代数)GTM036《Linear Topological Spaces》John L.Kelley, Isaac Namioka(线性拓扑空间)GTM037《Mathematical Logic》J.Donald Monk(数理逻辑)GTM038《Several Complex Variables》H.Grauert, K.Fritzshe GTM039《An Invitation to C*-Algebras》William Arveson (C*-代数引论)GTM040《Denumerable Markov Chains》John G.Kemeny, /doc/e96250642.htmlurie Snell, Anthony W.KnappGTM041《Modular Functions and Dirichlet Series in Number Theory》Tom M.Apostol (数论中的模函数和Dirichlet序列)GTM042《Linear Representations of Finite Groups》Jean-Pierre Serre(有限群的线性表示)GTM043《Rings of Continuous Functions》Leonard Gillman, Meyer JerisonGTM044《Elementary Algebraic Geometry》Keith KendigGTM045《Probabi lity TheoryⅠ》M.Loève(概率论Ⅰ)(4ed.)GTM046《Probability TheoryⅡ》M.Loève(概率论Ⅱ)(4ed.)GTM047《Geometric Topology in Dimensions 2 and 3》Edwin E.MoiseGTM048《General Relativity for Mathematicians》Rainer.K.Sachs, H.Wu伍鸿熙(为数学家写的广义相对论)GTM049《Linear Geometry》K.W.Gruenberg, A.J.Weir(2ed.)GTM050《Fermat's Last Theorem》Harold M.EdwardsGTM051《A Course in Differential Geometry》WilhelmKlingenberg(微分几何教程)GTM052《Algebraic Geometry》Robin Hartshorne(代数几何)GTM053《 A Course in Mathematical Logic for Mathematicians》Yu.I.Manin(2ed.)GTM054《Combinatorics with Emphasis on the Theory of Graphs》Jack E.Graver, Mark E.WatkinsGTM055《Introduction to Operator TheoryⅠ》Arlen Brown, Carl PearcyGTM056《Algebraic Topology:An Introduction》W.S.MasseyGTM057《Introduction to Knot Theory》Richard.H.Crowell, Ralph.H.FoxGTM058《p-adic Numbers, p-adic Analysis, and Zeta-Functions》Neal Koblitz(p-adic 数、p-adic分析和Z函数)GTM059《Cyclotomic Fields》Serge LangGTM060《Mathematical Methods of Classical Mechanics》V.I.Arnold(经典力学的数学方法)(2ed.)GTM061《Elements of Homotopy Theory》George W.Whitehead(同论论基础)GTM062《Fundamentals of the Theory of Groups》M.I.Kargapolov, Ju.I.Merzljakov GTM063《Modern Graph Theory》Béla BollobásGTM064《Fourier Series:A Modern Introduction》VolumeⅠ(2ed.)R.E.Edwards(傅里叶级数)GTM065《Differential Analysis on Complex Manifolds》Raymond O.Wells, Jr.(3ed.)GTM066《Introduction to Affine Group Schemes》William C.Waterhouse(仿射群概型引论)GTM067《Local Fields》Jean-Pierre Serre(局部域)GTM069《Cyclotomic FieldsⅠandⅡ》Serge LangGTM070《Singular Homology Theory》William S.MasseyGTM071《Riemann Surfaces》Herschel M.Farkas, Irwin Kra (黎曼曲面)GTM072《Classical Topology and Combinatorial Group Theory》John Stillwell(经典拓扑和组合群论)GTM073《Algebra》Thomas W.Hungerford(代数)GTM074《Multiplicative Number Theory》Harold Davenport (乘法数论)(3ed.)GTM075《Basic Theory of Algebraic Groups and Lie Algebras》G.P.HochschildGTM076《Algebraic Geometry:An Introduction to Birational Geometry of Algebraic Varieties》Shigeru Iitaka GTM077《Lectures on the Theory of Algebraic Numbers》Erich HeckeGTM078《A Course in Universal Algebra》Stanley Burris, H.P.Sankappanavar(泛代数教程)GTM079《An Introduction to Ergodic Theory》Peter Walters (遍历性理论引论)GTM080《A Course in_the Theory of Groups》Derek J.S.RobinsonGTM081《Lectures on Riemann Surfaces》Otto ForsterGTM082《Differential Forms in Algebraic Topology》Raoul Bott, Loring W.Tu(代数拓扑中的微分形式)GTM083《Introduction to Cyclotomic Fields》Lawrence C.Washington(割圆域引论)GTM084《A Classical Introduction to Modern Number Theory》Kenneth Ireland, Michael Rosen(现代数论经典引论)GTM085《Fourier Series A Modern Introduction》Volume 1(2ed.)R.E.Edwards GTM086《Introduction to Coding Theory》J.H.van Lint(3ed .)GTM087《Cohomology of Groups》Kenneth S.Brown(上同调群)GTM088《Associative Algebras》Richard S.PierceGTM089《Introduction to Algebraic and Abelian Functions》Serge Lang(代数和交换函数引论)GTM090《An Introduction to Convex Polytopes》Ame BrondstedGTM091《The Geometry of Discrete Groups》Alan F.BeardonGTM092《Sequences and Series in BanachSpaces》Joseph DiestelGTM093《Modern Geometry-Methods and Applications》(PartⅠ.The of geometry Surface s Transformation Groups and Fields)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov (现代几何学方法和应用)GTM094《Foundations of Differentiable Manifolds and Lie Groups》Frank W.Warner(可微流形和李群基础)GTM095《Probability》A.N.Shiryaev(2ed.)GTM096《A Course in Functional Analysis》John B.Conway (泛函分析教程)GTM097《Introduction to Elliptic Curves and Modular Forms》Neal Koblitz(椭圆曲线和模形式引论)GTM098《Representations of Compact Lie Groups》Theodor Bre?cker, Tammo tom DieckGTM099《Finite Reflection Groups》L.C.Grove, C.T.Benson (2ed.)GTM100《Harmonic Analysis on Semigroups》Christensen Berg, Jens Peter Reus Christensen, Paul ResselGTM101《Galois Theory》Harold M.Edwards(伽罗瓦理论)GTM102《Lie Groups, Lie Algebras, and Their Representation》V.S.Varadarajan(李群、李代数及其表示)GTM103《Complex Analysis》Serge LangGTM104《Modern Geometry-Methods and Applications》(PartⅡ.Geometry and Topology of Manifolds)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM105《SL? (R)》Serge Lang(SL? (R)群)GTM106《The Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术理论)GTM107《Applications of Lie Groups to Differential Equations》Peter J.Olver(李群在微分方程中的应用)GTM108《Holomorphic Functions and Integral Representations in Several Complex Variables》R.Michael Range GTM109《Univalent Functions and Teichmueller Spaces》Lehto OlliGTM110《Algebraic Number Theory》Serge Lang(代数数论)GTM111《Elliptic Curves》Dale Husemoeller(椭圆曲线)GTM112《Elliptic Functions》Serge Lang(椭圆函数)GTM113《Brownian Motion and Stochastic Calculus》Ioannis Karatzas, Steven E.Shreve (布朗运动和随机计算)GTM114《A Course in Number Theory and Cryptography》Neal Koblitz(数论和密码学教程)GTM115《Differential Geometry:Manifolds, Curves, and Surfaces》M.Berger, B.Gostiaux GTM116《Measure and Integral》Volume1 John L.Kelley, T.P.SrinivasanGTM117《Algebraic Groups and Class Fields》Jean-Pierre Serre(代数群和类域)GTM118《Analysis Now》Gert K.Pedersen (现代分析)GTM119《An introduction to Algebraic Topology》Jossph J.Rotman(代数拓扑导论)GTM120《Weakly Differentiable Functions》William P.Ziemer(弱可微函数)GTM121《Cyclotomic Fields》Serge LangGTM122《Theory of Complex Functions》Reinhold RemmertGTM123《Numbers》H.-D.Ebbinghaus, H.Hermes, F.Hirzebruch, M.Koecher, K.Mainzer, J.Neukirch, A.Prestel, R.Remmert(2ed.)GTM124《Modern Geometry-Methods and Applications》(PartⅢ.Introduction to Homology Theory)B.A.Dubrovin, A.T.Fomenko, S.P.Novikov(现代几何学方法和应用)GTM125《Complex Variables:An introduction》Garlos A.Berenstein, Roger Gay GTM126《Linear Algebraic Groups》Armand Borel (线性代数群)GTM127《A Basic Course in Algebraic Topology》William S.Massey(代数拓扑基础教程)GTM128《Partial Differential Equations》Jeffrey RauchGTM129《Representation Theory:A First Course》William Fulton, Joe HarrisGTM130《T ensor Geometry》C.T.J.Dodson, T.Poston(张量几何)GTM131《A First Course in Noncommutative Rings》/doc/e96250642.htmlm(非交换环初级教程)GTM132《Iteration of Rational Functions:Complex Analytic Dynamical Systems》AlanF.Beardon(有理函数的迭代:复解析动力系统)GTM133《Algebraic Geometry:A First Course》Joe Harris (代数几何)GTM134《Coding and Information Theory》Steven Roman GTM135《Advanced Linear Algebra》Steven RomanGTM136《Algebra:An Approach via Module Theory》William A.Adkins, Steven H.WeintraubGTM137《Harmonic Function Theory》Sheldon Axler, Paul Bourdon, Wade Ramey(调和函数理论)GTM138《A Course in Computational Algebraic NumberTheory》Henri Cohen(计算代数数论教程)GTM139《T opology and Geometry》Glen E.BredonGTM140《Optima and Equilibria:An Introduction to Nonlinear Analysis》Jean-Pierre AubinGTM141《A Computational Approach to Commutative Algebra》Gr?bner Bases, Thomas Becker, Volker Weispfenning, Heinz KredelGTM142《Real and Functional Analysis》Serge Lang(3ed.)GTM143《Measure Theory》J.L.DoobGTM144《Noncommutative Algebra》Benson Farb, R.Keith DennisGTM145《Homology Theory:An Introduction to Algebraic Topology》James W.Vick(同调论:代数拓扑简介)GTM146《Computability:A Mathematical Sketchbook》Douglas S.BridgesGTM147《Algebraic K-Theory and Its Applications》Jonathan Rosenberg(代数K理论及其应用)GTM148《An Introduction to the Theory of Groups》Joseph J.Rotman(群论入门)GTM149《Foundations of Hyperbolic Manifolds》John G.Ratcliffe(双曲流形基础)GTM150《Commutative Algebra with a view toward Algebraic Geometry》David EisenbudGTM151《Advanced Topics in the Arithmetic of Elliptic Curves》Joseph H.Silverman(椭圆曲线的算术高级选题)GTM152《Lectures on Polytopes》Günter M.ZieglerGTM153《Algebraic Topology:A First Course》William Fulton(代数拓扑)GTM154《An introduction to Analysis》Arlen Brown, Carl PearcyGTM155《Quantum Groups》Christian Kassel(量子群)GTM156《Classical Descriptive Set Theory》Alexander S.KechrisGTM157《Integration and Probability》Paul MalliavinGTM158《Field theory》Steven Roman(2ed.)GTM159《Functions of One Complex Variable VolⅡ》John B.ConwayGTM160《Differential and Riemannian Manifolds》Serge Lang(微分流形和黎曼流形)GTM161《Polynomials and Polynomial Inequalities》Peter Borwein, Tamás Erdélyi(多项式和多项式不等式)GTM162《Groups and Representations》J.L.Alperin, Rowen B.Bell(群及其表示)GTM163《Permutation Groups》John D.Dixon, Brian Mortime rGTM164《Additive Number Theory:The Classical Bases》Melvyn B.NathansonGTM165《Additive Number Theory:Inverse Problems and the Geometry of Sumsets》Melvyn B.NathansonGTM166《Differential Geometry:Cartan's Generalization of Klein's Erlangen Program》R.W.SharpeGTM167《Field and Galois Theory》Patrick MorandiGTM168《Combinatorial Convexity and Algebraic Geometry》Günter Ewald(组合凸面体和代数几何)GTM169《Matrix Analysis》Rajendra BhatiaGTM170《Sheaf Theory》Glen E.Bredon(2ed.)GTM171《Riemannian Geometry》Peter Petersen(黎曼几何)GTM172《Classical Topics in Complex Function Theory》Reinhold RemmertGTM173《Graph Theory》Reinhard Diestel(图论)(3ed.)GTM174《Foundations of Real and Abstract Analysis》Douglas S.Bridges(实分析和抽象分析基础)GTM175《An Introduction to Knot Theory》W.B.Raymond LickorishGTM176《Riemannian Manifolds:An Introduction to Curvature》John M.LeeGTM177《Analytic Number Theory》Donald J.Newman(解析数论)GTM178《Nonsmooth Analysis and Control Theory》F.H.clarke, Yu.S.Ledyaev, R.J.Stern, P.R.Wolenski(非光滑分析和控制论)GTM179《Banach Algebra Techniques in Operator Theory》Ronald G.Douglas(2ed.)GTM180《A Course on Borel Sets》S.M.Srivastava(Borel 集教程)GTM181《Numerical Analysis》Rainer KressGTM182《Ordinary Differential Equations》Wolfgang Walter GTM183《An introduction to Banach Spaces》Robert E.MegginsonGTM184《Modern Graph Theory》Béla Bollobás(现代图论)GTM185《Using Algebraic Geomety》David A.Cox, John Little, Donal O’Shea(应用代数几何)GTM186《Fourier Analysis on Number Fields》Dinakar Ramakrishnan, Robert J.Valenza GTM187《Moduli of Curves》Joe Harris, Ian Morrison(曲线模)GTM188《Lectures on the Hyperreals:An Introduction to Nonstandard Analysis》Robert GoldblattGTM189《Lectures on Modules and Rings》/doc/e96250642.htmlm(模和环讲义)GTM190《Problems in Algebraic Number Theory》M.Ram Murty, Jody Esmonde(代数数论中的问题)GTM191《Fundamentals of Differential Geometry》Serge Lang(微分几何基础)GTM192《Elements of Functional Analysis》Francis Hirsch, Gilles LacombeGTM193《Advanced Topics in Computational Number Theory》Henri CohenGTM194《One-Parameter Semigroups for Linear Evolution Equations》Klaus-Jochen Engel, Rainer Nagel(线性发展方程的单参数半群)GTM195《Elementary Methods in Number Theory》Melvyn B.Nathanson(数论中的基本方法)GTM196《Basic Homological Algebra》M.Scott OsborneGTM197《The Geometry of Schemes》David Eisenbud, Joe HarrisGTM198《A Course in p-adic Analysis》Alain M.RobertGTM199《Theory of Bergman Spaces》Hakan Hedenmalm, Boris Korenblum, Kehe Zhu(Bergman空间理论)GTM200《An Introduction to Riemann-Finsler Geometry》D.Bao, S.-S.Chern, Z.Shen GTM201《Diophantine Geometry An Introduction》Marc Hindry, Joseph H.Silverman GTM202《Introduction to T opological Manifolds》John M.Lee GTM203《The Symmetric Group》Bruce E.SaganGTM204《Galois Theory》Jean-Pierre EscofierGTM205《Rational Homotopy Theory》Yves Félix, Stephen Halperin, Jean-Claude Thomas(有理同伦论)GTM206《Problems in Analytic Number Theory》M.Ram MurtyGTM207《Algebraic Graph Theory》Chris Godsil, Gordon Royle(代数图论)GTM208《Analysis for Applied Mathematics》Ward Cheney GTM209《A Short Course on Spectral Theory》William Arveson(谱理论简明教程)GTM210《Number Theory in Function Fields》Michael RosenGTM211《Algebra》Serge Lang(代数)GTM212《Lectures on Discrete Geometry》Jiri Matousek (离散几何讲义)GTM213《From Holomorphic Functions to Complex Manifolds》Klaus Fritzsche, Hans Grauert(从正则函数到复流形)GTM214《Partial Differential Equations》Jüergen Jost(偏微分方程)GTM215《Algebraic Functions and Projective Curves》David M.Goldschmidt(代数函数和投影曲线)GTM216《Matrices:Theory and Applications》Denis Serre (矩阵:理论及应用)GTM217《Model Theory An Introduction》David Marker(模型论引论)GTM218《Introduction to Smooth Manifolds》John M.Lee (光滑流形引论)GTM219《The Arithmetic of Hyperbolic 3-Manifolds》Colin Maclachlan, Alan W.Reid GTM220《Smooth Manifolds and Observables》Jet Nestruev(光滑流形和直观)GTM221《Convex Polytopes》Branko GrüenbaumGTM222《Lie Groups, Lie Algebras, and Representations》Brian C.Hall(李群、李代数和表示)GTM223《Fourier Analysis and its Applications》Anders Vretblad(傅立叶分析及其应用)GTM224《Metric Structures in Differential Geometry》Gerard Walschap(微分几何中的度量结构)GTM225《Lie Groups》Daniel Bump(李群)GTM226《Spaces of Holomorphic Functions in the Unit Ball》Kehe Zhu(单位球内的全纯函数空间)GTM227《Combinatorial Commutative Algebra》Ezra Miller, Bernd Sturmfels(组合交换代数)GTM228《A First Course in Modular Forms》Fred Diamond, Jerry Shurman(模形式初级教程)GTM229《The Geometry of Syzygies》David Eisenbud(合冲几何)GTM230《An Introduction to Markov Processes》Daniel W.Stroock(马尔可夫过程引论)GTM231《Combinatorics of Coxeter Groups》Anders Bjr?ner, Francesco Brenti(Coxeter 群的组合学)GTM232《An Introduction to Number Theory》Graham Everest, Thomas Ward(数论入门)GTM233《T opics in Banach Space Theory》Fenando Albiac, Nigel J.Kalton(Banach空间理论选题)GTM234《Analysis and Probability:Wavelets, Signals, Fractals》Palle E.T.Jorgensen(分析与概率)GTM235《Compact Lie Groups》Mark R.Sepanski(紧致李群)GTM236《Bounded Analytic Functions》John B.Garnett(有界解析函数)GTM237《An Introduction to Operators on the Hardy-Hilbert Space》Rubén A.Martínez-Avendano, Peter Rosenthal (哈代-希尔伯特空间算子引论)GTM238《A Course in Enumeration》Martin Aigner(枚举教程)GTM239《Number Theory:VolumeⅠT ools and Diophantine Equations》Henri Cohen GTM240《Number Theory:VolumeⅡAna lytic and Modern T ools》Henri Cohen GTM241《The Arithmetic of Dynamical Systems》Joseph H.SilvermanGTM242《Abstract Algebra》Pierre Antoine Grillet(抽象代数)GTM243《Topological Methods in Group Theory》Ross GeogheganGTM244《Graph Theory》J.A.Bondy, U.S.R.MurtyGTM245《Complex Analysis:In the Spirit of Lipman Bers》Jane P.Gilman, Irwin Kra, Rubi E.RodriguezGTM246《A Course in Commutative Banach Algebras》Eberhard KaniuthGTM247《Braid Groups》Christian Kassel, Vladimir TuraevGTM248《Buildings Theory and Applications》Peter Abramenko, Kenneth S.Brown GTM249《Classical Fourier Analysis》Loukas Grafakos(经典傅里叶分析)GTM250《Modern Fourier Analysis》Loukas Grafakos(现代傅里叶分析)GTM251《The Finite Simple Groups》Robert A.WilsonGTM252《Distributions and Operators》Gerd GrubbGTM253《Elementary Functional Analysis》Barbara D.MacCluerGTM254《Algebraic Function Fields and Codes》Henning StichtenothGTM255《Symmetry Representations and Invariants》Roe Goodman, Nolan R.Wallach GTM256《A Course in Commutative Algebra》Kemper GregorGTM257《Deformation Theory》Robin HartshorneGTM258《Foundation of Optimization》Osman GülerGTM259《Ergodic Theory:with a view towards Number Theory》Manfred Einsiedler, Thomas WardGTM260《Monomial Ideals》Jurgen Herzog, Takayuki Hibi GTM261《Probability and Stochastics》Erhan CinlarGTM262《Essentials of Integration Theory for Analysis》Daniel W.StroockGTM263《Analysis on Fock Spaces》Kehe ZhuGTM264《Functional Analysis, Calculus of Variations and Optimal Control》Francis ClarkeGTM265《Unbounded Self-adjoint Operatorson Hilbert Space》Konrad Schmüdgen GTM266《Calculus Without Derivatives》Jean-Paul PenotGTM267《Quantum Theory for Mathematicians》Brian C.HallGTM268《Geometric Analysis of the Bergman Kernel and Metric》Steven G.Krantz GTM269《Locally Convex Spaces》M.Scott Osborne。
Theorem 1.1. (Fundamental Theorem of Algebra) A non-constant polynomial
TOPICS IN p-ADIC FUNCTION THEORYWILLIAM CHERRY1.Picard TheoremsI would like to begin by recalling the Fundamental Theorem of Algebra. Theorem1.1.(Fundamental Theorem of Algebra)A non-constant polyno-mial of one complex variable takes on every complex value.Moreover,if the poly-nomial is of degree d,then every complex value is taken on d times,countingmultiplicity.Because entire functions have power series expansions,they are sort of like poly-nomials of infinite degree.Picard’s well-known theorem is a complex analytic analogof the Fundamental Theorem of Algebra.Theorem1.2.(Picard’s(Little)Theorem)A non-constant entire functiontakes on all but at most one complex value.Moreover,a transcendental entirefunction must take on all but at most one complex value infinitely often.The function e z shows that a complex entire function can indeed omit one value.Lately,it has become fashionable to prove p-adic versions of value distributiontheorems,of which Picard’s Theorem is an example,though not a recent one.Morerecent examples can be found in the works listed in the references section.Recallthat the p-adic absolute value||p on the rational numberfield Q is defined as follows.If x∈Q is written p k a/b,where p is a prime,k is an integer,and a andb are integers relatively prime to p,then|x|p=p−pleting Q with respect to this absolute value results in thefield of p-adic numbers,denoted Q p.Takingthe algebraic closure of Q p,extending||p to it,and then completing once moreresults in a complete algebraically closedfield,denoted C p,and often referred toas the p-adic complex numbers.Recall that the absolute value||p satisfies a very strong form of the trian-gle inequality,namely|x+y|p≤max{|x|p,|y|p}.This is referred to as a non-Archimedean triangle inequality,and this non-Archimedean triangle inequality is what accounts for most of the differences between function theory on C p and on C.Recall that an infinite series a n converges under a non-Archimedean norm if and only if lima n=0.By an entire function on C p,one means a formaln→∞∞ n=0a n z n,where a n are elements of C p,and lim n→∞|a n|p r n=0,for power seriesevery r>0,so that plugging in any element of C p for z results in an absolutely convergent series.Most of what I will discuss here is true over an arbitrary algebraically closedfield complete with respect to a non-Archimedean absolute value,but for simplicity’s sake,I will stick with the concrete case C p here.12WILLIAM CHERRYIf one tries to prove Picard’s Theorem for p-adic entire functions,what one gets is the following theorem.Theorem1.3.(p-Adic Case)A non-constant p-adic entire function must take on every value in C p.Moreover,a transcendental p-adic entire function must take on every value in C p infinitely often.Proof.Let f(z)= a n z n be a p-adic entire function,so lim n→∞|a n|p r n=0,for all r>0.Denote by|f|r=sup|a n|p r n.The graph of{log|a n|p+n log r}log r→log|f|r=supn≥0is piecewise linear and closely related to what’s known as the Newton polygon.In particular,ther zeros of f occur at the“corners”of the graph of log r→log|f|r (c.f.,[Am]and[BGR]).For r close to zero,|f|r=|a0|p,provided a0=0.Moreover,it is clear that if f is not constant,then for all r sufficiently large,|f|r=|a0|p.Hence,the graph of log r→log|f|r has a corner,and hence f has a zero.If f is transcendental,then f has infinitely many non-zero Taylor coefficients, and thus for every n,there exists r n such that for all r≥r n,we have|f|r>|a n|p r n. Hence,log r→log|f|r must have infinitely many corners,and so f has infinitely many zeros.2Note that Theorem1.3is an even closer analogy to the Fundamental Theorem of Algebra than Picard’s Theorem was,since p-adic entire functions,like polynomials, cannot omit any values.Thus,in this respect,the function theory of p-adic entire functions is more closely related to the function theory of polynomials than it is to the function theory of complex holomorphic functions.That will be the theme of this survey.2.Algebraic CurvesMy second illustration that p-adic function theory is more like that of polyno-mials comes from considering Riemann surfaces.Let X be a projective algebraic curve of genus g.Then,the three analogous theorems we have are:Theorem2.1.(Polynomial Case)If f:C→X is a non-constant polynomial mapping,then g=0.Theorem2.2.(Complex Case)If f:C→X is a non-constant holomorphic mapping,then g≤1.Theorem2.3.(p-Adic Case)If f:C p→X is a non-constant p-adic analytic mapping,then g=0.The polynomial case follows from the Riemann-Hurwitz formula,which says that the genus of the image curve cannot be greater than the genus of the domain.The complex case was again proved by Picard.Riemann surfaces of genus≥2 have holomorphic universal covering maps from the unit disc,and thus any holo-morphic map form C to a Riemann surface of genus≥2lifts to a holomorphic map to the unit disc,which must then be constant by Liouville’s Theorem.The p-Adic analog of this theorem was proven only recently,by V.Berkovich[Ber].One of the major difficulties in p-adic function theory is the fact that the nat-ural p-adic topology is totally disconnected,and therefore analytic continuationTOPICS IN p -ADIC FUNCTION THEORY 3in these circumstances is a delicate task.Moreover,geometric techniques that are commonplace in complex analysis cannot be applied in the p -adic case.In order to prove his p -adic analog of Picard’s Theorem,Berkovich developed a theory of p -adic analytic spaces that enlarges the natural p -adic spaces so that they become nice topological spaces,and geometric techniques,such as universal covering spaces,can be used to prove theorems.3.Berkovich TheoryBerkovich’s theory is somewhat deep,and I do not have ther required space to go into it in much detail here.However,the reader may find the following brief description of his theory helpful.The interested reader is encouraged to look at:[Ber],[Ber 2],and [BGR].The last reference covers the more traditional theory of rigid analytic spaces.Although one can associate a Berkovich space to any p -adic analytic variety,we will concentrate here on the special case of the unit ball in C p ,which is the local model for smooth p -adic analytic spaces,at least in dimension one.Consider the closed unit ball B ={z ∈C p :|z |p ≤1}.The p -adic analytic func-tions on B are of the form a n z n ,with lim n →∞|a n |p =0.These functions form aBanach algebra A under the norm |f |0,1=sup n |a n |p .The Berkovich space associated to B consists of all bounded multiplicative semi-norms on A .This space is provided with the weakest topology such that all maps of the form ||→|f |,f ∈A are continuous maps to the real numbers with their usual topology.Here ||denotes one of the bounded multiplicative semi-norms in the Berkovich space.Berkovich spaces have many nice topological properties,such as local compact-ness and local arc-connectedness.They also have universal covering spaces,which are again Berkovich spaces.For f ∈A ,z 0∈B ,and 0≤r ≤1,define |f |z 0,r by |f |z 0,r =sup n |c n |p r n ,where f =c n (z −z 0)n ,or in other words,the c n are the coefficients of the Taylor expansion of f about z 0.Note that if r =0,then |f |z 0,0=|f (z 0)|p ,and note that by the non-Archimedean triangle inequality,if |z 0−w 0|p ≤r,then ||z 0,r =||w 0,r .There are in fact more bounded multiplicative semi-norms on B than these,but these are the main ones to thinkabout.||0,1|z 0,0Figure 1.4WILLIAM CHERRYFigure 1gives a sort of intuitive “tree-like”representation for the Berkovich space associated to B .The dots at the top correspond to the totally disconnected points in B .Of course there are infinitely many of these,and there are points arbitrarily close together,much like a Cantor set.The lines represent the connected continuum of additional multiplicative semi-norms connecting the Berkovich space.There are of course infinitely many places where lines join together,and the junctures are by no means discrete.Finally,the point at the bottom corresponds to the one semi-norm ||z 0,1which is the same for all points z 0in B .We say that two points z 0and w 0in B are in the same residue class if |z 0−w 0|p <1.This leads to a concept called “reduction,”whereby the space is “reduced”to the space of residue classes.The reduction of B can be naturally identified with A 1F alg p ,the affine line over the algebraic closure of the field of p elements.This process of reduction extends to the Berkovich space associated to B ,and there is a reduction mapping πfrom the Berkovich space B to A 1F alg p .The reduction mapping πhas what I would call an anti-continuity property,in thatπ−1of a Zariski open sets in A 1F algpwill be closed in the Berkovich topology and π−1of a Zariski closed set will be open in the Berkovich topology.In Figure 1,two points in the Berkovich tree are in different residue classes if their branches do not join except at the one point ||0,1,which is kind of like a “generic”point in algebraic geometry,and is in fact the inverse image of the genericpoint in A 1F alg p under the reduction map.Thus,three residue classes are shown in Figure 1. 4.Abelian VarietiesIn my Ph.D.thesis [Ch 1],I extended Berkovich’s Theorem to Abelian varieties.See also:[Ch 2]and [Ch 3].Theorem 4.1.(Cherry)If f :C p →A is a p -adic analytic map to an Abelian variety,then f must be constant.Proof sketch.Tis a product of multiplicative groups (i.e.a multiplicative torus).Gis the universal cover of A in the sense of Berkovich,and a semi-Abelian variety.Bis an Abelian variety with good reduction,meaning it has a reduction mapping πB to an Abelian variety e B over F alg p .T1G B 1A C pf BπB f !Figure 2.Step 1.First,we use Berkovich theory to lift f to a map f !:C p →G to the universal covering of A.TOPICS IN p-ADIC FUNCTION THEORY5 Step2.Next we use p-adic uniformization([BL1],[BL2],[DM])to identify Gas a semi-Abelian variety,as in Figure2.Step3.Then,we use reduction techniques.We get a mapC p→G→B→ B.This map must be constant because if it were not we would induce a non-constant rational map from the projective line over F alg p to the Abelian variety B.Thus,the image in B lies above a single smooth point in B.The inverse image of a smooth point in B is isomorphic to an open ball in C n p,where n is the dimension of B. Thus,the map to B is also constant,by the p-adic version of Liouville’s Theorem,for example.Step4.Thus,we only need consider mappings from C p to T.But,T∼=C p\{0}×···×C p\{0}.The projection onto each factor is constant by the p-Adic version of Picard’s LittleTheorem.2Because p-adic analytic maps to Abelian varieties must be constant,the follow-ing conjecture seems plausible.Conjecture4.2.Let X be a smooth projective variety.If there exists a non-constant p-adic analytic map from C p to X,then there exists a non-constantrational mapping from P1to X.5.Value SharingOne of the more striking consequences of Nevanlinna theory is Nevanlinna’stheorem that if two non-constant meromorphic functions f and g sharefive values,then f must equal g,[Ne].The polynomial version of this was taken up by Adamsand Straus in[AS].Theorem5.1.(Adams and Straus)If f and g are two non-constant polynomi-als over an algebraically closedfield of characteristic zero such that f−1(0)=g−1(0) and f−1(1)=g−1(1),then f≡g.Proof.Assume deg f≥deg g and consider[f (f−g)]/[f(f−1)].This is a polynomial because if f(z)=0or1,then f(z)=g(z)by assumption,and hencethe zeros in the denominator are canceled by the zeros in the numerator,and thef in the numerator takes care of multiple zeros.On the other hand,the degree of the numerator is strictly less than the degree of the denominator,so the numeratormust be identically zero.In other words f is constant,or f is identically equal tog.2Theorem5.2.(Adams and Straus)If f and g are non-constant p-adic(char-acteristic zero)analytic functions such that f−1(0)=g−1(0),and f−1(1)=g−1(1), then f≡g.Proof.We may assume without loss of generality that there exist r j→∞such that|f|rj≥|g|r j.Let h=[f (f−g)]/[f(f−1)].Then,h is entire since,as in the polynomial case,zeros in the denominator are always matched by zeros in thenumerator.On the other hand,by the non-Archimedean triangle inequality,wehave for r j sufficiently large that|h|r j= f f r j·|f−g|r j|f−1|r j≤ f f r j·|f|r j|f|r j= f f r j.6WILLIAM CHERRYNow,I claim |f /f |r ≤r −1,and therefore |h |r j →0as r j →∞.Hence,h ≡0,and again,either f is constant of f ≡g.2The claim that |f /f |r ≤1/r is the p-adic form of the Logarithmic Derivative Lemma,and note this is much stronger than what is true in the complex case.Theorem 5.3.(p -Adic Logarithmic Derivative Lemma)If f is a p -Adic analytic function,then |f /f |r ≤1/r.Proof.Write f = a n z n .Then,since |n |p ≤1,we have|f |r =sup n ≥1{|na n |p r n −1}=1r sup n ≥1{|na n |p r n }≤1r sup n ≥0{|a n |p r n }=1r |f |r 2Notice the similarity in both the proof and the statement of both of Adams and Straus’s theorems.An active topic of current research has to do with so called “unique range sets.”Rather than considering functions which share distinct values,one considers finite sets and functions f and g such that f −1(S )=g −1(S ).Here,Boutabaa,Escassut,and Haddad [BEH]gave a nice characterization for unique range sets of polynomials,in the counting multiplicity case.Theorem 5.4.(Boutabaa,Escassut,and Haddad)If f and g are polynomi-als over an algebraically closed field F of characteristic zero,and if S is a finite subset of F such that f −1(S )=g −1(S ),counting multiplicity,then either f ≡g or there exist constants A and B,A =0,such that g =Af +B and S =AS +B.Proof.Let S ={s 1,...,s n }and let P (X )=(X −s 1)···(X −s n ).Then,P (f )and P (g )are polynomials with the same zeros,counting multiplic-ity by the assumption f −1(S )=g −1(S ).Thus,P (f )/P (g )is some non-zero con-stant C,and if we set F (X,Y )=P (X )−CP (Y ),we have F (f,g )=0.Thus,z →(f (z ),g (z ))is a rational component of the possibly reducible algebraic curve F (X,Y )=0.Because F (X,Y )=0has n distinct smooth points at infinity in P 2(characteristic zero!)and because (f (z ),g (z ))has only one point at infinity,(f (z ),g (z ))must in fact be a linear component of F (X,Y )=0.2Boutabaa,Escassut,and Haddad also made a preliminary analysis of the p -adic entire analog of their theorem,and solved the case when the cardinality of S equals three completely.C.-C.Yang and I,[CYa],combined Berkovich’s Picard theorem with their argument to complete the p -adic entire case.Theorem 5.5.(Cherry and Yang)If f and g are p -adic entire functions and S is a finite subset of C p such that f −1(S )=g −1(S ),counting multiplicity,thenthere exist constants A and B,with A =0,such that g =Af +B,and S =AS +B.Proof.Again,setP (X )=(X −s 1)···(X −s n ).Again,P (f )/P (g )is a constant C =0.Again,set F (X,Y )=F (X )−CF (Y ).By Berkovich’s p-Adic Picard Theorem,(f (z ),g (z ))is contained in a rational compo-nent of F (X,Y )=0.Thus,there exist rational functions u and v,and a p -adic entire function h,such that f =u (h )and g =v (h ).It is then easy to see that u and v must in fact be polynomials,and we are then back to the polynomial case,thinking of h as a variable.2TOPICS IN p-ADIC FUNCTION THEORY76.Concluding RemarksIn many respect,it appears that algebraic geometry,rather than complex Nevan-linna theory,is the appropriate model for p-adic value distribution theory.At least, that is what I hope this survey has conveyed to the reader.This leads me to a gen-eral principle.Principle6.1.Appropriately stated theorems about the value distribution of poly-nomials should also be true for p-adic entire functions.Similarly,theorems for rational functions should also be true for p-adic meromorphic functions.Conjecture4.2is a special case of this principle.With some luck,solving a p-adic problem based on the above principle might help us better understand complex Nevanlinna theory.For example,it would be reasonable to make the following conjecture.Conjecture6.2.If f:C p→X is a p-adic analytic map to a K3surface X,the the image of f must be contained in a rational curve.This conjecture can be thought of as a special case of a p-adic version of the Green-Griffiths conjecture[GG]that says a holomorphic curve in a smooth pro-jective variety of general type must be algebraically degenerate.One might hope to attack Conjecture6.2since much is known about K3surfaces and they have a close connection to Abelian varieties.It might also be thatfinding a proof for Conjecture6.2would shed some light on an attack of the general Green-Griffiths conjecture over the complex numbers.References[AS]W.Adams and E.Straus,Non-Archimedian analytic functions taking the same values at the same points,Illinois J.Math.15(1971),418–424.[Am]Y.Amice,Les nombres p-adiques,Presses Universitaires de France,1975.[Ber]V.Berkovich,Spectral Theory and Analytic Geometry over Non-Archimedean Fields, AMS Surveys and Mographs33,1990.[Ber2]V.Berkovich,Etale cohomology for non-Archimedean analytic spaces,Inst.Hautes Etudes Sci.Publ.Math.78(1993),5–161.[BGR]S.Bosch,U.G¨u ntzer and R.Remmert,Non-Archimedean Analysis,Springer-Verlag, 1984.[BL1]S.Bosch and W.L¨u tkebohmert,Stable Reduction and Uniformization of Abelian Vari-eties I,Math.Ann.270(1985),349–379.[BL2]S.Bosch and W.L¨u tkebohmert,Stable Reduction and Uniformization of Abelian Vari-eties II,Invent.Math.78(1984),257–297.[Bo1] A.Boutabaa,Theorie de Nevanlinna p-Adique,Manuscripta Math.67(1990),251–269. [Bo2] A.Boutabaa,Sur la th´e orie de Nevanlinna p-adique,Th´e se de Doctorat,Universit´e Paris 7,1991.[Bo3] A.Boutabaa,Applications de la theorie de Nevanlinna p-adique,Collect.Math.42 (1991),75–93.[Bo4] A.Boutabaa,Sur les courbes holomorphes p-adiques,Annales de la Facult´e des Sciences de Toulouse V(1996),29–52.[BEH] A.Boutabaa,A.Escassut,and L.Haddad,On uniqueness of p-adic entire functions, Indag.Math.(N.S.)8(1997),145–155.[Ch1]W.Cherry,Hyperbolic p-Adic Analytic Spaces,Ph.D.Thesis,Yale University,1993. [Ch2]W.Cherry,Non-Archimedean analytic curves in Abelian varieties,Math.Ann.300 (1994),393–404.[Ch3]W.Cherry,A non-Archimedean analogue of the Kobayashi semi-distance and its non-degeneracy on abelian varieties,Illinois J.Math.40(1996),123–140.8WILLIAM CHERRY[CYa]W.Cherry and C.-C.Yang,Uniqueness of non-Archimedean entire functions sharing sets of values counting multiplicity,Proc.Amer.Math.Soc.,to appear.[CYe]W.Cherry and Z.Ye,Non-Archimedean Nevanlinna theory in several variables and the non-Archimedean Nevanlinna inverse problem,Trans.Amer.Math.Soc.349(1997), 5043–5071.[Co1] C.Corrales-Rodrig´a˜n ez,Nevanlinna Theory in the p-Adic Plane,Ph.D.Thesis,Univer-sity of Michigan,1986.[Co2] C.Corrales-Rodrig´a˜n ez,Nevanlinna Theory on the p-Adic Plane,Annales Polonici Math-ematici L VII(1992),135–147.[DM]P.Deligne and D.Mumford,The irreducibility of the space of curves of given genus,Inst.Hautes Etudes Sci.Publ.Math.No.36(1969),75–109.[GG]M.Green and P.Griffiths,Two applications of algebraic geometry to entire holomorphic mappings,The Chern Symposium1979(Proc.Internat.Sympos.,Berkeley,Calif.,1979), Springer-Verlag1980,41–74.[H`a1]H`a Huy Kho´a i,On p-Adic Meromorphic Functions,Duke Math.J.50(1983),695–711. [H`a2]H`a Huy Kho´a i,La hauteur des fonctions holomorphes p-adiques de plusieurs variables,C.R.Acad.Sci.Paris S´e r.I Math.312(1991),751–754.[HMa]H`a Huy Kho´a i and Mai Van Tu,p-Adic Nevanlinna-Cartan Theorem,Internat.J.Math.6(1995),719–731.[HMy]H`a Huy Kho´a i and My Vinh Quang,On p-adic Nevanlinna Theory,in Lecture Notes in Mathematics1351,Springer-Verlag1988,146–158.[Ne]R.Nevanlinna,Le th´e or`e me de Picard-Borel et la th´e orie des fonctions m´e romorphes, Paris,1929.Department of Mathematics,P.O.Box305118,University of North Texas,Denton, TX76203-5118,USAE-mail address:wcherry@。
高等数学专业词汇英汉对照表
Advanced Mathematical Vocabulary 高等数学数学词汇英汉对照表A BC DE FG HI JK LM NO PQ RS TU VW XY ZMathematical sentence patterns( 快速查找请点击字母链接或PDF书签)Aabscissa, X-coordinate 横坐标absolute value 绝对值absolute convergence 绝对收敛acceleration 加速度accumulating point 聚点accuracy 精度addition, add, sum, summation 和,求和,加法adjugate matrix 转置伴随阵algebra 代数algorithm 算法angle 角antiderivative, primitive function 反导数,原函数approach 趋近arc 弧area of a plane region 平面图形的面积area of a plane region bounded by curves 由曲面围成的平面图形的面积area of surface 曲面面积assume, assumption 假设asteroid 星形线asymptote 渐近线x-axis, y-axis x轴,y轴auxiliary equation, characteristic equation 辅助方程,特征方程Bbasis 基boundary 边界bounded by 被…所围成boundedness 有界性Ccalculus 微积分cardioid 心脏线center of gravity 重心center of mass 质心centroid 形心chain rule 链式法则characteristic root 特征根chord 弦circle 圆coefficient 系数cofactor 代数余子式column 列,elementary column transformation (operation) 初等列变换combination 组合comparison test 比较判别法complex number 复数composition of functions 复合函数concave, concavity 凹,凹性condition 条件,conditionally convergent 条件收敛confidence interval 置信区间cone 锥面conjugate 共轭conjugate complex number 共轭复数conjugate curve 共轭曲线consistent 相容constant 常数continuous 连续的contour, level line 等值线,等高线contradiction 矛盾,by contradiction 反证法convergence, convergent 收敛,convergence test 收敛性判别法convex, convexity 凸,凸性coordinate system 坐标系,rectangular/cylindrical/spherical coordinate system 直角/柱面/球面坐标系,polar coordinate system 极坐标系coordinates of vector 向量的坐标corollary 推论Cramer’s Rule 克拉默法则cross product (or outer product, vector product) 叉积(或外积、向量积)cumulant 积累量cumulant generating function 积累量母函数curve 曲面cylinder 柱面D(is) defined to be 定义为definite integral 定积分definite integral with variable upper limit 积分上限函数definition 定义denominator 分母denote, denote to be, denoted by 表示为dependent variable 因变量derivative 导数determinant 行列式diagonal 对角线,diagonalization of a marix 矩阵的对角化diameter 直径dimension 维,维数directional angle 方向角directional cosines 方向余弦discrete 离散的disk 圆盘,圆盘闭区域divergent, divergence 发散displacement 位移first/second/nth derivative 一阶/二阶/n阶导数right-hand (left-hand) derivative 右(左)导数difference, subtraction, subtract 差,减法,相减differentiable 可倒的,可微的differential 微分,differential calculus 微分学discontinuity 间断,point of discontinuity 间断点distribution 分布(cumulative) distribution 分布normal distribution 正态分布Bernoulli distribution 伯努利分布binomial distribution 二项分布Poisson distribution 泊松分布negative binomial distribution 负二项分布geometric distribution 几何分布hypergeometric distribution 超几何分布uniform distribution 均匀分布exponential distribution 指数分布Gamma distribution 伽马分布Weibull distribution 韦伯尔分布lognormal distribution 对数正态分布chi-distribution 卡方分布student t-distribution 学生t分布F-distribution F分布division, divide, quotient 除法,相除,商domain, natural domain 定义域,自然定义域dot product (or inner product, scalar product) 点积(或内积、数量积)double product 二重积分Eeigenvalue, eigenvector 特征值,特征向量element 元素elementary transformation 初等变换ellipse 椭圆ellipsoid 椭球面elliptic cylinder 椭圆柱面entry 向量的分量,元素equal, be equal to 相等,equation 等式equilibrium 平衡even function 偶函数exclusive 互斥的mutually exclusive 完全互斥expansion 展开式expectation (expected value) 期望exponential function 指数函数expression 表达式,express y in terms of x 将y表示为x的一个式子exterior point 外点absolute/global extreme values 最大最小值relative/local extreme values 极值Ffactorial 阶乘find, compute, evaluate 计算first-order linear differential equation 一阶线性微分方程first-order separable differential equation 一阶可分离变量微分方程focus 焦点formula 公式fraction 分数proper fraction, 真分数,improper fraction 假分数function 函数function determined implicitly by equation 由方程确定的隐函数function determined by parametric equation 由参数方程确定的函数Foundation Theorem of Calculus 微积分基本定理fundamental solution基础解GGauss-Jordan Elimination 高斯-若尔当消元法general equation of a plane 平面的一般式方程general solution 通解generator 分母geometry 几何geometric meaning (interpretation, significance) of derivative 导数的几何意义given 给定,设gradient 梯度gradient vector 梯度向量graph of a function 函数图像gravitational force 引力Hhemisphere 半球面homogeneous equation 齐次方程horizontal 水平horizontal asymptote 水平渐近线hydrostatic force 水压力hyperbola 双曲线hyperbolic cylinder 双曲柱面hyperboloid 双曲面hyperboloid of one sheet 单页双曲面hypothesis 假设、题设hypothesis testing 假设检验Iidentity 恒等式imaginary part 虚部improper integral 反常积分increment 增量indefinite integral 不定积分independent variable 自变量indeterminate form 未定式index 指标inequality 不等式infinitesimal 无穷小量infinitesimal of higher order 高阶无穷小equivalent of infinitesimals 等价无穷小inflection point 拐点initial-value problem 初值问题integer 整数positive (negative) integer 正(负)整数integral 积分integral calculus 积分学integrating factor 积分因子Lebesgue integral 勒贝格积分Riemann integral 黎曼积分integrable 可积的integrable with variable upper limit 积分上限函数integrand 被积函数integration by parts 分部积分法integration by substitution 换元积分法integration curve 积分曲线intercept 截距,x-intercept x轴上的截距interior point 内点Intermediate value Theorem 介值定理intersect 相交intersection 交集interval 区间closed (open) interval 闭(开)区间interval of convergence 收敛区间inverse 反、逆inverse function 反函数inverse matrix 逆矩阵inverse trigonometric function 反三角函数inversely proportional to 反比与irrational number 无理数iterated integral 累次积分iteration 秩代JJacobian matrix 雅各比矩阵Llaminar 平面薄片Law of Parallelogram 平行四边形法则lemma 引理length of an arc 弧长let 设、令limit 极限right-hand (left-hand) limit 右(左)极限the limit of a sequence 数列极限the limit of f(x) as x approaches x0当x趋近于x0时f(x)的极限the limit of f(x) as x approaches infinity 当趋近与无穷大时f(x)的极限line integral 曲线积分line segment 线段linear algebra 线性代数linear approximation 线性逼近linear combination 线性组合linear function 线性函数linear operations 线性运算linearly dependent (independent) 线性相关/无关logarithmic differentiation 对数求导法logarithmic function 对数函数lower limit 积分下限Mmapping 映射mathematics induction 数学归纳法matrix, matrics 矩阵block matrix 分块阵diagonal matrix对角阵elementary matrix 初等矩阵identity matrix 单位矩阵unit matrix 单位矩阵invertible matrix 可逆矩阵singular matrix 奇异阵,降秩阵non-degenerate matrix 非退化阵scalar matrix数量阵square matrix 方阵orthogonal matrix 正交阵symmetric matrix 对称阵skew-symmetric matrix 反对称阵full rank matrix 满秩阵maximum 最大值maximal linearly independent subset 最大线性无关组mean value theorem 中值定理median 中位数minimum 最小值mixed product, box product 混合积mode 众数moment 矩量moment matrix 矩量矩阵moment generating function 矩量母函数moment of a force 力矩moment of inertia about x-axis 关于x轴的转动惯量monotonely decrease 单调减少monotonely increase 单调增加monotonicity 单调性multiplication, multiple, product 积,乘法,相乘multivariable function 多元函数Nnatural number 自然数natural domain 自然定义域necessary condition 必要条件neighborhood 邻域deleted neighborhood 去心邻域nontrivial solution 非平凡解norm 范数normal line 法线normal plane 法平面normal vector 法向量notation 记号numerator 分子Oodd function 奇函数order 次序/阶/导数的阶/矩阵的阶/行列式的阶operation 运算optimization 最优化order-reducible differential equation 可降阶微分方程ordinary differential equation (ODE) 常微分方程ordinate, y-coordinate 纵坐标orthogonal 正交的orthogonal basis 正交基orthonormal basis 规范正交基oscillatory 振动的Pparabola 抛物线parabolic cylinder 抛物柱面paraboloid 抛物面parallel to 平行于parallelogram 平行四边形parameter 参数parametric equations of a line 直线的参数方程parity of a function 函数的奇偶性partial derivative 偏导数first partial derivative 一阶偏导数mixed higher partial derivative 高阶混合偏导数part 部分integration by parts 分部积分法partial differential equation (PDE) 偏微分方程partial fraction decomposition 部分分式分解partial sum sequence 部分和数列particular solution 特解pencil of planes 平面束period of a function 函数的周期periodic function 周期函数permutation 排列perpendicular to 垂直于plane 平面plane region 平面图形plane rectangular coordinate system 平面直角坐标系plane analytic geometry 平面解析几何point 点common point 公共点,交点point-normal equation of a plane 平面的点法式方程polar coordinate system 极坐标系polygon 多边形polynomial function 多项式函数position function 位置函数power 乘幂power function 幂函数power series 幂级数probability 概率probability density function 概率密度函数probability generating function 概率母函数probability mass function 概率质量函数problem, question 问题product 乘积projection 投影proof, prove 证明properties 性质proportional to 正比于inversely proportional to 反比与proposition 命题pyramid 棱锥Qquadratic 二次的,二次quadrature 积分过程,正交的quadric surfaces 二次曲面quality 质量quantity 数量quotient 商Rradian 弧度radius 半径random variable 随机变量rank of a matrix 矩阵的秩range 值域the rate of change of y with respect to x y关于x的变化率rational function 有理函数rational number 有理数ratio test 比值判别法real number 实数rectangle 矩形regression 回归linear regression 线性回归related rate of change 相关变化率right circular cylinder 圆柱面right-hand coordinate system 右手坐标系root-extract 开根root of an equation 方程的根root test 根值判别法rose of three loops 三叶玫瑰线row 行elementary row transformation (operation) 初等行变换Ssaddle 马鞍面sample 样本scalar 数量,标量secant 正割secant line 割线second-order homogeneous linear equation with constant coefficient二阶常系数齐次微分方程second-order nonhomogeneous linear equation with constant coefficient二阶常系数非齐次微分方程sequence 数列series 级数infinite series 无穷级数Taylor series (expansion) 泰勒公式set 集合show 证明single variable function 一元函数slope 斜率space 空间vector space 向量空间linear space 线性空间space analytic geometry 空间解析几何2D(Dimension) space 二维空间space rectangular coordinate system 空间直角坐标系squeeze rule 夹逼准则solid 立体solid of revolution 旋转体solution, solve 解general solution 通解particular solution 特解speed 速率span 生成,张成sphere 球面standard deviation (std) 标准差state 叙述stationary point 驻点stochastic 随机的stochastic differential equation (SDE) 随机微分方程straight line 直线subset 子集subspace 子空间substitute, substitution 代入,置换integration by substitute 换元积分法sufficient condition 充分条件sum, summation 和,求和sum of a series 级数的和suppose, supposition 假设surface integral 曲面积分symbol 符号symmetry, symmetric 对称symmetric equations of a line 直线的对称式方程system of equations 方程组system of linear equations 线性方程组Ttangent 正切tangent line 切线tangent plane 切面theorem 定理transformation 变换translation 平移trajectory 轨迹trapezoid 梯形triangle 三角形trigonometric function 三角函数hyperbolic trigonometric function 双曲三角函数triple integral 三重积分total differential 全微分total increment 全增量Uunbiased 无偏的union 全集unit vector 单位向量unknown 未知数upper limit 积分上限Vvalue 值variable 变量,可变的variance 方差vector 向量n-dimensional vector N维向量velocity 速度verify 证明vertex 顶点(复数vertices)vertical 验证vertical asymptote 铅直渐近线volume of a solid 立体体积the volume of a solid of revolution 旋转体的体积Wthe work done by a force 某力所做的功Zzero 零zeros of a polynomial 多项式的零点Mathematical Sentence Patterns 1.If ……, (then) ……(若设……,则有……)2.Let ……, then ……. Therefore ……, so ……(令……,则……;于是……,因此……)3.By ……, we have ……(根据……,可得……)4.Prove (that) ……(证明……)pute that ……(计算……)6.Given ……, find ……(设……,证明……)7.Solve the equation for y in terms of x(将方程中的y关于x解出来)8.Since ……, (we have, it follows that) ……(因为……,所以可推得……)9.Assume (suppose) that ……, then ……. Hence, ……(假设……,则有……;因此…… )10.By hypothesis ……, hence ……, and therefore ……(根据题设……,可得……,因此……)11.The above results imply that ……(根据上述结果可得……)12.When ……, ……becomes ……(当……时,……变为……)13.Similarly ……(相似的/同理可得……)14.In general ……(一般的……)15.Specially ……(特别的……)16.Without loss of generality, we assume that……(不失一般性,可设……)17.Substitute a for x in (*), we obtain……(在(*)中用a代替x,可得……)。
表面增强拉曼散射纳米指状物加热
专利名称:表面增强拉曼散射纳米指状物加热
专利类型:发明专利
发明人:葛宁,A·罗加奇,V·什科尔尼科夫,A·格维亚迪诺夫申请号:CN201680079720.9
申请日:20160420
公开号:CN108603840B
公开日:
20220125
专利内容由知识产权出版社提供
摘要:表面增强拉曼散射(SERS)传感器可以包括基底、具有通过间隙与第二部分隔开的第一部分的导电层、与该导电层的第一部分和第二部分接触并在其间延伸以形成跨越该间隙的电阻桥的电阻层、和由该桥向上延伸的多个纳米指状物,所述电阻层响应跨越该桥由第一部分流向第二部分的电流加热该纳米指状物。
申请人:惠普发展公司,有限责任合伙企业
地址:美国德克萨斯州
国籍:US
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
黎曼曲面论课程
geometry and number theory. It is an extremely useful part of mathematics.
1.6 单值化定理之二(3学时)
完成单值化定理的证明。
二、Riemann-Roch 定理
2.1 留数公式 (3学时)
给出留数的定义,证明留数公式,给出简单应用;引入因子(divisor)的概念,证明其基本性质。
2.2 Hodge 定理 (3学时)
引入调和形式、解析亏格等概念,描述 Hodge 定理,用 Hodge 定理找黎曼曲面上的亚纯微分。最后给出
黎曼曲面论课程详细信息
课程号
00113190
学分
3
英文名称
Riemann Surfaces
先修课程
中文简介
中文简介:黎曼曲面的理论在数学中的地位十分特别。它为许多重要的领域,比如分析,拓扑,复几何,代数几何,
数论等提供了试验场,属于数学中极为有用的部分。
在本入门课程中,我们着重讨论三方面的课题,即单值化定理,Riemann-Roch 定理以及模形式。在第一部分中,我
们发展解析方面的技巧以给出单连通黎曼曲面的分类。在第二部分中我们证明本课程的中心定理,即 Riemann-Roch
公式,同时也证明重要的 Hodge 定理。在第三部分,我们介绍椭圆曲线,椭圆函数与模形式,并且讨论若干算术应用。
英文简介
英文简介:The theory of Riemann surfaces plays a very special role in mathematics. It provides
美国大学本科数学专业的必修课及教...
美国大学本科数学专业的必修课及教材(Required courses and materials for undergraduate mathematics in the United States)What are the required courses and teaching materials for undergraduate math majors in the United States? Questioner: 2008-10-18 22:01 _ blue shadow mourning drunk, | reward points: 100 | Views: 2387I'm going to America next year undergraduate mathematics, professional choice, now want to own a preview, hope to understand the required curriculum in the United States about 40 of university mathematics and the use of the teaching materials are (what is the most important about mathematics curriculum) hope that good hearted people tell me, thank you...2008-10-31 19:10 satisfied answer American undergraduate mathematics, Graduate basic curriculum reference bookFirst academic yearGeometry and topology:1, James, R., Munkres, Topology: the new topology of teaching materials for undergraduate senior or graduate freshmen;2, Basic, Topology, by, Armstrong: Undergraduate topology textbooks;3, Kelley, General, Topology: the classic textbook of general topology, but the older point of view;4, Willard, General, Topology: new classical textbook of general topology;5, Glen, Bredon, Topology, and, geometry: Graduate freshmen topology and geometry textbooks;6, Introduction, to, Topological,, Manifolds, by, John, M., Lee: Graduate freshman topology and geometry textbook, is a new book;7, From, calculus, to, cohomology, by, Madsen: good undergraduate algebra topology and differential manifold teaching materials.Algebra:1, Abstract, Algebra, Dummit: the best undergraduate algebra reference books, standard graduate students, first-year algebra textbooks;2, Algebra Lang: standard graduate student, grade one or two algebra teaching material, very difficult, suitable for reference books;3, Algebra, Hungerford: standard graduate freshmen algebra textbooks, suitable for reference books;4, Algebra, M, Artin: standard undergraduate algebra textbooks;5, Advanced, Modern, Algebra, by, Rotman: newer graduatealgebra textbooks, very comprehensive;6, Algebra:a, graduate, course, by, Isaacs: newer graduate algebra textbooks;7, Basic, algebra, Vol, I&II, by, Jacobson: classical algebra comprehensive reference book, suitable for graduate reference.Analysis basis:1, Walter, Rudin, Principles, of, mathematical, analysis: standard reference books for undergraduate mathematical analysis;2, Walter, Rudin, Real, and, complex, analysis: standard graduate freshmen analysis textbooks;3, Lars, V., Ahlfors, Complex, analysis: senior undergraduate and graduate students in the first grade classic analysis of teaching materials;4, Functions, of, One, Complex, Variable, I, J.B.Conway: graduate level single variable complex analysis classic;5, Lang, Complex, analysis: graduate level single variable complex analysis reference book;6, Complex, Analysis, by, Elias, M., Stein: newer graduate level single variable complex analysis textbooks;7, Lang, Real, and, Functional, analysis: graduate levelanalytical reference books;8, Royden, Real, analysis: standard graduate students in the first year of the actual analysis of teaching materials;9, Folland, Real, analysis: standard graduate students in the first year of the actual analysis of teaching materials.Second academic yearAlgebra:1, Commutative, ring, theory, by, H., Matsumura: newer graduate exchange algebra standard textbook;2, Commutative, Algebra, I&II, by, Oscar, Zariski, Pierre, Samuel: classical commutative algebra reference book;3, An, introduction, to, Commutative, Algebra, by, Atiyah: standard introductory textbook on commutative algebra;4, An, introduction, to, homological, algebra, by, Weibel: newer graduate students' two year coherence algebra textbooks;5, A, Course, in, Homological, Algebra, by, P.J.Hilton, U.Stammbach: classical and comprehensive homological algebra reference book;6, Homological, Algebra, by, Cartan: classical homological algebra reference books;7, Methods, of, Homological, Algebra, by, Sergei, I., Gelfand, Yuri, I., Manin: advanced and classical homological algebra reference books;8, Homology, by, Saunders, Mac, Lane: an introduction to the classical homological algebra system;9, Commutative, Algebra, with, a,, view, toward, Algebraic, Geometry, by, Eisenbud: Advanced Algebra geometry, commutative algebra reference book, the latest exchange algebra comprehensive reference.Algebraic topology:1, Algebraic, Topology, A., Hatcher: the latest graduate algebra topology standard textbook;2, Spaniers, "Algebraic, Topology": classical algebraic topology reference book;3, Differential, forms, in, algebraic, topology, by, Raoul, Bott, and, Tu, Loring, W.: Graduate algebra topology standard textbook;4, Massey, A, basic, course, in, Algebraic, topology: classical graduate algebra topology textbooks;5, Fulton, Algebraic, topology:a, first, course: very good algebra algebra reference for freshmen and graduate students in their freshman year;6, Glen, Bredon, Topology, and, geometry: standard graduate algebra topology textbooks, there is a considerable space to talk about smooth manifolds;7, Algebraic, Topology, Homology, and, Homotopy: advanced and classical algebraic topological reference books;8, A, Concise, Course, in,, Algebraic, Topology, by, J.P.May: Graduate algebra topology introductory materials, covering a wide range;9, Elements, of, Homotopy, Theory, by, G.W., Whitehead: advanced and classical algebraic topological reference books.Real analysis and functional analysis:1, Royden, Real, analysis: standard graduate analysis textbooks;2, Walter, Rudin, Real, and, complex, analysis: standard graduate analysis textbooks;3, Halmos, "Measure Theory": Classic graduate analysis of teaching materials, suitable for reference books;4, Walter, Rudin, Functional, analysis: standard graduate functional analysis textbooks;5, Conway, A, course, of, Functional, analysis: standard graduate functional analysis textbooks; 6, Folland, Real,analysis: standard graduate student analysis of teaching materials;7, Functional, Analysis, by, Lax: advanced graduate functional analysis textbooks;8, Functional, Analysis, by, Yoshida: advanced graduate functional analysis reference book;9, Measure, Theory, Donald, L., Cohn: classical measurement theory reference book.Differential topology Li Qun and Lie algebra1, Hirsch, Differential, topology: standard graduate differential topology textbooks, quite difficult;2, Lang, Differential, and, Riemannian, manifolds: graduate reference books of Differential Manifolds, higher difficulty;3, Warner, Foundations, of, Differentiable, manifolds, and, Lie, groups: standard graduate Differential Manifolds teaching materials, there is considerable space about Li Qun;4, Representation, theory:, a, first, course, by, W., Fulton, and, J., Harris: Li Qun and its representation standards;5, Lie, groups, and, algebraic, groups, by, A., L., Onishchik, E., B., Vinberg: Li Qun's reference book;6, Lectures, on, Lie, Groups, W.Y.Hsiang: Li Qun's referencebook;7, Introduction, to, Smooth, Manifolds, by, John, M., Lee: the newer standard textbook on smooth manifolds;8, Lie, Groups, Lie, Algebras, and, Their, Representation, by, V.S., Varadarajan: the most important reference book of Li Qun and Li algebra;9, Humphreys,李代数及其表示理论,介绍SpringerVerlag,gtm9:标准的李代数入门教材。
On symmetries of constant mean curvature surfaces
ar X i v:d g -g a /9603007v 2 19 M a r 1996dg-ga/9603007March 19,1996On symmetries of constant mean curvature surfacesJ.Dorfmeister ∗Department of MathematicsUniversity of Kansas Lawrence,KS 66045G.Haak †Fachbereich MathematikTU Berlin D-10623Berlin1IntroductionThe goal of this note is to start the investigation of conformal CMC-immersions Ψ:D →C ,which allow for groups of spatial symmetriesAutΨ(D )={˜Tproper Euclidean motion of R 3with nonzero mean curvature,such that Φ◦π=Ψ.Then we consider the groupsAut D ={g :D →D biholomorphic },Aut M ={g :M →M biholomorphic },Aut πD ={g ∈Aut D|there exists ˆg ∈Aut M :π◦g =ˆg ◦π},Aut ΦM ={ˆg ∈Aut M |there exists ˜T ∈AutΨ(D ):Φ◦ˆg =˜T◦Φ},andAut ΨD ={g ∈Aut D|there exists ˜T∈AutΨ(D ):Ψ◦g =˜T ◦Ψ}.There are many well known examples of CMC-surfaces with large spatial symmetry groups.Theclassic Delaunay surfaces (see [8])have a nondiscrete group AutΨ(D )containing the group of all rotations around their generating axis.Other examples are the Smyth surfaces [19],which were visualized by D.Lerner,I.Sterling,C.Gunn and U.Pinkall.These surfaces have an m +2-fold rotational symmetry inR 3.To get an immersion Ψof a simply connected domain D into∗partiallysupported by NSF Grant DMS-9205293and Deutsche Forschungsgemeinschaft †supportedby KITCS grant OSR-9255223and Sonderforschungsbereich 288To this end we investigate the relation between these groups.This is done in Chapter2.Afterdefining in Section2.1,what we mean by a CMC-immersions(M,Φ),we start in Section2.3by listing some well known properties of the groups Aut M,Aut D,AutπD.These follow entirely from the underlying Riemannian structure of M and D.Afterfixing the conventions for conformal CMC-immersions in Section2.4we derive in Section2.6the transformation properties of the metric and the Hopf differential under an automorphism in AutΨD.These will lead in Section2.7to some general restrictions on AutΨD in the case D=R3,for whichφis an isomorphism of Lie groups.In Sections2.12 and2.13we will investigate,for which complete CMC-surfaces the group AutΨD is nondiscrete.To this end we give a simple condition on the imageΨ(D)ofΨunder which the group AutΨ(D)is a closed Lie subgroup of OAff(R3)the group of proper(i.e.,orientation preserving)Euclidean motions of2Automorphisms of CMC-surfaces2.1Before we can start the investigation of CMC-immersions(M,Φ)we have to define,what we mean by a CMC-immersion,if M is not a domain inR3be an immersion of type C2.Φis called a CMC-immersion,if there exists an atlas of M,s.t.every chart(U,ϕ)in this atlas defines a C2-surfaceΦ◦ϕ−1:ϕ(U)→R3,s.t.(M,Φ)is a CMC-immersion.Then there exists an atlas of M,s.t.the mean curvature is globally constant.In particular,M can be oriented and the mean curvature depends only on the chosen orientation of M.Proof:R3defines a C2-surface of constant mean curvature Hα=0.By changing,if necessary,the orientation of the surfacesΦ◦ϕ−1α,we can assume that Hα>0for allα∈I.Let Uαand Uβ,α=β,be s.t.Uα∩Uβ={}.Then,on Uα∩Uβ,Φ◦ϕ−1αandΦ◦ϕ−1βdefine two surfaces which differ only by a C2-reparametrizationϕβ◦ϕ−1α.The absolute value of the mean curvature is independent of reparametrizations.Since Hαand Hβare positive,we get Hα=Hβandϕβ◦ϕ−1αhas positive Jacobian.From this it follows that M is orientable.Since M is also connected,we get that all Hαcoincide.Therefore,the mean curvature defined by A on M is globally constant.By the arguments above,for a chosen orientation on M,the absolute value of the mean curvature H is constant on M and does not depend on the chosen atlas,as long as this atlas defines the same orientation.Changing the orientation of the atlas changes the sign of H,whichfinishes the proof. 22.2We will not work with the fairly general Definition2.1.Instead we use Lichtenstein’s theorem to turn M into a Riemann surface(see also[21,Theorem5.13])andΦinto a conformal immersion. Theorem:Let(M,Φ)be a CMC-immersion.Then there exists a conformal structure on M,s.t. M becomes a Riemann surface andΦbecomes a conformal CMC-immersion.Proof:R2,s.t.Φ◦ϕ−1α◦qαis a conformal parametrization of the surface defined byΦ◦ϕ−1α.Then {(Uα,˜ϕα=q−1α◦ϕα),α∈I}defines an atlas on M,for which every transfer function is holomorphic, whichfinishes the proof.2 In this paper we will therefore restrict ourselves to conformal CMC-immersionsΦ:M→C P1∼=C and the upper half plane∆={z∈conformally equivalent to the open unit disk.Each of these surfaces is equipped with its standard complex structure.For convenience of language we will not distinguish between Fuchsian groups(as in the case of D=∆)and elementary groups(as in the case of D=C P1,thenΓis trivial and M is the sphere.c)If D=R.It is not possible to reach the boundary of a complete manifold by going along a curve offinite length.We are interested in orientation preserving isometries of the surface onto itself.They are automati-cally biholomorphic automorphisms,but may havefixed points.We consider the commutative diagram¡¡¡¡e e e e M R 3ΨΦDπ(2.4.1)where M is a Riemann surface and Φis a CMC-immersion of M .Moreover,πis the universal covering map of M and Ψ=Φ◦π.Remember,that we always assume,that Φand therefore also Ψis a conformal immersion.We would like to remind the reader of the following well known result (see e.g.the Appendix of [3]):Theorem:Let Ψ:D ⊂R 3be a conformal immersion with metricd s 2=1z ):D →C byE = Ψzz ,N(2.4.3)where ·,· is the standard scalar product inz z |(2.4.4)is the Gaußmap of (D ,Ψ).Then the second fundamental form of (D ,Ψ)has in real coordinatesx =1z ),y =1z ),the form II =1E )+He ui (E −E )−(E +z ,Nis the mean curvature.The Gauß-Codazzi equations take the formu z2e u H 2−2e −u |E |2=0,(2.4.6)E2e u H z .(2.4.7)The Gaußcurvature is given in terms of u ,E and H byK =H 2−4|E |2e −2u .(2.4.8)From this the following corollary follows immediatelyCorollary:Let D be the open unit disk or the complex plane.1.Let Ψ:D →2e u −2|E |2e −u =0,(2.4.9)where H is the mean curvature.2.Let E d z2be a holomorphic differential on D and u(z,R3with constant mean curvature H,s.t.u and E are given by Eqs.(2.4.2)and(2.4.3), respectively.The conformal immersionΨis unique up to a proper Euclidean transformation. Proof:H2|E|2≡const,of Eq.(2.4.9).As a special case of Corollary2.4we get the Proposition:IfΨ:D→C andΨ(D)is a cylinder of mean curvature H=2e−u|E|.Proof:2e u d z d¯z is complete,we have D=R3and the choice of an orientation of M,H can befixed to any numerical value in2.(2.5.1)Let usfix a CMC-immersion(D,Ψ)with Hopf differential E and let u be defined by Eq.(2.4.2). Then u solves Eq.(2.4.9)for the given E.It is clear,that u still satisfies Eq.(2.4.9)if we replace E byλE,|λ|=1.In this way,by Corollary2.4, we get for everyλ∈S1a CMC-immersionΨλ:D→C to2e u1d z d¯z andd s22=1C toIf g is a conformal automorphism of D,then the metric ofˆΨ=Ψ◦g is given by1LetΨ1andΨ2be two CMC-immersions with the same mean curvature,and let g be a conformal automorphism,s.t.ˆΨ=Ψ1◦g andΨ2have the same metric,i.e.eˆu=e(u1◦g)|g′|2=e u2.Since Ψ1andΨ2have the same mean curvature,g is orientation preserving,i.e.g is a biholomorphic automorphism of D.In addition,since the Gaußcurvature is invariant under isometries,it follows from Eq.(2.4.8)that|(E1◦g)(z)|·|g′(z)|2=|E2(z)|,(2.5.3) i.e.ˆE(z)=(E1◦g)(z)(g′(z))2=E2(z)e iθ(z),whereθ(z):D→C toR3be a CMC-immersion with Hopf differential E d z2and define the function u as in Eq.(2.4.2).Let g∈Aut D.Then the following are equivalent:1.The automorphism g is in IsoΨD.2.The function u transforms under g ase(u◦g)(z,z).(2.5.4) If g∈IsoΨD,then E transforms under g as|(E◦g)(z)|·|g′(z)|2=|E(z)|.(2.5.5)Since in Chapter3we will consider only complete CMC immersions,we also want to state the followingCorollary2:Let(D,Ψ)be a CMC-immersion.If(D,Ψ)is complete(w.r.t.the induced metric), then all elements(D,Ψλ),λ∈S1,of its associated family are complete.If(D,Ψ)is not complete, then no element of its associated family is complete.Proof:R3)to be the group of proper Euclidean motions inR3)into a rotational and a translational part:˜T v=R˜T v+t˜T,v∈AutΦM={ˆg∈Aut M|there exists˜T∈AutΨ(D):Φ◦ˆg=˜T◦Φ},(2.6.3)AutΨD={g∈Aut D|there exists˜T∈AutΨ(D):Ψ◦g=˜T◦Ψ},(2.6.4) andAutΨ(D)={˜T∈OAff(R3be a CMC-immersion with Hopf differential E d z2and define the function u as in Eq.(2.4.2).Let g∈Aut D.Then the following are equivalent:1.The automorphism g is in AutΨD.2.The functions u and E transform under g ase(u◦g)(z,z),(2.6.6)(E◦g)(z)(g′(z))2=E(z).(2.6.7)Proof:R3is also a CMC-immersion.By the definition of u we havee u1(z,z)|g′(z)|2.(2.6.8) Since the Hopf differential is a holomorphic two-form we getE1(z)=(E◦g)(z)(g′(z))2.(2.6.9) We have g∈AutΨD iffΨ1andΨgive the same surface up to a proper Euclidean motion.By the fundamental theorem of surface theory this is the case iffboth surfaces have the samefirst and second fundamental form,which by Eqs.(2.4.2)and(2.4.5)is equivalent to E1=E and u1=u. This,together with Eq.(2.6.8)and Eq.(2.6.9),proves the lemma.2 Corollary:The elements of AutΨD act as self-isometries of(D,Ψ),i.e.AutΨD⊂IsoΨD. Proof:C.Then either E≡0or the group IsoΨD⊂OAff(C and |a|=1.Proof:C,which is of the formg(z)=az+b(2.7.1) with a,b being complex constants and|a|=1.Case I:If b=0then we can,by a biholomorphic change of coordinatesa−1z→˜z=turn g into a scaling with rotation g(˜z)=a˜z.Let us also define˜E:D→(a−1)2E(baz−ba >1we can use thefirst part of the proof again.Case II:If b=0then Eq.(2.5.5)gives directly|E(a n z)|=|a−2n||E(z)|.(2.7.6) We can therefore argue in the same way as in thefirst case.2 The following Lemma will also be important:Lemma:Let(M,Φ)be a complete,nonspherical CMC-surface with conformal covering immersion (D,Ψ)and D=1.Let u be defined by Eq.(2.4.2).W.l.o.g.we can choose the center of the rotation group R as z=0and the translation as g:z→z+1.Then R={rφ|rφ(z)=e iφz,φ∈[0,2π)}.By Eqs.(2.5.4)and(2.5.5)we havee u(z+1)=e u(z),|E(z+1)|=|E(z)|(2.7.7)|e u(e iφz)|=|e u(z)|,|E(rφ(z))|=|E(e iφz)|=|E(z)|(2.7.8) for all z∈R a complex number z r with|z r|=r.Thus,the orbit of this set under R is the whole complex plane. This shows,that R×T acts transitively onR} and R as a rotation around the origin R(z)=e iφwithφ=mπ,m∈Z Z.Let us denote the group generated by R as R.The orbit of the origin z=0under the group R×T contains the straightline{z|z=re iφ,r∈C.As in the proof of thefirst part of the lemma this shows,that E and u are constant and thatΦ(M)is a cylinder.2From the results of this section we can draw the following conclusion for IsoΨ(D),if D=C.Let IsoΨD⊂Aut D be the group of self-isometries of(D,Ψ).1.If IsoΨD contains the one-parameter group R of rotations around afixed point z0∈C.Proof:C.If IsoΨD=R, then there exists g∈IsoΨD s.t.g(z)=az+b with b=0and,by Proposition2.7,|a|=1.If˜g(z)=az, then˜g∈R and(g◦˜g−1)(z)=z+b,i.e.,IsoΨD contains a pure translation.Lemma2.7then shows thatΦ(M)is a cylinder.2.Assume,that IsoΨD contains a one-parameter group T of translations inR,v∈b z+1,s.t.g becomes a rotation around the origin,g(˜z)=a˜z.In the newcoordinates T is still a one-parameter group of pure translations.Its direction in the˜z-plane is given by the vector˜v=a−1C,g(z)=az.Lemma2.7shows,that then either a=−1orΦ(M)is a cylinder.Therefore,ifΦ(M)is not a cylinder,IsoΨD=T×R or IsoΨD=T,where T is a group of translations and T⊂T.By the same argument as in Lemma2.7,for a noncylindrical surface, the orbit of z=0under IsoΨD cannot be the whole complex plane.This shows,that T=T×Q, where Q is a,possibly trivial,discrete group of translations.2Corollary:Let(M,Φ),(C,Ψ).1.If IsoΨC\0and m=0,1,2,...is an integer.2.If IsoΨ1.W.l.o.g.we can choose z0=0.Let R={gϕ∈AutR,we get E(gϕ(z))=e iθE(z), whereθ=θ(ϕ)∈C.Since by assumption E≡0,we have d=0.2.By Corollary2.5,|E|and therefore also the set of zeroes of E,is invariant under the group T. Therefore,since the set of zeroes of a holomorphic function is discrete,E cannot have any zeroes.It can therefore,by a biholomorphic change of coordinates d w2=E(z)d z2,be transformed into E≡1. 2Remark:The immersions considered in the theorem and in the corollary will be investigated in more detail in Section2.15.2.8In the next sections we will investigate some properties of the groups defined in Definition2.6. We begin with the followingLemma:a)Let g∈AutπD andˆg∈Aut M be as in(2.6.2),thenˆg is uniquely defined.b)Letˆg∈AutΦM and˜T∈AutΨ(D)be as in(2.6.3),then˜T is uniquely defined.c)Let g∈AutΨD and˜T∈AutΨ(D)be as in(2.6.4),then˜T is uniquely defined.Proof:R3is determined uniquely by its restriction to an affine two dimensional subspace.If we choose a point z∈M,then for each point p of the affine tangent plane Φ(z)+dΦ(T z M),p=Φ(z)+dΦ(v),we have˜T(p)=Φ(ˆg(z))+(ˆgdΦ)(v).(2.8.1)∗Therefore˜T is uniquely determined.c)Similarly.2 Remark:It actually follows from the proof,that˜T is already determined by the restriction ofˆg to an arbitrary open subset of M.2.9Using Lemma2.8we define the following maps:Definition:¯π:AutπD−→Aut M,¯π:g−→ˆg,(2.9.1) where g andˆg are as in(2.6.2),φ:AutΦM−→OAff(whereˆg and˜T are as in(2.6.3),andψ:AutΨD−→OAff(a)Let g n∈AutΨD be a sequence which converges to g∈Aut D.Then g n converges uniformly on each compact subset of D.In particular,Ψ◦g n=˜T n◦Ψconverges uniformly toΨ◦g on each sufficiently small closed ball around any point z∈D.Therefore,also the differentials converge,whence(˜T n)∗d zΨ=R˜T n d zΨconverges,where we have written˜T n=(R˜T n,t˜T n)as in(2.6.1).Thisimplies,that R˜T nconverges to a rotation R inR3.Altogether,this shows˜T n→˜T=(R,t).But nowΨ◦g n→Ψ◦g=˜T◦Ψ. This shows,that˜T∈AutΨ(D)and g∈AutΨD.The argument for AutΦM is similar.b)We know,that Aut M and Aut D are Lie groups and,by the argument above,we know that AutΨD and AutΦM are closed subgroups of Aut D and Aut M,respectively.Therefore,with the induced topology AutΨD and AutΦM are Lie groups.We show,that in this topology the mapsφandψare continuous,from which analyticity follows[13,Th.II.2.6].Assume g n→g in AutΨD.Then g n converges to g uniformly on each compact subset of D.In particular,Ψ◦g n=˜T n◦Ψconverges uniformly toΨ◦g=˜T◦Ψon each sufficiently small closed ball around any point z∈D.By the proof of Lemma2.8,˜T and˜T n are uniquely determined by the restriction of g and g n to an arbitrary open subset of D.Therefore,˜T n converges to˜T.This shows, thatψis continuous.Forφwe proceed analogously.For¯πthe claim is trivial.2 2.10We will need the followingTheorem:We retain the notation of Section2.6.If M with the metric induced byΦis complete, then for every Euclidean motion˜T∈AutΨ(D)there exists a g∈AutΨD,s.t.Ψ◦g=˜T◦Ψ,i.e.,ψmaps AutΨD onto AutΨ(D).The automorphism g is unique up to multiplication with an element of Kerψ.Proof:R3).In Section2.13we will give a simple condition on(M,Φ),under which AutΨ(D)can be shown to be closed.However,here we are able to conclude:Corollary:If(M,Φ)is complete,thenψ:AutΨD→AutΨ(D)is surjective.In particular, AutΨ(D)∼=AutΨD/Kerψis a Lie group.Theorem2.10and Corollary2.10have well known equivalents for the mapπ.The arguments leading to Eq.(2.3.4)prove the followingProposition:Let M be a Riemann surface with simply connected coverπ:D→M.With the notation as above we have:a)For everyˆg∈Aut M there exists a g∈AutπD,s.t.π◦g=ˆg◦π.b)The map¯π:AutπD→Aut M is surjective.2.11We want to investigate,how the groups defined in Section2.6are related to each other by the maps¯π,φandψ.For every g∈¯π−1(AutΦM)we haveΨ◦g=Φ◦π◦g=Φ◦¯π(g)◦π=φ(¯π(g))◦Ψ,(2.11.1) hence¯π−1(AutΦM)⊂AutΨD(2.11.2) andψ=φ◦¯πon¯π−1(AutΦM).For g∈Ker¯πwe haveΨ◦g=Φ◦π◦g=Φ◦π=Ψ.Therefore,Ker¯π⊂Kerψ.(2.11.3) We also recall,that Ker¯π=Γ,the Fuchsian group of M.Lemma:Let(M,Φ)be a CMC-immersion with Kerψ=Ker¯π.Then the following holds:a)(¯π)−1(AutΦM)=AutΨD.b)φ:AutΦM−→AutΨ(D)is an injective group homomorphism.If,in addition,(M,Φ)is complete,then:c)The action of˜T∈AutΨ(D)can be lifted to an action on M,i.e.,φis surjective.d)φ:AutΦM→AutΨ(D)is a group isomorphism.Proof:Proposition:a)Ker ψis a discrete subgroup of Aut ΨD and acts freely and discontinuously on D .b)M ′=Ker ψ\D is a Riemann surface.c)Let π′:D →M ′denote the natural projection.Then there exists an immersion Φ′of M ′intoEqq DI M ′=Ker ψ\DΦ′c(2.11.5)d)For the CMC-immersion (M ′,Φ′)as above we define ¯π′and φ′as in Section 2.9.ThenKer¯π′=Ker ψ.(2.11.6)Proof:R 3)is a continuous homomorphism of Lie groups,Ker ψis,with the induced topology,a Lie subgroup of Aut ΨD .Therefore,if Ker ψwere nondiscrete,it would contain a one-parameter subgroup γ(t ).Hence Ψ(γ(t ).z )=Ψ(z )for all z ∈D and all t ∈R ,whence γ(t )=I for all t ,a contradiction.Now let us assume,that g ∈Ker ψhas a fixed point z 0∈D .ThenΨ(g (z ))=Ψ(z )for all z ∈D ,(2.11.7)g (z 0)=z 0.(2.11.8)Taking into account the injectivity of the derivative of Ψone gets by differentiating Eq.(2.11.7)at z =z 0,g ′(z 0)=1.(2.11.9)In the case of D =C .It follows from Eqs.(2.11.9)and (2.11.8),that g =id.In the case of D being the unit circle we can view g as an isometry w.r.t.the Bergmann metric on D .This together with [13,Lemma I.11.2]implies again g =id.It remains to be proved,that Ker ψacts discontinuously,i.e.that there is a point z 0∈D ,s.t.the orbit of Ker ψthrough z 0is discrete.For the unit circle this follows from the discreteness of Ker ψand [10,Theorem IV.5.4].For D =R 3.If π′:D →M ′is the natural projection,then Φ′◦π′=Ψand (2.11.5)follows.d)is clear from the definition of M ′.2The last lemma shows,that for our purposes it is actually enough to restrict our attention to surfaces withKer ψ=Ker¯π.(2.11.10)For these surfaces the conclusions of Lemma2.11hold.2.12The following proposition shows,what it means for the symmetry group AutΨD that AutΨ(D)is not discrete.Proposition:Let(M,Φ)be a CMC-immersion with simply connected cover D,which is complete w.r.t.the induced metric and admits a one parameter group of Euclidean motions P⊂AutΨ(D). Then AutΨD also contains a one parameter group.Proof:R}be a one parameter subgroup of AutΨ(D),where AutΨ(D)carries the Lie group structure stated in Corollary2.10.Let A⊂D be an open subset such thatΨis injective on A.Let a∈A be arbitrary.Since˜T0Ψ(a)=Ψ(a)∈Ψ(A),there exists someǫ>0and an open subset Aǫ⊂A,s.t.˜T xΨ(Aǫ)⊂Ψ(A)for all|x|<ǫ.Therefore,by Theorem2.10,there exists an automorphism g x∈Aut D,|x|<ǫ,satisfyingΨ◦g x=˜T x◦Ψ,which is unique up to multiplication with an element in Kerψ.In addition,it follows from the proof of Theorem2.10,that we can choose g x s.t.g x(Aǫ)⊂A.(2.12.1) Since Kerψis discrete,the condition(2.12.1)determines g x uniquely,if A is small enough.This shows,that g x+y=g x g y for all sufficiently small x,y∈R we write x=m˜ǫ2)and m∈Z Z are uniquelydetermined.The definitiong x=g r(g˜ǫR3). To this end we introduce the notion of an admissible immersion.Definition:Let(M,Φ)be an immersed manifold inR3,s.t.the intersectionΦ(M)∩U is closed in U.The immersion(M,Φ)is called admissible,ifΦ(M)contains at least one admissible point.We think it is fair to say that,basically,every surface of interest is admissible.Most surfaces studied actually belong to the smaller class of locally closed surfaces(see[15,II.2]),for which each point of the image is admissible.Among the locally closed surfaces are e.g.the immersed surfaces with closed imageΦ(M)in R3,and immersed surfaces(M,Φ),for whichΦis proper(see e.g.[20,I.2.30]).Also note that,geometrically speaking,a surface has to return infinitely often to each neighbourhood of each of its nonadmissible points.A nonadmissible surface is therefore in a sense a two-dimensional analog of a Peano curve.Remark:It is important to note,that admissibility is a property of the imageΦ(M)of the immersionΦ.We don’t claim that it is preserved under isometries(see Section2.5).In particular, for an admissible surface it may well be,that not all members of the associated family are admissible. The definition of admissible surfaces allows us to describe a large class of surfaces,for which AutΨ(D) is closed.Theorem:If(M,Φ)is a complete,admissible surface inR3).Proof:R3).Therefore,also the sequence˜T−1nconverges in OAff(R3,s.t.B(p,ǫ)∩Ψ(D)is closed in B(p,ǫ).W.l.o.g.we can assume that p and the whole bounded sequence{˜T−1n(p)}lies in B(0,1R3,which changes neither the admissibility of(M,Φ)nor the group structure of AutΨ(D).We take N∈3for n≥N,where · denotes the operator norm.We choose p′=˜T−1N (p)and z′∈D,s.t.p′=Ψ(z′).Since˜T N is a Euclidean motion we have that˜TN(B(p′,ǫ))=B(p,ǫ).For all q∈B(p′,ǫ3+16ǫ.(2.13.1) Thus we have˜T n(q)∈B(p,5{˜T n(q),n≥N}⊂B(p,ǫ).Now we know, that B(p,ǫ)∩Ψ(D)is closed in B(p,ǫ),and that˜T n(q)converges by assumption to˜T(q)∈3)byΨ.Therefore,if we choose z∈D,s.t.p=Ψ(z),then˜Tinduces an isometry g of A onto an open neighbourhood B⊂D of z,s.t.˜T◦Ψ=Ψ◦g on A.By [13,Sect.I.11],this isometry can be extended globally to a unique automorphism g∈Aut D.Since all maps are analytic and globally defined,the relation˜T◦Ψ=Ψ◦g holds on the whole of D.It follows,that g∈AutΨD and˜T∈AutΨ(D).2 Corollary:Let(M,Φ)and D be as in Theorem2.13.If AutΨ(D)is nondiscrete,then also AutΨD is nondiscrete.Proof:R3)and nondiscrete.It therefore contains a one parameter group and the corollary follows from Proposition2.12above.2 Finally,we state the following result for the translational parts of the elements of AutΨ(D):Proposition:If(M,Φ)is admissible and complete,and AutΨ(D)is discrete,then the set L={t|˜T=(R,t)∈AutΨ(D)}of translations is discrete.Proof:R3).Since by Theorem2.13,AutΨ(D)is closed,this sequence converges in AutΨ(D)to some˜T.But then˜T n=˜T for sufficiently large n,since AutΨ(D)is discrete. This shows,that t n=t for sufficiently large n,a contradiction.2 2.14As examples for the discussion in this chapter,let us investigate two well known classes of CMC-surfaces,the Delaunay and the Smyth surfaces.We recall that a Delaunay surface is defined as a complete,immersed surface of constant mean curvature which is generated in2and exclude the degenerate case of the sphere.Let us translate two well known facts about Delaunay surfaces into our language:Proposition: 1.Let(M,Φ)be a noncylindrical CMC-immersion with universal covering im-mersion(D,Ψ),s.t.Φ(M)is a Delaunay surface.ThenΦ(M)is generated by rotating the roulette of an ellipse(unduloid)or a hyperbola(nodoid)along the line on which the conic rolled.2.Let S⊂C,s.t.•S=Φ(M),•AutΨD contains a one parameter group T of translations,wich is mapped by the surjective homomorphismψ:AutΨD→AutΨ(D)to the group of rotations around the axis of revolution of the Delaunay surface.Proof:C)are explicitly constructed in[19].2 For later use,we collect some definitions for surfaces of revolution(see e.g.[22]):If S is a surface of revolution,generated by rotating the plane curve C⊂By the remark above,every Delaunay surface is generated by a periodic function that has only one maximum in every period interval.Let P⊂R3), which leave A and C invariant.By the second part of Remark2.14,the map C consists of equidistant points along A.It follows,that I(P)is generated by•the one-parameter group R of rotations around A,•a discrete group˜Q of translations along A,which is given by C,i.e.,the periodicity of the roulette,•the180◦-rotation˜R around an axis,which passes through an arbitraryfixed point on P and the center of the corresponding parallel.We therefore haveI(P)=RטQ×{I,˜R},(2.14.2) where‘×’denotes the product of sets.By Lemma2.14,a Delaunay surface is left invariant precisely by those proper Euclidean motions,which preserve the axis of revolution and map a meridian into another meridian.In particular,if p∈Φ(M)and˜T∈AutΨ(D),then p and˜T(p)have the same distance from A.The set P is the set of all points onΦ(M),which have maximal distance from the axis A.Therefore,every element of AutΨ(D)leaves also the set P invariant,i.e.,AutΨ(D)⊂I(P). As a surface of revolution around A,the Delaunay surface is certainly invariant under the group R of rotations around A.In addition,by the second part of Remark2.14,for a Delaunay surface, the meridians are periodic along the axis of revolution and symmetric w.r.t.a180◦-rotation around any axis which is perpendicular to A and intersects P.Therefore,Φ(M)=Ψ(D)is invariant also under the group˜Q and the rotation˜R defined above.This gives I(P)⊂AutΨ(D),whichfinishes the proof.2 Smyth[19]introduced for every integer m≥0a one-parameter family of conformal immersionsΨm c:R3,c∈C.We will call these surfaces Smyth surfaces.The Hopf differential of(C,Ψm c)has an umbilic of order m at the origin.For m=0the familyΨm c contains the cylinder.We will call a Smyth surface nondegenerate, if its image inR3will be called congruent if they are related by a proper Euclidean motion ofC.2.The associated family of(D,Ψ)contains either a Delaunay or a Smyth surface,i.e.,(D,Ψ)isisometric to the simply connected cover of a Delaunay or a Smyth surface.3.The surface(D,Ψ)admits a one-parameter group P of self-isometries which isa)a one-parameter group of translations(P∼=C(P∼=S1)in case of the Smyth surfaces.2.15With the results in the previous section we can also easily derive the uniformization of Delaunay and Smyth surfaces.Proposition: 1.Each Delaunay surface is conformally equivalent to the cylinder,i.e.,its simply connected cover is2.Each nondegenerate Smyth surface is conformally equivalent toWe already know from Theorem2.14,that both,Delaunay and Smyth surfaces,have,as Riemann surfaces,the simply connected coverC→C,s.t.Ψ(D)is the Delaunay surface.The Fuchsian group of the underlying Riemann surface contains therefore a group of translations.Since Delaunay surfaces are noncompact,they are biholomorphically equivalent to the cylinder.2.LetΨ:R3be an immersion s.t.Ψ(D)=Ψm c(D)is a Smyth surface for some parameters m∈C.Assume,that the Fuchsian group of the surface contains a nontrivial translation. Then,by Theorem2.14,the group AutΨD satisfies the assumptions of thefirst part of Lemma2.7. Therefore,Ψ(D)is a cylinder.For a nondegenerate Smyth surface this gives M=R3,there exists a CMC-immersion (M,Φ)withΦ(M)=S,s.t.Kerψ=Ker¯π,(2.15.2)AutΦM∼=AutΨ(D),(2.15.3) and,as a product of sets,we haveAutΨD=IsoΨD=T×Q×R,(2.15.4) where T⊂Aut C is a discrete group of trans-lations with one generator,and R={I,Rπ}⊂Aut)is a nondegenerate Smyth surface,thenC,Ψ=ΨmcKerψ=Ker¯π={id}(2.15.5) andAutΨ(D)∼=AutΨD=R,(2.15.6) where R is afinite group of rotations around z=0in1.For a Delaunay surface,there exists,by Proposition2.14,a universal covering immersion Ψ:R3,s.t.the set AutΨD⊂IsoΨD contains a one-parameter group T∼=C,we can choose T as the group。
可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟
可压流体Rayleigh-Taylor不稳定性的离散Boltzmann模拟李德梅;赖惠林;许爱国;张广财;林传栋;甘延标【摘要】使用离散Boltzmann模型模拟了可压流体系统中多模初始情况下的Rayleigh-Taylor不稳定性.该离散Boltzmann模型等效于一个Navier-Stokes模型外加一个关于热动非平衡行为的粗粒化模型.通过模拟Riemann问题:Sod激波管、冲击波碰撞和热Couette流问题验证模型的有效性,所得数?结果与解析解一致.利用该模型对界面间断随机多模初始扰动的可压Rayleigh-Taylor不稳定性进行数?模拟研究,得到不稳定性界面演化过程的基本图像.由于黏性和热传导共同作用,一开始扰动界面被"抹平",演化较慢;随着模式互相耦合而减少,演化开始加速,并经历非线性小扰动阶段和不规则非线性阶段,而后发展成典型的"蘑菇状",后期进入湍流混合阶段.由于扰动模式的耦合与发展,轻重流体的重力势能、压缩能与动能相互转化,系统先是趋于热动平衡态,而后偏离热动平衡态以线性形式增长,接着再次趋于热动平衡态,最后慢慢远离热动平衡态.【期刊名称】《物理学报》【年(卷),期】2018(067)008【总页数】12页(P11-22)【关键词】离散Boltzmann方法;Rayleigh-Taylor不稳定性;可压流体;动理学模型【作者】李德梅;赖惠林;许爱国;张广财;林传栋;甘延标【作者单位】福建师范大学数学与信息学院, 福建省分析数学及应用重点实验室, 福州 350117;福建师范大学数学与信息学院, 福建省分析数学及应用重点实验室, 福州 350117;北京应用物理与计算数学研究所, 计算物理国家重点实验室, 北京100088;北京大学, 应用物理与技术研究中心, 高能量密度物理数?模拟教育部重点实验室, 北京 100871;北京应用物理与计算数学研究所, 计算物理国家重点实验室, 北京 100088;福建师范大学数学与信息学院, 福建省分析数学及应用重点实验室, 福州 350117;清华大学能源与动力工程系, 燃烧能源中心, 北京 100084;福建师范大学数学与信息学院, 福建省分析数学及应用重点实验室, 福州 350117;北华航天工业学院, 廊坊 065000【正文语种】中文1 引言当低密度流体支撑或推动较高密度流体时,即重力加速度或惯性加速度由重密度流体指向轻密度流体时,如果流体之间的界面存在扰动,那么界面的扰动幅度将会增长,该物理现象称为瑞利泰勒(Rayleigh-Taylor,RT)不稳定性.这种不稳定性最早由Rayleigh[1]和Lamb[2]在某种程度上提及,直到1950年,Taylor明确指出不稳定性现象[3].因此,该现象也称为RT不稳定性或者Rayleigh-Lamb-Taylor不稳定性.由于RT不稳定性现象在惯性约束聚变[4−6]、超新星爆炸[7]、核反应堆[8]等领域中起着重要的作用,因此在过去几十年里,人们采用各种解析方法和数值方法对其进行研究,包括分子动力学[9]、直接数值模拟[10]、大涡模拟方法[11]等.这些研究对理解RT不稳定性现象的动力学机制提供了许多有用的信息.作为Boltzmann方程的特殊离散形式,格子Boltzmann方法(lattice Boltzmann method,LBM)在各种复杂流体的研究中取得了巨大的成功[12].LBM在RT不稳定性问题的研究中发展了两类模型:不可压LBM[13−15]和可压LBM[16].这些模型的基本思想上是把LBM看作Navier-Stokes(NS)方程的求解器,能够模拟得到NS方程一致的结果.近年来,许爱国课题组[17−25]已将LBM发展成为能够同时描述流动和热动非平衡效应的离散Boltzmann方法 (discrete Boltzmann method,DBM).在2012年,许爱国等[17]提出构建DBM.DBM与LBM最主要的差异在于:作为偏微分方程解法器的LBM必须忠诚于原始物理模型,而作为流体系统动理学模型的DBM必须具有超越原始物理模型的部分功能;LBM所依赖的演化方程和“矩关系”可以根据算法设计的要求人为构造,即可以没有物理对应,而DBM所依赖的演化方程和“矩关系”只能是Boltzmann方程及其动理学矩关系,必须与非平衡统计物理学基本理论自洽[18].例如DBM所提供的非平衡行为特征能够恢复真实分布函数的主要特征[26]、区分不同类型的界面[27]、区分相分离过程的不同阶段[18,21],所提供的冲击波精细物理结果与分子动力学数值模拟结果相互印证,相互补充[28].本文在甘延标等[29]提出的DBM模型的基础上,进一步验证了含外力项的DBM模型.通过数值模拟Riemann问题和热Couette流等问题验证了DBM的有效性.使用该模型,本文模拟了可压流体系统多模初始扰动的RT不稳定性现象,能够得到RT不稳定性的基本物理图像以及相伴随的热动非平衡效应规律,得出一些相关物理解释.2 离散Boltzmann模型考虑含外力项的Bhatnagar-Gross-Krook(BGK)碰撞的Boltzmann方程为其中fi(r,vi,t)是离散分布函数,r是空间变量,t是时间;vi是离散速度,i=1,2,···,N是离散速度序号;u是宏观流速;a是加速度;τ是动理学松弛时间;是 Maxwell分布函数的离散化形式;其中Maxwell分布函数的形式如下:其中,D为空间维数(本文考虑D=2的情形);n是除了平动自由度之外的额外自由度数目;η是自由参数;ρ,T和u分别是密度、温度和流速.这里考虑的包含外力的方程是不包含外力情形下的拓展,可以处理更加普遍的物理情形,比如重力场存在下的流体不稳定性问题、分子间相互作用下的多相流问题、电场力、磁场力存在下的等离子体输运问题;其中的外力项使用了f∼feq的近似条件,因而该DBM只适用于系统偏离平衡不远的情形.Chapman-Enskog分析表明,当平衡态分布函数满足以下7个矩关系时,方程(1)在连续极限下可以得到NS方程[30,31]:前三个方程代表质量守恒、能量守恒和动量守恒.借助 Chapman-Enskog多尺度分析,可以从离散Boltzmann方程(1)得到NS方程层次的宏观流体力学方程.首先对密度分布函数、时间导数、空间导数和外力项进行如下多尺度展开:其中ε≪1是一个无量纲小量,正比于克努森数(Knudsen number,Kn)Kn=l/L,l是分子平均自由程或者平均分子间距,L是宏观上关心的特征尺度.将方程(10)代入方程(1)中,可以得到一系列关于ε的各阶等式:即分布函数的非平衡部分对宏观物理量没有贡献.经过一系列代数运算,可以得到可压NS方程:分别是压强和总内能;为动力黏性系数;为热传导系数.本文选取如下二维十六速度(D2V16)的离散速度模型: 其中,当i=1,2,···,4 时,ηi= η0,当i=5,6,···,16 时,ηi=0.DBM摆脱了空间离散化和时间离散化之间的绑定,使得粒子速度可以灵活选择,并且可以在离散Boltzmann方程的求解中方便地引入多种差分格式.DBM被认为是Boltzmann方程的特殊离散形式,自然继承了Boltzmann方程可以用来描述非平衡效应的属性.在7个动力学矩关系(3)—(9)式中,只有前面3个动力学矩关系(质量、动能和能量的定义),可以被fi取代,而后面的4个动力学矩关系,如果用fi取代则两侧值会产生偏差.这个偏差从物理上来看是描述系统状态偏离热力学平衡所引起的宏观效应,可用于描述系统状态偏离热力学平衡的程度[22].本文考虑扣除宏观流动的微观粒子热涨落特征的热动非平衡效应,对应的中心矩定义如下:其中为了定性分析多模初始扰动下热动非平衡效应的演化规律,进一步定义总平均热动非平衡效应或者强度:其中表示各个非平衡效应全场绝对平均值.其中,定义为3 数值模拟与验证本节通过一维Riemann问题:Sod激波管、冲击波碰撞和热Coutte流问题的解析解和数值解的符合程度来验证DBM的有效性.计算动理学方程(1)时,时间导数采用一阶向前差分,空间格式采用无波动无自由参数的耗散(non-oscillatory,containing no free parameters and dissipative,NND)格式[32].事实上,NND格式是二阶迎风格式、一阶迎风格式、中心差分格式的混合格式,该格式针对激波上下游采用不同的混合格式,其总变差(total variation diminishing,TVD)是减小的,空间上具有实质的二阶精度高分辨率,捕捉激波能力较强,可以很好地分辨间断.3.1 Sod激波管问题Sod激波管问题.计算区域[−1,1],流场的左半部分和右半部分分别给定如下的初始条件:其中“L”和“R”分别代表远离间断界面左右两侧的宏观量初始值.计算网格为Nx×Ny=2000×2,空间步长为∆x=∆y=0.001,时间步长选取为∆t=10−5.其他模型参数选取为τ=10−5,n=3,c=1.0和η=10.0.y方向采用周期边界条件,对于x方向,左边界设置为其中−1和0表示左边的虚拟点.此类边界条件指定系统在边界处一直处于平衡态,即边界处的宏观量为方程(27)和(28)也被称作微观和宏观边界条件,两者是互相对应的.同样,右边的微观边界设置如下:则对应的宏观边界为为验证网格无关性,先固定其他模型参数,x方向采用三种不同的网格数:Nx=1000,2000,4000,模拟结果见图1.可见,三种不同空间分辨率都能够清晰捕捉激波、接触间断和稀疏波.采用Nx=2000的模拟结果与采用Nx=4000的模拟结果区别不大.为了更好地展示该物理问题不同物理量的非线性间断结构,图2给出DBM数值解与解析解在t=0.2的对比图,图中圆圈为DBM 数值解,直线为精确解.结果显示,DBM数值解与解析解符合较好,验证了模型的准确性和健壮性.图1 不同网格数下t=0.2时刻一维Sod激波管密度剖面的DBM数值解与解析解对比Fig.1. Comparisons between DBM results with dif f erent grids and the exact solution for the onedimensional Sod problem,at t=0.2.图2 t=0.2时刻一维Sod激波管的密度、压力、速度和温度剖面的DBM数值解与解析解的对比parisons between DBM results and the exact solutions for the one-dimensional Sod problem at t=0.2.3.2 两个强激波碰撞问题为了充分验证模型,考虑冲击波碰撞问题,该问题涉及两个强激波的碰撞,其初始条件为:该问题的精确解包含了一个缓慢向右传播的左激波、向右的接触界面和一个左行激波.其中,左激波向右传播很慢给数值方法带来额外的困难,对模型的稳定性和鲁棒性要求较高.数值模拟中,选取参数为:网格参数为Nx×Ny=2000×2,∆x= ∆y=0.003,时间步长为∆t=10−5.其他参数选取为τ=2×10−5,n=3,c=8.0和η=40.0.图3给出了t=0.08时刻γ=1.4的密度、压力、速度和温度剖面的DBM数值解与解析解的对比.对比结果表明,DBM数值解与解析解符合较好,进一步说明DBM模型具有较好的稳定性和鲁棒性.3.3 热Coutte流问题作为经典热传导问题,热Coutte流能够用来检测DBM模拟流体黏性热传导问题.该问题描述如下:考虑介于两个无限长平行板之间的黏性流体,平板之间距离为 H.初始条件为(ρ,u,v,T)|t=0=(1.0,0,0,1.0).当 t>0 时,温度为T0的上板以速度u0=0.8移动,温度为T0的下板保持静止不动.网格参数选取为Nx×Ny=1×200,空间步长为∆x=∆y=2×10−3,其他参数选取为:n=3,τ=10−3,c=1.0,η=10.0,∆t=10−5.x 方向采用周期边界条件,y方向采用非平衡外推格式[33].x方向速度的解析解为图4给出了DBM数值解与解析解在不同时刻的对比图,两者十分符合,表明DBM 能够精确计算黏性耗散下的流体问题.计算结果与NS模型得到的结果一致.当系统达到稳态时,沿y方向温度场的理论解为其中cp=γ/(γ−1).图5展示了不同γ对应的DBM数值解与解析解在稳态时的对比图.数值解与解析解符合较好,表明DBM能够精确模拟不同热传导情形下的流体问题.图3 t=0.08时刻两个强激波碰撞问题的密度、压力、速度和温度剖面的DBM数值解与解析解对比parisons between DBM results and the exact solutions for collision of two strong shocks problem at t=0.08.图4 γ=1.4时热 Couette流在不同时刻速度剖面的DBM数值解与解析解对比parisons between DBM results and the exact solutions for the velocity profiles in thermal Couette flow for the case with γ=1.4 at various times.图5 不同γ值下热Couette流的稳态温度剖面的DBM数值解与解析解对比parisons between DBM results and the exact solutions for thetemperature profiles in steady thermal Couette flow for various values of γ.4 可压流体RT不稳定性数值模拟对于RT不稳定性的数值模拟,以往模型主要采用等温不可压模型,即上下密度是常数而温度始终不变的情形,而实际系统往往是可压的且温度是变化的.本文考虑单介质流体的可压非等温情形,即温度自适应情形.该流体系统由上下两部分组成,上下温度不同,系统密度满足力学平衡条件呈指数分布[16−27].例如,考虑上流体是冷空气下流体是热空气.当中间界面处没有发生扰动,则系统只有热扩散作用,界面始终处在中间位置.当中间界面出现小扰动之后,由于重力的作用,扰动会随着时间的演变而慢慢放大,形成“气泡-尖钉”结构,而后出现典型的“蘑菇头”形状,即RT不稳定性发生.在数值模拟过程中,边界影响比较大,本文采用如下边界条件:上下边界采用绝热、无滑移边界条件;左右采用周期边界条件.模型从最简单的理想气体状态方程出发,暂时忽略表面张力的影响.图6 多模RT不稳定性在不同时刻的密度演化图:t=0,0.5,1.0,1.5,1.8,2.0,2.5,3.0Fig.6.Density evolution of Rayleigh-Taylor instability from a multiple mode perturbation at dif f erenttimes:t=0,0.5,1.0,1.5,1.8,2.0,2.5,3.0.本文考虑二维区域[−d/2,d/2]×[−2d,2d],系统处于重力加速度为常数的重力场下,界面的初始扰动满足其中kn=2nπ/Lx,an,bn是 0—1之间均匀分布的随机数.上下部分流体的温度不同,每部分流体的密度分布满足如下静力学平衡条件:所以系统的不稳定性初始条件满足:其中,p0是上部分流体顶部的初始压强,Tu和Tb代表上下部分流体的初始温度.在这种条件下,界面处的压强满足其中ρu和ρb是上下部分流体临近界面两侧网格处的密度,则界面处初始Atwood 数可以定义为[16]在数值模拟中,计算区域为512×512的均为网格,空间步长为∆x=∆y=0.001,顶部初始压强为 p0=1.0,时间步长为∆t=1×10−5,松弛因子为τ=1×10−5,上部分温度为Tu=1.0,下部分温度为Tb=4.0,因此,初始At=0.6.其他参数为c=1.3,η=15,n=3,ax=0.0,ay=−g=−1.0.图6展示了RT不稳定性的密度分布随时间变化的时空演化图,可以看出,初始阶段,热扩散作用迅速抹平了间断界面,产生有限宽度的过渡层,降低了界面处局部 At数.经过短暂的线性阶段,RT不稳定性进入了非线性阶段.在重力场的作用下,随着时间的发展,重流体下降,轻流体上升,又由于重流体相对较“硬”,轻流体相对较“软”,因而呈现典型的“气泡”和“尖钉”的界面结构.之所以形成这种结构,是因为当密度较大时,惯性力较大,较难改变速度,从而向上的扰动形成较平的“气泡”结构,向下的扰动形成较尖锐的“尖钉”结构.后期由于界面切向速度差变大(即KH不稳定性慢慢起作用),“尖顶”尾部翻转起来,形成“蘑菇头”形状.由于热扩散和黏性作用,“蘑菇头”尾部渐渐模糊且变狭长.事实上,一开始(t=0.5之前)演化较慢,且界面整体下移,这是由于一开始热传导起主导作用,在界面附近的上下流体交换内能,上流体吸收热量,体积膨胀,界面附近的上流体下移,而下流体释放热量,体积缩小,界面附近的下流体下移.同时,初始多模互相竞争合并,模式慢慢变少,界面被“抹平”;而后(t=0.5)之后演化加速,界面演化变成重力主导,上下流体开始以交换重力势能为主,呈现非线性演化阶段.后期两流体在界面附近相互渗透,相互混合,进入湍流混合阶段.图7展示了在不同初始多模扰动下总平均热动非平衡效应的演化情形.由于初始条件处于热动非平衡,系统有趋于热动平衡态趋势,D∗有下降的趋势.而后,随着模式的耦合以及混合层厚度不断增加,界面越来越复杂,系统偏离热动平衡态的演化以线性形式增长.而后,在t∗=0.7后系统趋向平衡态,t∗=1.2后系统又慢慢远离平衡态,这是因为系统重力势能和压缩能得到释放,部分转化为动能,促进了RT不稳定性的发展,界面越来越复杂,非平衡模式越来越丰富.图7 不同初始多模扰动下RT不稳定性演化引起的总平均热动非平衡效应随时间的演化Fig.7.The time evolution of the global average TNE strength due to Rayleigh-Taylor instability with different multi-mode initial conditions.5 结论应用含外力项的DBM数值模拟研究可压流体多模初始扰动的RT不稳定性问题.Chapman-Enskog多尺度分析表明该模型在连续极限可恢复到Navier-Stokes 方程.模型通过了热Coutte流问题和三个一维Riemann问题的检测,表明模型能够精确模拟黏性耗散和热传导以及复杂激波之间的相互作用.采用DBM对多模、可压、具有间断界面的多模初始扰动RT不稳定性进行数值模拟.结果表明,在RT不稳定性发展的初期由于多模的设置,界面处的黏性和热传导效应突出,这些耗散效应会“抹平”界面,多模之间相互竞争和吸收,形成较少的主导模式;在这一阶段系统内没有形成明显的“气泡”和“尖钉”结构.在RT不稳定性的中后期,由于模式的合并导致界处的耗散效应减弱,重力占主导地位,扰动界面逐渐变形、长大,形成典型的“气泡-尖钉”结构,即出现典型的“蘑菇头”形状,而后进入湍流混合阶段.这些现象与经典的实验结果一致.同时给出系统整体非平衡程度随时间发展的演化情况,一开始系统先趋于平衡态,这是由于系统处于调整阶段,从多模初始界面扰动调整到本征模阶段;而后系统以线性形式偏离平衡态,这是由于系统界面被抹平,压缩能部分转化为内能;然后系统又趋于平衡态,这是由于模式的耦合与扰动界面进一步被“抹平”,系统处于相对稳定状态;最后系统越来越远离平衡态,此时是由于系统轻重流体的重力势能相互转换,系统的压缩能进一步被释放出来,系统动能进一步增加所致.在最近的一系列学术报告中,许爱国等[34−37]进一步给出了非平衡程度更深、超越Navier-Stokes描述能力的复杂流动系统的DBM建模思路.参考文献[1]Rayleigh L 1882 Proc.London Math.Soc.s1-14 170[2]Lamb H 1932 Hydrodynamics(6th Ed.)(London:Cambridge University press)p501[3]Taylor G 1950 Proc.R.Soc.London A 201 192[4]Betti R,Goncharov V,McCrory R,Verdon C 1998 Phys.Plasmas(1994–present)5 1446[5]Wang L F,Ye W H,Wu J F,Liu J,Zhang W Y,He X T 2016 Phys.Plasmas 23 052713[6]Wang L F,Ye W H,He X T,Wu J F,Fan Z F,Xue C,Guo H Y,Miao W Y,Yuan Y T,Dong J Q,Jia G,Zhang J,Li Y J,Liu J,Wang L M,Ding Y K,Zhang W Y 2017 Sci.China:Phys.Mech.Astron.60 055201[7]Cabot W,Cook A 2006 Nat.Phys.2 562[8]Berthoud G 2000 Annu.Rev.Fluid Mech.32 573[9]Barber J L,Kadau K,Germann T C,Alder B J 2008 Eur.Phys.J.B 64 271[10]Celani A,Mazzino A,Vozella L 2006 Phys.Rev.L.96 134504[11]Moin P 1991 Comput.Meth.Appl.Mech.Eng.87 329[12]Succi S 2001 The Lattice Boltzmann Equation for Fluid Dynamics and Beyond(New York:Oxford University Press)pp179–255[13]He X Y,Chen S Y,Zhang R Y 1999 put.Phys.152 642[14]Li Q,Luo K H,Gao Y J,He Y L 2012 Phys.Rev.E 85 026704[15]Liu G J,Guo Z L 2013 Int.J.Numer.Method H.23 176[16]Scagliarini A,Biferale L,Sbragaglia M,Sugiyama K,Toschi F 2010 Phys.Fluids 22 055101[17]Xu A G,Zhang G C,Gan Y B,Chen F,Yu X J 2012 Front.Phys.7 582[18]Xu A G,Zhang G C,Gan Y B 2016 Mech.Eng.38 361(in Chinese)[许爱国,张广财,甘延标2016力学与实践38 361][19]Gan Y B,Xu A G,Zhang G C,Yu X J,Li Y J 2008 Physica A 387 1721[20]Gan Y B,Xu A G,Zhang G C,Li Y J 2011 Phys.Rev.E 83 056704[21]Gan Y B,Xu A G,Zhang G C,Li Y J,Li H 2011 Phys.Rev.E 84 046715[22]Yan B,Xu A G,Zhang G C,Ying Y J,Li H 2013 Front.Phys.8 94[23]Xu A G,Zhang G C,Li Y J,Li H 2014 Prog.Phys.34 136(in Chinese)[许爱国,张广财,李英骏,李华2014物理学进展34 136][24]Xu A G,Zhang G C,Ying Y J 2015 Acta Phys.Sin.64 184701(in Chinese)[许爱国,张广财,应阳君2015物理学报64 184701][25]Xu A G,Zhang G C,Ying Y J,Wang C 2016 Sci.China:Phys.Mech.Astron.59 650501[26]Lin C D,Xu A G,Zhang G C,Li Y J,Succi S 2014 Phys.Rev.E 89 013307[27]Lai H L,Xu A G,Zhang G C,Gan Y B,Ying Y J,Succi S 2016 Phys.Rev.E 94 023106[28]Liu H,Kang W,Zhang Q,Zhang Y,Duan H L,He X T 2016 Front.Phys.11 115206[29]Gan Y B,Xu A G,Zhang G C,Yang Y 2013 Europhys.Lett.103 24003[30]Gan Y B,Xu A G,Zhang G C,Succi S 2015 Soft Matter 11 5336[31]Watari M,Tsutahara M 2004 Phys.Rev.E 70 016703[32]Zhang H X 1988 Acta Aerodyn.Sin.6 43(in Chinese)[张涵信1988空气动力学学报6 43][33]Guo Z L,Zheng C G,Shi B C 2002 Phys.Fluids 14 2007[34]Xu A G,Zhang G C 2016 The 9th National Conference on Fluid Mechanics Nanjing,China Oct.20–23,2016(in Chinese)[许爱国,张广财2016第九届全国流体力学学术会议,南京,2016年10月20—23日][35]Xu A G,Zhang G C 2016 Special Academic Report of Electromechanical College of Nanjing Forestry University Nanjing,China,Oct.25,2016(in Chinese)[许爱国,张广财2016南京林业大学机电学院专题学术报告,中国南京,2016年10月25日][36]Xu A G,Zhang G C 2016 Academic Report on Physics Department of Renmin University of China Beijing,China,Nov.23,2016(in Chinese)[许爱国,张广财 2016中国人民大学物理系专题学术报告,中国北京,2016年11月23日] [37]Xu A G,Zhang G C 2016 The 4th Academic Seminar of LBM and Its Applications Beijing,China,Nov.26,2016(in Chinese)[许爱国,张广财 2016第四届LBM及其应用学术研讨会,中国北京,2016年11月26日]。
新涂层成就更高品质
新涂层成就更高品质
沙琳倩
【期刊名称】《现代制造》
【年(卷),期】2014(000)008
【摘要】作为日本具有代表性的刀具企业,三菱综合材料当然不会错过本届的CCMT展会。
在开展的第三天,记者通过与三菱综合材料管理(上海)有限公剐硬质合金事业部总经理拇井浩先生和商品战略部长绪方敦先生的交谈,了解到三菱综合材料的最新情况以及本次展出的重点。
【总页数】1页(P81-81)
【作者】沙琳倩
【作者单位】不详
【正文语种】中文
【中图分类】TG174.442
【相关文献】
1.新涂层技术赋予铝制模具更高性价比 [J], Joseph A. Grande
2.利优比新菱新型924胶印机:延续经典定义更高品质 [J], 李婧
3.新的玻璃涂层将成就全向太阳能电池板 [J],
4.新包衣机为片剂涂层带来更高灵活性 [J], Fritz-Martin Scholz
5.新包衣机为片剂涂层带来更高灵活性 [J], Fritz-Martin Scholz
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dα :=
∂F
α.
A cocycle is a closed cochain and we note α ∈ Z k (Λ). These spaces are equipped with the canonical scalar product, weigthed according to ρ on edges and averaged on the graph and its dual: (α, β ) :=
1. Dual edges.
2. The face dual to a vertex.
Figure 2. Duality. holomorphic iff for every quadrilateral (x, y, x′ , y ′) ∈ ♦2 , (2.1) f (y ′) − f (y ) = i ρ(x, x′ ) (f (x′ ) − f (x)) .
We recall elements of de-Rham cohomology, doubled in our context: The complex of chains C (Λ) = C0 (Λ) ⊕ C1 (Λ) ⊕ C2 (Λ) is the vector space span by vertices, edges and faces. It is equipped with a boundary operator ∂ : Ck (Λ) → Ck−1 (Λ), null on vertices and fulfilling ∂ 2 = 0. The kernel ker ∂ =: Z• (Λ) of the boundary operator are the closed chains or cycles. Its image are the exact chains. It provides the dual spaces of forms, called cochains, C k (Λ) := Hom(Ck (Λ), C) with a
4
CHRISTIAN MERCAT
y′ ℓ(y, y ′) x
′ ℓ(x, x′ ) x
y Figure 3. The discrete Cauchy-Riemann equation. coboundary d : C k (Λ) → C k+1(Λ) defined by Stokes formula: df := f (∂ (x, x′ )) = f (x′ ) − f (x),
DISCRETE RIEMANN SURFACES
arXiv:0802.1612v1 [math.CV] 12 Feb 2008
CHRISTIAN MERCAT Abstract. We detail the theory of Discrete Riemann Surfaces. It takes place on a cellular decomposition of a surface, together with its Poincar´ e dual, equipped with a discrete conformal structure. A lot of theorems of the continuous theory follow through to the discrete case, we will define the discrete analogs of period matrices, Riemann’s bilinear relations, exponential of constant argument and series. We present the notion of criticality and its relationship with integrability.
DISCRETE RIEMANN SURFACES
3
y′
x
x′
y Figure 1. The vertices and diagonals of a quadrilateral define a pair of dual edges. vn v1 F∗ e∗ e v2 v
0. The vertex dual to a face.
2. Discrete Riemann surfaces 2.1. Discrete Hodge theory. We recall in this section basic definitions and results from [4] where the notion of discrete Riemann surfaces was defined. We are interested in discrete surfaces given by a cellular decomposition ♦ of dimension two, where all faces are quadrilaterals (a quad-graph [6, 7, 8]). Its vertices and diagonals define, up to homotopy and away from the boundary, two dual cellular decompositions ∗ Γ and Γ∗ : The edges in Γ∗ 1 are dual to edges in Γ1 , faces in Γ2 are dual to vertices in Γ0 and vice-versa. Their union is denoted the double Λ = Γ ⊔ Γ∗ . A discrete conformal structure on Λ is a real positive function ρ on the unoriented edges satisfying ρ(e∗ ) = 1/ρ(e). It defines a genuine Riemann surface structure on the discrete surface: Choose a length δ and realize each quadrilateral by a lozenge whose diagonals have a length ratio given by ρ. Gluing them together provides a flat riemannian metric with conic singularities at the vertices, hence a conformal structure [9]. It leads to a straightforward discrete version of the Cauchy-Riemann equation . A function on the vertices is discrete
1 2 e∈Λ1
ρ(e)
e
α
e
β .
Duality of complexes allows us to define a Hodge operator ∗ on forms by ∗ : C k (Λ) → C 2−k (Λ) C 0 (Λ) ∋ f → ∗f :
Contents 1. Introduction 2. Discrete Riemann surfaces 2.1. Discrete Hodge theory 2.2. Wedge product 2.3. Energies 3. Period matrix 3.1. Intersection number, on Λ and on ♦ 3.2. Canonical dissection, fundamental polygon 3.3. Bilinear relations 3.4. Basis of harmonic forms, basis of holomorphic forms 3.5. Period matrix 3.6. Genus one case 4. Criticality and integrable system 4.1. Criticality ¯ operator 4.2. ∂ 4.3. Discrete exponential 4.4. Series 4.5. Basis 4.6. Continuous limit 4.7. Cross-ratio preserving maps 4.8. Baecklund transformation References
1ቤተ መጻሕፍቲ ባይዱ
2 2 2 5 8 8 9 9 13 13 16 19 20 21 21 23 24 26 26 29 32 35
2
CHRISTIAN MERCAT
1. Introduction Riemann surfaces theory was a major achievment of XIXth century mathematics, setting the framework where modern complex analysis bloomed. Nowadays, surfaces are intensively used in computer science for numeric computations, ranging from visualization to pattern recognition and approximation of partial differential equations. A lot of these computations involve, at the continuous level, analytic functions. But very few algorithms care about this specificity, although analytic functions form a relatively small vector space among the space of functions, problems are usually crudely discretized in a way that doesn’t take advantage of analyticity. The theory of discrete Riemann surfaces aims at filling this gap and setting the theoretical framework in which the notion of discrete analyticity is set on solid grounds. Most of the results in this paper are a straightforward application of the continuous theory [1, 2] together with the results in [3, 4, 5], to which we refer for details. We define the discrete period matrix, which is twice as large as in the continuous case: the periods of a holomorphic form on the graph and on its dual are in general different, but the continuous limit theorem, given a refining sequence of critical maps, ensures that they converge to the same value. The main tool is the same as in the continuous case, the Riemann bilinear relations.