人教版九年级数学上 全册课件

合集下载

新人教版九年级数学上册全册ppt课件

新人教版九年级数学上册全册ppt课件
10x - 4.9x2. 你能根据上述规律求出物体经过多少秒落回地面吗 (精确到 0.01 s)?
1.探究因式分解法
你认为该如何解决这个问题?你想用哪种方法解这 个方程?
10x - 4.9x2 = 0
配方法 降 公式法 次

x
1
=
0,x
2
=
100 49
1.探究因式分解法
问题3 观察方程 10x - 4.9x2 = 0,它有什么特点? 你能根据它的特点找到更简便的方法吗?
x2 + 6x = -4 x2 + 6x + 9 = -4 + 9 (x + 3)2 = 5
x3 5
移项
两边加 9,左边 配成完全平方式 左边写成完全 平方形式
降次
x 3 5 ,或 x 3 5
解一次方程
x1 3 5, x2 3 5
2.推导求根公式
想一想:以上解法中,为什么在方程③两边加 9? 加其他数可以吗?如果不可以,说明理由.
• 学习重点: 一元二次方程的概念.
1.创设情境,导入新知
思考以下问题如何解决: 1.要设计一座高 2 m 的人体雕像,使它的上部 (腰以上)与下部(腰以下)的高度比,等于下部与全 部(全身)的高度比,求雕像的下部应设计为高多少米?
1.创设情境,导入新知
思考以下问题如何解决: 2.有一块矩形铁皮,长 100 cm,宽 50 cm,在它 的四角各切去一个同样的正方形,然后将四周突出部分 折起,就能制作一个无盖方盒,如果要制作的无盖方盒 的底面积为 3 600 cm2,那么铁皮各角应切去多大的正方 形?
1.复习配方法,引入公式法
问题2 能否用公式法解决一元二次方程的求根问 题呢?

2024年最新人教版九年级数学上册全册课件.

2024年最新人教版九年级数学上册全册课件.

2024年最新人教版九年级数学上册全册课件.一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程的概念13.2 解一元二次方程的公式法13.3 解一元二次方程的配方法13.4 解一元二次方程的因式分解法13.5 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 一元一次不等式14.2 一元一次不等式组14.3 实际问题与一元一次不等式组二、教学目标1. 让学生掌握一元二次方程的概念,能够熟练运用公式法、配方法、因式分解法解一元二次方程。

2. 培养学生运用不等式与不等式组解决实际问题的能力。

3. 提高学生的逻辑思维能力和数学素养。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解法。

2. 教学重点:一元二次方程的概念、解法及其应用;不等式与不等式组的解法及其应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:学生用书、练习本、铅笔。

五、教学过程1. 引言:通过实际情景引入,让学生了解一元二次方程和不等式在实际生活中的应用。

2. 新课导入:详细讲解一元二次方程的概念、解法,结合例题进行讲解。

3. 课堂互动:引导学生参与解题过程,进行随堂练习,巩固所学知识。

5. 课堂检测:布置课堂练习,及时了解学生学习情况,进行针对性指导。

六、板书设计1. 一元二次方程的概念及解法2. 不等式与不等式组的解法3. 典型例题及解题步骤七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0(2)解不等式组:2x 3 > 5,x + 1 < 42. 答案:(1)x1 = 3,x2 = 2(2)x ∈ (2, 3)八、课后反思及拓展延伸1. 反思:本节课学生掌握了一元二次方程和不等式组的解法,但部分学生在实际应用题上还存在一定难度。

2. 拓展延伸:针对学有余力的学生,布置一些拓展性题目,如:一元二次方程与二次函数的关系、不等式的性质等,提高学生的数学素养。

2024年新人教版九年级数学上册全册精彩课件.

2024年新人教版九年级数学上册全册精彩课件.

2024年新人教版九年级数学上册全册精彩课件.一、教学内容1. 第一章:二次函数1.1 二次函数的概念与性质1.2 二次函数的图像与方程1.3 二次函数的应用2. 第二章:勾股定理与平方根2.1 勾股定理2.2 平方根2.3 勾股定理与平方根的应用3. 第三章:概率初步3.1 随机事件与概率3.2 概率的计算3.3 概率的应用二、教学目标1. 掌握二次函数、勾股定理、平方根和概率的基本概念与性质。

2. 学会运用二次函数、勾股定理、平方根和概率解决实际问题。

3. 培养学生的逻辑思维能力和数学应用能力。

三、教学难点与重点1. 教学难点:二次函数的性质、勾股定理的证明、概率的计算。

2. 教学重点:二次函数的应用、平方根的计算、概率的实际应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过生活中的实例,引出二次函数、勾股定理、平方根和概率的概念。

2. 例题讲解:详细讲解教材中的例题,引导学生理解和掌握知识点。

3. 随堂练习:针对每个知识点,设计相应的练习题,让学生及时巩固所学内容。

六、板书设计1. 用大号字体书写课题名称,如“二次函数的应用”。

2. 内容:列出本节课的主要知识点,用不同颜色粉笔标出重点和难点。

七、作业设计1. 作业题目:第一章:求给定二次函数的最大值、最小值,并画出图像。

第二章:证明给定三角形的勾股定理,并计算其面积。

第三章:计算给定概率问题,如掷骰子、抽签等。

答案:见附件。

八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性的练习题,如研究二次函数的性质、探索勾股定理的推广等,激发学生的兴趣和求知欲。

通过本课件的教学,希望学生能掌握九年级数学上册的核心知识点,提高数学素养和应用能力,为今后的学习打下坚实基础。

重点和难点解析1. 教学内容的详细性与针对性2. 教学目标的具体性与实用性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与随堂练习设计5. 板书设计的清晰性与结构性6. 作业设计的层次性与拓展性7. 课后反思与拓展延伸的实际操作一、教学内容的详细性与针对性教学内容的选择应紧密结合教材章节,确保覆盖所有核心知识点。

九年级上册数学 全册· 教学课件 PPT

九年级上册数学 全册· 教学课件 PPT
y2 (4) -2 =0 (5)x2+2x-3=1+x2
【解析】(1)、(4).
猜测: 下列方程的根是什么?
方程的根:使一元二次方程等号两边相等的未知数的取值 叫作一元二次方程的解(又叫做根).
思考:
(1)下列哪些数是方程
的根?
-4,-3,-2,-1,0,1,2,3,4
从中你能体会根的作用吗?
(2)若x=2是方程
的一个根,
你能求出a的值吗?
(提示:根的作用:可以使等号成立.)
例题
【例2】关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值
为( )
A.1
B . -1
C.2
D.-2
【解析】选A. 将x=3代入方程x2-kx-6=0得32-3k-6=0 ,
解得
k=1.
跟踪训练
1.你能根据Βιβλιοθήκη 学过的知识解出下列方程的解吗?2.(衡阳·中考)某农机厂四月份生产零件50万个,第
二季度共生产零件182万个.设该厂五、六月份平均每月的增
长率为x,那么x满足的方程是( )
A.
B.
C.50(1+2x)=182
D.
【解析】选B.该农机厂五月份生产零件 万个,六月
份生产零件
万个,第二季度共生产零件
万个.
3.(兰州·中考)上海世博会的某纪念品原价168元,
对于上述问题,你能设出未知数,列出相应的方程吗?
1.观察下列方程,你能通过观察得到它们的共同特点吗?
共同特点:(1)等号两边都是整式; (2)整式的最高次数是2次.
2.归纳: (1)方程的等号两边都是整式,只含有一个未知数,且 未知数的最高次数是2的方程叫作一元二次方程; (2)一般地,任何一个关于x的一元二次方程,经过整 理,都能化成如下形式 :

【新人教版】九年级数学上册(全书)配套课件(共706张)(2021版)

【新人教版】九年级数学上册(全书)配套课件(共706张)(2021版)
特点: ①都是整式方程; ②只含一个未知数;
③未知数的最高次数是2.
归纳定义
一元二次方程的定义
等号的两边都是整式,只含有一个未知数(一元),并 且未知数的最高次数是2(二次)的方程,叫做一元二 次方程
①方程两边都是整式
一元二次方程 要素
②只含有一个未知数
③未知数的最高次数是2次
一元二次方程的一般形式
x
x2 2(2 x)
B
x2 2x 4 0
问题2
有一块矩形铁皮,长100㎝,宽50㎝,在它的
四角各切去一个正方形,然后将四周突出部分折 起,就能制作一个无盖方盒,如果要制作的方盒的 底面积为3600平方厘米,那么铁皮各角应切去多 大的正方形?
分析:
设切去的正方形的边长为xcm,
则盒底的长为 (100-2x)cm,宽
x 1
?
• (4)x 2 4 (x 2)2
同步练习1
下列方程那些是一元二次方程?
1. 5x-2=x+1
2. 7x2+6=2x(3x+1)
3.
1 2
x2
7
5 . 2x2=5y
4. 6x2=x 6. -x2=0
同步练习2
一元一次方程与一元二次方程有什么区别与联系?
一般式 相同点 不同点
一元一次方程
为 (50-2x)cm .
x
根据方盒的底面积为3600cm2,
得 (100 2x)(50 2x) 3600
3600
100㎝
50㎝

x2 75x 350 0
问题3
要组织一次排球邀请赛,参赛的每两队之间都 要比赛一场,根据场地和时间等条件,赛程计划安 排7天,每天安排4场比赛,比赛组织者应邀请多少 个队参加比赛?

人教版九年级数学上册全册完整课件

人教版九年级数学上册全册完整课件
人教版九年级数学上册全册完整 课件目录
0002页 0036页 0081页 0107页 0173页 0225页 0252页 0274页 0307页 0336页 0393页 0437页 0492页 0494页 0518页 0537页 0567页
第二十一章 一元二次方程 21.2 解一元二次方程 21.3 实际问题与一元二次方程 小结 第二十二章 二次函数 22.2 二次函数与一元二次方程 22.3 实际问题与二次函数 数学活动 复习题22 23.1 图形的旋转 信息技术应用 探索旋转的性质 阅读与思考 旋转对称 小结 第二十四章 圆 24.2 点和圆、直线和圆的位置关系 24.3 正多边形和圆 24.4 弧长和扇形面积
人教版九年级数学上册全册完整课 件
第二十二章 二次函数
人教版九年级数学上册全册完整课 件
22.1 二次函数的图象和性质
人教版九年级数学上册全册完整课 件
22.2 二次函数与一元二次方程
人教版九年级数学上册全册完整课 件
21.3 实际问题与一元二次方程
人教版九年级数学上册全册完整课 件
数学活动
人教版九年级数学上册全册完整课 件
小结
人教版九年级数学上册全册完整课 件
复习题21
第二十一章 一元二次方程
人教版九年级数学上册全册完整课 件
21.1 一二次方程
人教版九年级数学上册全册完整课 件
21.2 解一元二次方程
人教版九年级数学上册全册完整课 件
阅读与思考 黄金分割数
人教版九年级数学上册全册完整课 件
信息技术应用 探索干净函数的 性质
人教版九年级数学上册全册完整课 件

2024年人教版九年级数学上全册课件

2024年人教版九年级数学上全册课件

2024年人教版九年级数学上全册课件一、教学内容1. 第一章:一元二次方程详细内容:一元二次方程的定义、解法、根的判别式、根与系数的关系等。

2. 第二章:不等式与不等式组详细内容:不等式的性质、一元一次不等式、一元一次不等式组、不等式的应用等。

3. 第三章:函数详细内容:函数的定义、函数的表示方法、一次函数、反比例函数、二次函数等。

4. 第四章:锐角三角函数详细内容:锐角三角函数的定义、锐角三角函数的值、互余两角的三角函数关系等。

二、教学目标1. 理解并掌握一元二次方程、不等式与不等式组、函数、锐角三角函数的概念与性质。

2. 学会运用方程、不等式、函数等数学工具解决实际问题。

3. 培养学生的逻辑思维能力和数学素养。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式的性质与解法、函数的性质与图像、锐角三角函数的计算。

2. 教学重点:一元二次方程的根的判别式、不等式的应用、函数的表示方法、锐角三角函数的值。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:课本、练习本、圆规、直尺。

五、教学过程1. 导入:通过生活中的实际问题,引导学生感受数学的魅力,激发学习兴趣。

2. 新课导入:讲解本章的主要内容,让学生对本章的学习有一个整体的认识。

3. 例题讲解:选取具有代表性的例题,详细讲解解题思路和方法,引导学生运用所学知识解决问题。

4. 随堂练习:设计适量、有针对性的练习题,让学生巩固所学知识,并及时发现并解决存在的问题。

6. 课后作业:布置适量的作业,巩固所学知识。

六、板书设计1. 一元二次方程:定义、解法、根的判别式、根与系数的关系。

2. 不等式与不等式组:性质、解法、应用。

3. 函数:定义、表示方法、性质、图像。

4. 锐角三角函数:定义、值、互余两角的关系。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)解不等式:2x 3 > 5,并求出解集。

人教版九年级上册数学课件

人教版九年级上册数学课件

人教版九年级上册数学课件一、一元二次方程。

1. 定义与一般形式。

- 定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程。

- 一般形式:ax^2+bx + c = 0(a≠0),其中a是二次项系数,b是一次项系数,c 是常数项。

- 举例:x^2+3x - 4 = 0,这里a = 1,b = 3,c=-4。

2. 解法。

- 直接开平方法。

- 对于方程x^2=k(k≥0),解得x=±√(k)。

- 例如,对于方程(x - 2)^2=9,则x - 2=±3,解得x = 5或x=-1。

- 配方法。

- 步骤:先将方程化为x^2+bx = - c的形式,然后在等式两边加上((b)/(2))^2,将左边配成完全平方式(x+(b)/(2))^2,再进行求解。

- 例如,解方程x^2+6x - 7 = 0,移项得x^2+6x = 7,配方得x^2+6x+9 = 7 + 9,即(x + 3)^2=16,解得x = 1或x=-7。

- 公式法。

- 一元二次方程ax^2+bx + c = 0(a≠0)的求根公式为x=frac{-b±√(b^2)-4ac}{2a}。

- 例如,解方程2x^2-5x+3 = 0,这里a = 2,b=-5,c = 3,代入公式得x=frac{5±√((-5)^2)-4×2×3}{2×2}=(5±1)/(4),解得x = 1或x=(3)/(2)。

- 因式分解法。

- 把方程化为(mx + n)(px+q)=0的形式,那么mx + n = 0或px+q = 0。

- 例如,解方程x^2-3x+2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2。

3. 根的判别式Δ=b^2-4ac- 当Δ>0时,方程有两个不相等的实数根。

- 当Δ = 0时,方程有两个相等的实数根。

- 当Δ<0时,方程没有实数根。

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页

最新人教版九年级数学上册全册全套课件200页一、教学内容1. 第十三章:一元二次方程13.1 一元二次方程及其解法13.2 一元二次方程的判别式13.3 一元二次方程的根与系数的关系13.4 实际问题与一元二次方程2. 第十四章:不等式与不等式组14.1 不等式及其解法14.2 不等式的性质14.3 不等式组14.4 实际问题与不等式组3. 第十五章:函数及其图像15.1 函数的概念与表示方法15.2 函数的性质15.3 一次函数15.4 一次函数的图像与性质4. 第十六章:二次函数16.1 二次函数的概念与表示方法16.2 二次函数的图像与性质16.3 二次函数的顶点式16.4 二次函数与一元二次方程16.5 实际问题与二次函数二、教学目标1. 理解一元二次方程、不等式、不等式组、函数及二次函数的基本概念,掌握它们的解法、性质、图像和应用。

2. 培养学生运用数学知识解决实际问题的能力,提高逻辑思维能力和推理能力。

3. 培养学生团队合作精神,提高自主学习能力。

三、教学难点与重点1. 教学难点:一元二次方程的根与系数的关系、不等式的性质、一次函数与二次函数的图像与性质。

2. 教学重点:一元二次方程的解法、不等式组的解法、函数的概念及其应用。

四、教具与学具准备1. 教具:多媒体教学设备、投影仪、黑板、粉笔、教鞭等。

2. 学具:课本、练习册、草稿纸、直尺、圆规、计算器等。

五、教学过程1. 导入:通过实际问题引入新课,激发学生兴趣。

2. 新课讲解:结合教材,详细讲解各章节知识点,注重理论与实践相结合。

3. 例题讲解:精选典型例题,详细讲解解题思路和方法,引导学生分析问题,提高解题能力。

4. 随堂练习:设计针对性练习,巩固所学知识,及时发现问题并进行解答。

5. 小组讨论:分组讨论,培养学生团队合作精神,提高解决问题的能力。

六、板书设计1. 用大号字体书写,突出主题。

2. 知识点:用不同颜色粉笔书写,分层次、分模块展示。

人教版九年级数学上册全套课件(共1001张PPT)

人教版九年级数学上册全套课件(共1001张PPT)

A.x2

1 x2

0
不是整式方程
B. 3x2 5xy y2 0
C. (x 1)(x 2) 0
D. ax2 bx c 0
化简整理成 x2-3x+2=0
少了限制条件 a≠0
提示 判断一个方程是不是一元二次方程,首先看是不是 整式方程;如是再进一步化简整理后再作判断.
例2:a为何值时,下列方程为一元二次方程?
2.填空:
(1)方程x2=0.25的根是 x1=0.5,x2=-0.5 . (2)方程2x2=18的根是 x1=3,x2=-3 . (3)方程(2x-1)2=9的根是 x1=2,x2=-1.
3. 解下列方程:
(1)x2-81=0; 解:x1=9,x2=-9;
ax2+bx+c=0 (a≠0)
二次项系数 一次项系数
常数项
想一想 为什么一般形式中ax2+bx+c=0要限制a≠0,b、c 可以 为零吗?
当 a=0时 当 a ≠ 0 , b = 0时 , 当 a ≠ 0 , c = 0时 , 当 a ≠ 0 ,b = c =0时 ,
bx+c = 0 ax2+c = 0 ax2+bx = 0 ax2 = 0
知数的最高次数等于2,列出关于某个字母的方程,再排除使二次 项系数等于0的字母的值.
例3:将方程3x(x-1)=5(x+2)化为一般形式,并分别指出它 们的二次项、一次项和常数项及它们的系数.
解: 去括号,得 3x2-3x=5x+10. 移项、合并同类项,得一元二次方程的一般形式
3x2-8x-10=0. 其中二次项是3x2,系数是3;一次项是-8x, 系数是-8;常数项是-10. 注意 系数和项均包含前面的符号.

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

知识回顾
直线与圆相切的判定: 1.利用定义判定:直线和圆只有一
个公共点时,直线与圆相切. 2.利用直线与圆心距离判定:当圆
心与直线的距离等于该圆的半径时,直 线与圆相切.
O
l
O d=r
l
新知探究
知识点1 切线的判定
思考:如图,在⊙O中,经过半径OA 的外端点 A 作直线 l⊥OA. (1)圆心O到直线 l 的距离是多少?
l
∴OA⊥l
ห้องสมุดไป่ตู้ 反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
相交.这与已知条件“直线与⊙O相切”相 C 矛盾;
A MD
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂直,证半径.
随堂练习
1.如图,已知⊙O的直径AB与弦AC的夹角为31°,
d l
A
3.判定定理:经过半径的外端并且垂直于
O
这条半径的直线是圆的切线.
l
A
已 知 : 直 线 AB 经 过 ⊙ O 上 的 点 C , 并 且 OA=OB ,
CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC.

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.

新人教版九年级数学上册全册课件.一、教学内容1. 第1章:二次函数详细内容:二次函数的定义、图像、性质、二次函数的顶点式与一般式之间的转换、最值问题等。

2. 第2章:锐角三角函数详细内容:锐角三角函数的定义、图像、性质、互化公式、解直角三角形等。

3. 第3章:圆详细内容:圆的基本概念、圆的方程、圆的性质、直线与圆的位置关系等。

二、教学目标1. 理解并掌握二次函数、锐角三角函数和圆的基本概念和性质。

2. 学会运用二次函数、锐角三角函数和圆的方程解决实际问题。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:二次函数与锐角三角函数的性质、图像的理解,圆的方程的求解。

2. 教学重点:二次函数的应用、锐角三角函数的互化公式、直线与圆的位置关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实践情景引入通过生活中与二次函数、锐角三角函数和圆相关的实例,激发学生兴趣,引导学生进入学习状态。

2. 例题讲解(1)二次函数部分:以实际案例为例,讲解二次函数的性质、图像、顶点式与一般式的转换等。

(2)锐角三角函数部分:通过具体例题,讲解锐角三角函数的定义、图像、性质、互化公式等。

(3)圆部分:结合实例,讲解圆的方程、性质、直线与圆的位置关系等。

3. 随堂练习设计具有针对性的练习题,让学生及时巩固所学知识。

六、板书设计1. 二次函数:定义、图像、性质、顶点式与一般式的转换。

2. 锐角三角函数:定义、图像、性质、互化公式。

3. 圆:方程、性质、直线与圆的位置关系。

七、作业设计1. 作业题目:(2)锐角三角函数:已知直角三角形的两个锐角分别为30°和60°,求第三个锐角的正弦、余弦、正切值。

(3)圆:已知圆的方程为(x2)^2+(y3)^2=25,求圆心坐标和半径。

2. 答案:(1)解:x^25x+6=0,解得x1=2,x2=3。

人教版数学九年级上册全册精品课件.

人教版数学九年级上册全册精品课件.

人教版数学九年级上册全册精品课件.一、教学内容1. 第十三章:一元二次方程详细内容:一元二次方程的定义、解法(直接开平方法、配方法、公式法、因式分解法)、根的判别式、根与系数的关系、实际应用。

2. 第十四章:不等式与不等式组详细内容:不等式的性质、一元一次不等式及其解集、一元一次不等式组、不等式的应用。

3. 第十五章:图形的相似详细内容:相似图形的定义、相似图形的性质、相似多边形的判定、相似多边形的性质、位似图形、相似与位似的应用。

4. 第十六章:锐角三角函数详细内容:锐角三角函数的定义、锐角三角函数的值、互余两角的三角函数的关系、锐角三角函数的应用。

二、教学目标1. 让学生掌握一元二次方程、不等式与不等式组、图形的相似、锐角三角函数的基本概念和解法。

2. 培养学生运用数学知识解决实际问题的能力。

3. 培养学生的逻辑思维能力和空间想象能力。

三、教学难点与重点1. 教学难点:一元二次方程的解法、不等式组的解集、相似多边形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的解法、不等式组的应用、相似与位似的应用、锐角三角函数的应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、三角板、圆规。

2. 学具:直尺、圆规、量角器、计算器。

五、教学过程1. 实践情景引入:通过生活中的实际问题,引入本章所学内容。

2. 例题讲解:详细讲解典型例题,分析解题思路和方法。

3. 随堂练习:针对所学知识点,设计随堂练习,巩固所学知识。

4. 小组讨论:分组讨论,培养学生的合作能力和解决问题的能力。

六、板书设计1. 板书:以提纲形式展示本章知识点,突出重点和难点。

2. 例题:将解题过程详细展示在黑板上,方便学生模仿和学习。

七、作业设计1. 作业题目:(1)解一元二次方程:x^2 5x + 6 = 0。

(2)解不等式组:2x 3 > 1,3x + 2 < 5。

(3)判断两个三角形是否相似,并说明理由。

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件

人教版九年级数学上册全册完整精品课件一、教学内容1. 函数与方程函数的概念、表示法及其性质一元二次方程的求解及其应用一次函数、反比例函数的性质及应用2. 图形的相似与证明相似图形的判定与性质位似图形的判定与性质相似变换及其应用3. 解直角三角形锐角三角函数的概念与性质解直角三角形及其应用4. 统计与概率频数与频率可能性的大小平均数、中位数、众数的计算及应用二、教学目标1. 理解函数、方程、相似图形等基本概念,掌握其性质与应用。

2. 学会使用锐角三角函数解直角三角形,并能应用于实际问题。

3. 培养学生的数据分析与逻辑思维能力,提高解决问题的能力。

三、教学难点与重点1. 教学难点:函数的性质、相似图形的判定与性质、锐角三角函数的应用。

2. 教学重点:一元二次方程的求解、一次函数与反比例函数的性质、统计与概率的计算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、直尺、圆规。

2. 学具:课本、练习本、计算器、直尺、圆规。

五、教学过程1. 导入:通过生活实例,引出函数、方程等概念,激发学生的学习兴趣。

2. 新课导入:(1)讲解函数的概念、表示法及其性质。

(2)通过例题,讲解一元二次方程的求解及其应用。

(3)介绍一次函数、反比例函数的性质,分析其在实际问题中的应用。

(4)讲解相似图形的判定与性质,通过实践操作加深理解。

(5)介绍锐角三角函数的概念与性质,引导学生学会解直角三角形。

3. 随堂练习:(1)针对函数、方程、相似图形等知识点,设计具有代表性的练习题。

(2)分组讨论,互帮互学,共同解决问题。

4. 知识巩固:(1)通过典型例题,巩固函数、方程等知识。

(2)讲解统计与概率的计算方法,分析其在生活中的应用。

5. 课堂小结:六、板书设计1. 函数、方程的概念与性质。

2. 一元二次方程的求解方法。

3. 一次函数、反比例函数的性质。

4. 相似图形的判定与性质。

5. 锐角三角函数的应用。

6. 统计与概率的计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3600cm2,得(100 2 x)(50 2 x) 3600
整理,得 4x2 300x 1400 0
化简,得 x2 75x 350 0 ①
3600cm2
100cm
该方程中未知 数的个数和最 高次数各是多 少?
50cm
问题2 要组织要组织一次排球邀请赛,参赛的每两队之间都要 比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安 排4场比赛,比赛组织者应邀请多少个队参加比赛?
本单元数学的主要内容. (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周 角. (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置 关系, 圆和圆的位置关系. (3)正多边形和圆. (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面 积.
第二十五 随机事件与概率 本章内容是概率初步。教科书先以学生喜闻乐见的掷骰
解析:设应邀请x个队参赛,每个
队都要与其他(x-1)个队各赛一场,
因为甲队对乙队的比赛和乙队对
甲队的比赛是同一场比赛,所以
全部比赛共 1 x(x 1) 场.
2
解:根据题意,列方程:1 x(x 1) 28.
9
一 一元二次方程的概念
问题1 有一块矩形铁皮,长100cm,宽50cm,在它的四角各切去一个 正方形,然后将四周凸出部分折起,就能制作一个无盖方盒,如果 要制作的方盒的底面积为3600cm2,那么铁皮各角应切去多大的正 方形?请根据题意列出方程.
解:设切去的正方形的边长为xcm, 则盒底的长为(100-2x)cm,宽为 (50-2x)cm,根据方盒的底面积为 x
新人教版九年级上册
数学
全册课件
各单元内容分析
第二十一章 一元二次方程 本章的主要内容包括:一元二次方程及其有关概念,一元二
次方程的解法(配方法、公式法和因式分解法) , 运用一元二次方 程分析和解决实际问题。 第二十二章 二次函数
这章主要要求学生在掌握好原来的一次函数、正比例函数的 基础上,进一步学习二次函数的初步知识。本章采用由简入繁 的方式对各种形式的二次函数进行了系统的学习。尤其与旧教 材不同的是,加入了函数的平移,从而对函数的图像进行了更 深入的理解。 对二次函数的表达式问题中,要求了三种形式,而且对二次函 数表达式的确定要求的也非常具体。
第二十三章 旋转 本章学习第三种图形变换---旋转。此前,学生已经学习了平
移与轴对称两种图形变换。第一节引出旋转的概念。然后按要求 做出简单平面图形旋转后的图形的例题。最后说明利用旋转进行 简单的图案设计的内容。第二节有三部分内容,中心对称的概念、 性质和有关作图;首先通过具体例子给出中心对称的概念,然后 探究中心对称的性质,最后说明作已知图形中心对称的图形的方 法。第三节是课题学习的内容,要求学生探索图形之间的变换关 系,灵活运用轴对称,平移、旋转地组合进行图案设计。 第二十四章 圆
第二十四章 圆 24.1.1 圆 24.1.2 垂直于弦的直径 24.1.3 弧、弦、圆心角 24.1.4 圆周角 24.2.1 点和圆的位置关系 24.2.2 第1课时直线和圆的位置关系 24.2.2 第2课时切线的性质与判定 24.2.2 第3课时切线长定理 24.3 正多边形和圆 24.4 第1课时弧长和扇形面积 24.4 第2课时圆锥的侧面积和全面积 第二十四章 圆小结与复习
22.1.4 第2课时 用待定系数法求二次函数的解析式
22.2 二次函数与一元二次方程
22.3 第1课时 几何图形的最大面积
22.3 第2课时 商品利润最大问题
22.3 第3课时 拱桥问题和运动中的抛物线
第二十二章 小结与复习
第二十三章 旋转 23.1 第1课时 旋转的概念与性质 23.1 第2课时 旋转作图 23.2.1 中心对称 23.2.2 中心对称图形 23.2.3 关于原点对称的点的坐标 23.3 课题学习 图案设计 第二十三章 中心对称小结与复习
第二十一章 一元二次方程
课件内容目录
21.1 一元二次方程
21.2.1 第1课时 直接开平方法
21.2.1 第2课时 配方法
21.2.2二次方程的根与系数的关系
21.3 第1课时 传播问题与一元二次方程
21.3 第2课时 平均变化率与一元二次方程
21.3 第3课时 几何图形与一元二次方程
第二十一章 小结与复习
第二十二章 二次函数
22.1.1 二次函数
22.1.2 二次函数y=ax2的图象和性质
22.1.3 第1课时 二次函数y=ax2+k的图象和性质
22.1.3 第2课时 二次函数y=a(x-h) 2的图象和性质
22.1.3 第3课时 二次函数y=a(x-h) 2+k的图象和性质
22.1.4 第1课时 二次函数y=ax2+bx+c的图象和性质
第二十五 随机事件与概率 25.1.1 随机事件 25.1.2 概率 25.2 第1课时 运用直接列举或列表法求概率 25.2 第2课时画树状图求概率 25.3 用频率估计概率 第二十五章 概率初步小结与复习
新人教版九年级数学上册
第二十一章 一元二次方程
21.1 一元二次方程
1.什么叫方程?我们学过那些方程? 含有未知数的等式叫方程 2.什么叫一元一次方程? 含有一个未知数,并且未知数的最高次数为1的整式 方程 3.什么叫分式方程? 分母中含有未知数的方程
子游戏为背景,经历猜测、试验、收集试验数据、分析试验 结果等活动过程,让学生体验生活中有许多事件的发生是不 确定的,加深对确定事件与随机事件,必然事件与不可能事 件等概念的理解,并感受随机事件发生的可能性有大有小。 同时,初步体会人们一般通过重复多次试验来估计事件发生 的可能性大小。在第二节中,通过抛掷图钉和抛掷均匀的硬 币的试验,让学生感受到频率的稳定性,并得出概率的统计 定义,即用事件发生的频率的稳定值作为该事件发生的概率。 在第三节中,通过对摸到红球的概率的讨论,对一类事件 (古典概型)发生的概率进行简单的理论计算。通过对停留 在黑砖上的概率的讨论,对另一类事件(几何概型)发生的 概率进行简单的理论计算,从而加深对概念意义的理解。
相关文档
最新文档