动态尾流模型在水平轴风力机气动性能计算中的应用

合集下载

单台风电机组尾流流场模拟

单台风电机组尾流流场模拟

单台风电机组尾流流场模拟李品;王东升;崔岩松【摘要】基于CFD的数值模拟的方法,利用Fluent软件对单台风电机组的尾流流场进行数值模拟,得出尾流区中风速的分布规律,并对模拟结果进行分析.根据Larsen尾流模型,计算得到尾流区风速分布,并将二者结果进行相互验证.结果表明,二者计算结果相符,该方法可为风电场微观选址,合理布置风电机组减少尾流效应不利影响提供参考,并得到Larsen尾流模型的适用条件.【期刊名称】《东方汽轮机》【年(卷),期】2018(000)004【总页数】5页(P51-55)【关键词】风力涡轮机;尾流流场;CFD数值模拟;微观选址【作者】李品;王东升;崔岩松【作者单位】河北建投新能源有限公司,河北石家庄,050000;东方电气自动控制工程有限公司,四川德阳,618000;河北建投新能源有限公司,河北石家庄,050000【正文语种】中文【中图分类】TK830 引言在风电场中,风经过旋转的风轮后会发生速度大小和方向的变化,这种对初始空气来流的影响称之为风力机的尾流效应。

尾流导致气流中附加风剪切和湍流强度,这会影响下游风力发电机组的疲劳载荷和结构性能等因素,减少风力机的输出功率,进而影响整个风电场的总输出功率。

因此,开展风电机组尾流场的研究对于合理布置风力发电机组,减少风力发电机组间尾流干扰,进而提高整个风电场的发电效率有着重要意义。

国内外许多专家学者对风电机组的尾流效应开展了广泛研究,一类是尾流模型研究方法,这些模型是由学者提出的简化尾流模型,然后利用实验数据检验模型并且进行修正。

比如WAsP采用的Park模型、Ainslie提出的涡粘性尾流模型、Larsen 尾流模型、 Jensen模型、 AV(AeroViroment)尾流模型等等。

其中Larsen模型是基于旋转对称湍流边界层公式的渐进表达式的半解析尾流模型,尾流区边界非线性并且某一点的风速除了与风力机后距离有关还与距离中线的距离有关,更加符合实际,在欧洲风电机组项目标准中被推荐使用。

叶片旋转方向对NREL Phase Ⅵ风力机功率特性的影响分析

叶片旋转方向对NREL Phase Ⅵ风力机功率特性的影响分析

叶片旋转方向对NREL Phase Ⅵ风力机功率特性的影响分析孙义鸣; 谭剑锋; 周天熠【期刊名称】《《南京工业大学学报(自然科学版)》》【年(卷),期】2019(041)006【总页数】8页(P695-702)【关键词】风力机; 叶片旋转方向; 计算流体力学; 功率特性; Fluent【作者】孙义鸣; 谭剑锋; 周天熠【作者单位】南京工业大学机械与动力工程学院江苏南京 21 1800【正文语种】中文【中图分类】O355近年来,随着科学技术的发展,风能资源作为清洁的可再生能源受到越来越多的关注,风力发电是风能资源利用的最主要方式,风力机功率特性是评价风力机性能以及风力发电场排布方式优劣的重要指标,因此,对风力机功率特性展开研究非常必要。

目前国内外许多学者对风力机功率特性以及尾流对风力机功率特性影响展开了研究,Sturge等[1]结合致动盘理论建立一种新型快速尾流模型,并对风力机功率特性展开研究。

曾利华等[2]针对风场风力机尾流计算与尾流迭加问题建立新模型,并结合实际算例分析风力机功率特性验证模型合理性。

梁浩[3]基于Jensen尾流模型,提出了通过控制上游风力机推力系数减少尾流效应影响范围的方法来提升风力机的功率特性,通过研究发现该方法具有普遍性。

随后,有学者研究了不同风力机间距和不同排布方式对风力机功率特性的影响,柴华[4]建立翼型为NACA0018的三叶片垂直风力机模型,通过改变风力机间距离研究两台相同规格风力机间相互干扰下的功率特性变化。

Kusiak等[5]考虑了尾流效应、风速、风向等因素,研究若干风力机排布和风场最大功率并进行优化。

此外,刘晴晴等[6]利用塔筒高度与风电场年发电量的关系优化主风向上塔筒高度,减少尾流效应影响提升风力机功率特性。

李冠深[7]采用雷诺平均法(RANS)方法对单风力机进行三维CFD模拟,研究高差对风力机功率特性的影响。

Chowdhury等[8]和Chen等[9]分别用改进的遗传算法和新型风电场布局优化方法(UWFLO)研究风力机不同塔架高度对风场风力机输出功率的优化问题,虽然考虑了塔架的高差影响,但是却没有给出其最终研究结果。

基于IDDES方法的大型水平轴风力机气动特性与尾流分析

基于IDDES方法的大型水平轴风力机气动特性与尾流分析

基于IDDES方法的大型水平轴风力机气动特性与尾流分析基于IDDES方法的大型水平轴风力机气动特性与尾流分析一、引言随着环境保护和可再生能源的重要性逐渐凸显,风力发电成为了当今世界上最主要的可再生能源之一。

大型水平轴风力机是风力发电的核心设备之一,其性能优化对于提高发电效率至关重要。

气动特性和尾流分析是评估风力机性能和研究风场中不同风力机排布布局的关键要素。

二、IDDES方法的原理及特点IDDES(Improved Delayed Detached Eddy Simulation,改进的延迟分离尾流模拟)是一种半物理数值模拟方法,结合了雷诺平均纳维-斯托克斯(RANS)和大涡模拟(LES)两种方法的优点。

IDDES方法适用于湍流流动的模拟,能够较好地预测风力机在不同工况下的气动特性。

与传统的RANS方法相比,IDDES方法能够更精确地模拟湍流结构,尤其对于边界层流动、挡风罩等复杂几何结构的湍流模拟效果更佳。

而与LES方法相比,IDDES方法在计算时间和计算资源消耗上更加经济高效。

因此,使用IDDES方法进行大型水平轴风力机气动特性与尾流分析具有很高的研究价值。

三、大型水平轴风力机气动特性分析1. 数值模拟模型的建立首先,根据实际风力机的几何参数,建立风力机的三维模型。

利用计算流体力学(CFD)软件,应用IDDES方法对风力机的气动特性进行模拟。

2. 气动力特性评估利用IDDES模拟结果,可以得到风力机的气动力特性,如风力机叶片上的气动力分布、升力系数、阻力系数等。

通过对比实际风力机的气动力测试数据,验证IDDES模拟结果的准确性。

3. 流场分析IDDES方法能够模拟风力机周围的流场情况,包括风力机叶片表面的湍流结构、气动力影响区域的湍流特性等。

通过对流场分析可以深入了解风力机周围的流动特征,为设计和改进风力机提供重要依据。

四、大型水平轴风力机尾流分析1. 尾流特性描述利用IDDES方法模拟大型水平轴风力机的尾流特性。

风力机尾流模拟国内外发展概况

风力机尾流模拟国内外发展概况

风力机尾流模拟国内外发展概况气流通过旋转的风力机转子时产生动量损失,会在风力机下游形成风速下降的区域,该区域被称为尾流区。

尾流的紊流结构会影响下游风力机的疲劳载荷,使风力机的性能受到影响,功率输出减小,导致整个风电场的总功率输出受到影响。

1979年,Lissaman在瑞典Kalkugen实测数据的基础上,基于湍流喷射的相似理论,提出了单风力机尾流的计算模型—Lissaman模型。

继Lissaman模型之后,1986年,丹麦Riso的Katic等提出了Park模型,并将其应用到风能资源评估软件WAsP 中。

PARK 模型为一维线性尾流模型,不考虑湍流效应的影响,近似认为尾流影响区域随距离线性扩张,风轮后风速线性恢复,风轮影响区是圆锥形,且沿截面均匀分布,其流场如图1所示。

该模型的运算效率较高,一般常用在风力机优化布置计算中。

Mosetti、Marmidis、苏勋文、郑睿敏等国内外学者分别采用一维线性尾流模型进行了风电场优化布置、风电场发电量计算等发方面的研究。

2010年,王丰利用CFD计算结果将一维线性尾流模型改进为一维非线性尾流模型并进行了风电场微观选址研究工作,虽然尾流非线性扩展,但尾流区截面速度仍为均匀分布。

1988年,Ainslie假定尾流区二维轴对称,采用涡漩粘性理论求解N-S方程,从而求得流场各相关参数,得到二维轴对称涡漩粘性理论的尾流模型,该模型考虑了自由空气和风力机运行对风轮后风速的湍流影响,风速沿截面方向是非均匀分布。

计算模型中,湍流强度的影响与计算分为两部分:外界自由空气的剪切所造成的湍流影响和风力机自身旋转所造成的湍流影响。

此外,模型中风轮影响区一般分为三个区域:近尾流区、过渡区和远尾流区,其流场如图2所示。

各区域边界条件计算方法各不相同,如GH模型中近尾流区长度假设为2倍风轮直径,UO模型和FLaP模型则根据经验公式计算得到。

该模型运算较为复杂,效率较低,但计算精度相对高,一般常用于流场与风力机发电量的精确计算。

柔性风轮的动态入流效应研究

柔性风轮的动态入流效应研究

柔性风轮的动态入流效应研究陈严;沈世;马新稳;刘雄【摘要】基于BEM修正模型和Pitt-Peter模型,推导出非定常流下的动态入流模型.利用四阶Runge-Kutta法求解动态入流模型中的一阶微分方程.考虑大型机组柔性叶片工作过程中发生大尺度变形的特点,加入柔性结构变形对动态入流模型的反馈.分别研究风力机在风剪、风湍流、偏航、叶片桨距角和风轮转速变化过程中的诱导因子的渐变机理.运用MATLAB进行编程,对某5MW风力机进行动态诱导因子计算,建立起诱导因子的动态描述,得到适合柔性叶片翼型的动态入流模型及分析方法.通过对比几种不同模型的计算结果,验证了加柔性结构反馈的动态入流模型的正确性和实用性.%The dynamic inflow model in yaw condition was constructed based on the theory of BEM revised model and Pitt-Peter model; besides first-order differential equation of dynamic inflow model was also figured out by using fourth-order Runge-Kutta method.When taking large deformation of flexible blade during the working proceed and the feedback of flexible structural deformation on dynamic inflow model into consideration,the gradient mechanisms of induce factor on wind turbine were obtained in different circumstances,such as in the wind shear,wind turbulence,yaw,transition of rotor speed and blade pitch angel.Dynamic induce factor of one 5MW wind turbine was figuredout,dynamic description of induce factor was founded,what's more dynamic inflow model and analytical method suitable for flexible blade were established,all these calculate were achieved by employing MATLAB programming.The validity and practicality of dynamic inflow model withflexible structural feedback were confirmed by comparing the calculate results of different models.【期刊名称】《空气动力学学报》【年(卷),期】2013(031)003【总页数】6页(P401-406)【关键词】BEM模型;Pitt-Peter模型;柔性结构反馈;动态入流【作者】陈严;沈世;马新稳;刘雄【作者单位】汕头大学能源研究所,广东汕头 515063;汕头大学能源研究所,广东汕头 515063;汕头大学能源研究所,广东汕头 515063;汕头大学能源研究所,广东汕头515063【正文语种】中文【中图分类】TK80 引言随着风力机技术的发展,风力机单机容量迅速增加,相应的风轮直径从现代风力机技术发展早期的20m 增加到目前的160多m,为了充分利用风力资源和降低风电成本,单机大型化是现代风电机组发展的必然方案。

高密实度H型风力机气动性能的数值分析

高密实度H型风力机气动性能的数值分析

( S t a t e K e y L a b o r a t o r y o f F l u i d P o w e r T r a n s m i s s i o n a n d C o n t r o l ,Z h e j i a n g U n i v e r s i t y , H a n g z h o u 3 1 0 0 2 7 , C h i n a )
Ab s t r a c t :Ai mi n g a t t h e p r o b l e ms o f a e r o d y n a mi c c h a r a c t e r i s t i c s a n d t h e wi n d f a r m a r r a n g e me n t i s s u e s o f t h e h i g h s o l i d i t y H— t y p e wi n d t u r b i n e u n d e r d i f f e r e n t n u mb e r s o f b l a d e s , t h e k - o J S S T t u r b u l e n t mo d e l wa s i n v e s t i g a t e d .Af t e r a n a l y s i s o f a e r o d y n a mi c c h a r a c t e i r s t i c s a r o u n d t h e t u r b i n e , t h e r e l a t i o n s h i p b e t we e n t h e l f o w a n d t h e p e f r o m a r n c e o f t h e t u r b i n e w a s e s t a b l i s h e d .A me t h o d wa s p r e s e n t e d t o c o n s i d e r t h e e ic f i e n c y a n d b e a i r n g s e c u i r t y w h e n d e s i g n e d .T h e t u r b i n e s a r r a n g e me n t w a s e v a l u a t e d o n t h e a n ly a s i s o f t h e w a k e l f o w

fluent中常见的湍流模型及各自应用场合

fluent中常见的湍流模型及各自应用场合

标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。

本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。

1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。

在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。

2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。

它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。

k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。

3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。

与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。

4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。

在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。

5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。

在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。

总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。

从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。

风力机翼型挥舞摆振非定常气动特性分析

风力机翼型挥舞摆振非定常气动特性分析

风力机翼型挥舞摆振非定常气动特性分析吕坤;谢永慧;张荻【摘要】参考实际运行状态下的风力机翼型,应用动网格并采用k-ωSST湍流模型对NREL S809翼型在Re=1×106情况下的翼型振荡进行了数值模拟,同时分析了挥舞、摆振及二者耦合振动对风力机翼型气动性能的影响.结果表明:相同振幅和频率下,翼型挥舞比摆振引起的气动力波动大得多;翼型未达到失速时,翼型吸力面的流动分离可以使翼型获得额外的升力;挥舞的振幅或频率较大时,翼型会发生失速,且来流攻角越大,挥舞使得翼型更易发生失速;在挥舞-摆振耦合引起的翼型气动力变化中,挥舞起主导作用.%The moving mesh and the k-w SST model were adopted to simulate the aerodynamic performance of the NREL S809 airfoil at the Reynolds number of 1X106. The effects of flapwise, edgewise and combined flap/lead-lag oscillations on the aerodynamic performance of the airfoil were analyzed- The results show that the aerodynamic fluctuation caused by flapwise oscillation is much larger than that caused by edgewise oscillation with the same amplitude and frequency. The lift is greater due to flow separation on the suction surface of the airfoil when the airfoil is not in stall status. Larger amplitude and higher frequency of the oscillation will lead to dynamic stall of the airfoil, and the dynamic stall of the airfoil occurs more easily with the increase in the attack angle. In addition, flapwise oscillation plays a dominant role in the aerodynamic fluctuation caused by combined flap/lead-lag oscillation.【期刊名称】《西安交通大学学报》【年(卷),期】2011(045)009【总页数】8页(P47-53,100)【关键词】挥舞;摆振;风力机翼;湍流模型;数值模拟【作者】吕坤;谢永慧;张荻【作者单位】西安交通大学能源与动力工程学院,710049,西安;西安交通大学能源与动力工程学院,710049,西安;西安交通大学能源与动力工程学院,710049,西安【正文语种】中文【中图分类】TK83在气动力、惯性力和弹性力的耦合作用下,风力机叶片旋转时容易发生振动,通常振动有3种形式:①挥舞,即叶片在垂直于旋转平面上的弯曲振动;②摆振,即叶片在旋转平面内的弯曲振动;③扭转,即绕叶片变距轴的扭转振动[1].这3种形式的振动在一起还会引发耦合,由此产生气动弹性不稳定.风力机叶片的振动及气弹耦合对风力机的气动性能及安全性有重要影响,所以深入研究翼型振荡状态下的气动特性,对改进翼型设计、提高风力机的气动效率和安全性具有重要的意义.许多学者对翼型振动的气动性能进行了深入研究,如:Ekaterinaris等[2]采用 Baldw in-Barth湍流模型对NACA 0012翼型的俯仰、平振及耦合运动下的动态失速性能进行了计算,指出振动状态下翼型的气动性能有别于静止状态;Walker等[3]对翼型等速上仰问题进行了大量的实验研究,指出当攻角大于静态失速攻角时,动态失速涡的存在对翼型上表面的速度和压力分布有重大影响,随着翼型上仰速度的增加,动态失速涡附着在翼型上的时间更长,由此可以显著增加翼型大攻角条件下的时均气动力;Ramsay等[4]通过风洞实验系统地研究了不同的雷诺数、平均迎角、迎角振幅和减缩频率下NREL S809翼型俯仰振荡的动态失速性能,分析了各因素对动态失速性能的影响;Guerri等[5-6]应用计算流体动力学方法深入研究了风力机叶型的流固耦合效应,得到了翼型的不同振型和气动力变化,同时着重研究了叶型的挥舞-扭转耦合振动.但是,迄今为止的大多研究是针对翼型俯仰振荡运动的动态失速进行的,而针对翼型挥舞、摆振及二者耦合振动时的气动性能却不多见.本文应用动网格技术,采用k-ω SST湍流模型,在实验[3]和Re=l×l06下对二维NREL S809翼型振荡进行了数值模拟.1 数值模型1.1 数值方法求解雷诺平均N-S方程利用商业软件CFX,计算模型采用k-ωSST湍流模型[5,7-8],瞬态项离散采用二阶迎风后插隐式时间步方法,空间离散采用二阶迎风格式.k-ωSST湍流模型[9]的计算方程如下湍流黏性系数湍动能方程湍流频率方程式中 :F1和 F2是混合函数;β、γ、σk、σω为模型参数.k-ωSST湍流模型利用函数F1将 k-ε和k-ω方程结合起来,然后利用函数F2来改进涡团黏性系数μt在壁面逆压流动区域的结果,充分发挥k-ε模型处理自由流、k-ω模型处理壁面约束流动的特长,同时还借鉴了 Johnson-King模型[10]不平衡作用的思想,以增强对复杂流的适应性.1.2 计算模型风力机翼选用S809翼型[4](主要应用于两叶片NREL PhaseⅥ风力机),额定功率为19.8 kW,叶片展长为5.03m.参照实际建立了风力机模型,如图1所示,图中:V为来流风入口的相对速度;α为攻角;β1为桨距角;F为作用在桨叶上的气动合力.F可以分解为F x、F y,Fx与来流风向垂直,称为驱动力,使桨叶旋转做功,Fy与来流风向平行,称为轴向推力,通过塔架作用在地面上.摆振沿x轴方向进行,挥舞沿y轴方向进行. 图1 风力机翼型受力模型参考文献[7]中的风力机模型,其叶片产生的最大功率区域在0.75倍展长附近,该区域桨距角β1=0°,因此取β1=0°建立计算域.计算网格用C 型结构化网格,翼型表面分布了300个节点,翼型前缘和尾缘网格采用加密处理,总网格数为12万.计算域及翼型周围网格如图 2所示,图中翼型弦长c=600 mm,计算域外边界距离翼型边界面至少为15倍弦长.计算域分内、外2个区,内区是直径为2倍于翼型弦长的圆,通过动网格来控制内区网格的移动可模拟翼型振动.图2 翼型计算区域及其周围网格分布图为了验证计算模型的正确性,对不同来流攻角下翼型的升力、阻力系数进行了计算,结果如图3所示.由图3可见,来流攻角在0°~18°内 ,计算与实验的阻力系数基本吻合.来流攻角小于10°,计算获得的升力系数与实验的偏差很小;来流攻角大于10°,计算获得的升力系数与实验之间出现了偏差,但在工程上该偏差是可以容忍的.所以,来流攻角在6°~12°之间时,可以采用本文模型进行数值分析.图3 不同来流攻角下翼型升力、阻力系数为了便于研究翼型振荡对风力机输出功率的影响,在参考文献[8]中定义式中:Cx为驱动力系数;Cy为轴向推力系数.2 数值模拟及分析2.1 翼型挥舞翼型挥舞在y方向上的位移[5-6]为式中:A为翼型挥舞的振幅;f为振动频率;φ为相位差,φ=0.直径为45 m左右的叶轮,其自激振动频率在1~3 Hz之间,且随着叶片展长的减小,自激振动频率增加[11-12].该叶轮的叶片振型以一阶挥舞和一阶摆振为主,在极限挥舞载荷作用下通过叶片有限元模型计算和实验得到的叶尖挠度可以达到8m以上.文献[13]在Re=1×105、缩减频率 k=0.8、无量纲挥舞振幅h=A/c=0.4~0.7下数值模拟了NACA 0012翼型的气动性能.参考文献[5-6,13-14]、结合实际风力机振动情况确定A=0.05~0.5 m,f=1~3 Hz,其中 3 Hz对应于最大的k=0.44.每个振动周期的时间步长数n对计算精度有显著影响.图4为 A=0.3m 、f=3 H z、α=10°时,n分别取15、30、60的 Cx计算结果.图4 不同n下的Cx计算结果由图4可见:n取30、60时,对应二者的驱动力系数曲线几乎完全重合;n取15时,对应曲线与前二者有明显区别.n不同时,对应驱动力系数峰值间存在最大误差.经分析知:n=15时,Cx峰值偏差ΔCx=6.9%;n=60 时,ΔCx=2.3%,该值与 n=30时相差无几,所以计算时本文的n=30.图5为 f=3 H z、α=10°且在不同挥舞振幅下Cx、Cy随时间的变化,该结果与文献[6,14]相似.图 5 f=3 Hz、α=10°且在不同挥舞振幅下Cx、Cy随时间的变化由图5可见,Cx和Cy随着翼型的振动产生了周期性的变化.结合翼型的运动规律可以发现:当翼型在平衡位置沿y轴正向运动时,Cx和Cy达到最小值;当翼型在平衡位置沿y轴负向运动时,Cx和Cy达到最大值.翼型振动时,对应来流速度的大小和方向均发生了变化:翼型沿 y轴正向运动时,对应来流速度和攻角最小,翼型产生的升力最小,Cx和Cy达到最小值;翼型沿y轴负向运动时,翼型仍未失速,其产生的结果恰好与正向运动时相反,所以Cx和Cy均达到最大值.翼型的挥舞不仅导致来流速度和攻角发生变化,还会引发流动分离和旋涡.图6为 A=0.2 m、f=3 H z、α=10°且翼型在平衡位置沿y轴正向和负向运动时的流场.当翼型沿y轴正向运动时,对应来流攻角较小,翼型表面不会发生流动分离.当翼型从最大位移处沿y轴负向运动时,对应来流攻角逐渐增大,翼型表面逐渐出现流动分离;当翼型负向运动至平衡位置时,对应来流攻角达到最大值,流动分离更为严重;当翼型继续负向运动时,对应来流攻角逐渐减小,流动分离现象逐渐减弱,直至消失.1.17 s时,对应来流的速度和攻角达到最大值,流动分离最为严重,这2种因素均有可能导致Cx 和Cy达到最大值.考虑翼型振动前后Cx和Cy的变化如图7所示.图6 翼型在平衡位置沿y轴正向和负向运动时的流场正向运动负向运动图7 考虑翼型振动前后Cx和Cy的变化曲线1、2对应于翼型静止状态;曲线3、4分别对应A=0.2m、f=3 Hz、α=10°的曲线由图7可以发现:翼型沿y轴负向运动时,正常振动状态下的Cx和Cy均大于仅考虑来流速度及攻角的情况,振动下的Cx和Cy表现出增大的特性;翼型负向运动至平衡位置时,压力面附近气流压力增大,其大于吸力面,由此产生压力梯度,此时气流绕过翼型尾缘由压力面流向吸力面,并带动下游流体回流,使得边界层内的流体质点离开壁面挤向主流,从而加剧了边界层分离.下游回流的流体受到主流的冲击折返向下游流动,并在分离点的下游产生剪切涡和尾流区,造成能量损失,促使吸力面产生低压区,因而翼型获得额外的升力,使得Cx和Cy增大.所以,来流速度和攻角增大和翼型振动引起的流动分离都会加剧Cx和Cy增大.以上研究中挥舞振幅比较小,翼型未达到失速.当挥舞振幅较大时,叶片会发生失速颤振.研究发现 ,在 f=3 Hz、α=10°下 ,当 A 大于或等于 0.4m时,翼型失速.图8为 A=0.5 m时不同频率下Cx的变化规律.图8 A=0.5m时不同频率下Cx的变化由图8可见,在f=3 H z下,A=0.5 m与A=0.05~0.3 m时 Cx情况有很大区别,其中:A=0.05~0.3 m时驱动力一直为正值;A=0.5 m且翼型沿y轴负向运动至平衡位置附近时,驱动力会急剧降至负值,Cx甚至达到-0.4.由图8还可见:在相同的挥舞振幅下,振动频率越大,翼型受到的气动力波动越剧烈,当频率达到一定程度时,翼型失速;随着振动频率的增加,翼型沿y轴负向运动且在相同位移处的速度增大,来流速度和攻角随之增大,流动分离和旋涡产生的可能性就越大.频率增大到了一定程度时,流动分离会导致翼型失速,如图8中f=3 H z的情况.图9为翼型在一个振动周期内的流场演化.在1~1.17 s之间,翼型从最大位移处沿y轴负向振动,但仅在翼型吸力面尾缘附近发生了流动分离.1.17 s时,翼型在平衡位置达到最大速度,此时来流速度和攻角最大,翼型前缘附近流动在逆压梯度的作用下开始发生流动分离,并在1.18 s时形成前缘分离涡.前缘分离涡在向后扩展的运动中,翼型升力迅速增加,从而导致Cx迅速增加,这与文献[15]的实验结论吻合,说明前缘涡和翼型表面剪切涡的存在,有助于在翼型上表面产生低压区,进而获得额外的升力. 图9 不同时刻的流场演化情况前缘涡继续向后运动,在1.23 s时翼型尾缘上部诱导出反向旋转的二次涡结构,翼型进入失速状态.尽管此时前缘涡和剪切涡进一步增强,但后缘出现的反向旋转的后缘涡抵消了一部分前缘涡和剪切涡,从而造成升力迅速下降,阻力迅速增加,Cx迅速降低,甚至达到 Cx=-0.4的情况.在 1.27 s时后缘涡脱离翼面向后运动,翼型脱离失速区.此后,翼型继续沿y轴负向振动,对应的来流速度和攻角逐渐减小,翼型重新摆脱了失速状态.2.2 翼型摆振翼型摆振沿 x方向的振荡形式[6,16]为式中:B为翼型摆振振幅;φ为相位差,φ=0.叶片振型是以一阶挥舞和一阶摆振为主的,尽管不同振型时参振的惯性矩不同,但一般情况下,机翼的一阶挥舞和一阶摆振的固有频率比较接近.图10 为且在不同摆振振幅下Cx、Cy随时间的变化.对比图10和图5发现,在相同的振幅和频率下,翼型摆振比挥舞引起的气动力波动小得多.摆振时,翼型沿x轴方向振动,远处来流在 x轴方向的速度分量比y轴的大得多,所以摆振引起的来流速度和来流攻角的变化比挥舞小得多,同时摆振引起的流动分离也远不及挥舞的严重,因此在相同的振幅和频率下,翼型摆振比挥舞引起的气动力波动要小得多.图11为时挥舞和摆振下Cx随X、Y变化的曲线.由图10 不同摆振振幅下Cx、Cy随时间变化的曲线图11 不同频率下 Cx随X、Y变化的曲线图11可以看出,相同振幅和频率下,翼型摆振比挥舞引起的气动力波动要小得多.2.3 翼型挥舞-摆振耦合振动挥舞-摆振不稳定性是风力机单个叶片在挥舞与摆振耦合下产生的.研究表明:当风力机叶片在载荷作用下或者挥舞和摆振频率接近时,挥舞-摆振不稳定性显现出来.本文将挥舞和摆振的频率均设为2 Hz,在参考文献[5-6,17]的基础上,得到耦合振动下叶型受力的运动方程下面研究A分别为 0.05、0.1、0.2、0.3 m 时的情况.图12为耦合振动时不同挥舞振幅下Cx、Cy随时间变化的曲线.图12 耦合振动时不同挥舞振幅下 Cx、Cy随时间变化的曲线(B=0.2m)对比图12和图5发现,耦合振动时翼型受到的气动力的规律与挥舞时很相似,即Cx 和Cy均随着翼型的振动产生周期性的变化.另外还发现,在相同的挥舞振幅下,耦合振动时气动力波动比挥舞时略小,这与采用的耦合振动方程有关.由于2种振型的相位差为π,所以翼型在以最大速度沿y轴负向振动的同时,又以最大速度沿 x轴正向振动,此刻受翼型沿x轴方向运动的影响,对应的来流速度和攻角有所减小.为了研究耦合振动时摆振对翼型气动力的影响,本文取 A=0.2 m,B 分别为 0.05、0.10、0.20、0.30 m,攻角α=10°.图13为耦合振动时不同摆振振幅下Cx、Cy随时间变化的曲线.图 13 耦合振动时不同摆振振幅下Cx、Cy随时间变化的曲线(A=0.2m)由图13可见,B 分别为0.05、0.10、0.20、0.30 m时,对应的Cx变化曲线几乎完全重合.对比图13与图12发现,在耦合振动中,摆振对翼型气动力的影响比挥舞小得多,这个结果与非耦合振动下的结果是一致的.由此可以推断,在耦合振动引起的翼型气动力变化中,挥舞起主导作用.来流攻角的变化对风力机翼型气动性能的影响很大.采用耦合振型研究不同来流攻角对翼型气动性能的影响时,取A=0.2 m,B=0.2 m,攻角α分别为6°、8°、10°、12°.图 14 为不同来流攻角下 Cx、Cy随时间变化的曲线.由图14可见,来流攻角对翼型气动性能的影响很显著.相同振型下,同一时刻来流攻角越大,Cx和Cy越大.这是因为,翼型未失速,对应来流攻角越大,翼型的升力越大.同时还发现,相同振型下,来流攻角越大,Cx的波动越大,而Cy的波动越小.来流攻角在逐渐增大直至接近失速攻角的过程中(见图3),翼型升力的增加逐渐减缓,因而攻角较大时翼型振动引起的升力变化较小.轴向推力主要是翼型升力沿y轴的正向分力,因此Cy的波动较小.但是,由 f=3 Hz时的情况(见图8)知,来流攻角在逐渐增大直至接近失速攻角的过程中,翼型驱动力仍可以快速增大,因而Cx的波动较大.图14 不同来流攻角下Cx、Cy随时间变化的曲线对不同来流攻角的翼型挥舞失速颤振研究发现:在 f=3 H z下,当α=8°、A ≥0.5 m 时 ,翼型接近失速;当α=10°、A=0.4 m 时,翼型会失速;当α=12°、A=0.33 m 时,翼型失速.当来流攻角接近于翼型失速攻角区域时,较小的挥舞振幅会使翼型进入失速状态,这说明来流攻角越大,挥舞更易导致翼型失速.3 结论本文参考实际状态下的风力机模型,应用动网格技术,采用 k-ωSST湍流模型,对NREL S809翼型在Re=1×106时的翼型振动进行了数值模拟,分析了挥舞、摆振及二者耦合振动对风力机翼型气动性能的影响,由此得出如下结论.(1)翼型在挥舞和摆振中,Cx和Cy产生周期性的变化.与摆振相比,挥舞更易引起气动力的大幅波动.(2)翼型在未失速时,其吸力面的流动分离可以使翼型获得额外的升力,翼型振动引起的流动分离会促进Cx和Cy增大.(3)当挥舞的振幅、频率较大时,翼型会发生失速.挥舞时 ,f=3 Hz、α=10°、A≥0.4 m,或者 A=0.4 m 、α=10°、f ≥3 Hz,翼型会达到失速 .来流攻角越大,挥舞更易导致翼型失速.(4)在耦合振动引起的翼型气动力变化中,挥舞起主导作用,摆振是次要的.参考文献:[1] 李本立,宋宪耕,贺德馨,等.风力机结构动力学[M].北京:北京航空航天大学出版社,1999:4-5.[2] EKATERINARIS JA,SORENSEN N N.Numerical investigation of airfoil dynam ic stall in simultaneous harmonic oscillatory and translatory motion[J].Journal of So lar Energy Engineering,1998,120(1):75-83.[3] WALKER JM,HELIN H E,STRICKLAND J H.An experimental investigation of an airfoil undergoing large-amp litude pitching motions[J].A IAA Journal,1985,23(8):1141-1142.[4] RAMSAY R R,HOFFMAN M J.Effects of grid roughness and pitch oscillations on the S809 airfoil,NREL/TP-442-7817[R].W ashingtonDC,USA:National Renewab le Energy Lab.,1995:1-166.[5] GUERRIO,HAMDOUNI A,SAKOUT A.Fluid structure interaction of wind turbineairfoils[J].Wind Engineering,2008,32(6):539-557.[6] GUERRIO,HAMDOUNI A,SAKOUT A.Numerical simu lation of the flow around oscillating w ind turbine airfoils:part 2 free vibrating airfoil[J].Multi-Science Publishing,2008,2(4):387-405.[7] G IGUERE P,SELIG M S.Design of a tapered and twisted blade for the NREL combined experiment rotor,NREL/SR-500-26173[R].Washington DC,USA:National Renew able Energy Lab.,1999:1-32.[8] MARTIN.Aerodynamics of wind turbines[M].London,UK:James and James Ltd.:Science Pub lishers,2008:7-13.[9] MENTER F R.Zonal tw o equation k-ωturbulence models for aero dynam ic flows,A IAA 93-2906[R].Reston,VA,USA:A IAA,1993.[10]JOHNSON D,KING L.A mathematically simp le turbu lence closure mode l for attached and separated turbulence boundary layers[J].AIAA Journal,1985,23(11):1684-1692.[11]周梅,朱志坚,乔印虎,等.风力发电机振动保护仪的研制[J].机械研究与应用,2006,19(3):103-104.ZHOU M ei,ZHU Zhijian,QIAO Yinhu,et al.Research for wind turbineo f vibration guard module[J].M echanicalResearch&Application,2006,19(3):103-104.[6]商炳章,白清源.基于特征项权重改进的关联文本分类[J].计算机研究与发展,2008,45(S0):252-256.SHANG Bingzhang,BAIQingyuan.Improved association text classification based on feature weight [J].Journal of Computer Research and Development,2008,45(S0):252-256.[7]蔡金凤,白清源.挖掘重要项集的关联文本分类[J].南京大学学报,2011,47(5):544-550.CAI Jinfeng,BAI Qingyuan.Association text classification of mining ItemSet significance [J].Journal of Nanjing University,2011,47(5):544-550.[8] BARALIS E,GARZA P.I-prune:item selection for associative classification [J].International Journal of Intelligent Systems,2012,27(3):279-299.[9] YANG Yiming,PEDERSON J O.A comparative study on feature selection in text categorization[C]∥Proceedings of the 14th International Conference on Machine Learning.San Francisco,CA,USA:Morgan Kaufmann,1997:412-420.[10]AGRAWAL R,SRIKANT R.Fast algorithms for mining association rules[C]∥Proceedings of the 20th VLDB Conference.San Francisco,CA,USA:Morgan Kaufmann,1994:487-499.[11]HAN Jiawei,PEI Jian,YIN Yiwen,et al.Mining frequent patterns without candidate generation:a frequent-pattern tree approach[J].Data Mining and Knowledge Discovery,2004,8(1):53-87. [12]SEBASTIANI F.Machine learning in automated text categorization [J].ACM Computing Surveys,2002,34(1):1-47.。

计算流体力学在风电场中的应用

计算流体力学在风电场中的应用

计算流体力学在风电场中的应用计算流体力学(Computational Fluid Dynamics,简称CFD)是一种运用数值方法和计算机模拟来研究流体流动和传热的工程学科。

它通过建立数学模型和求解相应的方程组,可以预测和模拟液体和气体的流动行为。

近年来,CFD在风电场中的应用变得越来越重要,对于风机的设计和性能评估起到了关键作用。

首先,CFD可以帮助工程师优化风机叶片的设计。

风机叶片是将风能转化为机械能的关键组件,对于风机性能的影响至关重要。

通过CFD模拟,可以预测叶片在不同工况下的气动性能,并找出存在的问题。

例如,通过调整叶片的形状和倾角,可以减少湍流损失,提高风机的效率。

同时,CFD还可以帮助设计师预测叶片的气动噪声,从而减少对周围环境的影响。

其次,CFD还可以模拟和预测风电场中的气流分布。

在风电场中,风机之间的相互干扰会导致气流的不均匀性,从而影响风机的性能和寿命。

通过CFD模拟,可以预测风场中的气流分布,并找出存在的不均匀性。

这对于优化风机布局和安装方案非常重要。

例如,通过调整风机的间距和位置,可以减小气流的干扰,提高整个风电场的发电能力。

此外,CFD还可以模拟和分析风机的运行过程。

风机运行时会产生大量的涡旋和湍流,通过CFD模拟,可以精确地描述这些复杂的流动现象。

这对于评估风机的运行稳定性、疲劳寿命以及气动在水力耦合问题中的影响具有重要意义。

同时,CFD还可以帮助分析风机叶片的失速和失速控制等关键问题,以保证风机的安全运行。

除了以上应用,CFD还可以模拟风电场的灾害性天气情况,例如飓风和龙卷风。

这对于评估风机系统的抗风能力和可靠性非常重要。

通过CFD模拟,可以模拟风场的力学响应和结构变形,并为设计和改进风机系统提供参考。

总的来说,CFD在风电场中的应用可以帮助优化风机的设计、改善风电场的布局、预测和分析风机的运行过程,并评估风机系统的可靠性。

随着计算能力的提升和CFD技术的不断发展,相信CFD在风电场中的应用还将得到更加广泛和深入的应用。

风力发电机文献综述

风力发电机文献综述

毕业设计文献综述题目:立轴风力发电机学生姓名:李春鹏学号:090501224专业:机械设计制造及其自动化指导教师:刘恩福2013年2月27日一、摘要风能利用技术的快速发展已使风能成为目前最重要的一种可再生资源。

现有的风能转化系统大部分将风能通过风力机装置转化为机械能,然后通过电机转化为电能,通常风力机按风轮旋转轴在空间的方向,分为水平轴风力机(HorizontalAxis Wind Turbine简称为HAWT)和立轴风力机(Vertical Axis Wind Turbine简称为VAWT)两大类,达里厄型(Darrieus)风力机为立轴风力机的典型机型。

立轴风力机由于其结构和气动性能的独特优势,越来越被人们重视。

变速风力机可以在很大的风速范围内工作,而且能最大限度的捕获风能,提高风力发电机的效率,而成为当前该领域的研究热点。

本文以大型变速立轴风力机为研究对象,风力机为典型的达里厄型风力机,直接驱动永磁同步电机发电。

通过建立风力机气动性能评估模型、传动系统模型、电机以及控制系统的模型,并在MATLAB/SIMULINK进行仿真模拟,得到风力机在各种工况下的运行情况,并实现了最大风能追踪的算法。

变速风力发电机提高了风能利用率,但增加了控制系统的难度,本文对最大风能追踪策略的理论进行分析研究。

分析了达里厄型风力机的气动性能评估模型,该模型是基于叶素动量理论的双多流管模型,考虑了达里厄型风力机旋转时叶片对风轮下盘面流动干涉的特性,以及翼型动态失速、气动阻力的影响,对1MW达里厄型风力机进行计算分析,得到了该风力机的气动性能,如风力机在各风速下的气动转矩与转速的关系,以及在各风速下的气动功率与转速的关系,为仿真模拟提供基础。

根据仿真的需要分别建立了风力机传动系统模型、永磁同步电机模型、最大功率跟踪算法等模型。

永磁同步发电机在同步旋转轴下建立,并对同步电机的解耦控制做了分析,最大功率跟踪算法采用尖速比控制方法。

垂直轴风力机动态流场及其气动性能分析

垂直轴风力机动态流场及其气动性能分析
能源研究与信息 第3 0卷 第4 期
En e r g y Re s e a r c h a n d I n f o r ma t i o n Vo 1 . 3 0 No . 4 2 0 1 4
文章编 号 : 1 0 0 8 —8 8 5 7 ( 2 0 1 4 ) 0 4 —0 1 9 9—0 5
Ab s t r a c t :Ae r o d y n a mi c p e r f o r ma n c e a n a l y s i s i s v e r y i mp o r t a n t d u r i n g v e r t i c a l a x i s wi n d t u r b i n e( V AW T ) d e s i g n a n d e x p e r i me n t s .Th e a n a l y s i s o f d y n a mi c f l o w f i e l d i s a l s o
on t he a i r f oi l f l o w f i e l d a t t he d own wi nd, t he f l o w s e pa r a t i on i s no t obs e r ve d.
D OI : 1 0 . 1 3 2 5 9 / j . c n k i . e r i . 2 0 1 4 . 0 4 . 0 0 4
垂 直轴 风 力机 动态 流 场 及 其气 动性 能分 析
祖 红亚 ,李

春, 叶 舟 ,刘天亮
( 上海理工大学 能源与动力工程学 院,上海 2 0 0 0 9 3 ) 要 :垂直轴风力机 气动性能研究是风 力机设计、 实验 的重要 部分 , 对其运动 状态下的流场进行 分析是观测

风力机尾流流场的数值分析和尾流边界建模

风力机尾流流场的数值分析和尾流边界建模

风力机尾流流场的数值分析和尾流边界建模朱翀;王同光;钟伟【摘要】采用计算流体力学(Computational fluid dynamics,CFD)的方法模拟致动盘,研究了尾流边界的发展过程.为了准确捕捉尾流边界细节,根据尾流边界的速度梯度远远大于流场中的其他区域的速度梯度的特性,使用自适应弹簧网格技术,使网格的最密区域始终跟随尾流边界运动.基于该数值模拟结果建立了一个尾流边界模型.该模型将尾流的发展分为与粘性无关的膨胀过程和与粘性相关的扩散过程,建模结果与实验结果吻合.在此基础上,还利用该模型对高斯分布预测(Gaussian distribution prediction,GDP)尾流模型进行了修正,使其更加准确.%The development of the wake boundary after an actuator disc is simulated using the computa-tional fluid dynamics (CFD) method. To capture the details of wake boundary, the adaptive spring-mesh technique is used to make the finest meshes always follow the wake boundary movement, accord-ing to the fact that the velocity gradient in the wake boundary is much larger than in other regions. A wake boundary model has been developed based on the CFD results. This model divides the wake devel-opment into the expanding process due to inviscid flow and the diffusing process due to viscous influ-ence. The reliability of the model is validated by comparing with experimental data. As a demonstration of application, a newly developed wake velocity model called Gaussian distribution prediction (GDP) model is improved by the present wake boundary model.【期刊名称】《南京航空航天大学学报》【年(卷),期】2011(043)005【总页数】5页(P688-692)【关键词】风力机;致动盘;数值模拟;尾流边界【作者】朱翀;王同光;钟伟【作者单位】南京航空航天大学江苏省风力机设计高技术研究重点实验室,南京,210016;南京航空航天大学江苏省风力机设计高技术研究重点实验室,南京,210016;南京航空航天大学江苏省风力机设计高技术研究重点实验室,南京,210016【正文语种】中文【中图分类】O355;TK89风力机是将自然界的风能转化为机械能并获得电能的装置。

基于自由涡尾迹法和面元法全耦合风力机气动特性计算

基于自由涡尾迹法和面元法全耦合风力机气动特性计算

叶素 动 量 理 论 、 尾 迹 和 计 算 流 体 力 学 ( o 涡 C m—
p t n l li y a c , F 方法 。 u i a f dd n mi C D) o u s 叶素 动量 理论 因为模 型 比较 简单 , 容易 理解 , 算 快捷 , 计 工程 上 已
被广泛 应用 , 是需 要经 过多 种修 正才 能得 到满意 但 的结果 。 而且 叶 素动量理 论仅 局 限于做 单独 风轮 的
难应 用 于实际 的工 程 中, 以亟需 发展一 种快 速且 所
取 一段 涡 线 为研 究 对 象 , 自由尾 迹 方法 中 , 在 根据 涡线 随 当地 流速 自由移 动 的假设 , 涡线 控制 方 程 的偏微 分形 式为
精度 又能满足要求 的模 型来 解决这一 问题 。 鉴 于此 , 文建立 了一种 自由涡 尾迹 与面 元全 本
别 表示 了 附着涡 环量沿 展 向及方 位 角上 的变化 , 如
图 1 示 。对 环 量场 的描 述可 以写 为 所
d 一 1d F o r+ 0 f 1d "
- =
() 2
圆柱 段的气动特性才 能保证 气动性能计 算结果 的准
确性 。 机舱及塔架 毕竟 处在风力 机近尾迹流场 中 , 因
e cd b sfs l eicu ign cl n w r e ~ k / a e mo e c u l to rsn e n e yi u ea ldn ael a dt e .A f ewa ep n l d l o pe meh di p ee td t g n e o r d s
由来流 之 间的关 系分析 时 , 出只有充 分考 虑根 部 提
式 中 : 为 风轮 直 径 ; 。为来 流速 度 ; 为 风轮 旋 D V。 n 转 角速 度 ; t 示取 整数 。 i 表 n

水平轴风力机叶片翼型的气动特性数值模拟

水平轴风力机叶片翼型的气动特性数值模拟

T I E G e n g , Q I We n — J u n
( X i n j i a n g U n i v e r s i t y , U r u m q i 8 3 0 0 4 7 , C h i n a )
Ab s t r a c t : T o d i s c u s s a n d a n a l y z e t h e a e r o d y n a mi c p e f r o r ma n c e o f a i fo r i l o f h o i r z o n t l a wi n d t u r b i n e b l a d e mo r e d i r e c t v i e w i n g
中图分类号 : T H 4 4 ; T K 8 文献标识 码 : A d o i : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 5— 0 3 2 9 . 2 0 1 3 . 0 3 . 0 0 7
Nu me r i c al Si mul a t i o n o n t he Ae r o dy n a mi c Pe r f o r ma n c e o f Ae r o f o i l o f Hor i z o nt a l Wi n d Tur bi n e Bl a d e
n u me ic r ll a y i n v e s t i g a t e d b y t h e F L UE NT.Co mp a r i s o n b e t w e e n t h e s i mu l a t e d d a t a a n d t h e e x p e i r me n t d a t a h a s b e e n c a r r i e d o u t i n o r d e r t o v e i r f y t h e f e a s i b i l i t v a n d t h e r e l i a b i l i t y o f a e r o d y n a mi c n u me i r c a l s i mu l a t i o n f o wi n d t u r b i n e .T h e s i mu l a t i o n a n d a n a l y s e s i s h e l p f u l t o u n d e r s t a n d t h e a e r o d y n a mi c p e f r o ma r n c e a n d c h a r a c t e r o f a e r o f o i l f o w i n d t u r b i n e ,a n d s u p p l y t e c h n o l o g i c l a p a r a me — t e r s a n d a d v i c e s f o r t h e d e s i g n a n d r e s e a r c h o f b l a d e a e r o f o i l . Ke y wo r d s : wi n d t u r b i n e ;a e r o f o i l ;a e r o d y n a mi c p e fo r r ma n c e ;n u me i r c l a s i mu l a t i o n

叶片尾缘喷气的垂直轴风力机气动性能研究

叶片尾缘喷气的垂直轴风力机气动性能研究

V 0 1 . 3 4. No . 4
De c . 2 01 3
叶 片尾缘 喷气 的垂直轴 风力机气动性能研究
王建 明 , 谭 永志 , 温学兵 ’, 申振 华
( 1 . 沈阳航 空航 天大学 辽宁省航空推进 系统先进 测试技术重点实验室 , 沈阳 1 1 0 1 3 6
析 了风力 机 叶片 的做 功 原理 , 指 出 当叶 片攻 角 过 大时 升 力 突然 下 降 ( 失速) , 其 原 因是 叶片 扰 流 的流 动 分 离产 生 了涡流 . 李岩 深入 浅 出地分 析 了垂直 轴风 力 机 的设 计 与 实验 等 . 对 小 型垂 直 轴 直 叶 片风 力机 , 在风 力机具 有很 好 的风 能利用 系数 的时 候 , 往 往在 叶片 下 风 向产 生 了较 大 的漩 涡 . 垂 直 轴 风力 机 的叶 片处 于不 同相 位角 时 , 来 流风 速 与叶片 旋转 引起 的气 流 相对 于 叶 片 的气 流攻 角 时刻 变化 , 有 正 有 负 ; 这
型, 在 翼 型尾缘 处 开 1 m m 宽 的窄缝 , 沿 弦线 方 向喷 气 , 以期 改 变流 场进 而提 高风 力机 风 能 利 用 系数 . 利用 F l u e n t 软件采用 k 一 S S T湍流模 型 和 s I MP L E算 法 , 运 用滑 移 网格技 术 , 对 风 力机进 行数 值计 算. 得 到采 用尾 缘喷 气叶 片 的风 力机 的风能 利 用 系数 增 大 , 而且 处 于高风 能利 用 系数 的
作者简介 : 王建明( 1 9 7 5一) , 男, 博士 , 副教授 , 主要从 事风 工程与工业空气动力学 、 实验流体力学方面的研究
通讯作 者: 8 0 9 6 1 7 0 @q q . c o n. r

基于叶素动量理论的风力机气动性能计算分析

基于叶素动量理论的风力机气动性能计算分析

Analysis of Aerodynamic Performance for Wind Turbine Based on Blade Element Momentum Theory
Dai Shuoming1, Tian De1*, Deng Ying1, Liu Si1, Wang Ningbo2
1922年,Glauert建立了经典的叶素动量理论[2],并应用到了叶片设计和气动性能计算中。本文基于 叶素动量理论,考虑了叶尖损失和轮毂损失修正、攻角修正、推力系数修正和风剪切修正,对经典 的叶素动量理论进行改进,通过软件Matlab编程进行气动性能特性计算,其结果可以为风力机的气动 设计研究和评估工作提供参考。
叶片总的气动损失系数为:
F Ft Fh
(13)
考虑叶尖和轮毂损失修正系数后,式(9)和式(10)修正为:
Cn a Bc 1 a 8r F sin 2
Ct b Bc 1 b 8r F sin cos
(14) (15)
2.2 攻角修正
叶片有一定的厚度和宽度,尤其是在叶根处的厚度和宽度较大,使得气流方向发生较大变化。 在翼型的前缘和后缘部分,气流周向速度增加,同时翼型的厚度减小了气流通过的截面积,气流轴 向速度增加。叶片厚度和宽度对攻角改变有影响[6],攻角改变量为:
vh h vR HR Nhomakorabea
(21)
式中 h 为所研究叶素在惯性坐标系下的高度;H R 为参考高度;v h 为在高度为 h 处的风速;vR 为 在参考高度 H R 处的参考风速; 为经验风剪切指数。
3 气动载荷计算过程
(1)计算前数据初始化,包括叶片及截面参数,气动数据,风力机基本参数等; (2)读取截面,对参数 a 、 b 初始化,可以取 a b 0 ; (3)考虑风剪切速度修正,计算攻角和入流角及攻角修正计算; (4)截面翼型气动数据插值与读取,计算截面叶素升力系数和阻力系数; (5)计算叶尖损失和轮毂损失修正、推力系数 CT 修正; (6)迭代计算,得到 a 、 b 新值,若其变化小于设定误差值,迭代终止,否则返回步骤(2) ; (7)通过 a 、 b 求的各个截面上的 dT 、 dM 、 dP ;由 a 、 b 在叶片展向上的分布,可以通过 积分求得总的推力,扭矩、功率及其相关系数。

考虑尾流效应对风电场机组布局的影响分析

考虑尾流效应对风电场机组布局的影响分析

考虑尾流效应对风电场机组布局的影响分析【摘要】随着经济的快速增长,在风电场机组布局这个方面也有所突破,但是对于尾流效应的研究还是存在一定的问题,为了使尾流效应对风电场机组布局这个方面的影响减小到最小,所以,本文就从采取怎么样的措施去减小尾流效应这方面来研究。

【关键词】尾流效应;风电场;机组布局一、前言当今社会中,人们对于自身所处的环境是要求十分严格的,风电场机组的布局对操作者来说是很重要的,但是还是存在尾流效应,可能尾流效应会对人们的自身安全做出威胁,所以,一定要科学技术人员在这个方面做出努力,保证社会稳定发展。

二、尾流效应模型大型风电场内有大量分散布置的风电机组,在某一风向作用下,坐落于下风向的风电机组的风速往往低于坐落于上风向风电机组的风速,这种现象称之为尾流效应。

自然风经过每台风电机组后形成的尾流效应影响区域是一个圆锥形空间,具有三维的特点,在风电场等值分析中通常采用如图 1 所示的二维模型。

图 1 尾流效应二维模型图中,风电机组安装在0 处;x 为风经过风轮后沿风向传播的距离;0v 和tv 分别为自然风速和通过叶片的风速;xv 为受尾流影响的风速;r 为风轮半径;为圆锥顶点因数;xr 为风轮在x 处投影截面半径。

式中,为尾流下降常数,它与风的湍流强度(一定时间内风速的均方差与均值之比)成正比,表示风经过风轮后沿风向每传播 1 m 时xr 所增加的长度,一般可表示为k 。

式中:G和0分别为风电机组产生的湍流和自然湍流的均方差;U 为平均风速;Wk 是一经验常数。

三、考虑尾流效应的风电机组功率特性假设风电场内有J种型号的风电机组,风速共离散成I段,风向分成D个方位。

在以下的公式中,为了叙述方便,在矩阵中一般用i代表风速Vi,用d和j分别代表风向和风电机组型号,其取值范围是i= 1, 2…,I,、d= 1, 2,…,D和j= 1, 2,…,J无特殊情况时公式中不再注明它们的取值范围。

水平轴风力机尾迹的测量与分析

水平轴风力机尾迹的测量与分析
[ 5] [ 4] [ 3] [ 2] [ 1]
1
实验设备和测量系统
图 1 为水平轴风力机尾迹测量实验设备及热线 测量系统示意图。实验设备主要由低速闭口直流式 风洞、 风力机模型和热线测量系统等几部分组成。
1 集流器 2
测压管 3
风洞 4 计算机 5 整 流 网9 热线探头 12
恒温热线风速仪 CTA 整 流 器 10 风轮
收稿日期 : 2005 11 20 基金项目 : 国家自然科学基金资助项目 ( 5017603) 和上海市曙光计划 ( 2000SG23) 资助 作者简介 : 胡丹梅 ( 1972 ) , 女 , 湖南衡南人。上海交通大学在读博士生 , 从事流体机械的研究开发工作。
∃ 752 ∃




第 26 卷
i= 1
∀E
m
ij
m j = 1, 2, #, n
( 1)
平均后的每个数据对应于叶片下游一个确定的
第5期
胡丹梅, 等 : 水平轴风力机尾迹的测量与分析 W; 为空气密度, kg m 。风轮 尖速比
3
∃ 753 ∃
周向位置。为了提高测量精度 , 实验中采用单斜丝 探头绕自 身轴线旋 转 6 个角 度位置 : 0 !、 60!、 120!、 180!、 240 !、 300!测得的 数据来计算气流的三维 锁向 平均速度分量, 有关旋转单斜丝测量三维速度场的 原理及数据的处理方法详见文献[ 10] 。 热线测量建立在如图 2 所示的圆柱坐标系 ( r , , z ) 之上, 叶片尾缘的正后方为 的起点 , 顺时方 向针为正 , r 平面内测量点布置如图 3 所示。实验 在不同尖速比 下, 对风轮下游垂直转轴不同平面 内的各径向位置分别进行风轮尾迹速度测量。测量 面的轴向位置分别为 : 0. 5 C , 1. 0 C , 1. 5 C , 2. 0 C , 3. 0 C , 4. 0 C 。径 向 位 置 范 围 从 叶 根 到 叶 尖 为 : 0. 3 R ~ 1. 1 R , R 为风轮半径, m; C 为叶片弦长, m; z 1 表示风轮 下游测点 距叶片 尾缘的轴 向距离 , m; Vz、 V u、 Vr 分别表示测点处锁相平 均速度的轴向、 周向和径向的分量, m s; V% z , V% u , V% r 分别表示 测点 处轴向、 周向和径向速度分量的脉动分量 , m s; V 代 表风轮前方自由来流风速 , m s。

风力机的尾流分析

风力机的尾流分析

风机尾流分析摘要在风电场场址选定的情况下,风电机组之间的尾流影响风电场风机的优化布置。

目前,国内外关于符合风电场风机实际尾流以及迭加模型的研究主要侧重于一维线性模型及其迭加模型的实际应用。

为此,推导建立了更加完整合理的一维非线性扩张尾流模型,即尾流影响边界随距离非线性增大;此外,根据风机尾流迭加的实际情况,分别推导建立了完整的风机尾流迭加计算模型来适应现有风电场的不同情形。

通过相关工程算例结果与三维数值模拟计算结果的对比分析表明,所建立的风机尾流模型和尾流迭加模型更加合理,可有效提高风电场的发电效益。

结合制动盘理论与CFD方法,采用FLUENT软件对置于有限面积的风电场内的9台风力机尾流相互干扰情况进行数值模拟。

风电场内风力机机组呈梅花型排布,考虑入流角分别为0°、15°和30°代表风力机的偏航现象,利用FLUENT提供的FAN边界将风力机风轮简化为无厚度的产生压力跃降的制动盘,采用N-S 方程求解整个风电场的流场分布。

该文给出流场的速度分布、涡量分布及风力机机组周围的风能密度与湍流强度分布,反映了上游风力机机组的尾流会对下游机组的流场产生干扰的现象。

通过对风电场和风力机的成功模拟表明,制动盘理论结合CFD 的方法适用于风电场和风力机的流场模拟,可为风电场微观选址和风力机排布提供参考,且计算量远小于完全数值模拟方法。

关键词:风电场;风机优化布置;尾流模型;尾流迭加模型AbstractIn the case of wind farm site selection, layout optimization for wind turbine wake effects between wind turbine. At present, domestic and foreign about the practical application of the actual fan wake and overlay model of wind farm mainly focus on the one-dimensional linear model and its superposition model. Therefore, a more complete and reasonable derivation of one-dimensional nonlinear wake model, namely the slipstream boundary nonlinear increase with distance; in addition, according to the actual situation of WTG wake, respectively, are established by the fuller WTG flow superposition to adapt to different situation of existing wind farm model. Through the project example analysis results show that compared with thethree-dimensional numerical simulation of wind machine, the flow model and wake superposition model is more reasonable, can effectively improve the generation benefit of wind farm.Combined with the brake disc and CFD theory, using FLUENT software for wind farm in the limited area of the 9 sets of wind turbine wake interaction simulation. A wind farm wind turbine unit in the club arrangement, taking into account the yaw angle was 0 ° flow phenomenon, 15 ° and 30 ° representative wind machine, FAN boundary FLUENT provided by the use of the wind turbine is simplified to produce brake disc pressure jump down without thickness, by solving the N-S equation of the wind power field the flow field distribution. Wind energy density and turbulence intensity distribution is presented in this paper, the velocity distribution of flow field around the vorticity distribution and wind turbine generator, reflect the will of the flow field downstream units generate interference phenomenon of wind turbine generators upstream wake. The wind farm and wind turbine simulation shows that success, to simulate the brake disc theory combined with CFD method is applied to the wind farm and wind machine, can provide the micro-siting wind turbine arrangement and reference for wind farm, and the calculation method is far less than the amount of numerical simulation.Keywords: wind power; wind turbine layout optimization model; wake; wake superposition model引言随着风电技术的快速发展,以及风力发电在电力系统中比重的持续增加,大型风电场通常由几百台甚至上千台风电机组组成。

尾流冲浪中后机等效诱导升力计算分析

尾流冲浪中后机等效诱导升力计算分析

尾流冲浪中后机等效诱导升力计算分析
陈宽明;王腾;刘泽宇;蒋倩兰;邓蕾蕾
【期刊名称】《兵器装备工程学报》
【年(卷),期】2024(45)4
【摘要】为进一步得到在尾流冲浪中的减阻、节油等效益,提出了一种尾流冲浪中后机获取升力的计算方法,对节油率进行分析。

采取数值模拟的方法,选取A330-200机型作为前机和后机,以其适用巡航速度在高空飞行作为背景,模拟了其尾涡的环量、半径以及其产生的下沉运动。

根据尾流的耗散规律从2000~4500 m范围中选取了6组前后机纵向间隔,参照不同的后机距涡核的相对位置进行了滚转力矩分析,根据诱导速度等效转化为后机均匀获取的诱导升力,分析评估出合理的后机冲浪位置,得出较高的节油率为12.28%。

【总页数】8页(P60-66)
【作者】陈宽明;王腾;刘泽宇;蒋倩兰;邓蕾蕾
【作者单位】中国民用航空飞行学院空中交通管理学院;太原国际机场有限责任公司
【正文语种】中文
【中图分类】V211;V328
【相关文献】
1.后掠梯形平板弹翼升力系数的计算
2.导弹尾流对某战斗机进气道进口温度场影响计算分析
3.动态尾流模型在水平轴风力机气动性能计算中的应用
4.米氮平生物等效性预试验餐前不等效、餐后等效的析因分析
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档