(完整版)八年级几何辅助线专题训练
八年级上册几何辅助线专题讲解和练习
八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线;5全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线6特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:倍长中线法;有关三角形中线的题目,常将中线倍长构造全等三角形;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、角平分线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:法一将DE 两边延长分别交AB 、AC 于M 、N,在△AMN 中,AM +AN > MD +DE +NE;1 在△BDM 中,MB +MD >BD ; 2 在△CEN 中,CN +NE >CE ; 3 由1+2+3得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC法二:如图1-2, 延长BD 交 AC 于F,延长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF 三角形两边之和大于第三边1 GF +FC >GE +CE 同上………………………………2 DG +GE >DE 同上……………………………………3 由1+2+3得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC;二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC;BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角,A BCDEN M 11-图ABCDEF G21-图AD E G∴∠BDC >∠DEC,同理∠DEC >∠BAC,∴∠BDC >∠BAC 证法二:连接AD,并延长交BC 于F ∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF;分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同一个三角形中;证明:在DA 上截取DN =DB,连接NE,NF,则DN =DC, 在△DBE 和△DNE 中:∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN ∴△DBE ≌△DNE SAS∴BE =NE 全等三角形对应边相等 同理可得:CF =NF在△EFN 中EN +FN >EF 三角形两边之和大于第三边 ∴BE +CF >EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等;四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形; 例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M,使DM=DE,连接 CM,MF;在△BDE 和△CDM 中,AB CD E FN13-图1234ACE F1234∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM SAS又∵∠1=∠2,∠3=∠4 已知 ∠1+∠2+∠3+∠4=180°平角的定义 ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED∴△EDF ≌△MDF SAS∴EF =MF 全等三角形对应边相等∵在△CMF 中,CF +CM >MF 三角形两边之和大于第三边 ∴BE +CF >EF注:上题也可加倍FD,证法同上;注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中;五、有三角形中线时,常延长加倍中线,构造全等三角形; 例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD;分析:要证AB +AC >2AD,由图想到: AB +BD >AD,AC +CD >AD,所以有AB +AC + BD +CD >AD +AD =2AD,左边比要证结论多BD +CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去;证明:延长AD 至E,使DE=AD,连接BE,则AE =2AD ∵AD 为△ABC 的中线 已知 ∴BD =CD 中线定义 在△ACD 和△EBD 中⎪⎩⎪⎨⎧=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD∴△ACD ≌△EBD SAS∴BE =CA 全等三角形对应边相等∵在△ABE 中有:AB +BE >AE 三角形两边之和大于第三边ABCDE15-图AEF∴AB +AC >2AD;练习:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD;六、截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点;求证:AB -AC >PB -PC;分析:要证:AB -AC >PB -PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB -AC,故可在AB 上截取AN 等于AC,得AB -AC =BN, 再连接PN,则PC =PN,又在△PNB 中,PB -PN <BN,即:AB -AC >PB -PC;证明:截长法在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC SAS∴PC =PN 全等三角形对应边相等∵在△BPN 中,有 PB -PN <BN 三角形两边之差小于第三边 ∴BP -PC <AB -AC证明:补短法 延长AC 至M,使AM =AB,连接PM, 在△ABP 和△AMP 中∵ ⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AM AB∴△ABP ≌△AMP SAS∴PB =PM 全等三角形对应边相等又∵在△PCM 中有:CM >PM -PC 三角形两边之差小于第三边 ∴AB -AC >PB -PC;七、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BCA BCDNMP 16-图12分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知 ∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长;证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知DAEFA BCD 18-图1234ABCDE17-图O∴∠BEF =∠BEC =90° 垂直的定义 在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE十、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D;证明:连接BC,在△ABC 和△DCB 中 ∵ ⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等十一、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中DCBA110-图ODAN∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;五、巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC;解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD;解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC;解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB;2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC;答案:1、1:10; 2. 9:1六、辅助线总结一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边; 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍;如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件;如图1-2,ABAC;3.已知:如图2-5, ∠BAC=∠CAD,AB>AD,CE ⊥AB,AE=21AB+AD.求证:∠D+∠B=180 ;4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE;求证:AF=AD+CF;图1-1BDBC已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB,垂足为D,AE 平分∠CAB 交CD 于F,过F 作FH 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,于M;求证:AM=ME;分析:由AD 、AE 是∠BAC AF,从而BF2121图4-2图4-1ABBG已知,如图,∠C=2∠A,AC=2BC;求证:△ABC 是直角三角形;2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC ⊥ACCABA 图2-6ECD图3-2CE3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD 4.已知:如图在△ABC 中,∠A=90°,AB=AC,BD 是∠ABC 的平分线,求证:BC=AB+AD二、由线段和差想到的辅助线 口诀:线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去; 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明;在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:法一将DE 两边延长分别交AB 、AC 于M 、N, 在△AMN 中,AM+AN>MD+DE+NE;1 在△BDM 中,MB+MD>BD ;2 在△CEN 中,CN+NE>CE ;3 由1+2+3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+ECA BC D AEB D CABCD EN M 11-图AF法二:图1-2延长BD 交AC 于F,廷长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF 三角形两边之和大于第三边…1 GF+FC>GE+CE 同上2 DG+GE>DE 同上3 由1+2+3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC;在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC;BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC 于F,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF;BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中;证明:在DN 上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE 和△NDE 中: DN=DB 辅助线作法 ∠1=∠2已知 ED=ED 公共边AB CD E F G12-图ABCD E FN13-图1234∴△DBE ≌△NDESAS∴BE=NE 全等三角形对应边相等 同理可得:CF=NF在△EFN 中EN+FN>EF 三角形两边之和大于第三边 ∴BE+CF>EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素;截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB>AC,∠1=∠2,P 为AD 上任一点求证:AB-AC>PB-PC;要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB 上截取AN 等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB 中,PB-PN<BN,即:AB-AC>PB-PC;证明:截长法在AB 上截取AN=AC 连接PN,在△APN 和△APC 中 AN=AC 辅助线作法 ∠1=∠2已知 AP=AP 公共边∴△APN ≌△APCSAS,∴PC=PN 全等三角形对应边相等 ∵在△BPN 中,有PB-PN<BN 三角形两边之差小于第三边∴BP-PC<AB-AC 证明:补短法延长AC 至M,使AM=AB,连接PM,在△ABP 和△AMP 中ABCDNMP 16 图12AB=AM 辅助线作法 ∠1=∠2已知 AP=AP 公共边 ∴△ABP ≌△AMPSAS∴PB=PM 全等三角形对应边相等又∵在△PCM 中有:CM>PM-PC 三角形两边之差小于第三边 ∴AB-AC>PB-PC;例1.如图,AC 平分∠BAD,CE ⊥AB,且∠B+∠D=180°,求证:AE=AD+BE;例2如图,在四边形ABCD 中,AC 平分∠BAD,CE ⊥AB 于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC 中,AB=AC,∠A=108°,BD 平分∠ABC;求证:BC=AB+DC;例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M,且AM=MB;求证:CD=21DB;1.如图,AB ∥CD,AE 、DE 分别平分∠BAD 各∠ADE,求证:AD=AB+CD;DECB AE BCDCM BDCA2.如图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧,BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE三、由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质直角三角形斜边中线性质、等腰三角形底边中线性质,然后通过探索,找到解决问题的方法;一中线把原三角形分成两个面积相等的小三角形即如图1,AD 是ΔABC 的中线,则S ΔABD =S ΔACD =S ΔABC 因为ΔABD 与ΔACD 是等底同高的;例1.如图2,ΔABC 中,AD 是中线,延长AD 到E,使DE=AD,DF 是ΔDCE 的中线;已知ΔABC 的面积为2,求:ΔCDF 的面积;解:因为AD 是ΔABC 的中线,所以S ΔACD =S ΔABC =×2=1,又因CD 是ΔACE 的中线,故S ΔCDE =S ΔACD =1,因DF 是ΔCDE 的中线,所以S ΔCDF =S ΔCDE =×1=;∴ΔCDF 的面积为;二由中点应想到利用三角形的中位线ED CB A例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴ME CD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MF AB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE;三由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长;解:延长AD到E,使DE=AD,则AE=2AD=2×2=4;在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3;在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线;求证:ΔABC是等腰三角形;证明:延长AD到E,使DE=AD;仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形;D CB A EDF CBA四直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.EDCB A中考应用09崇文二模以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变 并说明理由.14-图A B CD EFM1234A BCDE 15-图DMCE AB BA D C86B E CDA ABCD EF25-图 AB DC EFDAEDCBAP QCBA二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD3:如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠的角平分线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD =CD,BD 平分ABC ∠,求证:0180=∠+∠C ACDBAP 21DCBA5:如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC中考应用 08海淀一模三、平移变换为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为AP ,△EBC 周长记为BP .求证BP >AP .2:如图,在△ABC 的边上取两点D 、E,且BD=CE,求证:AB+AC>AD+AE.ED CB A四、借助角平分线造全等CBAFED CBA 1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD ∠BAC,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于明BE=CF 的理由;2如果AB=a ,AC=b ,求AE 、BE 的长.中考应用06北京中考如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立 若成立,请证明;若不成立,请说明理由;五、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;当MDN ∠绕点D 转动时,求证DE=DF; 若AB=2,求四边形DECF 的面积;EDGFCBA第23题OPAMN EB CD FACEFBD图图图3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆的周长为 ;BCNM中考应用 07佳木斯已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立 若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系 请写出你的猜想,不需证明.西城09年一模已知2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1如图,当∠APB=45°时,求AB 及PD 的长;2当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.图1A BC D E FMN 图2 A BC D E FMN 图3ABC D EF M N。
初二数学辅助线题大全
10 道初二数学辅助线题题目一已知在三角形ABC 中,AB = AC,D 是BC 中点,求证:AD⊥BC。
解析:连接AD,因为AB = AC,D 是BC 中点,根据等腰三角形三线合一的性质,可知AD⊥BC。
题目二在平行四边形ABCD 中,E 是AB 中点,F 是CD 中点,连接EF,求证:EF 平行且等于AD 的一半。
解析:连接AF、EC,因为四边形ABCD 是平行四边形,所以AB⊥CD,AB = CD。
又因为E 是AB 中点,F 是CD 中点,所以AE = CF。
可得四边形AECF 是平行四边形,所以EF⊥AC,EF = AC 的一半。
又因为平行四边形ABCD 中,AD = BC,AC = 2AO(O 为对角线交点),所以EF 平行且等于AD 的一半。
题目三在三角形ABC 中,⊥A = 90°,AB = AC,D 是BC 中点,连接AD,E、F 分别是AB、AC 上的点,且BE = AF,求证:ED⊥DF。
解析:连接AD,因为AB = AC,⊥A = 90°,D 是BC 中点,所以AD = BD = CD,且AD⊥BC,⊥BAD = ⊥CAD = 45°。
可证⊥BDE⊥⊥ADF(SAS),所以⊥BDE = ⊥ADF,又因为⊥ADB = 90°,所以⊥EDF = 90°,即ED⊥DF。
题目四在梯形ABCD 中,AB⊥CD,⊥A + ⊥B = 90°,E、F 分别是AB、CD 的中点,求证:EF = (AB - CD) / 2。
解析:延长AD、BC 交于点G,因为AB⊥CD,所以⊥GDC = ⊥A,⊥GCD = ⊥B。
又因为⊥A + ⊥B = 90°,所以⊥G = 90°。
因为E、F 分别是AB、CD 的中点,所以EF 是梯形ABCD 的中位线,所以EF = (AB + CD) / 2。
在直角三角形GDC 和直角三角形GAB 中,F、E 分别是斜边CD、AB 的中点,所以GF = CD/2,GE = AB/2。
八年级数学上册几何添辅助线专题
全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
八年级全等三角形----辅助线篇(含答案)
八年级数学全等三角形---辅助线复习切记:“有三个角对应相等”和“有两边及其中一边的对角对应相等”的两个三角形不一定全等。
例 1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。
求证:ACF BDE ∆≅∆。
例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。
求证:21C ∠=∠+∠。
例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=o。
F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。
求证:AE CF =。
例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。
例5. 如图,,AP CP 分别是ABC ∆外角MAC ∠和NCA ∠的平分线,它们交于点P 。
求证:BP 为MBN ∠的平分线。
例6. 如图,D 是ABC ∆的边BC 上的点,且CD AB =,ADB BAD ∠=∠,AE 是ABD ∆的中线。
求证:2AC AE =。
例7. 如图,在ABC ∆中,AB AC >,12∠=∠,P 为AD 上任意一点。
求证:AB AC PB PC ->-。
同步练习一、选择题:1. 能使两个直角三角形全等的条件是( ) A. 两直角边对应相等 B. 一锐角对应相等 C. 两锐角对应相等D. 斜边相等2. 根据下列条件,能画出唯一ABC ∆的是( ) A. 3AB =,4BC =,8CA =B. 4AB =,3BC =,30A ∠=oC. 60C ∠=o ,45B ∠=o ,4AB =D. 90C ∠=o ,6AB =3. 如图,已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠;④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( )A. 4个B. 3个C. 2个D. 1个(第3题) (第4题) (第5题) (第6题) 4. 如图,已知AB CD =,BC AD =,23B ∠=o ,则D ∠等于( )A. 67oB. 46oC. 23oD. 无法确定二、填空题:5. 如图,在ABC ∆中,90C ∠=o ,ABC ∠的平分线BD 交AC 于点D ,且:2:3CD AD =,10AC cm =,则点D 到AB 的距离等于__________cm ;6. 将一张正方形纸片按如图的方式折叠,,BC BD 为折痕,则CBD ∠的大小为_________; 三、解答题:7. 如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。
八年级数学三角形辅助线大全(精简、全面)
三角形作辅助性方法大全1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC证法(一):延长BD 交AC 于E ,∵∠BDC 是△EDC 的外角,∴∠BDC >∠DEC同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC2.有角平分线时常在角两边截取相等的线段,构造全等三角形.例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN= DC 在△BDE 和△NDE 中,DN = DB ∠1 = ∠2ED = ED ∴△BDE ≌△NDE∴BE = NE同理可证:CF = NF在△EFN 中,EN +FN >EF ∴BE +CF >EF3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF证明:延长ED 到M ,使DM = DE ,连结CM 、FM△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD∴△BDE ≌△CDM ∴CM = BE又∵∠1 = ∠2,∠3 = ∠4∠1+∠2+∠3 + ∠4 = 180oFABC DE D C B A4321NF E DC B A∴∠3 +∠2 = 90o 即∠EDF = 90o∴∠FDM = ∠EDF = 90o△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDFDF = DF ∴△EDF ≌△MDF ∴EF = MF∵在△CMF 中,CF +CM >MF BE +CF >EF(此题也可加倍FD ,证法同上)4. 在三角形中有中线时,常加倍延长中线构造全等三角形.例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD证明:延长AD 至E ,使DE = AD ,连结BE∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中BD = CD ∠1 = ∠2AD = ED∴△ACD ≌△EBD∵△ABE 中有AB +BE >AE ∴AB +AC >2AD5.截长补短作辅助线的方法截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a >b ②a ±b = c ③a ±b = c ±d例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC证明:⑴截长法:在AB 上截取AN = AC ,连结PN在△APN 和△APC 中, AN = AC∠1 = ∠2AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BNMA BC D E F12345 12E DC B AP 12N DCB A∴PB -PC <AB -AC⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP∴△ABP ≌△AMP ∴PB = PM 又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC练习:1.已知,在△ABC 中,∠B = 60o ,AD 、CE 是△ABC 的角平分线,并且它们交于点O求证:AC = AE +CD2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4. 求证:BC = AB +CD6.证明两条线段相等的步骤:①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。
初二数学几何辅助线练习题
初二数学几何辅助线练习题几何是数学中的一个重要分支,而辅助线是几何推理中的常见工具。
在初二数学学习中,我们经常会遇到一些与几何和辅助线相关的题目。
下面,我将为你提供一些初二数学几何辅助线练习题,帮助你巩固相关知识点。
1. 题目:已知△ABC中,∠B = 90°,AD ⊥ BC(D为BC上一点),AC = 12cm,BD = 5cm。
求AD的长度。
解析:根据题意,可以绘制出如下图形:A/|12/ |/ |5/___|B D C根据题目所给条件,我们可以知道△ABC是一个直角三角形,且已知AC = 12cm,BD = 5cm。
要求AD的长度,我们可以利用勾股定理来解决这个问题。
根据勾股定理,我们可以得到:AC² = AD² + DC²12² = AD² + 5²144 = AD² + 25AD² = 144 - 25AD² = 119AD = √119所以,AD的长度约等于10.92cm。
2. 题目:已知△ABC中,∠ABC = 60°,AD是BC边上的一条角平分线,且AD的长度为4cm。
求△ACD的面积。
解析:根据题意,可以绘制出如下图形:A/|/ |4/ |/ |/ \|C____ D3根据题目所给条件,我们可以知道△ABC是一个等边三角形,且AD是BC边上的一条角平分线,AD的长度为4cm,BC的长度为6cm。
要求△ACD的面积,我们可以利用三角形面积公式来解决这个问题。
首先,根据△ABC是等边三角形,可以得知AC = BC = 6cm。
根据三角形面积公式S = 1/2 * 底 * 高,我们可以得到△ACD的面积为:S = 1/2 * AD * ACS = 1/2 * 4 * 6S = 12cm²所以,△ACD的面积为12平方厘米。
3. 题目:已知△ABC中,AB = 8cm,AC = 10cm,BM是边AC的中线,求BM的长度。
(完整)八年级数学上册几何添辅助线专题
DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
2022-2023学年人教版八年级数学上册《轴对称》辅助线专题练习(含答案)
辅助线专题练习1.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =4,则△BCE 的面积等于( )A .16B .20C .28D .402.如图,△ABC 内有一点D ,AD 平分∠CAB ,CD ⊥AD 于点D ,连接DB ,若△ADB 的面积为3cm 2,则△ABC 的面积为( )A .5cm 2B .6cm 2C .7cm 2D .8cm 23.如图,点P 是∠BAC 平分线AD 上的一点,AC =9,AB =5,PB =3,则PC 的长不可能是( )A .4B .5C .6D .74.如图.四边形ABCD 中,AD ∥BC ,BC =3,AB =5,AD =6.若点M 是线段BD 的中点,则CM 的长为( )A .32B .2C .52D .3`5.已知△ABC是等边三角形,点P在AB上,过点P作PD⊥AC,垂足为D,延长BC至点Q,使CQ=AP,连接PQ交AC于点E,如图所示.如果等边三角形ABC的边长为4,那么线段DE的长为()A.1B.2C.1.8D.2.56.如图,△ABC中,AD为中线,AD⊥AC,∠BAD=30°,AB=3,则AC长()A.2.5B.2C.1D.1.57.如图,∠B=∠C=90°,M为是BC的中点,AM平分∠BAD,且∠CDM=55°,则∠AMB的度数是()A.35°B.45°C.55°D.65°8.如图,AD是△ABC的角平分线,DE⊥AB于E,点F,G分别在边AB,AC上,且DF =DG,△ADG与△ADF的面积分别是14和4,则△DEF的面积是()A.10B.6C.5D.49.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为()A.2B.3C.4D.510.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论,其中错误的是()A.AC=BD B.∠AMB=36°C.MO平分∠AMD D.OM平分∠AOD 11.已知:如图,∠BAC的平分线与BC的垂直平分线相交于点P,PE⊥AB,PF⊥AC,垂足分别为E、F.若AB=8,AC=4,则AE=.12.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),点C在第四象限,则点C的坐标是.13.如图,在同一平面内,直线l同侧有三个正方形A,B,C,若A,C的面积分别为9和4,则阴影部分的总面积为.14.如图,已知AB=BC=AD,AD⊥BC于点E,AC⊥CD,若CD=53,则△ACD的面积为.15.如图,已知AD是△ABC的中线,E是AC上的一点,BE交AD于F,AC=BF,∠DAC =24°,∠EBC=32°,则∠ACB=.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM=.17.如图,△ABC是等边三角形,延长BC到点E,使CE=12BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)证明:DE=2DF.18.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.19.已知A(﹣10,0),以OA为边在第二象限作等边△AOB.(1)求点B的横坐标;(2)如下图,点M、N分别为OA、OB边上的动点,以MN为边在x轴上方作等边△MNE,连结OE,当∠EMO=45°时,求∠MEO的度数.20.如图所示,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,求BC的长.21.如图,AB=BD,AE=EB,∠ACB=∠ABC,证明:CD=2CE.辅助线专题练习(答案)1.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =10,DE =4,则△BCE 的面积等于( )A .16B .20C .28D .40【解答】解:过E 作EM ⊥BC 于M ,∵CD ⊥AB ,EM ⊥BC ,BE 平分∠ABC ,DE =4,∴EM =DE =4,∵BC =10,∴△BCE 的面积是12×BC ×EM =12×10×4 =20,故选:B .2.如图,△ABC 内有一点D ,AD 平分∠CAB ,CD ⊥AD 于点D ,连接DB ,若△ADB 的面积为3cm 2,则△ABC 的面积为( )A .5cm 2B .6cm 2C .7cm 2D .8cm 2【解答】解:延长CD 交AB 于E ,∵AD 平分∠CAB ,CD ⊥AD 于点D ,∴∠CAD =∠EAD ,∠ADC =∠ADE =90°,在△ADC 与△ADE 中,{∠CAD =∠EAD AD =AD ∠ADC =∠ADE,∴△ADC≌△ADE(ASA),∴CD=DE,∴S△ACD=S△ADE,S△BCD=S△BDE,∴S△ABC=2S△ADB,∵△ADB的面积为3cm2,∴△ABC的面积为6cm2,故选:B.3.如图,点P是∠BAC平分线AD上的一点,AC=9,AB=5,PB=3,则PC的长不可能是()A.4B.5C.6D.7【解答】解:在AC上截取AE=AB=5,连接PE,∵AC=9,∴CE=AC﹣AE=9﹣5=4,∵点P是∠BAC平分线AD上的一点,∴∠CAD=∠BAD,在△APE和△APB中,{AE =AB ∠CAP =∠BAD AP =AP,∴△APE ≌△APB (SAS ),∴PE =PB =3,∵4﹣3<PC <4+3,解得1<PC <7,∴PC 不可能为7,故选:D .4.如图.四边形ABCD 中,AD ∥BC ,BC =3,AB =5,AD =6.若点M 是线段BD 的中点,则CM 的长为( )A .32B .2C .52D .3【解答】解:延长CM 交AD 于N ,如图所示:∵点M 是线段BD 的中点,∴BM =DM ,∵AD ∥BC ,∴∠CBM =∠NDM ,∠BCM =∠DNM ,在△BCM 和△DNM 中,{∠CBM =∠NDM ∠BCM =∠DNM BM =DM,∴△BCM ≌△DNM (AAS ),∴NM =CM =12CN ,DN =BC =3,∴AN =AD ﹣DN =6﹣3=3,∴AN =BC ,∵AD ∥BC ,∴四边形ABCN 是平行四边形,∴CN =AB =5,∴CM =52,故选:C .5.已知△ABC是等边三角形,点P在AB上,过点P作PD⊥AC,垂足为D,延长BC至点Q,使CQ=AP,连接PQ交AC于点E,如图所示.如果等边三角形ABC的边长为4,那么线段DE的长为()A.1B.2C.1.8D.2.5【解答】解:如图,过点P作PF∥BC,交AC于点F,则∠EPF=∠Q,∠APF=∠ABC∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠APF=∠AFP=60°,∴△APF也是等边三角形,而CQ=AP∴PF=AP=CQ,又∵∠PEF=∠QEC,∴△PEF≌△QEC,∴EF=EC,∵PD⊥AC于D,△APF是等边三角形,∴AD=DF,∴AD+EC=DF+EF=DE=12AF+12CF=12(AF+CF)=12AC,∴DE=12AC=2.故选:B.6.如图,△ABC 中,AD 为中线,AD ⊥AC ,∠BAD =30°,AB =3,则AC 长( )A .2.5B .2C .1D .1.5【解答】解:如图,延长AD ,使AD =DE ,连接CE ,∵AD 为中线,∴BD =CD ,在△ABD 与△ECD 中,{AD =ED ∠ADB =∠EDC BD =CD,∴△ABD ≌△ECD (SAS ),∴∠BAD =∠CED ,AB =EC ,∵∠BAD =30°,∴∠CED =30°,∵AD ⊥AC ,∴∠CAD =90°,∴AC =12EC ,∴AB =EC ,∴AC =12AB =32,即AC =1.5,故选:D .7.如图,∠B =∠C =90°,M 为是BC 的中点,AM 平分∠BAD ,且∠CDM =55°,则∠AMB 的度数是( )A.35°B.45°C.55°D.65°【解答】解:过M作MN⊥AD于N,则∠MNA=∠MND=90°,∵∠B=90°,∴MB⊥AB,∵AM平分∠BAD,∴MN=MB,∵M为是BC的中点,∴MB=MC,∴MN=MC,在Rt△MND和Rt△MCD中,{MD=MDMN=MC,∴Rt△MND≌Rt△MCD(HL),∴∠NDM=∠CDM=55°,∴∠CDA=∠NDM+∠CDM=110°,∵∠B=∠C=90°,∴∠B+∠C=180°,∴CD∥AB,∴∠BAD+∠CDA=180°,∴∠BAD=180°﹣∠CDA=180°﹣110°=70°,∵AM平分∠BAD,∴∠BAM=12∠BAD=35°,∴∠AMB=90°﹣∠BAM=90°﹣35°=55°,故选:C.8.如图,AD是△ABC的角平分线,DE⊥AB于E,点F,G分别在边AB,AC上,且DF =DG,△ADG与△ADF的面积分别是14和4,则△DEF的面积是()A.10B.6C.5D.4【解答】解:如图,过点D作DH⊥AC于H,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DH,在Rt△DEF和Rt△DHG中,{DE=DHDF=DG,∴Rt△DEF≌Rt△DHG(HL),∴S△EDF=S△HGD,同理Rt△ADE≌Rt△ADH,∴S△ADE=S△ADH,∵△ADG与△ADF的面积分别是14和4,∴S△DEF=14−42=5,故选:C.9.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为()A.2B.3C.4D.5【解答】解:连接IA、IB、IC,过I作IM⊥AB于M,IN⊥BC于N,∵点I 为△ABC 各内角平分线的交点,IM ⊥AB ,IN ⊥BC ,IH ⊥AC ,∴IH =IM =IN ,∵AB =8,BC =6,∠ABC =90°,∴S △ABC =12×AB ×BC =12×8×6=24,∵S △ABC =S △AIB +S △BIC +S △AIC ,∴24=12×AB ×IM +12×BC ×IN +12×AC ×IH ,∵AB =8,BC =6,AC =10,IH =IM =IN ,∴24=12×8×IH +12×6×IH +12×10×IH , ∴IH =2,故选:A .10.如图,在△AOB 和△COD 中,OA =OB ,OC =OD ,OA <OC ,∠AOB =∠COD =36°.连接AC ,BD 交于点M ,连接OM .下列结论,其中错误的是( )A .AC =BDB .∠AMB =36°C .MO 平分∠AMD D .OM 平分∠AOD【解答】解:∵∠AOB =∠COD =36°,∴∠AOC =∠BOD ,在△AOC 和△BOD 中,{OA =OB ∠AOC =∠BOD OC =OD,∴△AOC ≌△BOD (SAS ),∴AC =BD ,∠OAC =∠OBD ,故A 选项不符合题意;∵∠OAB +∠ABO =180°﹣36°=144°,∴∠MAB +∠ABM =144°,∴∠AMB =180°﹣144°=36°,故B 选项不符合题意;过点O 作OG ⊥AC 于点G ,过点O 作OH ⊥BD 于点H ,如图所示:∵△AOC ≌△BOD ,∴S △AOC =S △BOD ,即12AC ⋅OG =12BD ⋅OH ,∵AC =BD ,∴OH =OG ,在Rt △OHM 和Rt △OGM 中,{OG =OH OM =OM, ∴Rt △OHM ≌Rt △OGM (HL ),∴∠OMG =∠OMH ,即OM 平分∠AMD ,故C 选项不符合题意;假设OM 平分∠AOD ,则∠AOM =∠DOM ,∵OM 平分∠AMD ,∴∠AMO =∠DMO ,∵OM =OM ,∴△AMO ≌△DMO (ASA ),∴AO =DO ,∵OD =OC ,AO <OC ,∴AO <DO ,∴假设不成立,∴OM 不平分∠AOD ,故D 选项符合题意,故选:D .11.已知:如图,∠BAC 的平分线与BC 的垂直平分线相交于点P ,PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F .若AB =8,AC =4,则AE = 6 .【解答】解:连接PB,PC,∵点P在BC的垂直平分线上,∴PB=PC,∵AC平分∠BAC,PE⊥AB,PF⊥AC,∴PE=PF,∠PEB=∠PFC=90°,∴∠APE=∠APF,∴AE=AF,在Rt△PBE和Rt△PCF中,{PB=PCPE=PF,∴Rt△PBE≌Rt△PCF(HL),∴BE=CF,∵AB=AE+BE,AF=AC+CF,∴AB=AC+CF+BE,∵AB=8,AC=4,∴BE=CF=2,∴AE=AC+CF=6.故答案为:6.12.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),点C在第四象限,则点C的坐标是(1,﹣4).【解答】解:过点C 作CD ⊥y 轴于点D ,如图所示.∵∠ABC =90°,∠AOB =90°,∴∠OAB +∠OBA =90°,∠OBA +∠DBC =90°,∴∠OAB =∠DBC .在△OAB 和△DBC 中,{∠AOB =∠BDC =90°∠OAB =∠DBC AB =BC,∴△OAB ≌△DBC (AAS ),∴BD =AO ,DC =OB .∵A (3,0),B (0,﹣1),∴BD =AO =3,DC =OB =1,OD =OB +BD =4,∴点C 的坐标为(1,﹣4).故答案为:(1,﹣4).13.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为9和4,则阴影部分的总面积为 6 .【解答】解:如图,作LM ⊥FE 交FE 的延长线于点M ,交JI 的延长线于点N , ∵四边形A 、B 、C 都是正方形,且正方形A 、C 的面积分别为9、4,∴∠EKI =∠EDR =∠IHG =90°,DE 2=9,HI 2=4,∴DE =3,HI =2,∵∠EDK =∠KHI =180°﹣90°=90°,∴∠DKE =90°﹣∠KHI =∠HIK ,在△EDK 和△KHI 中,{∠EDK =∠KHI ∠DKE =∠HIK EK =KI,∴△EDK ≌△KHI (AAS ),∴DK =HI =2,DE =HK =3,∴S △EDK =S △KHI =12×3×2=3;∵∠DEF =∠HIJ =90°,∴∠DEM =180°﹣∠DEF =90°,∠HIN =180°﹣∠HIJ =90°,∵∠KEL =∠KIL =90°,∴∠MEL =∠DEK =90°﹣∠KEM ,∠NIL =∠HIK =90°﹣∠KIN ,∵EF ∥l ,IJ ∥l ,∴EF ∥IJ ,∴∠EML =∠EMN =∠N =90°,在△EML 和△EDK 中,{∠MIL =∠DEK ∠EML =∠EDK EL =EK,∴△EML ≌△EDK (AAS ),∴EM =ED =EF ,∴S △EFL =S △EML =S △EDK =3;在△LNI 和△KHI 中,{∠NIL =∠HIK ∠N =∠KHI IL =IK,∴△LNI ≌△KHI (AAS ),∵IN =IE =IJ ,∴S △LJI =S △LNI =S △KHI =3,∴S △EFL +S △LJI =3+3=6,∴阴影部分的总面积为6.14.如图,已知AB =BC =AD ,AD ⊥BC 于点E ,AC ⊥CD ,若CD =53,则△ACD 的面积为 259 .【解答】解:∵AD ⊥BC ,AC ⊥CD ,∴∠ACD =∠AEC =90°,∴∠D +∠DCE =∠DCE +∠ACE =90°,∴∠D =∠ACB ,∵AB =BC ,∴∠BAH =∠BCA ,∴∠D =∠BAC ,过B 作BH ⊥AC 于H ,∴∠AHB =90°,AH =12AC ,在△ABH 与△DAC 中,{∠AHB =∠DCA =90°∠BAH =∠D AB =AD,∴△ABH ≌△DAC (AAS ),∴BH =AC ,AH =CD ,∴AC =2CD =103,∴△ACD 的面积=12AC •CD =12×103×53=259,故答案为:259.15.如图,已知AD 是△ABC 的中线,E 是AC 上的一点,BE 交AD 于F ,AC =BF ,∠DAC=24°,∠EBC =32°,则∠ACB = 100° .【解答】解:如图,延长AD 到M ,使得DM =AD ,连接BM ,如图所示:在△BDM 和△CDA 中,{DM =∠DA ∠BDM =∠CDA BD =CD,∴△BDM ≌△CDA (SAS ),∴BM =AC =BF ,∠M =∠DAC =24°,∠C =∠DBM ,∵BF =AC ,∴BF =BM ,∴∠M =∠BFM =24°,∴∠MBF =180°﹣∠M ﹣∠BFM =132°,∵∠EBC =32°,∴∠DBM =∠MBF ﹣∠EBC =100°,∴∠C =∠DBM =100°,故答案为:100°.16.如图,已知∠AOB=60°,点P在OA上,OP=8,点M、N在边OB上,PM=PN,若MN=2,则OM=3.【解答】解:过P作PC⊥MN,∵PM=PN,∴C为MN中点,即MC=NC=12MN=1,在Rt△OPC中,∠AOB=60°,∴∠OPC=30°,∴OC=12OP=4,则OM=OC﹣MC=4﹣1=3,故答案为:317.如图,△ABC是等边三角形,延长BC到点E,使CE=12BC,若D是AC的中点,连接ED并延长交AB于点F.(1)若AF=3,求AD的长;(2)证明:DE=2DF.【解答】(1)解:∵△ABC为等边三角形,∴AC=BC,∠A=∠ACB=60°,∵D为AC中点,∴CD=AD=12AC,∵CE=12BC,∴CD=CE,∴∠E=∠CDE,∵∠ACB=∠E+∠CDE,∴∠E=∠CDE=30°,∴∠ADF=∠CDE=30°,∵∠A=60°∴∠AFD=180°﹣∠A﹣∠ADF=90°,∵AF=3∴AD=2AF=6;(2)证明:连接BD,∵△ABC为等边三角形,D为AC中点,∴BD平分∠ABC,∠ABC=60°,∴∠DBC=∠ABD=12∠ABC=30°,∵∠BFD=90°∴BD=2DF∵∠DBC=∠E=30°∴BD=DE∴DE=2DF.18.如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED=EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B +∠BED =∠H +∠HEC ,∴∠BED =∠HEC ,在△BDE 和△HCE 中,{BE =HE ∠BED =∠HEC ED =EC,∴△BDE ≌△HCE (SAS ),∴BD =HC =BH ﹣BC =3﹣2=1,∴CD =BH ﹣BD ﹣HC =3﹣1﹣1=1.综上所述,CD 的长为1或3.19.已知A (﹣10,0),以OA 为边在第二象限作等边△AOB .(1)求点B 的横坐标;(2)如下图,点M 、N 分别为OA 、OB 边上的动点,以MN 为边在x 轴上方作等边△MNE ,连结OE ,当∠EMO =45°时,求∠MEO 的度数.【解答】解:(1)如图,过B 作BD ⊥OA 于点D ,∵△AOB 为等边三角形,点A (﹣10,0),∴OA =OB =AB =10,∠BAO =∠ABO =∠AOB =60°,∵BD ⊥OA ,∴AD =OD =12OA =12×10=5, ∴点B 的横坐标为﹣5;(2)如图2,过点M 作MF ∥AB 交OA 于点F ,∵MF ∥AB ,∴∠MFO =∠BAO =∠AOB =60°,∴△MOF 为等边三角形,∴∠FMO =60°,MF =MO ,∵△MNE 是等边三角形,∴∠NME =60°,MN =ME ,∴∠FMN +∠NMO =∠NMO +∠OME =60°,∴∠FMN =∠OME ,在△MFN 和△MOE 中,{MF =MO ∠FMN =∠OME MN =ME,∴△MFN≌△MOE(SAS),∴∠MFN=∠MOE=60°,∵∠EMO=45°,∴∠MEO=180°﹣∠MOE﹣∠EMO=180°﹣60°﹣45°=75°.20.如图所示,已知△ABC中,AB=AC,∠DBC=∠D=60°,AE平分∠BAC,若BD=8cm,DE=3cm,求BC的长.【解答】解:延长DE交BC于M,延长AE交BC于N,∵AB=AC,AE平分∠BAC,∴AN⊥BC,BN=CN,∵∠DBC=∠D=60°,∴△BDM为等边三角形,∴BD=DM=BM=8cm,∵DE=3cm,∴EM=5cm,∵△BDM为等边三角形,∴∠DMB=60°,∵AN⊥BC,∴∠ENM=90°,∴∠NEM=30°,∴NM=2.5 cm,∴BN=5.5 cm,∴BC=2BN=11(cm).21.如图,AB =BD ,AE =EB ,∠ACB =∠ABC ,证明:CD =2CE .【解答】证明:如图,延长CE 至点F ,使EF =CE ,连接BF ,在△BEF 和△AEC 中{BE =AE ∠BEF =∠AEC EF =CE∴△BEF ≌△AEC (SAS ),∴BF =AC ,∠FBE =∠A ,又∵∠ACB =∠ABC ,∴AB =AC ,∴BF =AC =AB =BD ,∠DBC =∠A +∠ACB =∠FBE +∠ACB =∠FBE +∠ABC =∠FBC ,CB =CB , 在△CBF 和△CBD 中,{BF =BD ∠FBC =∠CBD CB =CB,∴△CBF ≌△CBD (SAS ),∴CD =CF =2CE .。
(完整版)相似三角形中的辅助线专题训练【2024版】
可编辑修改精选全文完整版相似三角形中的辅助线专题训练一、基本图形:二、基本方法:证相似,实不难,A字字仔细看;如没有,辅助线,各种情况常相见。
三、实例演习:(一)遇燕尾,作平行,构造字一般行。
1、BE=AD,求证:EF·BC=AC·DF(二)遇梯形,延长腰,构成A字瞧一瞧。
2、梯形ABCD中,AD∥BC,CH平分∠BCD,BH=3AH,四边形AHCD的面积为21,求△HBC的面积。
(三)遇平分,作等腰,三线合一要记牢。
3、AC⊥BC,AE⊥DE,2∠ADE=∠B,AC:BC=3:1,求AE:DG(四)直角多,垂线作,再难题目你能做。
4、平行四边形ABCD中,CE⊥AE,CF⊥AF,求证:AB·AE+AD·AF=AC2HDCBAEDCBAGEDCBAA BCDEF四、巩固练习:(做题目,看情况,灵活运用最恰当。
) 1、BD :DC =2:1,E 为AD 中点,求①BE :EF ②AF :FC2、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC3、D 为BC 中点,求证:AF :BF =AE :EC4、AC ⊥BC ,CD ⊥AB ,FG ⊥AB ,E 为CD 中点,求证:FG 2=CF ·BF 5、AB =AC ,AD 为中线,CF ∥AB ,求证:BP 2=PE ·PF6、AD 平分∠BAC ,EF 垂直平分AD ,求证:ED 2=EB ·EC7、矩形ABCD 中,E 为AD 中点,EF ⊥EC ,求证:△AEF ∽△ECF8、AB =AC ,AB ⊥BC ,AD 为中线,BE ⊥AD ,求证:①AE =2EC ②∠AEB =∠CED 9、∠BAC =90°,AE ⊥BC ,BD =DC =EC =1,求AC 的长10、AB =AC ,BD 为高,求证:BC 2=2AC ·CDFE DC BA G F E DC B A A BC DE FA B C D E F G PA BC D E F AB CD EF AB CD E F P AB C D E PAB CDEA BCDPA B CD E。
人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明 专项训练(含答案)
人教版数学八年级下册第十八章平行四边形含辅助线证明训练一1.如图,□ABCD中,AC⊥AB,点E在线段AC上,AE=AB,BE的延长线交边AD于点F,AG⊥BC,且AG=AF,AG交BF于点O.(1)若AD=13,AC=12,求BE的长;(2)若点O恰好是线段AG的中点,连接GE,求证:AF=GE.2.已知正方形ABCD如图所示,连接其对角线AC,∠DAC的平分线AE交CD于点E,过点D作DM⊥AE于F,交AC于点M,共过点A作AN⊥AE交CB延长线于点N.(1)若AD=3,求△CAN的面积;(2)求证:AN=DM+2EF.3.如图1,已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F.图1 图2(1)如图1,连接AF,若AB=4,BE=1,求AF的长;(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:AG-BG=2GO4.如图,平行四边形ABCD中,BF⊥DC交DC于点F,且BF=AB,E点是BC边上一点,连接AE交BF于G;(1)若AE平分∠DAB,∠C=60∘,BE=3,求BG的长;(2)若AD=BG+FC,求证:AE平分∠DAB.5.如图,在□ABCD中,AD上有一点E,连接BE,AH⊥BC于H,AH、BE交于点G,连接CG并延长交AB于F,且GC=CD,∠GCD=90∘.(1) 若GC=6,∠BAG=30∘,求四边形AGCD的面积;(2) 求证:DE=2BG.6.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求AC.证:AH=AF+227.如图,▱ABCD中,DF平分∠ADC交AC于点H,G为DH的中点.(1)如图①,若M为AD的中点,AB⊥AC,AC=9,CF=8,CG=25,求GM;(2)如图②,M为线段AB上一点,连接MF,满足∠MCD=∠BCG,∠MFB=∠BAC.求证:MC=2CG.8.如图,在▱ABCD中,连结BD,点E在BD上,且DE=DC,连结CE并延长它与AD交于点F,过点C作CG⊥BD垂足为G,交AD于点H.(1)若DG=3,CG=23,求△CDE的面积;(2)若∠DFC=45°,求证:EF+2FH=CF.9.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.10.如图,▱ABCD中,E为平行四边形内部一点,连接AE,BE,CE.(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB=5,EF=1,求AD的长;(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE 且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP、EH.求证:EP=2EH.11.如图1,在等腰△ABO中,AB=AO,分别延长AO、BO至点C、点D,使得CO=AO、BO=BO,连接AD、BC.(1)如图1,求证:AD=BC;(2)如图2,分别取边AD、CO、BO的中点E、F、H,猜想△EFH的形状,并说明理由.12.已知,如图,▱ABCD的对角线AC、BD相交于点O,(1)如图1,若AC=AD过点A作AE⊥BC于点E,若AE=3,BC=5,求AB边的长;(2)如图2,过点A作BD的垂线,垂足为F,且AF=BF,过点B作BC的垂线,两条垂线相交于点G,若∠BAG=∠BFC,连接DG.求证:GF=4FO13.已知,在平行四边形ABCD中,AB⊥BD,E为射线BC上一点,连接AE交BD于点F,AB=BD.(1)如图1,若点E与点C重合,且AF=25,求AD的长;(2)如图2,若点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=42,请直接写出MN的最小值。
八年级辅助线练习题
八年级辅助线练习题一、选择题(每题3分,共15分)1. 在三角形ABC中,AB=AC,点D在BC上,AD平分∠BAC。
根据题意,下列说法正确的是:A. AD垂直于BCB. AD平分∠BACC. AD=BD=CDD. ∠BAD=∠DAC2. 在矩形ABCD中,E为AD的中点,连接BE和CE,下列说法不正确的是:A. BE=CEB. BE⊥CEC. ∠BEC=90°D. ∠BEC=45°3. 已知圆O的半径为r,点P在圆O上,PA和PB是圆O的两条切线,且PA=PB,下列说法正确的是:A. PA=PB=rB. PA=PB>rC. PA=PB<rD. PA=PB=2r4. 在三角形ABC中,AB=AC,∠A=90°,点D在BC上,且BD=DC。
根据题意,下列说法不正确的是:A. AD=BD=DCB. ∠BAD=∠DACC. ∠B=∠CD. ∠BDA=∠CDA5. 已知点A、B、C不在同一直线上,且AB=AC,点D在BC上,AD平分∠BAC。
根据题意,下列说法不正确的是:A. AD垂直于BCB. AD平分∠BACC. AD=BDD. AD=CD二、填空题(每题2分,共10分)6. 若三角形ABC中,∠A=90°,AB=AC,则根据辅助线的性质,AD是______。
7. 在矩形ABCD中,若E是AD的中点,连接BE和CE,则BE和CE的交点F是矩形ABCD的______。
8. 若圆O的半径为r,点P在圆O上,PA和PB是圆O的两条切线,且PA=PB,则PA的长度为______。
9. 在三角形ABC中,若AB=AC,∠A=90°,BD=DC,则AD的长度是______。
10. 若点A、B、C不在同一直线上,AB=AC,AD平分∠BAC,且AD垂直于BC,则AD是______。
三、解答题(每题10分,共30分)11. 在三角形ABC中,AB=AC,∠A=90°,点D在BC上,且BD=DC。
数学初二做辅助线的练习题
数学初二做辅助线的练习题在数学学科中,辅助线是解决问题的常用方法之一。
通过在图形中引入辅助线,能够帮助我们更好地理解和解决问题。
下面,我们将通过一些初二数学的练习题来学习如何运用辅助线。
1. 题目:已知一个等边三角形ABC,点D是边BC的中点。
连接AD并延长至E,使得AE=AD,连接BE,证明AE与BC垂直。
解析:在该题中,我们需要证明AE与BC垂直。
为了更好地理解问题,我们可以在图形中引入辅助线。
做法:1)在三角形ABC中,连接AC,构成一个等腰三角形。
2)连接BD,并延长至F,使得BF=BD。
3)连接EF。
4)观察三角形ABF和三角形AED,我们发现它们是等边三角形。
5)由于等边三角形的性质,BF=AE ,且BF与AE平行。
6)根据平行线的性质,AE与BC垂直。
通过引入辅助线,我们更容易观察到等边三角形的性质,从而解决了该问题。
2. 题目:在平行四边形ABCD中,点E是边BC的中点,连接AE 和CD交于点F,证明EF=DF。
解析:在该题中,我们需要证明EF=DF。
为了更好地理解问题,我们可以在图形中引入辅助线。
做法:1)连接AD和BE,并延长至交点G。
2)观察三角形EFG和三角形DFG,我们发现它们是全等三角形。
3)由于全等三角形的性质,EF=DG,又由于DG=DF,所以EF=DF。
通过引入辅助线,我们能够得到全等三角形,从而证明了EF=DF。
3. 题目:在平行四边形ABCD中,点E是边AB的中点,点F是边BC的中点,连接AC并延长至交点G,连接BD并延长至交点H,证明GH平分AC。
解析:在该题中,我们需要证明GH平分AC。
为了更好地理解问题,我们可以在图形中引入辅助线。
做法:1)连接EG和FH。
2)观察四边形EGFH,我们发现它是一个平行四边形。
3)由于平行四边形的性质,中线GH平分对角线AC。
通过引入辅助线,我们能够得到平行四边形的性质,从而证明了GH平分AC。
通过以上的练习题,我们可以看到在解决数学问题时,引入辅助线是一种非常有效的方法。
初二物理几何辅助线练习题
初二物理几何辅助线练习题物理学作为自然科学的一门重要学科,不仅涉及到物体的运动、能量转换等基本概念,也与数学密切相关。
在学习物理时,几何辅助线可以起到一种视觉辅助作用,帮助我们更好地理解和解决物理问题。
本文将为大家提供一些初二物理几何辅助线的练习题,希望能够帮助大家巩固物理和几何知识。
1. 驱赶幻象问题描述:小明在高空看到一架飞机在高空飞行,他看到飞机的实际位置与地理位置之间有一个幻象位置,幻象位置与实际位置之间的距离为h。
已知小明离地面的高度为H,试问小明看到的飞机的高度是多少?解答思路:我们可以通过绘制几何辅助线来解决这个问题。
首先,我们可以画一条水平线代表地面。
然后,从小明的位置向上画一条垂直线,表示小明的视线方向。
接下来,从飞机的实际位置向上画一条垂直线,与小明的视线方向相交于A点。
由于小明看到的飞机位置是幻象位置,所以可以认为小明看到的飞机位置与A点之间的垂直距离为h。
此时,我们可以从A点向右画一条水平线与地面相交于B点,再从B点向上画一条垂直线与小明的视线方向相交于C点。
根据几何关系,我们可以得出:BC / AB = H / H+h。
因此,根据这个比例关系,我们可以求得小明看到的飞机高度。
2. 光线折射问题描述:光在从一种介质进入到另一种介质时,会发生折射现象。
已知光线从空气(折射率为n1)射入到水(折射率为n2),试问光线在折射界面上的折射角与入射角之间的关系是什么?解答思路:为了解决这个问题,我们可以使用几何辅助线来辅助分析。
首先,我们可以画一条水平线代表折射界面。
然后,从界面上方向下方画一条垂直线,表示光线在界面上的入射角。
接下来,从界面下方向上方画一条垂直线,表示光线在界面上的折射角。
然后,分别连接入射角和折射角所在点与界面上的交点,得到两个三角形。
根据几何关系,我们可以得知这两个三角形的高是相等的,因为高代表入射角和折射角在界面上的投影长度。
根据这个几何关系,我们可以得出入射角和折射角之间满足的关系。
(完整版)八年级几何辅助线专题训练
常见的辅助线的作法1. 等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2. 倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3. 角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4. 垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
5. 用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6. 图形补全法:有一个角为60度或120 度的把该角添线后构成等边三角形.7. 角度数为30度、60度的作垂线法:遇到三角形中的一个角为30 度或60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90 的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8. 面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.一、等腰三角形“三线合一”法1. 如图,已知△ABC 中,∠A =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BD 于E , 求证: CE= BD.中考连接:(2014?扬州,第 7题, 3分)如图,已知∠ AOB=60°,点 P 在边OAOP=12,点 M ,N 在边 OB 上, PM=PN ,若 MN=2,则 OM=()A .3B .4C . 5D .6 二、倍长中线(线段)造全等例 1、(“希望杯”试题)已知,如图△则中线 AD 的取值范围是 ______ .例 2、如图,△ABC 中,E 、F 分别在 AB 、AC 上,DE ⊥DF ,D 是中点,试比较 BE+CF例 3、如图,△ ABC 中, BD=DC=A ,CE 是 DC 的中点,求证: AD 平分∠ BAE.ABC 中, AB=5,AC=3,与 EF 的大小DEC B中考连接:09 崇文)以的两边AB、AC 为腰分别向外作等腰Rt ABC和等腰Rt ACE,BAD CAE 90 ,连接DE,M、N 分别是BC、DE的中点.探究:AM 与DE 的关系.(1)如图① 当ABC为直角三角形时,AM 与DE 的位置关系是,线段AM 与DE 的数量关系是;(2)将图①中的等腰Rt ABD绕点A沿逆时针方向旋转(0< <90)后,如图三、借助角平分线造全等1、如图,已知在△ ABC中,∠ B=60°,△ ABC的角平分线AD,CE相交于点O,求证:OE=ODA B2、如图,已知点C 是∠ MAN 的平分线上一点,CE⊥AB 于E,B、D 分别在AM、AN 上,且AE= (AD+AB ).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP是∠ MON 的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。
初二下册数学辅助线练习题
初二下册数学辅助线练习题在初二下册的数学课程中,辅助线是一个非常重要的概念和工具。
通过使用辅助线,我们可以更好地理解和解决各种数学问题。
在这篇文章中,我将为您提供一些初二下册数学辅助线练习题,帮助您加深对这一概念的理解和掌握。
一、平行四边形面积计算1.已知平行四边形的底边长为8cm,高度为6cm,试计算其面积。
解析:我们可以使用辅助线将平行四边形分成两个三角形,然后计算三角形的面积并相加得到最终的平行四边形面积。
以下是详细步骤:步骤1:根据已知条件画出平行四边形,并标记出底边和高度。
步骤2:添加辅助线,将平行四边形分成两个三角形。
步骤3:计算两个三角形的面积。
由于两个三角形具有相同的底边和高度,所以它们的面积相等。
步骤4:将两个三角形的面积相加,得到平行四边形的面积。
根据以上步骤,我们可以得出平行四边形的面积为48平方厘米。
二、直角三角形边长计算2.已知一个直角三角形的斜边长为10cm,一个直角边长为6cm,试计算另一个直角边的长度。
解析:我们可以使用辅助线将直角三角形划分成两个直角相似三角形,然后通过比例关系计算未知直角边的长度。
以下是详细步骤:步骤1:根据已知条件画出直角三角形,并确定斜边和已知直角边。
步骤2:添加辅助线,将直角三角形划分成两个直角相似三角形。
步骤3:根据相似三角形的性质,我们可以得出一个比例关系:斜边与该直角边的比值等于另一个直角边与该直角边的比值。
步骤4:根据比例关系,我们可以得出未知直角边的长度。
根据以上步骤,我们可以计算出另一个直角边的长度为8cm。
三、菱形对角线长度计算3.已知菱形的一条对角线长度为12cm,另一条对角线长度为16cm,试计算菱形的面积。
解析:我们可以使用辅助线将菱形划分为四个直角三角形,然后计算这些三角形的面积并相加,得到菱形的面积。
以下是详细步骤:步骤1:根据已知条件画出菱形,并标记出两条对角线的长度。
步骤2:添加辅助线,将菱形划分为四个直角三角形。
(完整版)初二数学辅助线常用做法及例题(含答案)
DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。
1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
八上数学辅助线专项练习
八上数学辅助线专项练习一、 选择题1. 如图,△ABC是边长为4的等边三角形, 点P 在AB 上,过点P 作PE⊥AC, 垂足为E,延长BC 至点Q, 使 CQ=PA,连接PQ 交AC 于点D, 则DE 的长为( )A. 1B. 1.8C. 2D. 2.52. 如图,△ABC是边长为2的等边三角形, 点P 在AB 上,过点P 作PE⊥AC, 垂足为E,延长BC 到点 Q,使 CQ=PA,连接PQ 交AC 于点D, 则DE 的长为( )A. 0.5B. 0.9C. 1三、解答题4. P 为等边△ABC的边AB 上一点,Q 为BC 延长线上一点, 且PA=CQ,连PQ 交AC 边于D.(1)证明: PD=DQ.(2)如图2, 过P 作PE⊥AC于E, 若AB=6, 求DE 的长.求让: MD=ME5.如图所示:△ABC是等边三角形, D 、E 分别是AB 及AC 延长线上的一点, 且BD=CE,连接DE 交BC 于点M.6. 读下面的题目及分析过程,并按要求进行证明. 已知:如图,E 是 BC 的中点,点A 在DB 上,且∠BAE=∠CDE,求证:AB=CD分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等. 因此,要证明AB=CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形. 现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.图(1):延长DE 到F 使得EF=DE图(2):作 CG⊥DE 于 G,BF⊥DE 于F 交DE 的延长线于F图(3):过C 点作CF∥AB 交DE 的延长线于 F.(1)求证: DP=DQ;7. 如图, 点 P 为等边△ABC的边AB 上一点, Q 为BC 延长线上一点, AP=CQ,PQ 交AC 于D,(2)过P作PE⊥AC于E, 若BC=4, 求DE的长.8.如图,△ABC中, 点D,E在边AB上, 点F在边BC上, 且AD=AC, EF=EC, ∠CEF=∠A, 连接 DF.(1)在图1中找出与∠ACE相等的角,并证明;(2)求证: ∠BDF=∠EFC;的值(用含k(3)如图2, 延长FD, CA交于点G, 连接EG, 若 EG=AG, DE=kAE, 求DGDF的代数式表示).9. P为等边△ABC的边AB上一点, Q为BC延长线上一点, 且PA=CQ, 连PQ交AC边于D.(1)证明: PD=DQ.(2)如图2, 过P作PE⊥AC于E, 若AB=6, 求DE的长.。
初二数学上辅助线练习题
初二数学上辅助线练习题在初二数学学习中,辅助线是一个重要的概念和应用技巧。
它可以帮助我们解决一些数学问题,简化计算过程,提高解题效率。
本文将通过几个实际的练习题来帮助同学们理解和应用辅助线的方法。
练习题一:求平行四边形的对角线长度已知平行四边形ABCD的边长分别为5cm和8cm,求其对角线BD 的长度。
解题思路:我们可以通过连结该平行四边形的两组对边,构造两条相交的辅助线,形成两个三角形。
利用三角形的性质,我们可以求得辅助线的长度,进而得到对角线的长度。
解题步骤:1. 以点A为起点,向右方向画一条线段AE,长度为8cm。
2. 以点C为起点,向右方向画一条线段CF,长度为5cm。
3. 连接点E和点F,得到线段EF。
4. 观察三角形ABE和三角形DCF,它们都是直角三角形,可以使用勾股定理求得线段EF的长度。
AB = 5cm, AE = 8cm,根据勾股定理得到BE = √(AE^2 - AB^2)即BE = √(8^2 - 5^2) = √39cm。
CD = 5cm, CF = 8cm,同样应用勾股定理得到DF = √(CF^2 - CD^2)即DF = √(8^2 - 5^2) = √39cm。
5. 根据平行四边形的性质,对角线BD是辅助线EF的一半。
因此,BD的长度为1/2 * EF,即BD = 1/2 * √39cm ≈ 3.93cm。
练习题二:求等腰三角形的高已知等腰三角形ABC,AB = AC = 6cm,BC = 8cm,求其高AD的长度。
解题思路:对于等腰三角形,辅助线可以通过连接底边的中点与顶点来构造。
利用辅助线,我们可以将等腰三角形分成两个全等的直角三角形,进而求得高的长度。
解题步骤:1. 连接顶点A与底边中点D。
2. 观察三角形ABD,它是一个直角三角形。
根据勾股定理,可以求得高AD的长度。
AB = 6cm, BD = 1/2 * BC = 1/2 * 8cm = 4cm,根据勾股定理得到AD = √(AB^2 - BD^2)即AD = √(6^2 - 4^2) = √20cm ≈ 4.47cm。
(完整word版)初二辅助线专题1
辅助线专题一、找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
二、三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
精解名题一、截长补短法截长补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
1、如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.方法提炼:遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
1)对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法将其放在一个三角形中证明。
2)在利用三角形三边关系证明线段不等关系时,如直接证明不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明。
二、中线倍长法若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。
2、已知三角形的两边长分别为7和5,那么第三边上中线长x的取值范围是().3、如图,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线。
求证:ΔABC是等腰三角形。
方法提炼:题目中如果出现了三角形的中线,常加倍延长此线段,再将端点连结,便可得到全等三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常见的辅助线的作法1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线:(1)可以自角平分线上的某一点向角的两边作垂线,(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。
(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
4.垂直平分线联结线段两端:在垂直平分线上的某点向该线段的两个端点作连线,出一对全等三角形。
5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形.7.角度数为30度、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。
从而为证明全等三角形创造边、角之间的相等条件。
8.面积方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.D CBAED F CB A一、等腰三角形“三线合一”法1.如图,已知△ABC中,∠A=90°,AB=AC,BE平分∠ABC,CE⊥BD于E,求证:CE=BD.中考连接:(2014•扬州,第7题,3分)如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()A.3B.4C.5D.6二、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF 与EF的大小.例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBAO ED CBAABC∆中考连接:(09崇文)以的两边AB、AC为腰分别向外作等腰Rt 和等腰Rt ACE∆,90,BAD CAE∠=∠=︒连接DE,M、N分别是BC、DE的中点.探究:AM与DE 的关系.(1)如图①当ABC∆为直角三角形时,AM与DE的位置关系是,线段AM与DE的数量关系是;(2)将图①中的等腰Rt ABD∆绕点A沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.三、借助角平分线造全等1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD2、如图,已知点C 是∠MAN 的平分线上一点,CE ⊥AB 于E ,B 、D 分别在AM 、AN 上,且AE=(AD+AB ).问:∠1和∠2有何关系?中考连接:(2012年北京)如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。
请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。
请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
O P A M N E B C D F A C E F B D 图① 图②图③E D GF C B A 四, 垂直平分线联结线段两端1. ( 2014•广西贺州,第17题3分)如图,等腰△ABC 中,AB =AC ,∠DBC =15°,AB 的垂直平分线MN 交AC 于点D ,则∠A 的度数是 .2、如图,△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F. (1)说明BE=CF 的理由;(2)如果AB=a ,AC=b ,求AE 、BE 的长.中考连接:(2014年广东汕尾,第19题7分)如图,在Rt △ABC 中,∠B =90°,分别以点A 、C 为圆心,大于AC 长为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别交于点D 、E ,连接AE .(1)求∠ADE ;(直接写出结果)(2)当AB =3,AC =5时,求△ABE 的周长.补充:尺规作图过直线外一点做已知直线的垂线CC B A 五、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 。
3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。
求证:BQ+AQ=AB+BP4、如图,在四边形ABCD 中,BC >BA,AD =CD ,BD 平分ABC ∠,求证: 0180=∠+∠C AC DB A5. 如图,已知正方形ABCD中,E为BC边上任意一点,AF平分∠DAE.求证:AE-BE=DF.6.如图,△ABC中,∠ABC=60°,AD、CE分别平分∠BAC,∠ACB,判断AC 的长与AE+CD的大小关系并证明.7.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于D,AF平分∠CAB交CD于E,交CB于F,且EG∥AB交CB于G,判断CF与GB的大小关系并证明。
F E D C B A 六、综合1、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.2、如图,ABC ∆为等边三角形,点,M N 分别在,BC AC 上,且BM CN =,AM 与BN 交于Q 点。
求AQN ∠的度数。
3、已知四边形ABCD 中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,(或它们的延长线)于E F ,.当MBN ∠绕B 点旋转到AE CF =时(如图1),易证AE CF EF +=. 当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系?请写出你的猜想,不需证明.(图1) A B C D E F M N (图2) A B C D E F M N (图3)AB C D E F M NN M E FA CB A 4、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。
(1) 当MDN ∠绕点D 转动时,求证DE=DF 。
(2) 若AB=2,求四边形DECF 的面积。
5、在等边ABC ∆的两边AB 、AC 所在直线上分别有两点M 、N ,D 为ABC 外一点,且︒=∠60MDN ,︒=∠120BDC ,BD=DC. 探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及AMN ∆的周长Q 与等边ABC ∆的周长L 的关系.图1 图2 图3(I )如图1,当点M 、N 边AB 、AC 上,且DM=DN 时,BM 、NC 、MN之间的数量关系是 ; 此时=LQ ; (II )如图2,点M 、N 边AB 、AC 上,且当DM ≠DN 时,猜想(I )问的两个结论还成立吗?写出你的猜想并加以证明;(III ) 如图3,当M 、N 分别在边AB 、CA 的延长线上时,若AN=x ,则Q= (用x 、L 表示).中考连接:(2014•抚顺第25题(12分))已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt△A′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.D C BAED F CB A参考答案与提示一、倍长中线(线段)造全等例1、(“希望杯”试题)已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________. 解:延长AD至E使AE=2AD,连BE,由三角形性质知AB-BE <2AD<AB+BE 故AD的取值范围是1<AD<4例2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.解:(倍长中线,等腰三角形“三线合一”法)延长FD至G使FG=2EF,连BG,EG,显然BG=FC,在△EFG中,注意到DE⊥DF,由等腰三角形的三线合一知EG=EF在△BEG中,由三角形性质知EG<BG+BE故:EF<BE+FC例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.ED CBA解:延长AE至G使AG=2AE,连BG,DG,显然DG=AC,∠GDC=∠ACD由于DC=AC,故∠ADC=∠DAC在△ADB 与△ADG 中, BD =AC=DG ,AD =AD ,∠ADB=∠ADC+∠ACD=∠ADC+∠GDC =∠ADG故△ADB ≌△ADG ,故有∠BAD=∠DAG ,即AD 平分∠BAE 应用:Rt ABD ∆和等腰1、(09崇文二模)以的两边AB 、AC 为腰分别向外作等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE ,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.(1)如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 , 线段AM 与DE 的数量关系是 ;(2)将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ(0<θ<90)后,如图②所示,(1)问中得到的两个结论是否发生改变?并说明理由.ABC ∆EDCBA∵在FAB ∆和EAD ∆中 ⎪⎩⎪⎨⎧=∠=∠=DA BA EAD BAF AE FA ∴EAD FAB ∆≅∆(SAS ) ∴DE BF =,AEN F ∠=∠∴︒=∠+∠=∠+∠90AEN APE F FPD ∴DE FB ⊥又∵AF CA =,MB CM = ∴FB AM //,且FB AM 21= ∴DE AM ⊥,DE AM 21= 二、截长补短1、如图,ABC ∆中,AB=2AC ,AD 平分BAC ∠,且AD=BD ,求证:CD ⊥AC 解:(截长法)在AB 上取中点F ,连FD△ADB 是等腰三角形,F 是底AB 中点,由三线合一知 DF ⊥AB ,故∠AFD =90° △ADF ≌△ADC (SAS )∠ACD =∠AFD =90°即:CD ⊥AC2、如图,AD ∥BC ,EA,EB 分别平分∠DAB,∠CBA ,CD 过点E ,求证;AB =AD+BC 解:(截长法)在AB 上取点F ,使AF =AD ,连FE △ADE ≌△AFE (SAS ) ∠ADE =∠AFE , ∠ADE+∠BCE =180° ∠AFE+∠BFE =180° 故∠ECB =∠EFBDCBAPQCBA△FBE ≌△CBE (AAS ) 故有BF =BC 从而;AB =AD+BC3、如图,已知在△ABC 内,060BAC ∠=,040C ∠=,P ,Q 分别在BC ,CA 上,并且AP ,BQ 分别是BAC ∠,ABC ∠的角平分线。