2020年福建省漳州市龙海二中中考数学二模试卷
2020年福建省漳州市龙海二中中考数学二模试卷

2020年福建省漳州市龙海二中中考数学二模试卷10小题,每小题4分,共40分•在每小题给出的四个选项中,只有一项是符合题目要求的A .从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B .抛掷一枚普通正方体骰子所得的点数小于 7C .抛掷一枚普通硬币,正面朝上D .从一副没有大小王的扑克牌中抽出一张牌,恰好是方块(4分)小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的 图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图 形,则这两枚棋子的坐标分别是 ( )、选择题:本大题共1.(4 分)在 1、2、 1、 3这四个数中,无理数是 3C .2. (4分)下列运算结果为 a 3的是(C . agaga(4分)一个几何体的三视图如图所示,那么这个几何体是左观團5. (4分)人体中红细胞的直径约为A A / I \J I \If I I p I 1I用科学记数法表示为(5A . 77 10B . 0.77 10 7C . 7.7 106D . 7.7 10 7(4分)下列事件中,是必然事件的是 ()6. 3.过点E 作MN / /BC 交AB 于点M ,交AC 于点N , 若 AB 7 , AC 5 , BC 6,贝U MN 的长为()A •圆子(2,3),方子(1,.3) C •圆子(2,3),方子(4,0)B •圆子(1,3),方子(2,3) D •圆子(4,0),方子(2,3)7. ( 4分)关于x 的方程x 2 mx 10根的情况是(A •有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定& ( 4分)一次函数y 2x 1的图象不经过( A •第一象限B •第二象限C .第三象限D •第四象限29. (4分)如图,抛物线y ax bx c (a0)过原点O ,与x 轴另一交点为 A ,顶点为B ,C . 3 3D . 4. 310. (4分)如图,点E 为 ABC 的内心,A . 3.5C. 5D. 5.5、填空题:本大题共6小题,每小题4分,共24分.11. ________________________________ (4 分)计算:(?)1 (.3 1)° . 12. (4分)若一组数据1、3、x 、5、8的众数为8,则这组数据的中位数为 _ .13. _________________________________________________________________ (4分)在五边形 ABCDE 中,若 A B C D 440,贝U E _________________________________ .x a 口、“小 2x y 1“14. (4分)若 是万程组的解,则a 4b .y b x 5y 515. (4分)如图,PA 切eO 于点A ,点B 是线段PO 的中点,若e O 的半径为 3,则图 中阴影部分的面积为16. (4分)在平面直角坐标系中, 点A 的坐标为(4,0),点B 为y 轴上的一动点,将线段AB 绕点B 顺时针旋转90得线段BC ,若点C 恰好落在反比例函数 y 3的图象上,则点 B 的x 坐标为 ____ .三、解答题:本大题共 9小题,共86分.解答应写出文字说明,证明过程或演算步骤•1 a2 1(a — ) -2—,其中 a 2 .a 2 a a20 .《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?” 意17•解不等式组x 2x 33x ,并将解集在数轴上表示出来.19.如图,在 ABC 中,AB AC , CDAB 于点D , BEAC 于点E .求证:BD CE .18•先化简,思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多。
【解析版】福建省漳州市中考数学二模试卷

福建省漳州市中考数学二模试卷一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)实数a、b在数轴上表示如图,下列判断正确的是()A.a<O B.a>1 C.b>﹣1 D.b<﹣12.(4分)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°3.(4分)下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b 4.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.45.(4分)一次函数y=kx+b的图象经过第二、四象限,则k的值可以是()A.2B.1C.0D.﹣16.(4分)下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数7.(4分)一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是()A.极差是15 B.众数是88 C.中位数是85 D.平均数是878.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.9.(4分)在反比例函数(k<0)的图象上有两点,(﹣1,y1),,则y1﹣y2的值是()A.正数B.非正数C.负数D.不能确定10.(4分)定义运算,比如2⊗3=+=,下面给出了关于这种运算的几个结论:①2⨂(﹣3)=;②此运算中的字母均不能取零;③a⊗b=b⊗a;④a⊗(b+c)=a⊗c+b⊗c,其中正确是()A.①②④B.①②③C.②③④D.①③④二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:2x3﹣4x2+2x=.12.(4分)浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是.13.(4分)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是.14.(4分)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为.15.(4分)如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且DC=2BC,过点A作量角器圆弧所在圆的切线,切点为E,如果AB=6cm,则的长是cm.16.(4分)如图,直线y=﹣x+4与坐标轴交于A、B两点,动点P、C以1个单位每秒相同的速度同时分别沿射线AB、BO方向运动,以AP、BC为边分别作如图的两个正方形APQM、BCDE,设动点P的运动时间为t,当正方形APQM的顶点Q落在正方形BCDE 的边所在的直线上时,t的值为.三、解答题(共9小题,满分86分)17.(8分)先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.18.(8分)解方程组:.19.(8分)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.20.(8分)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形AB CD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.21.(8分)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数 90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?22.(10分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.24.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.25.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣.福建省漳州市中考数学二模试卷参考答案与试题解析一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)实数a、b在数轴上表示如图,下列判断正确的是()A.a<O B.a>1 C.b>﹣1 D.b<﹣1考点:实数与数轴.分析:本题需先根据图形,实数在数轴上的位置,得出它们的大小,即可得出答案.解答:解:从图上可以看出,0<a<1,b<﹣1.故选D.点评:本题主要考查了实数与数轴,在解题时要能根据实数在数轴上的位置,得出数的大小是本题的关键.2.(4分)如图所示,直线a∥b,∠B=22°,∠C=50°,则∠A的度数为()A.22°B.28°C.32°D.38°考点:平行线的性质.分析:如图,由平行线的性质可求得∠1=∠C,再根据三角形外角的性质可求得∠A.解答:解:如图,∵a∥b,∴∠1=∠C=50°,又∠1=∠A+∠B,∴∠A=∠1﹣∠B=50°﹣22°=28°,故选:B.点评:本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同们角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行,④a∥b,b∥c⇒a∥c.3.(4分)下面的计算正确的是()A.6a﹣5a=1 B.=±6 C.()﹣1=﹣2 D.2(a+b)=2a+2b考点:去括号与添括号;算术平方根;合并同类项;负整数指数幂.分析:分别利用合并同类项法则和算术平方根、去括号法则分别化简求出即可.解答:解;A、6a﹣5a=a,故此选项错误;B、=6,故此选项错误;C、()﹣1=2,故此选项错误;D、2(a+b)=2a+2b,正确.故选:D.点评:此题主要考查了合并同类项法则和算术平方根、去括号法则等知识,正确掌握运算法则是解题关键.4.(4分)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.1B.2C.3D.4考点:轴对称图形.分析:根据轴对称图形及对称轴的定义求解.解答:解:第一个是轴对称图形,有2条对称轴;第二个是轴对称图形,有2条对称轴;第三个是轴对称图形,有2条对称轴;第四个是轴对称图形,有3条对称轴;∴对称轴的条数为2的图形的个数是3;故选:C.点评:本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;5.(4分)一次函数y=kx+b的图象经过第二、四象限,则k的值可以是()A.2B.1C.0D.﹣1考点:一次函数图象与系数的关系.分析:由一次函数的图象经过的象限判断出k的取值范围,由此即可确定最后的答案.解答:解:∵一次函数y=kx+b的图象经过第二,四象限,∴k<0,∴k的值可以为﹣1,故选:D.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.(4分)下列关于分式的判断,正确的是()A.当x=2时,的值为零B.当x≠3时,有意义C.无论x为何值,不可能得整数值D.无论x为何值,的值总为正数考点:分式的值为零的条件;分式的定义;分式有意义的条件.分析:根据分式值为0的条件,以及分式有意义的条件即可求解.解答:解:A、当x=2时,无意义,故A错误;B、当x≠0时,有意义,故B错误;C、当x=2时,得整数值,故C错误;D、分母x2+1大于0,分子大于0,故无论x为何值,的值总为正数,故D正确.故选:D.点评:分式的定义:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式,当B=0时,分式无意义.7.(4分)一次数学测试后,随机抽取6名学生成绩如下:86,85,88,80,88,95,关于这组数据说法错误的是()A.极差是15 B.众数是88 C.中位数是85 D.平均数是87考点:极差;算术平均数;中位数;众数.分析:平均数只要求出数据之和再除以总个数即可;对于中位数,按从小到大的顺序排列,只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数是出现频数最大的数据.解答:解:A、极差是95﹣80=15,故此选项正确,不符合要求;B、众数是88,故此选项正确,不符合要求;C、中位数是87,故此选项错误,符合要求;D、平均数是87,故此选项正确,不符合要求;故选C.点评:本题主要考查了平均数,中位数,众数及极差的概念及求法,熟练掌握其定义是解题关键.8.(4分)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.考点:几何体的展开图;截一个几何体.分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解答:解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.点评:考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.9.(4分)在反比例函数(k<0)的图象上有两点,(﹣1,y1),,则y1﹣y2的值是()A.正数B.非正数C.负数D.不能确定考点:反比例函数图象上点的坐标特征.分析:把点的坐标代入反比例函数的解析式求出y1,y2的值,求出其差是3k,根据k<0即可得出答案.解答:解:点(﹣1,y1),(﹣,y2)在反比例函数(k<0)的图象上,∴代入得:y1=﹣k,y2=﹣4k,∴y1﹣y2=﹣k﹣(﹣4k)=3k,∵k<0,∴y1﹣y2的值是负数,故选C.点评:本题考查了反比例函数图象上点的坐标特征的应用,主要考查学生的计算能力.10.(4分)定义运算,比如2⊗3=+=,下面给出了关于这种运算的几个结论:①2⨂(﹣3)=;②此运算中的字母均不能取零;③a⊗b=b⊗a;④a⊗(b+c)=a⊗c+b⊗c,其中正确是()A.①②④B.①②③C.②③④D.①③④考点:有理数的混合运算.专题:新定义.分析:各项利用题中的新定义计算得到结果,即可做出判断.解答:解:①2⨂(﹣3)=﹣=,正确;②此运算中的字母均不能取零,正确;③a⊗b=+=b⊗a=+,正确;④a⊗(b+c)=+≠a⊗c+b⊗c=+++,错误,其中正确的为①②③,故选B点评:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.二、填空题(共6小题,每小题4分,满分24分)11.(4分)分解因式:2x3﹣4x2+2x=2x(x﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式2x,再对余下的多项式利用完全平方公式继续分解.解答:解:2x3﹣4x2+2x,=2x(x2﹣2x+1),=2x(x﹣1)2.故答案为:2x(x﹣1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)浙江省委作出“五水共治”决策.某广告公司用形状大小完全相同的材料分别制作了“治污水”、“防洪水”、“排涝水”、“保供水”、“抓节水”5块广告牌,从中随机抽取一块恰好是“治污水”广告牌的概率是.考点:概率公式.分析:用治污水的广告牌数除以所有广告牌数即可求得中随机抽取一块恰好是“治污水”广告牌的概率.解答:解:∵5块广告牌中有一块写有“治污水”,∴从中随机抽取一块恰好是“治污水”广告牌的概率是,故答案为:.点评:此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)在开展“国学诵读”活动中,某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数是520.考点:用样本估计总体;条形统计图.专题:图表型.分析:用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.解答:解:该校1300名学生一周的课外阅读时间不少于7小时的人数是1300×=520人,故答案为:520.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.14.(4分)如图,在矩形ABCD中,∠BOC=120°,AB=5,则BD的长为10.考点:矩形的性质.分析:根据矩形性质求出BD=2BO,OA=OB,求出∠AOB=60°,得出等边三角形AOB,求出BO=AB,即可求出答案.解答:解:∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∴OA=OB,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OB=AB=5,∴BD=2BO=10,故答案为:10.点评:本题考查了等边三角形的性质和判定,矩形性质的应用,注意:矩形的对角线相等且互相平分.15.(4分)如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且DC=2BC,过点A作量角器圆弧所在圆的切线,切点为E,如果AB=6cm,则的长是πcm.考点:切线的性质;弧长的计算.专题:计算题.分析:连接OA,OE,根据AE为圆O的切线,得到AE垂直于OE,利用HL得到直角三角形AEO与直角三角形ACO全等,利用全等三角形的对应角相等得到∠AOE=∠AOC,再由DC=2BC,且O为DC中点,得到OC=BC,利用SAS得到三角形ACO与三角形ACB全等,确定出∠EOD度数,在直角三角形ABC中,利用30度所对的直角边等于斜边的一半求出BC的长,即为圆O的半径,利用弧长公式求出弧DE长即可.解答:解:连接OA,OE,∵AE为圆O的切线,∴AE⊥OE,即∠AEO=90°,在Rt△AEO和Rt△ACO中,,∴Rt△AEO≌Rt△ACO(HL),∴∠EOA=∠COA,∵DC=2BC,且OD=OC=DC,∴OC=BC,在△ACO和△ACB中,,∴△ACO≌△ACB(SAS),∴∠AOC=∠ABC=60°,∠CA B=∠CAO=30°,∴∠EOC=120°,即∠EOD=60°,在Rt△ABC中,∠BAC=30°,AB=6cm,∴BC=3cm,即圆O半径为3cm,则l==π.故答案为:π.点评:此题考查了切线的性质,弧长公式,全等三角形的判定与性质,熟练掌握切线的性质是解本题的关键.16.(4分)如图,直线y=﹣x+4与坐标轴交于A、B两点,动点P、C以1个单位每秒相同的速度同时分别沿射线AB、BO方向运动,以AP、BC为边分别作如图的两个正方形APQM、BCDE,设动点P的运动时间为t,当正方形APQM的顶点Q落在正方形BCDE的边所在的直线上时,t的值为、或.考点:一次函数综合题.分析:首先根据直线y=﹣x+4与坐标轴交于A、B两点,求出A、B两点的坐标是多少;然后分三种情况讨论:(1)正方形APQM的顶点Q落在DE边所在的直线;(2)正方形APQM的顶点Q落在CD边所在的直线;(3)正方形APQM的顶点Q落在BC边所在的直线;求出t的值各是多少即可.解答:解:∵直线y=﹣x+4与坐标轴交于A、B两点,∴A(0,4),B(3,0),∴OA=4,OB=3,∴AB==5,(1)当正方形APQM的顶点Q落在DE边所在的直线时:DE边所在的直线的方程是:y=t,点P的坐标是(),设点Q的坐标是(a,t),∵PQ⊥AB,∴…(1),∵PQ=AP=t,∴…(2),由(1),可得a=3t﹣…(3),把(3)代入(2),整理,可得9t2﹣45t+50=0,解得t=或t=,经验证,t=不符合题意,∴t=.(2)当正方形APQM的顶点Q落在CD边所在的直线时:CD边所在的直线的方程是:x=3﹣t,点P的坐标是(),设点Q的坐标是(3﹣t,b),∵PQ⊥AB,∴…(1),∵PQ=AP=t,∴=t…(2),由(1),可得b=…(3),把(3)代入(2),整理,可得48t2﹣240t+225=0,解得t=或t=,经验证,t=不符合题意,∴t=.(3)当正方形APQM的顶点Q落在BC边所在的直线时:正方形APQM的边长为t,BP=5﹣t,∵∠QPB=∠AOB=90°,∠PBQ=∠OBA∴△QPB∽△AOB∴=∴,∴t=.综上,可得当正方形APQM的顶点Q落在正方形BCDE的边所在的直线上时,t的值为、或.故答案为:、或.点评:(1)此题主要考查了一次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.(3)此题还考查了相似三角形的判定和性质的应用,以及两条直线相互垂直的性质的应用,要熟练掌握.三、解答题(共9小题,满分86分)17.(8分)先化简,再求值:(a+2b)2+(b+a)(b﹣a),其中a=﹣1,b=2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:(a+2b)2+(b+a)(b﹣a)=a2+4ab+4b2+b2﹣a2=4ab+5b2,当a=﹣1,b=2时,原式=4×(﹣1)×2+5×22=12.点评:本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.18.(8分)解方程组:.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:方程组整理得:,②﹣①得:3y=3,即y=1,将y=1代入①得:x=,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(8分)如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.(1)图中有哪几对全等三角形?请写出来;(2)试判断OE和AB的位置关系,并给予证明.考点:全等三角形的判定与性质.分析:(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.解答:解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;(2)OE⊥AB.理由如下:在Rt△ABC和Rt△BAD中,,∴△ABC≌△BAD(SAS),∴∠DAB=∠CBA,∴OA=OB,∵点E是AB的中点,∴OE⊥AB.点评:本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD是关键.20.(8分)已知梯形ABCD,请使用无刻度直尺画图.(1)在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;(2)图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.考点:作图—应用与设计作图.专题:作图题.分析:(1)求出三角形CD边上的高作图,(2)找出BE及它的高相乘得20,以AB为一边作平行四边形..解答:解:设小正方形的边长为1,则S梯形A BCD=(AD+BC)×4=×10×4=20,(1)∵CD=4,∴三角形的高=20×2÷4=5,如图1,△CDE就是所作的三角形,(2)如图2,BE=5,BE边上的高为4,∴平行四边形ABEF的面积是5×4=20,∴平行四边形ABEF就是所作的平行四边形.点评:本题主要考查了作图的设计和应用,解决问题的关键是根据面积相等求出高画图.21.(8分)“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数 90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童车的合格率为90%、85%、80%,若从该超市的这三类儿童用品中随机购买一件,请估计购买到合格品的概率是多少?考点:扇形统计图;统计表;概率公式.分析:(1)根据童车的数量是300×25%,童装的数量是300﹣75﹣90,儿童玩具占得百分比是×100%,童装占得百分比1﹣30%﹣25%=45%,即可补全统计表和统计图;(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.解答:解:(1)童车的数量是300×25%=75,童装的数量是300﹣75﹣90=135,儿童玩具占得百分比是×100%=30%,童装占得百分比1﹣30%﹣25%=45%,如图;类别儿童玩具童车童装抽查件数 90 75 135(2)儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×85%=63.75,童装中合格的数量是135×80%=108,所以从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是=84.25%;答:估计购买到合格品的概率是84.25%.点评:本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图能够清楚地表示各部分所占的百分比.22.(10分)有一位滑翔伞爱好者,正在空中匀速向下滑翔,已知水平方向上的风速为5.8m/s,如图,在A点他观察到C处塔尖的俯角为30°,5s后在B点的他观察到C处塔尖的俯角为45°,此时,塔尖与他本人的距离BC是AC的,求此人垂直下滑的距离.(参考数据,结果精确到0.1m)考点:解直角三角形的应用-仰角俯角问题.分析:过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE,设BC=x,则AC=4x,建立关于x的方程,求出x的值,进而可求出DE=CD﹣CE=2x﹣x≈13.6m,即此人垂直下滑的距离.解答:解:过点C作点A所在水平线的垂线,垂足为D,交点B所在水平线于点E,则CE⊥BE设BC=x,则AC=4x,在Rt△BCE中,∠B=45°,∴BE=CE=,在Rt△ACD中,∵∠A=30°,∴CD=AC•sin30°=2x,AD=AC•cos30°=•4x=2x,由题意可知,解得x≈10.52,∴DE=CD﹣CE=2x﹣x≈13.6m,答:此人垂直下滑的距离是13.6米.点评:本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用.23.(10分)已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.考点:二元一次方程组的应用;二元一次方程的应用.分析:(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.解答:解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解方程组,得:,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=∵a、b都是正整数∴或或答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元)方案二需租金:5×100+4×120=980(元)方案三需租金:1×100+7×120=940(元)∵1020>980>940∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.点评:本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.24.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.考点:四边形综合题.专题:压轴题.分析:(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM 交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC﹣S△CQP+S△ABP=S△CPE﹣S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.解答:解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM 交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°﹣∠AOE,∠BOE=90°﹣∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC﹣S△CQP+S△ABP=S△CPE﹣S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,。
福建省漳州市2019-2020学年中考数学二模考试卷含解析

福建省漳州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为( )米A .6.5B .9C .13D .152.下列图形中,周长不是32 m 的图形是( )A .B .C .D .3.下列运算正确的是( ) A .x•x 4=x 5 B .x 6÷x 3=x 2C .3x 2﹣x 2=3D .(2x 2)3=6x 64.的倒数是( )A .B .C .D .5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) 劳动时间(小时) 3 3.5 4 4.5 人 数1132A .中位数是4,众数是4B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.56.一组数据8,3,8,6,7,8,7的众数和中位数分别是( ) A .8,6 B .7,6 C .7,8 D .8,77.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x+y ,a+b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:昌、爱、我、宜、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( ) A .我爱美B .宜晶游C .爱我宜昌D .美我宜昌8.二元一次方程组43624x y x y +=⎧⎨+=⎩的解为( )A .32x y =-⎧⎨=⎩B .21x y =-⎧⎨=⎩C .32x y =⎧⎨=-⎩D .21x y =⎧⎨=-⎩9.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0B .b <a <0C .a <0<bD .b <0<a10.如图图形中,可以看作中心对称图形的是( )A .B .C .D .11.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同 12.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22ky (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC V 的面积为4,则12k k -的值为()A .8B .8-C .4D .4-二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.函数2y x =-x 的取值范围是_____.14.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.15.分解因式x 2﹣x=_______________________16.已知抛物线 2y ax bx c =++的部分图象如图所示,根据函数图象可知,当 y >0 时,x 的取值范围是__.17.如图,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为_____.18.使21x -有意义的x 的取值范围是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE 的点A 处测得公路对面的点C 与AE 的夹角∠CAE=30°,沿着AE 方向前进15米到点B 处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)20.(6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .21.(6分)化简求值:212(1)211xx x x-÷-+++,其中x是不等式组273(1)423133x xx x-<-⎧⎪⎨+≤-⎪⎩①②的整数解.22.(8分)我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?23.(8分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.24.(10分)如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值.25.(10分)某水果店购进甲乙两种水果,销售过程中发现甲种水果比乙种水果销售量大,店主决定将乙种水果降价1元促销,降价后30元可购买乙种水果的斤数是原来购买乙种水果斤数的1.5倍.(1)求降价后乙种水果的售价是多少元/斤?(2)根据销售情况,水果店用不多于900元的资金再次购进两种水果共500斤,甲种水果进价为2元/斤,乙种水果进价为1.5元/斤,问至少购进乙种水果多少斤?26.(12分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .(1)求反比例函数的解析式; (2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.27.(12分)如图,半圆D 的直径AB =4,线段OA =7,O 为原点,点B 在数轴的正半轴上运动,点B 在数轴上所表示的数为m .当半圆D 与数轴相切时,m = .半圆D 与数轴有两个公共点,设另一个公共点是C .①直接写出m 的取值范围是 .②当BC =2时,求△AOB 与半圆D 的公共部分的面积.当△AOB 的内心、外心与某一个顶点在同一条直线上时,求tan ∠AOB 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】试题分析:根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.得AD=6设圆的半径是r , 根据勾股定理, 得r 2=36+(r ﹣4)2,解得r=6.5考点:垂径定理的应用.2.B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.3.A【解析】根据同底数幂的乘法,同底数幂的除法,合并同类项,幂的乘方与积的乘方运算法则逐一计算作出判断:A、x•x4=x5,原式计算正确,故本选项正确;B、x6÷x3=x3,原式计算错误,故本选项错误;C、3x2﹣x2=2x2,原式计算错误,故本选项错误;D、(2x2)3=8x,原式计算错误,故本选项错误.故选A.4.C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵,∴的倒数是.故选C5.A【解析】【分析】根据众数和中位数的概念求解.【详解】这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选A.【点睛】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.D【解析】试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7 考点:(1)众数;(2)中位数.7.C【解析】试题分析:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x﹣y)(x+y)(a﹣b)(a+b),因为x﹣y,x+y,a+b,a﹣b四个代数式分别对应爱、我,宜,昌,所以结果呈现的密码信息可能是“爱我宜昌”,故答案选C.考点:因式分解.8.C【解析】【分析】利用加减消元法解这个二元一次方程组.【详解】解:43624x yx y+=⋯⋯⎧⎨+=⋯⋯⎩①②①-②⨯2,得:y=-2,将y=-2代入②,得:2x-2=4,解得,x=3,所以原方程组的解是32 xy=⎧⎨=-⎩.故选C.【点睛】本题考查了解二元一次方程组和解一元一次方程等知识点,解此题的关键是把二元一次方程组转化成一元一次方程,题目比较典型,难度适中.9.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.10.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选D.【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.11.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B 、左、右两个几何体的左视图为:,故此选项正确;C 、左、右两个几何体的俯视图为:,故此选项错误;D 、由以上可得,此选项错误; 故选B . 【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键. 12.A 【解析】【分析】设()A a,h ,()B b,h ,根据反比例函数图象上点的坐标特征得出1ah k =,2bh k .=根据三角形的面积公式得到()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V ,即可求出12k k 8-=. 【详解】AB//x Q 轴,A ∴,B 两点纵坐标相同,设()A a,h ,()B b,h ,则1ah k =,2bh k =,()()()ABC A 121111S AB y a b h ah bh k k 42222=⋅=-=-=-=V Q , 12k k 8∴-=,故选A .【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2x ≥ 【解析】【分析】根据被开方式是非负数列式求解即可.【详解】x-≥,依题意,得20x≥,解得:2x≥.故答案为:2【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.14.3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.15.x(x-1)【解析】x 2﹣x= x(x-1).故答案是:x(x-1).16.13x -<<【解析】【分析】根据抛物线的对称轴以及抛物线与x 轴的一个交点,确定抛物线与x 轴的另一个交点,再结合图象即可得出答案.【详解】解:根据二次函数图象可知:抛物线的对称轴为直线1x =,与x 轴的一个交点为(-1,0),∴抛物线与x 轴的另一个交点为(3,0),结合图象可知,当 y >0 时,即x 轴上方的图象,对应的x 的取值范围是13x -<<,故答案为: 13x -<<.【点睛】本题考查了二次函数与不等式的问题,解题的关键是通过图象确定抛物线与x 轴的另一个交点,并熟悉二次函数与不等式的关系.17.﹣2【解析】【分析】要求函数的解析式只要求出B 点的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .根据条件得到△ACO ∽△ODB ,得到:BD OD OB OC AC OA===1,然后用待定系数法即可.【详解】过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴BD OD OB OC AC OA==,∵OB=1OA,∴BD=1m,OD=1n.因为点A在反比例函数y=2x的图象上,∴mn=1.∵点B在反比例函数y=kx的图象上,∴B点的坐标是(-1n,1m).∴k=-1n•1m=-4mn=-2.故答案为-2.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B 的坐标(用含n的式子表示)是解题的关键.18.12 x≥【解析】【分析】根据二次根式的被开方数为非负数求解即可. 【详解】由题意可得:210x -≥,解得:12x ≥. 所以答案为12x ≥. 【点睛】 本题主要考查了二次根式的性质,熟练掌握相关概念是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.公路的宽为20.5米.【解析】【分析】作CD ⊥AE ,设CD=x 米,由∠CBD =45°知BD=CD=x ,根据tan ∠CAD=CD AD ,可得x 15+x =3,解之即可.【详解】解:如图,过点C 作CD ⊥AE 于点D ,设公路的宽CD=x 米,∵∠CBD=45°,∴BD=CD=x ,在Rt △ACD 中,∵∠CAE=30°,∴tan ∠CAD=CD AD 3x 15+x 3 解得:153+15≈20.5(米), 答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.20.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.21.当x=﹣3时,原式=﹣12,当x=﹣2时,原式=﹣1.【解析】【分析】先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.22.客房8间,房客63人【解析】【分析】设该店有x间客房,以人数相等为等量关系列出方程即可.【详解】设该店有x间客房,则7799x x+=-解得8x=7778763x+=⨯+=答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.23.(1)y1=﹣15t(t﹣30)(0≤t≤30);(2)∴y2=2(020)4120(2030)t tt t≤<⎧⎨-+≤≤⎩;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.【解析】【分析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0≤t <20、t=20和20≤t≤30三种情况根据y=y 1+y 2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值.【详解】解:(1)由图表数据观察可知y 1与t 之间是二次函数关系,设y 1=a (t ﹣0)(t ﹣30)再代入t=5,y 1=25可得a=﹣15 ∴y 1=﹣15t (t ﹣30)(0≤t≤30) (2)由函数图象可知y 2与t 之间是分段的一次函数由图象可知:0≤t <20时,y 2=2t ,当20≤t≤30时,y 2=﹣4t+120,∴y 2=()2(020)41202030t t t t ≤<⎧⎨-+≤≤⎩, (3)当0≤t <20时,y=y 1+y 2=﹣15t (t ﹣30)+2t=80﹣15(t ﹣20)2 , 可知抛物线开口向下,t 的取值范围在对称轴左侧,y 随t 的增大而增大,所以最大值小于当t=20时的值80,当20≤t≤30时,y=y 1+y 2=﹣15t (t ﹣30)﹣4t+120=125﹣15(t ﹣5)2 , 可知抛物线开口向下,t 的取值范围在对称轴右侧,y 随t 的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y 最大,最大值为80万件.24.(1)BG=AE .(2)①成立BG=AE .证明见解析.②AF=【解析】【分析】(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;(2)①如图2,连接AD ,由等腰直角三角形的性质及正方形的性质就可以得出△ADE ≌△BDG 就可以得出结论;②由①可知BG=AE ,当BG 取得最大值时,AE 取得最大值,由勾股定理就可以得出结论.【详解】(1)BG=AE.理由:如图1,∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点,∴AD ⊥BC ,BD=CD ,∴∠ADB=∠ADC=90°.∵四边形DEFG 是正方形,∴DE=DG .在△BDG 和△ADE 中,BD=AD,∠BDG=∠ADE,GD=ED,∴△ADE≌△BDG(SAS),∴BG=AE.故答案为BG=AE;(2)①成立BG=AE.理由:如图2,连接AD,∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC,∴∠ADG+∠GDB=90°.∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°,∴∠ADG+∠ADE=90°,∴∠BDG=∠ADE.在△BDG和△ADE中,BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS),∴BG=AE;②∵BG=AE,∴当BG取得最大值时,AE取得最大值.如图3,当旋转角为270°时,BG=AE.∵BC=DE=4,∴BG=2+4=6.∴AE=6.在Rt△AEF中,由勾股定理,得+22AE EF+3616∴13.【点睛】本题考查的知识点是全等三角形的判定与性质及勾股定理及正方形的性质和等腰直角三角形,解题的关键是熟练的掌握全等三角形的判定与性质及勾股定理以及正方形的性质和等腰直角三角形.25.(1)降价后乙种水果的售价是2元/斤;(2)至少购进乙种水果200斤.【解析】【分析】(1)设降价后乙种水果的售价是x 元, 30元可购买乙种水果的斤数是30x ,原来购买乙种水果斤数是30x 1+,根据题意即可列出等式;(2)设至少购进乙种水果y 斤,甲种水果(500﹣y )斤,有甲乙的单价,总斤数≤900即可列出不等式,求解即可.【详解】解:(1)设降价后乙种水果的售价是x 元,根据题意可得:3030 1.51x x =⨯+, 解得:x =2,经检验x =2是原方程的解,答:降价后乙种水果的售价是2元/斤;(2)设至少购进乙种水果y 斤,根据题意可得:2(500﹣y )+1.5y≤900,解得:y≥200,答:至少购进乙种水果200斤.【点睛】本题考查了分式的应用和一元一次不等式的应用,根据题意列出式子是解题的关键26.(1)y=6x ;(2)454;(3)32<x <1. 【解析】【分析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算; (3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【点睛】 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.27.(1(2)11m <<;②△AOB 与半圆D 的公共部分的面积为43π(3)tan ∠AOB【解析】【分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D 与数轴相切时,只有一个公共点,和当O 、A 、B 三点在数轴上时,求出两种情况m 的值即可②如图,连接DC ,得出△BCD 为等边三角形,可求出扇形ADC 的面积,即可解答(3)根据题意如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,AB ⊥OB ,由勾股定理得m =22227433OA AB -=-= ,故答案为33 .(2)①∵半圆D 与数轴相切时,只有一个公共点,此时m =33,当O 、A 、B 三点在数轴上时,m =7+4=11,∴半圆D 与数轴有两个公共点时,m 的取值范围为3311m <<.故答案为3311m <<. ②如图,连接DC ,当BC =2时,∵BC =CD =BD =2,∴△BCD 为等边三角形,∴∠BDC =60°,∴∠ADC =120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2,解得x =178 ,OH =498,AH 715 , ∴tan ∠AOB 15, 如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH=x,则72﹣(4﹣x)2=42﹣x2,解得x=87,OH=417,AH125∴tan∠AOB 125.综合以上,可得tan∠AOB 15125.【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线。
(福建卷) 2020年中考数学第二次模拟考试(全解全析)

2020年中考数学第二次模拟考试【福建卷】数学·全解全析1.【答案】A【解析】(–3)–6=–3+(–6)=–(3+6)=–9,故选A.2.【答案】B【解析】从上往下看,易得一个长方形,且其正中有一条纵向实线,故选B.3.【答案】C【解析】5500万=55000000用科学记数法表示为5.5×107.故选C.4.【答案】C【解析】∵一个正n边形的每一个外角都是60°,∴n=360°÷60°=6.这个多边形是正六边形,故选C.5.【答案】C【解析】A.原式=a5,故A错误;B.原式=a6,故B错误;D.原式=a2,故D错误;故选C.6.【答案】D【解析】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.故选D.7.【答案】D【解析】A、添加AE=AD,在△ABD和△ACE中,A AABD ACE AE AD===∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;B、添加BD=CE,在△ABD和△ACE中,A AABD ACE BD CE∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△ACE(AAS),∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;C、添加∠ECB=∠DBC,又∵∠ABD=∠ACE,∴∠ABC=∠ACB,∴AB=AC,∴△ABC为等腰三角形,故此选项不合题意;D、添加∠BEC=∠CDB,不能证明△ABD≌△ACE,因此也不能证明AB=AC,进而得不到△ABC为等腰三角形,故此选项符合题意;故选D.8.【答案】A【解析】设37座客车a辆,49座客车b辆,依题意,得:10{3749466a ba b+=+=.故选A.9.【答案】B【解析】∵⊙O 以AB 为直径,PB 切⊙O 于B , ∴∠PBA =90°, ∵∠PBC =50°, ∴∠ABC =40°. 故选B . 10.【答案】D【解析】∵()()y x a x a 1=+--=x 2–x –a 2–a , ∴对称轴为直线x =121--⨯=12. ∴①正确,∵()()x a x a 1+--=x 2–x –a 2–a =1, ∴x 2–x –a 2–a –1=0,∴∆=(–1)2–4×1×(–a 2–a –1)=1+4a 2+4a +4=(2a +1)2+4>0, ∴方程(x +a )(x –a –1)=1有两个不相等的实数根; ∴②正确,∵P (x 0,m ),Q (1,n )在抛物线上, ∴m =x 02–x 0–a 2–a ,n =12–1–a 2–a =–a 2–a , ∵m <n ,∴x 02–x 0–a 2–a <–a 2–a , ∴x 02–x 0<0, ∴x 0(x 0–1)<0 ∵x 0>x 0–1,∴x 0>0且x 0–1<0,即0<x 0<1, ∴③正确,综上所述:正确的结论有①②③,共3个, 故选D.11.【答案】23(1)a x +【解析】2223633(21)3(1)ax ax a a x x a x ++=++=+故答案为:23(1)a x +12.【答案】>【解析】由a ,b ,c 三点所在数轴上的位置可知,﹣4<a <﹣3,﹣1<b <0,2<c <3, ∴bc >﹣3, ∴bc >a . 故答案为> 13.【答案】1500【解析】∵从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,∴从左至右前四组的频率依次为0.02×5=0.1、0.03×5=0.15、0.04×5=0.2、0.05×5=0.25, ∴后两组的频率之和为:1−0.1−0.15−0.2−0.25=0.3, ∴体重不小于60千克的学生人数约为:5000×0.3=1500人, 故答案为:1500. 14.【答案】(﹣3,2)【解析】过点A 作AD ⊥x 轴于D ,过点C 作CE ⊥x 轴于E ,如图所示:∵四边形OABC 是正方形, ∴OA =OC ,∠AOC =90°, ∴∠COE +∠AOD =90°, 又∵∠OAD +∠AOD =90°, ∴∠OAD =∠COE ,在△AOD 和△OCE 中,90OAD COEADO OEC OA OC ∠=∠⎧⎪∠=∠=⎨⎪=⎩o,∴△AOD ≌△OCE (AAS ), ∴OE =AD =3,CE =OD =2,∵点C 在第二象限, ∴点C 的坐标为(﹣3,2). 故答案为(﹣3,2). 15.【答案】18π﹣183【解析】连接AC ,交OB 于H , ∵四边形OABC 为菱形,∠AOC =60°, ∴∠COH 12=∠AOC =30°,AC =2CH ,OB =2OH , ∴CH =3,OH 22OC CH =-=33, ∴AC =6,OB =63,∴阴影部分的面积260(63)12π⨯=-⨯63⨯6=18π﹣183,故答案为:18π﹣3. 16.【答案】–6【解析】设D (a ,b ),则CO =–a ,CD =AB =b , ∵矩形ABCD 的顶点D 在反比例函数()0ky x x=<的图象上, ∴k =ab ,∵△BCE 的面积是3, ∴12×BC ×OE =3,即BC ×OE =6, ∵AB ∥OE , ∴BC ABOC EO=,即BC •EO =AB •CO , ∴6=b ×(–a ),即ab =–6, ∴k =–6,故答案是:–6. 17.【解析】由题意可知:2351452x y x y +=-⎧⎨+=⎩()() ()()122515y ⨯-得:=-, 3y =-,把3y =-代入()2得:(538)4-=-=x , ∴2x =,∴23x y =⎧⎨=-⎩. 18.【解析】∵菱形ABCD ,∴BA BC =,A C ∠=∠, ∵BE AD ⊥,BF CD ⊥, ∴90BEA BFC ∠=∠=o , 在ABE △与CBF V 中,BEA BFC A CBA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ABE CBF AAS ≅V V (), ∴AE=CF .19.【解析】原式=(13-11+++x x x )÷22441x x x -+- =22(1)(1)1(2)-+-+-gx x x x x=12x x --, 当x =4时,原式=4142--=32. 20.【解析】(1)如图,射线BQ 即为所求.(2)结论:四边形APEQ是菱形.理由:∵AD⊥BC,∴∠ADB=90°,∵∠BAC=90°,∴∠ABD+∠BAD=90°,∠ABD+∠C=90°,∴∠BAD=∠C,∵PE∥AC,∴∠PEB=∠C,∠BAP=∠BEP,∵BP=BP,∠ABP=∠EBP,∴△ABP≌△EBP(AAS),∴PA=PE,∵∠AQP=∠QBC+∠C,∠APQ=∠ABP+∠BAP,∴∠APQ=∠AQP,∴AP=AQ,∴PE=AQ,∵PE∥AQ,∴四边形APEQ是平行四边形,∵AP=AQ,∴四边形APEQ是菱形.21.【解析】(1)∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,∴△ABC≌△DBE,∴∠BAC=∠CDF,∵∠BAC+∠ACB=90°,∴∠CDF+∠ACB=90°,∴DF⊥AC,且点F是AC中点,∴DF 垂直平分AC , ∴AE =CE ;(2)∵△ABC ≌△DBE ,∴BE =CE , ∴CE =AE =2,∴AB =AE +BE .22.【解析】(Ⅰ)估计其分数小于70的概率是54213205+++=,故答案为:35; (Ⅱ)由于共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据均落在第四组, 所以样本中分数的中位数在第四组, 故答案为:四;(Ⅲ)Q 样本中样本中分数不小于70的学生共8人,男女生人数相等, ∴样本中样本中分数不小于70的男生有4人.Q 样本中有13的男生分数不小于70,∴样本中男生共14123÷=人,∴可估计总体中男生人数为1220012020⨯=人.23.【解析】(Ⅰ)见表格(Ⅱ)y 与x 的关系式为y 500.1x =-, ∵0.1x 50≤,∴x 500≤.∴自变量x 的取值范围为0x 500.≤≤ (Ⅲ)当y 5=时,500.1x 5-=, 解得x 450,=∴汽车最多行驶450km 就会报警,而往返两地路程为2302460km ⨯=,∵450460,<∴汽车会报警.24.【解析】(1)∵AB是⊙O的直径,∴∠ADB=90°,即∠BAD+∠ABD=90°,∵PB是⊙O的切线,∴∠ABP=90°,即∠PBD+∠ABD=90°,∴∠BAD=∠PBD;(2)∵∠A=∠C、∠AED=∠CEB,∴△ADE∽△CBE,∴DE AEBE CE=,即DE•CE=AE•BE,如图,连接OC,设圆的半径为r,则OA=OB=OC=r,则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2,∵»»AC BC=,∴∠AOC=∠BOC=90°,∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2,则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2,∴BC2﹣CE2=DE•CE;(3)∵OA=4,∴OB=OC=OA=4,∴BC22OB OC+2,又∵E是半径OA的中点,∴AE=OE=2,则CE ∵BC 2﹣CE 2=DE •CE ,∴(2﹣(2=DE解得:DE 25.【解析】(Ⅰ)把点(-1,0)和(3,0)代入函数2y x bx c =-++,有10930b c b c --+=⎧⎨-++=⎩.解得2,3b c ==2223(1)4y x x x ∴=-++=--+ (0,3),(1,4)A E ∴(Ⅱ)由222424b c b y x bx c x +⎛⎫=-++=--+ ⎪⎝⎭,得24,24b c b E ⎛⎫+ ⎪⎝⎭∵点E 在直线y x =上,2424b c b+∴=221111(1)4244c b b b ∴=-+=--+2110,(1)44A b ⎛⎫∴--+ ⎪⎝⎭当1b =时,点A 是最高点此时,214y x x =-++(Ⅲ):抛物线经过点(1,0)-,有10b c --+=1c b ∴=+24,,(0,)24b c b E A c ⎛⎫+ ⎪⎝⎭Q2(2),,(0,1)24b b E A b ⎛⎫+∴+ ⎪⎝⎭∴E 关于x 轴的对称点E '为2(2),24b b ⎛⎫+- ⎪⎝⎭设过点A ,P 的直线为y kx t =+.把(0,1),(1,0)A b P +代入y kx t =+,得(1)(1)y b x =-+-数学 第11页(共11页)11 把点2(2),24b b E '⎛⎫+- ⎪⎝⎭代入(1)(1)y b x =-+-. 得2(2)(1)142b b b +⎛⎫=-+- ⎪⎝⎭,即2680b b --=解得,3b =±0,3b b >∴=-Q. 3b ∴=+。
福建省漳州市中考数学二模试卷

福建省漳州市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)∠A是锐角,且sinA=cosA,则∠A的度数是()A . 30°B . 45°C . 60°D . 75°2. (2分)(2017·西华模拟) 下列计算正确的是()A .B . (﹣3)2=6C . 3a4﹣2a2=a2D . (﹣a3)2=a53. (2分) (2018九上·武汉月考) 下列图形中,是中心对称图形的是()A .B .C .D .4. (2分) (2020七下·吴兴期中) 某种冠状病毒的大小约为0.000125mm,该数用科学记数法表示正确的是()A . 0.125×10﹣3B . 0.125×10﹣4C . 1.25×10﹣3D . 1.25×10﹣45. (2分)初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元。
在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数()A . 至多6人B . 至少6人C . 至多5人D . 至少5人6. (2分)下面四个图形是多面体的展开图,其中哪一个是四棱锥的展开图()A .B .C .D .7. (2分) (2018九上·库伦旗期末) 如图,在⊙O中,弦AB,CD相交于点P,若∠A=55°,∠APD=80°,则∠B等于()A . 40°B . 45°C . 50°8. (2分)如图所示,两个反比例函数和在第一象限内的图象依次是C1和C2 ,设点P在C1上,PC⊥轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为A . k1+k2B . k1-k2C . k1•k2D . k1k2-k29. (2分)为参加2011年“汕头市初中毕业生升学体育考试”,小强同学进行了刻苦的练习,在投掷实心球时,测得5次投掷的成绩(单位:m)为:8,8.5,9,8.5,9.2.这组数据的众数、中位数依次是().A . 8.5,8.75B . 8.5,9C . 8.5,8.5D . 8.64,910. (2分)(2017·泸州) 下列命题是真命题的是()A . 四边都是相等的四边形是矩形B . 菱形的对角线相等C . 对角线互相垂直的平行四边形是正方形D . 对角线相等的平行四边形是矩形11. (2分) (2019七上·昌平期中) 下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,……,按此规律,图案⑦需小木棒的根数是()A . 49B . 50C . 55D . 5612. (2分)若两个相似三角形的面积之比为1:4,则它们的最大边的比是()B . 1:4C . 1:5D . 1:16二、填空题 (共5题;共5分)13. (1分) (2017七下·西华期末) 如图,AB∥CD,OM平分∠BOF,∠2=65°,则∠1=________度.14. (1分) (2019九上·江津期末) 等腰△ABC的腰长与底边长分别是方程x2﹣6x+8=0的两个根,则这个△ABC 的周长是________.15. (1分)如图,一游人由山脚A沿坡角为的山坡AB行走600m,到达一个景点B,再由B沿山破BC 行走200m到达山顶C,若在山顶C处观测到景点B的俯角为,则山高CD等于________m.(结果用根号表示)16. (1分)(2020·亳州模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=1,tan∠CAB=2,将△ABC绕点A 旋转后,点B落在AC的延长线上的点D,点C落在点E,DE与直线BC相交于点F,那么CF=________.17. (1分) (2019九上·孝昌期末) 如图,四边形ABCD内接于⊙O,OC∥AD,∠DAB=60°,∠ADC=106°,则∠OCB=________°.三、解答题 (共7题;共82分)18. (5分)先化简,再求值:(1﹣)÷ ,其中a=3.19. (12分)(2017·天桥模拟) 为了了解全校1500名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)本次问卷调查共抽查了________名学生;(2)请补全条形统计图;(3)请你估计该校约有________名学生最喜爱打篮球;(4)学校准备从喜欢跳绳活动的4人(三男一女)中随机选取2人进行体能测试,请利用列表或树状图的方法,求抽到一男一女的概率.20. (15分) (2019九下·新乐开学考) 如图,一次函数y=kx+b(k≠0)与反比例函数y=(a≠0)的图象在第一象限交于A、B两点,A点的坐标为(m , 4),B点的坐标为(3,2),连接OA、OB ,过B作BD⊥y 轴,垂足为D ,交OA于C .若OC=CA ,(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)在直线BD上是否存在一点E ,使得△AOE是直角三角形,求出所有可能的E点坐标.21. (10分) (2018九上·江都月考) 如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2 ,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22. (15分) (2017八下·东台期中) 病人按规定的剂量服用某种药物,测得服药后2小时,每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,y与x的函数关系式;(2)求当x>2时,y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?23. (10分)(2019·朝阳模拟) 如图所示,一艘轮船在近海处由西向东航行,点C处有一灯塔,灯塔附近30海里的圆形区域内有暗礁,轮船在A处测得灯塔在北偏东60°方向上,轮船又由A向东航行40海里到B处,测得灯塔在北偏东30°方向上.(1)求轮船在B处时到灯塔C处的距离是多少?(2)若轮船继续向东航行,有无触礁危险?24. (15分)(2017·广州模拟) 已知抛物线C1:y=ax2+bx﹣(a≠0)经过点A(1,0)和B(﹣3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标.(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2 ,此时点A,C分别平移到点D,E 处.设点F在抛物线C1上且在x轴的上方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标.(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共82分)18-1、19-1、19-2、19-3、19-4、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
福建省漳州市2019-2020学年中考数学仿真第二次备考试题含解析

福建省漳州市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列式子中,与232-互为有理化因式的是( ) A .232-B .232+C .322+D .322-2.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .103 mD .123 m3.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab4.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为( ) A .10cmB .30cmC .45cmD .300cm5.一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是( )A .6πB .4πC .8πD .46.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为( ) A .7.1×107B .0.71×10﹣6C .7.1×10﹣7D .71×10﹣87.计算3()a a •- 的结果是( ) A .a 2 B .-a 2C .a 4D .-a 48.若代数式3xx -的值为零,则实数x 的值为( ) A .x =0B .x≠0C .x =3D .x≠39.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.70°B.110°C.130°D.140°10.下列是我国四座城市的地铁标志图,其中是中心对称图形的是()A.B.C.D.11.若2a2a30--=,代数式a2a23-⨯的值是()A.0 B.2a3-C.2 D.12-12.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线()A.x=1 B.x=49C.x=﹣1 D.x=﹣49二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.14.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.15.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=241k kx++的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.16.我国明代数学家程大位的名著《直指算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大、小和尚各有,人,则可以列方程组__________.17.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为18.计算:2sin245°﹣tan45°=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,后求值:(1﹣11a+)÷(2221a aa a-++),其中a=1.20.(6分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?21.(6分)如图,M是平行四边形ABCD的对角线上的一点,射线AM与BC交于点F,与DC的延长线交于点H.(1)求证:AM2=MF.MH(2)若BC2=BD.DM,求证:∠AMB=∠ADC.22.(8分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x ﹣3=0的解.根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.x …﹣3 ﹣52﹣2 ﹣32﹣1﹣12121322 …y …﹣8 ﹣21858m ﹣98﹣2 ﹣15835812 …(1)直接写出m的值,并画出函数图象;(2)根据表格和图象可知,方程的解有个,分别为;(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.23.(8分)综合与探究:如图1,抛物线y=322333与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(03.(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t 的式子表示);②当点A′落在抛物线上时,求直线l 的运动时间t 的值,判断此时四边形A′BEF 的形状,并说明理由; (3)在(2)的条件下,探究:在直线l 的运动过程中,坐标平面内是否存在点P ,使得以P ,A′,B ,E 为顶点的四边形为矩形?若存在,请直接写出点P 的坐标; 若不存在,请说明理由.24.(10分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.25.(10分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)∠EDB =_____︒(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N. ①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM 、CN 与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 26.(12分)问题提出(1)如图1,正方形ABCD 的对角线交于点O ,△CDE 是边长为6的等边三角形,则O 、E 之间的距离为 ; 问题探究(2)如图2,在边长为6的正方形ABCD 中,以CD 为直径作半圆O ,点P 为弧CD 上一动点,求A 、P 之间的最大距离;问题解决(3)窑洞是我省陕北农村的主要建筑,窑洞宾馆更是一道靓丽的风景线,是因为窑洞除了它的坚固性及特有的外在美之外,还具有冬暖夏凉的天然优点家住延安农村的一对即将参加中考的双胞胎小宝和小贝两兄弟,发现自家的窑洞(如图3所示)的门窗是由矩形ABCD及弓形AMD组成,AB=2m,BC=3.2m,弓高MN=1.2m(N为AD的中点,MN⊥AD),小宝说,门角B到门窗弓形弧AD的最大距离是B、M之间的距离.小贝说这不是最大的距离,你认为谁的说法正确?请通过计算求出门角B到门窗弓形弧AD的最大距离.27.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】直接利用有理化因式的定义分析得出答案.【详解】∵(232(232,)=12﹣2,=10,∴与232-互为有理化因式的是:232+,故选B.【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式. 单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.2.A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.3.B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a﹣b)2;图2中阴影部分的面积为:a2﹣2ab+b2;∴(a﹣b)2=a2﹣2ab+b2,故选B.【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.4.A 【解析】 【分析】根据已知得出直径是60cm 的圆形铁皮,被分成三个圆心角为120︒半径是30cm 的扇形,再根据扇形弧长等于圆锥底面圆的周长即可得出答案。
福建省漳州市2020版中考数学二模试卷(I)卷

福建省漳州市2020版中考数学二模试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·谢家集期中) 有理数a在数轴上对应的点如图所示,则a,-a,-1的大小关系是()A .B .C .D .2. (2分) (2019八下·乐清期末) 如图,在正方形中,E为边上一点,将沿折叠至处,与交于点F,若,则的大小为()A .B .C .D .3. (2分)下列运动形式中,不是平移变换的是()A . 推开一扇门B . 火车在笔直的轨道上运动C . 电梯的升降D . 抽屉的拉开4. (2分)解以下两个方程组:①,,较为简便方法的是()A . ①②均用代入法B . ①②均用加减法C . ①用代入法,②用加减法D . ①用加减法,②用代入法5. (2分) (2020九上·三门期末) 如图,AB是⊙O的直径,AC,BC分別与⊙O交于点D,E,则下列说法一定正确的是()A . 连接BD,可知BD是△ABC的中线B . 连接AE,可知AE是△ABC的高线C . 连接DE,可知D . 连接DE,可知S△CDE:S△ABC=DE:AB6. (2分)在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A . (a+b)2=a2+2ab+b2B . (a﹣b)2=a2﹣2ab+b2C . a2﹣b2=(a+b)(a﹣b)D . (a+2b)(a﹣b)=a2+ab﹣2b27. (2分)(2017·费县模拟) 如图是某工件的三视图,则此工件的表面积为()A . 15πcm2B . 51πcm2C . 66πcm2D . 24πcm28. (2分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A . x2+1=0B . x2-2x-2=0C . 9x2-6x+1=0D . x2-x+2=09. (2分)(2017·潍坊) 如图所示的几何体,其俯视图是()A .B .C .D .10. (2分) (2019八下·芜湖期末) 如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=4,F为DE的中点.若△CEF的周长为16,则OF的长为()A . 2B . 3C . 4 ﹣2D . 311. (2分) (2018七下·灵石期中) 小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s与t的函数图象大致是()A .B .C .D .12. (2分)(2020·呼和浩特) 如图,把某矩形纸片沿,折叠(点E、H在边上,点F,G在边上),使点B和点C落在边上同一点P处,A点的对称点为、D点的对称点为,若,为8,的面积为2,则矩形的长为()A .B .C .D .二、填空题 (共5题;共7分)13. (3分)用科学记数法表示下列各数:800800=________;-100000=________;78500=________.14. (1分) (2018·姜堰模拟) 某篮球兴趣小组7名学生参加投篮比赛,每人投10个,投中的个数分别为:8,5,7,5,8,6,8,则这组数据的中位数为 ________.15. (1分)(2020·中山模拟) 如图,点A、B、C在上,,,则的半径为________.16. (1分)(2020·上海模拟) 如图,在△ABC中,AB=AC=5,..,将△ABC绕点B逆时针旋转,得到,当点在线段CA延长线上时的面积为________.17. (1分) (2018九上·浙江期中) 已知关于x的二次函数y=ax2+(a2-1)x-a(a≠0)的图象与x轴的一个交点为(m,0),若2<m<4,则a的范围________.三、解答题 (共7题;共67分)18. (10分)计算:(1)(π﹣)0﹣ +|﹣2 |+(2)(﹣2 )× ﹣6 .19. (5分)(2017·沂源模拟) 尺规作图:如图,已知△ABC.求作△A1B1C1 ,使A1B1=AB,∠B1=∠B,B1C1=BC.(作图要求:写已知、求作,不写作法,不证明,保留作图痕迹)已知:求作:20. (10分)(2017·百色) 为庆祝中国共产党建党90周年,6月中旬我市某展览馆进行党史展览,把免费参观票分到学校.展览馆有2个验票口A、B(可进出),另外还有2个出口C、D(不许进).小张同学凭票进入展览大厅,参观结束后离开.(1)小张从进入到离开共有多少种可能的进出方式?(要求用列表或树状图)(2)小张不从同一个验票口进出的概率是多少?21. (12分)(2019·河南模拟) 如图(1)问题发现如图①,在Rt△ABC中,∠A=90°,AB=kAC,点D是AB上一点,DE∥BC.填空:BD,CE的数量关系为________;位置关系为________;(2)类比探究如图②,将△ADE绕着点A顺时针旋转,旋转角为α(0°<α≤90°),连接BD,CE,请问(1)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.(3)拓展延伸在(2)的条件下,将△ADE绕点A顺时针旋转,旋转角为α,直线BD,CE交于点F,若AC=1,AB=,当∠ACE=15°时,请直接写出BF的长.22. (10分)(2014·深圳) 某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?23. (10分)如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?24. (10分)如图,在一个长40 m、宽30 m的矩形小操场上,王刚从A点出发,沿着A→B→C的路线以3 m/s 的速度跑向C地.当他出发4 s后,张华有东西需要交给他,就从A地出发沿王刚走的路线追赶,当张华跑到距B地2 m的D处时,他和王刚在阳光下的影子恰好落在一条直线上.(1)此时两人相距多少米(DE的长)?(2)张华追赶王刚的速度是多少?参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共7分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共7题;共67分)18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、。
福建省漳州市2019-2020学年中考第二次质量检测数学试题含解析

福建省漳州市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算4+(﹣2)2×5=( ) A .﹣16 B .16 C .20 D .24 2.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )A .B .C .D .3.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .4.下列运算正确的是( ) A .a 2+a 3=a 5B .(a 3)2÷a 6=1 C .a 2•a 3=a 6D .(+)2=55.某种超薄气球表面的厚度约为0.00000025mm ,这个数用科学记数法表示为( ) A .72.510-⨯B .70.2510-⨯C .62.510-⨯D .52510-⨯6.若函数y=kx ﹣b 的图象如图所示,则关于x 的不等式k (x ﹣3)﹣b >0的解集为( )A .x <2B .x >2C .x <5D .x >57.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC 的度数为( )A .42°B .66°C .69°D .77°8.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2B .20162()2C .20152()2D .20161()210.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,弦2CD =.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )A .19B .29C .23D .1311.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,ACb =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长12.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( ) A .3cm ,4cm ,8cm B .8cm ,7cm ,15cm C .13cm ,12cm ,20cm D .5cm ,5cm ,11cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n﹣1B n ﹣1P n 的面积为_____.14.已知ab=﹣2,a ﹣b=3,则a 3b ﹣2a 2b 2+ab 3的值为_______.15.平面直角坐标系中一点P (m ﹣3,1﹣2m )在第三象限,则m 的取值范围是_____. 16.如图,一次函数y=x ﹣2的图象与反比例函数y=kx(k >0)的图象相交于A 、B 两点,与x 轴交与点C ,若tan ∠AOC=13,则k 的值为_____.17.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)18.方程233x x=-的解是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.(1)求证:DE是⊙O的切线;(2)若tanA=12,探究线段AB和BE之间的数量关系,并证明;(3)在(2)的条件下,若OF=1,求圆O的半径.20.(6分)如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD =7,sin∠DAC=,BC=9,求AC的长.21.(6分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.22.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?23.(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.24.(10分)在平面直角坐标系中,已知抛物线经过A (﹣4,0),B (0,﹣4),C (2,0)三点. (1)求抛物线解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△MOA 的面积为S .求S 关于m 的函数关系式,并求出当m 为何值时,S 有最大值,这个最大值是多少?(3)若点Q 是直线y=﹣x 上的动点,过Q 做y 轴的平行线交抛物线于点P ,判断有几个Q 能使以点P ,Q ,B ,O 为顶点的四边形是平行四边形的点,直接写出相应的点Q 的坐标.25.(10分)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ; (2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.26.(12分)如图,在Rt △ABC 中,∠C =90°,以BC 为直径作⊙O 交AB 于点D ,取AC 的中点E ,边结DE,OE、OD,求证:DE是⊙O的切线.27.(12分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.2.C【解析】【分析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.3.A。
2020年福建省中考数学模拟试卷(二)(含答案解析)

2020年福建省中考数学模拟试卷(二)一、选择题(本大题共10小题,共40.0分))0的值是()1.计算|−8|−(−12D. 9A. −7B. 7C. 7122.下列几何体中三视图完全相同的是()A. B. C. D.3.健康成年人的心脏全年流过的血液约为2540000升,请将2540000这个数据用科学记数法表示为()A. 2.54×105B. 2.54×106C. 25.4×105D. 2.54×1074.若一个正多边形的每个内角都为135°,则这个正多边形的边数是()A. 9B. 8C. 7D. 65.已知一组数据:20、30、40、50、50、50、60、70、80,其中平均数、中位数、众数的大小关系是()A. 平均数>中位数>众数B. 平均数<中位数<众数C. 中位数<众数<平均数D. 平均数=中位数=众数6.下列运算中,正确的是()A. a3⋅a4=a12B. (a3)4=a12C. a+a4=a5D. (a+b)(a−b)=a2+b27.如图,在△ABC中,AB=AC,∠BAC=100°.AB的垂直平分线DE分别交AB,BC于点D,E,则∠BAE的度数为().A. 80°B. 60°C. 50°D. 40°8.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A. {2x +4y =883x +2y =84B. {2x +4y =882x +3y =84 C. {4x +2y =883x +2y =84 D. {4x +2y =882x +3y =84 9. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,AC 是圆的直径,若∠CAB =25°,则∠P 的度数为( )A. 50°B. 65°C. 25°D. 75°10. 四位同学在研究函数y 1=ax 2+ax −2a(a 是非零常数)时,甲发现该函数图象总经过定点;乙发现若抛物线y 1=ax 2+ax −2a 总不经过点P(x 0−3,x 02−16),则符合条件的点P 有且只有2个;丙发现若直线y 2=kx +b 与函数y 1交于x 轴上同一点,则b =−k ;丁发现若直线y 3=m(m ≠0)与抛物线有两个交点(x 1,y 1)(x 2,y 2),则x 1+x 2+1=0.已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B. 乙C. 丙D. 丁二、填空题(本大题共6小题,共24.0分)11. 分解因式:4x −x 3=______.12. 如图,数轴上表示1,√2的点分别为A ,B ,且AC =AB ,则点C 所表示的数是_________.13. 某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有______人.每周课外阅读时间(小时)0~1 1~2 (不含1) 2~3 (不含2) 超过3 人 数 7 10 14 1914. 如图,在矩形ABCD 中,AD =4,CD =3,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,垂足为O ,则EF 的长为______ .15. 如图,菱形ABCD 的边长为2cm ,∠ADC =120°,弧BD 是以A 为圆心AB 长为半径的弧,弧CD 是以点B 为圆心BC 长为半径的弧.则图中阴影部分的面积为______ cm 2.16. 如图,在平面直角坐标系中,OA =3,OC =2,矩形OABC 的对角线OB ,AC 相交于点D ,且BE//AC ,AE//OB ,若双曲线y =k x 经过点E ,则k 的值为______.三、计算题(本大题共4小题,共34.0分)17. 解方程组{x +y =73x +y =15.18. 先化简,再求值:(x+3x 2−3x −x−1x 2−6x+9)÷x−9x ,其中x =3+√3.19.如图,正方形ABCD中,将∠BAD绕点A顺时针旋转,角的两边分别交CD边于点E,CB边的延长线点F上,连接EF交BD于点M.(1)求证:FB=DE;(2)给出线段EC与BM的数量关系,并证明.20.“校园手机”现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度,某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并将调查结果绘制成如下不完整的统计表和统计图:学生及家长对中学生带手机的态度统计表对象人数赞成无所谓反对态度学生803090家长4080A根据以上图表信息,解答下列问题:(1)统计表中的A=______;(2)统计图中表示家长“赞成”的圆心角的度数为______度;(3)从这次接受调查的学生中,随机抽查一个,恰好是持“反对”态度的学生的概率是多少?四、解答题(本大题共5小题,共52.0分)21.如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.22.已知:∠α.请你用直尺和圆规画一个∠BAC,使∠BAC=∠α.(要求:要保留作图痕迹,不写作法.)23.如图,将边长为6cm的正方形纸片ABCD,剪去图中阴影部分的四个全等的直角三角形,再沿图中的虚线折起,可以得到一个长方体盒子,(A、B、C、D正好重合于上底面一点,且AE=BF),若所得到的长方体盒子的表面积为11cm2,求线段AE的长.24.如图,四边形ABCD为⊙O的内接四边形,AC为⊙O的直径,DB=DC,延长BA、CD相交于E点.(1)求证:∠EAD=∠CAD;(2)若AC=10,sin∠BAC=3,求AD的长.525.已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)若m=1,a=−1,求该二次函数的解析式;(2)求证:am+b=0;(3)若该二次函数的最大值为−1,当x=1时,y≥3a,求a的取值范围.4【答案与解析】1.答案:B解析:【试题解析】解:原式=8−1=7.故选:B.先依据绝对值和零指数幂的性质计算,然后再依据有理数的减法法则计算即可.本题主要考查的是零指数幂的性质、绝对值的化简,熟练掌握相关法则是解题的关键.2.答案:A解析:本题考查的是简单几何体三视图有关知识,找到从物体正面、左面和上面看得到的图形全等的几何体即可.解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、圆锥的俯视图与主视图和左视图不同,错误;D、四棱锥的俯视图与主视图和左视图不同,错误;故选A.3.答案:B解析:解:2540000=2.54×106.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.解析:此题主要考查了多边形的内角与外角,关键是掌握正多边的内角与它相邻的外角和为180°.首先根据三角形的内角算出一个外角度数,再根据正多边形的外角和为360°,算出边数即可.解:∵一个正多边形的每个内角都为135°,∴此多边形的每一个外角是:180°−135°=45°,∴这个正多边形的边数是:360°÷45°=8,故选B.5.答案:D解析:解:从小到大数据排列为20、30、40、50、50、50、60、70、80,50出现了3次,为出现次数最多的数,故众数为50;共9个数据,第5个数为50,故中位数是50;平均数=(20+30+40+50+50+50+60+70+80)÷9=50.∴平均数、中位数、众数相等.故选D.众数是数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;平均数是把所有数据求和后除以数据个数所得到的数.根据众数、中位数、平均数的概念分别计算.本题考查平均数、众数与中位数的计算.6.答案:B解析:本题考查了合并同类项、同底数幂的乘法、幂的乘方与积的乘方以及平方差公式,分别根据同底数幂的乘法、幂的乘方与积的乘方法则、合并同类项及平方差公式对各选项进行逐一解答即可.解:A、a3⋅a4=a7,故本选项错误;B、(a3)4=a12,故本选项正确;C、a与a4不是同类项,不能合并,故本选项错误;D、(a+b)(a−b)=a2−b2,故本选项错误.7.答案:D解析:本题考查线段垂直平分线的性质,等腰三角形的性质,三角形的内角和定理,首先利用三角形的内角和定理和等腰三角形的性质求出∠B ,利用线段垂直平分线的性质易得AE =BE ,∠BAE =∠B 即可.解:∵AB =AC ,∠BAC =100∘,∴∠B =∠C =(180∘−100∘)÷2=40°,∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠BAE =∠B =40∘,故选D .8.答案:A解析:本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 根据2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,列出二元一次方程组即可.解:由题意可得,{2x +4y =883x +2y =84, 故选A .9.答案:A解析:解:∵PA 、PB 是⊙O 的切线,A 、B 为切点,∴PA =PB ,CA ⊥PA ,∴∠PAB =∠PBA ,∠CAP =90°,∴∠PAB =90°−∠CAB =90°−25°=65°,∴∠PBA =65°,∴∠P =180°−65°−65°=50°.。
2024年福建省漳州市中考二模数学试题

2024年福建省漳州市中考二模数学试题一、单选题1.下列四个实数中,为无理数的是( )A B .1C .13D .2-2.如图是一把做工精湛的紫砂壶,其俯视图是( )A .B .C .D .3.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会项目图标中,轴对称图形是( )A .B .C .D .4.若37333k ⋅=,则k 的值为( ) A .1B .2C .3D .45.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a >-B .b <C .b a >D .a b <-6.某中学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取200名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是( )A .最喜欢篮球的学生人数为30人B .最喜欢足球的学生人数最多C .“乒乓球”对应扇形的圆心角为72︒D .最喜欢排球的人数占被调查人数的10%7.如图,O e 是四边形ABCD 的外接圆,连接OB OD ,,若110BCD ∠=︒,则BOD ∠的大小为( )A .110︒B .120︒C .130︒D .140︒8.“凌波仙子生尘袜,水上轻盈步微月.”宋朝诗人黄庭坚以水中仙女借喻水仙花.如图,将水仙花图置于正方形网格中,点A ,B ,C 均在格点上.若点()2,3A -,()0,1B ,则点C 的坐标为( )A .()4,2B .()2,2C .()1,2D .()2,19.已知点()1,1,2,12P m m Q ⎛⎫- ⎪⎝⎭,则线段PQ 的长的最小值为( )A B C .45D 10.如图,在Rt ABC V 和Rt ABD V 中,90C ADB ∠=∠=︒,AC BD ,相交于点G ,E ,F 分别是AB BD ,的中点,连接AF EF DE ,,.若点F 为ABC V 的内心,4BF =,则下面结论错误的是( )A .CAF BAF ∠=∠B .sin AFD ∠C .2EF =D .DE =二、填空题11.计算:022||+-=.12x 的值可以为.(写出一个满足条件的即可) 13.随机掷两枚质地均匀的普通硬币一次,两枚硬币都正面朝上的概率是.14.如图,将ABCD Y 的两边AD 与CD 分别沿DE DF ,翻折,点A ,C 恰好与点B 重合,则EDF ∠的大小为.15.如图,四边形ABCD 的对角线AC BD ,相交于点,===O OA OB OC OD ,过点O 作OE BD ⊥交BC 于点E ,若5AB =,7BE =,则CE 的长为.16.在同一平面直角坐标系xOy 中,若无论m 为何值,直线l :23y mx m =-+()0m ≠与抛物线W :²23y ax ax a =--()0a ≠都有交点,则a 的取值范围是.三、解答题17.解方程组:722x y x y -=⎧⎨+=⎩①②18.如图,在正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE CF =.求证:EBC CDF ∠=∠.19.先化简,再求值:22111x x xx x ++⎛⎫-⋅ ⎪-⎝⎭,其中1x . 20.在物理学中,电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,随着5G 技术的发展,依靠电磁波作为信息载体的电子设备被广泛应用于民用及军事领域.电磁波的波长λ(单位:m )会随着电磁波的频率f (单位:MHz )的变化而变化.下表是某段电磁波在同种介质中,波长λ与频率f 的部分对应值:该段电磁波的波长λ与频率f 满足怎样的函数关系?并求出波长λ关于频率f 的函数表达式.21.如图, AB 是O e 的直径,点C 在O e 上,OP AC ∥交BC 于点D ,CP 为O e 的切线.(1)求证:P B ∠=∠;(2)若4DP =,2OD =,求cos A 的值.22.某校为了进一步倡导文明健康绿色环保生活方式,提高学生节能、绿色、环保、低碳意识,举办了“低碳生活,绿色出行”知识竞赛(满分100分).每班选10名代表参加比赛,随机抽取2个班,记为甲班,乙班,现收集这两个班参赛学生的成绩如下: 【收集数据】【分析数据】【应用数据】(1)根据以上信息,填空:=a _______,b =_______,c =_______;(2)参赛学生人数为600人,若规定竞赛成绩90分及以上为优秀,请你根据以上数据,估计参加这次知识竞赛成绩优秀的学生有多少人?(3)结合以上数据,选择适当的统计量分析这两个班级中哪个班级成绩较好? 23.学习《相似三角形》后,曾老师开展了一节《探索黄金分割之旅》的活动课. 【背景资料】黄金分割是一种数学上的比例关系.如图1,点C 把线段AB 分成AC 和BC 两部分,如果AC BC AB AC =,那么称点C 为线段AB 的黄金分割点,AC AB =叫做黄金分割比.黄金分割具有严格的比例性、艺术性、和谐性,在人体、建筑、美学等很多方面都有广泛应用,蕴藏着丰富的美学价值.几何图形中的黄金分割,造就了图形不一样的美.如图2和图3,ABC V 都是黄金三角形(腰与底的比或底与腰的比等于黄金比);如图4,矩形ABCD 是黄金矩形(宽与长的比等于黄金比).【知识探究】直角三角形中的黄金分割活动一:如图5,在ABC V 中,90ACB ∠=︒,CD 是AB 边上的高.以AD 为边,作平行四边形ADEF ,使得点E ,F 分别落在边BC AC ,上.(要求:尺规作图,不写作法,保留作图痕迹.)活动二:在活动一的条件下,若DE EF =,求证:点F 是线段AC 的黄金分割点. 24.如图,ABC V 和EDC △都是等腰直角三角形,点D 在边AB 上,90BAC DEC ∠=∠=︒.(1)求证:ACE BCD ∽V V ;(2)探索AC AD AE ,,的数量关系,并证明;(3)若AC 平分DCE ∠,且2AD =,求EDC △的面积.25.在平面直角坐标系xOy 中,点()2P c ,在抛物线1W :()20y ax bx c a =++>上.(1)求抛物线1W 的对称轴; (2)若4c =,①不管d 取任何实数,抛物线1W 上的三个点()1,d y ,()21,d y +,()33,d y +中至少有两个点在x 轴的上方,求a 的取值范围;②平移抛物线1W 得到抛物线2W ,2W 过点P ,且其顶点为O ,过点()12Q ,作直线MN (不与直线OP 重合)交抛物线2W 于M ,N 两点(点M 在点N 左侧),直线MO 与直线PN 交于点H .求证:点H 在一条定直线上.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学二模试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.在-1、2、、这四个数中,无理数是()A. -1B. 2C.D.2.下列运算结果为a3的是()A. a+a+aB. a5-a2C. a•a•aD. a6÷a23.一个几何体的三视图如图所示,那么这个几何体是()A. B. C. D.4.人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A. 77×10-5B. 0.77×10-7C. 7.7×10-6D. 7.7×10-75.下列事件中,是必然事件的是()A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B. 抛掷一枚普通正方体骰子所得的点数小于7C. 抛掷一枚普通硬币,正面朝上D. 从一副没有大小王的扑克牌中抽出一张牌,恰好是方块6.小王和小丽下棋,小王执圆子,小丽执方子,如图是在直角坐标系中棋子摆出的图案,若再摆放一圆一方两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标分别是()A. 圆子(2,3),方子(1,.3)B. 圆子(1,3),方子(2,3)C. 圆子(2,3),方子(4,0)D. 圆子(4,0),方子(2,3)7.关于x的方程x2-mx-1=0根的情况是()A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定8.一次函数y=-2x+1的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A. -B. -2C. -3D. -410.如图,点E为△ABC的内心,过点E作MN∥BC交AB于点M,交AC于点N,若AB=7,AC=5,BC=6,则MN的长为()A. 3.5B. 4C. 5D. 5.5二、填空题(本大题共6小题,共24.0分)11.计算:()-1+(-1)0=______.12.若一组数据1、3、x、5、8的众数为8,则这组数据的中位数为______.13.在五边形ABCDE中,若∠A+∠B+∠C+∠D=440°,则∠E=______.14.若是方程组的解,则a+4b=______.15.如图,PA切⊙O于点A,点B是线段PO的中点,若⊙O的半径为,则图中阴影部分的面积为______.16.在平面直角坐标系中,点A的坐标为(4,0),点B为y轴上的一动点,将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=的图象上,则点B的坐标为______.三、计算题(本大题共3小题,共18.0分)17.先化简,再求值:(a+)÷,其中a=-2.18.《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?19.如图,在▱ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到△AEC,连接DE.(1)求证:四边形ACED是矩形;(2)若AC=4,BC=3,求sin∠ABD的值.四、解答题(本大题共6小题,共48.0分)20.解不等式组,并将解集在数轴上表示出来.21.如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E.求证:BD=CE.22.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.1电脑款式A B C D利润(元/台)160200240320电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为______;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.23.在平面直角坐标系中,反比例函数y=(x>0,k>0图象上的两点(n,3n)、(n+1,2n).(1)求n的值;(2)如图,直线l为正比例函数y=x的图象,点A在反比例函数y=(x>0,k>0)的图象上,过点A作AB⊥l于点B,过点B作BC⊥x轴于点C,过点A作AD⊥BC 于点D,记△BOC的面积为S1,△ABD的面积为S2,求S1-S2的值.24.如图,在菱形ABCD中,点E是BC边上一动点(不与点C重合)对角线AC与BD相交于点O,连接AE,交BD于点G.(1)根据给出的△AEC,作出它的外接圆⊙F,并标出圆心F(不写作法和证明,保留作图痕迹);(2)在(1)的条件下,连接EF.①求证:∠AEF=∠DBC;②记t=GF2+AG•GE,当AB=6,BD=6时,求t的取值范围.25.如图,二次函数y=x2+bx-3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为2,l与x轴的交点为E,经过A、T、D三点作⊙M.(1)求二次函数的表达式;(2)在点T的运动过程中,①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;②若MT=AD,求点M的坐标;(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).答案和解析1.【答案】D【解析】解:是无理数,,2,-1是有理数,故选:D.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】C【解析】解:A、a+a+a=3a,故本选项错误;B、a5-a2不能计算,故本选项错误;C、a•a•a=a3,故本选项正确;D、a6÷a2=a6-2=a4,故本选项错误.故选:C.根据同底数幂相乘,底数不变指数相加;合并同类项法则;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.本题考查了同底数幂的乘法,合并同类项法则,同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.【答案】C【解析】解:由正视图和左视图可确定此几何体为柱体,由俯视图是三角形可得此几何体为三棱柱.故选:C.由正视图和左视图可确定此几何体为柱体,锥体还是球体,再由俯视图可得具体形状.本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.4.【答案】C【解析】解:0.0000077=7.7×10-6,故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【答案】B【解析】解:A、从装有10个黑球的不透明袋子中摸出一个球,恰好是红球是不可能事件;B、抛掷一枚普通正方体骰子所得的点数小于7是必然事件;C、抛掷一枚普通硬币,正面朝上是随机事件;D、从一副没有大小王的扑克牌中抽出一张牌,恰好是方块是随机事件;故选:B.根据事件发生的可能性大小判断相应事件的类型即可.本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.【答案】A【解析】解:如图所示:9枚棋子组成的图案既是轴对称图形又是中心对称图形,∴这两枚棋子的坐标分别是圆子(2,3),方子(1,3),故选:A.首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.此题主要考查了坐标确定位置以及轴对称图形与中心对称图形的性质,利用已知确定各点位置是解题关键.7.【答案】A【解析】解:△=(-m)2-4×1×(-1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.先计算△=(-m)2-4×1×(-1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac的意义即可判断方程根的情况.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.【答案】C【解析】解:∵一次函数y=-2x+1中k=-2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.先根据一次函数y=-2x+1中k=-2,b=1判断出函数图象经过的象限,进而可得出结论.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.9.【答案】B【解析】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(-,),∵△AOB为等边三角形,∴=tan60°×(-),∴b=-2;故选:B.根据已知求出B(-,),由△AOB为等边三角形,得到=tan60°×(-),即可求解;本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.10.【答案】B【解析】解:连接EB、EC,如图,∵点E为△ABC的内心,∴EB平分∠ABC,EC平分∠ACB,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴=,即=,则BM=7-MN①,同理可得CN=5-MN②,①+②得MN=12-2MN,∴MN=4.故选:B.连接EB、EC,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME,同理可得NC=NE,接着证明△AMN∽△ABC,所以=,则BM=7-MN①,同理可得CN=5-MN②,把两式相加得到MN的方程,然后解方程即可.本题考查了三角形的内切圆与内哦心:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.也考查了相似三角形的判定与性质.11.【答案】3【解析】解:原式=2+1=3.故答案为:3.直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.12.【答案】5【解析】解:∵数据1、3、x、5、8的众数为8,∴x=8,则数据重新排列为1、3、5、8、8,所以中位数为5,故答案为:5.根据众数和中位数的概念求解.本题考查了众数和中位数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】100°【解析】解:正五边形的内角和为(5-2)×180°=540°,∵∠A+∠B+∠C+∠D=440°,∴∠E=540°-440°=100°,故答案为:100°.首先利用多边形的外角和定理求得正五边形的内角和,然后减去已知四个角的和即可.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.14.【答案】6【解析】【分析】方程组两方程相加求出x+4y的值,将x与y的值代入即可求出值.此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.方程组两方程相加求出x+4y的值,将x与y的值代入即可求出值.【解答】解:,①+②得:x+4y=6,把代入方程得:a+4b=6,故答案为:615.【答案】【解析】解:如图,连接OA,AB.∵PA切⊙O于点A,∴∠OAP=90°,∵点B是线段PO的中点,∴AB是直角三角形OAP斜边上的中线,∴AB=OB,∵OB=OA,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵OA=,OP=2,∴AP==3,∴△OAP的面积=,扇形AOB的面积==,图中阴影部分的面积为-=.故答案为:.阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.本题考查了切线的性质定理以及30°的直角三角形的性质,三角形面积和扇形面积的计算等知识.关键是熟练运用扇形的面积计算公式,能够明确阴影部分的面积等于三角形OAP的面积减去扇形AOB的面积.16.【答案】(0,1)或(0,3)【解析】解:设B(0,n),∵点A的坐标为(4,0),将线段AB绕点B顺时针旋转90°得线段BC,若点C恰好落在反比例函数y=的图象上,易证△AOB≌△BDC,设B(0,n),∴CD=OB=n,BD=OA=4,∴点C的坐标是(-n,n-4),∵C恰好落在反比例函数y=的图象上,∴-n(n-4)=3,解得n=1,3,∴点B的坐标是(0,1)或(0,3),故答案为(0,1)或(0,3).设B(0,n),根据旋转的性质可以得到CD=OB=n,BD=OA=4,得到点C的坐标是(-n,n-4),即可得到-n(n-4)=3,从而求得点B的坐标.本题考查反比例函数的性质、坐标与图形的变化-旋转,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.【答案】解:(a+)÷====,当a=-2时,原式==.【解析】根据分式的加法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.【答案】解:设矩形的长为x步,则宽为(60-x)步,依题意得:x(60-x)=864,整理得:x2-60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60-x=60-36=24(步),∴36-24=12(步),则该矩形的长比宽多12步.【解析】设矩形的长为x步,则宽为(60-x)步,根据题意列出方程,求出方程的解即可得到结果.此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.19.【答案】(1)证明:∵将△ABC沿AC翻折得到△AEC,∴BC=CE,AC⊥CE,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD=CE,AD∥CE,∴四边形ACED是平行四边形,∵AC⊥CE,∴四边形ACED是矩形.(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,∵BE=2BC=2×3=6,DE=AC=4,∴在Rt△BDE中,BD===2,∵S△BDA=×DE•AD=AF•BD,∴AF==,∵Rt△ABC中,AB==5,∴Rt△ABF中,sin∠ABF=sin∠ABD===.方法二、如图2所示,过点O作OF⊥AB于点F,同理可得,OB=BD=,∵S△AOB=OF•AB=OA•BC,∴OF==,∵在Rt△BOF中,sin∠FBO===,∴sin∠ABD=.【解析】(1)根据▱ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出sin∠ABD.20.【答案】解:解不等式x+4≥2,得:x≥-2,解不等式2x>-3+3x,得:x<3,则不等式组的解集为-2≤x<3,将解集表示在数轴上如下:【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【答案】证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠CEB=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCD和△CBE中,∠BDC=∠CEB,∠DBC=∠ECB,BC=CB,∴△BCD≌△CBE(AAS),∴BD=CE.【解析】根据垂直的定义可得∠BDC=∠CEB=90°,根据等腰三角形的性质可得∠ABC=∠ACB,再有公共边BC,利用AAS可得△BCD≌△CBE,据此可得BD=CE.本题考查了全等三角形的判定及等腰三角形的性质;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.【答案】解:(1);(2)甲店每售出一台电脑的平均利润值为=204(元),乙店每售出一台电脑的平均利润值为=248(元),∵248>204,∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【解析】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为=,故答案为:;(2)见答案.【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.23.【答案】解:(1)∵反比例函数y=(x>0,k>0图象上的两点(n,3n)、(n+1,2n).∴n•3n=(n+1)•2n,解得n=2或n=0(舍去),∴n的值为2;(2)反比例函数解析式为y=,设B(m,m),∵OC=BC=m,∴△OBC为等腰直角三角形,∴∠OBC=45°,∵AB⊥OB,∴∠ABO=90°,∴∠ABC=45°,∴△ABD为等腰直角三角形,设BD=AD=t,则A(m+t,m-t),∵A(m+t,m-t)在反比例函数解析式为y=上,∴(m+t)(m-t)=12,∴m2-t2=12,∴S1-S2=m2-t2=×12=6.【解析】(1)利用反比例函数图象上点的坐标特征得到n•3n=(n+1)•2n,然后解方程可得n的值;(2)设B(m,m),利用△OBC为等腰直角三角形得到∠OBC=45°,再证明△ABD为等腰直角三角形,则可设BD=AD=t,所以A(m+t,m-t),把A(m+t,m-t)代入y=中得到m2-t2=12,然后利用整体代入的方法计算S1-S2.本题考查了反比例函数系数k的几何意义:在反比例函数y=(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.24.【答案】解:(1)如图1,⊙F为所求作的圆;(2)①证明:如图2,连接AF,EF,∵四边形ABCD为菱形,∴AC⊥BD,∴∠DBC=90°-∠ACB,∵FA=FE,∴∠AEF=∠FAE,∴∠AEF=(180°-∠AFE)=90°-∠AFE,又∠ACB=∠AFE,∴∠AEF=90°-∠ACB,又∵∠DBC=90°-∠ACB,∴∠AEF=∠DBC;②解:∵四边形ABCD为菱形,∴∠ABD=∠CBD,AO=CO,BO=DO=BD=×6=3,在Rt△ABO中,AO===3,又∵∠AGB=∠FGE,∠ABG=∠FEG,∴△ABG∽△FEG,∴=,∴AG•GE=GF•BG,∵∠GEF=∠FBE,∠GFE=∠EFB,∴△EFB∽△GFE,∴=,∴GF•BF=EF2,∴t=GF2+AG•GE=GF2+GF•BG=GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,如图3,当点F与点O重合时,AF最大,由题意可知:AF=BF,设AF=x,则OF=3-x,∵AO2+OF2=AF2,∴32+(3-x)2=x2,解得,x=2,∴当x=2时,t的最大值为12,∴9≤t≤12.【解析】(1)作EC的垂直平分线,其与BD的交点即为外心F;(2)连接AF,EF,利用菱形的性质及外心的定义可证明∠DBC=90°-∠ACB及∠AEF=90°-∠ACB,可推出结论;(3)先证△ABG∽△FEG,再证△EFB∽△GFE,由相似三角形的性质可推出t=GF2+AG•GE=GF2+GF•BG=GF(GF+BG)=GF•BF=EF2,在菱形ABCD中,AC⊥BD,EF=AF≥AO,∴EF2≥AO2=32=9,当点F与点O重合时,AF最大,求出此时t的最大值为12,即可写出t的取值范围.本题考查了尺规作图,外接圆的定义,菱形的性质,相似三角形的判定与性质等,灵活运用相似三角形的性质是解题的关键.25.【答案】解:(1)把点B(3,0)代入y=x2+bx-3,得32+3b-3=0,解得b=-2,则该二次函数的解析式为:y=x2-2x-3;(2)①∠DMT的度数是定值.理由如下:如图1,连接AD.∵抛物线y=x2-2x-3=(x-1)2-4.∴抛物线的对称轴是直线x=1.又∵点D的纵坐标为2,∴D(1,2).由y=x2-2x-3得到:y=(x-3)(x+1),∴A(-1,0),B(3,0).在Rt△AED中,tan∠DAE===.∴∠DAE=60°.∴∠DMT=2∠DAE=120°.∴在点T的运动过程中,∠DMT的度数是定值;②如图2,∵MT=AD.又MT=MD,∴MD=AD.∵△ADT的外接圆圆心M在AD的中垂线上,∴点M是线段AD的中点时,此时AD为⊙M的直径时,MD=AD.∵A(-1,0),D(1,2),∴点M的坐标是(0,).(3)如图3,作MH⊥x于点H,则AH=HT=AT.又HT=a,∴H(a-1,0),T(2a-1,0).∵OH≤x≤OT,又动点T在射线EB上运动,∴0≤a-1≤x≤2a-1.∴0≤a-1≤2a-1.∴a≥1,∴2a-1≥1.(i)当,即1时,当x=a-1时,y最大值=(a-1)2-2(a-1)-3=a2-4a;当x=1时,y最小值=-4.(ii)当,即<a≤2时,当x=2a-1时,y最大值=(2a-1)2-2(2a-1)-3=4a2-8a.当x=1时,y最小值=-4.(iii)当a-1>1,即a>2时,当x=2a-1时,y最大值=(2a-1)2-2(2a-1)-3=4a2-8a.当x=a-1时,y最小值=(a-1)2-2(a-1)-3=a2-4a.【解析】(1)把点B的坐标代入抛物线解析式求得系数b的值即可;(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;②如图2,由已知条件MT=AD,MT=MD,推知MD=AD,根据△ADT的外接圆圆心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD=AD.根据点A、D的坐标求得点M的坐标即可;(3)如图3,作MH⊥x于点H,则AH=HT=AT.易得H(a-1,0),T(2a-1,0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a-1≤x≤2a-1.需要分类讨论:(i)当,即1,根据抛物线的增减性求得y的极值.(ii)当,即<a≤2时,根据抛物线的增减性求得y的极值.(iii)当a-1>1,即a>2时,根据抛物线的增减性求得y的极值.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.。