中考数学 第六章《矩形、菱形、正方形》复习教案 新人教版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.体会在证明过程中,所运用的归纳、转化等数学思想方法
教学重点
菱形、矩形、正方形的概念及其性质
教学难点
数学思想方法的体会及其运用。
教学媒体
学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.性质:
(1)矩形:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.
(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.
(1)求证:四边形ACEF是平行四边形;
(2)当上B的大小满足什么条件时,
四边形ACEF是菱形?请回答并证明你的结论;
(3)四边形ACEF有可能为正方形吗?为什么?
8.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.
9.如图,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
2.周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()
A.98 B.96 C.280 D.284
3.如图,在菱形ABCD中,∠BAD=80,AB的垂直平分线EF交
对角线A C于点F、E为垂足,连结DF,则∠CDF等于()
A.80°B.70°C.65°D.60°
4.如图,小明想把平面镜MN挂在墙上,要使小明能从镜子里看
(3)正方形:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.
3.面积计算:
(1)矩形:S=长×宽;(2)菱形:(是对角线)
(3)正方形:S=边长2
4.平行wk.baidu.com边形与特殊平行四边形的关系
(二):【课前练习】
1.下列四个命题中,假命题是()
的形状是,根据的数学道理是____.
(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是_________,根据的数学道理是______________
二:【经典考题剖析】
1.下列四边形中,两条对角线一定不相等的是()
A.正方形B.矩形C.等腰梯形D.直角梯形
A.两条对角线互相平分且相等的四边形是正方形
B.菱形的一条对角线平分一组对角
C.顺次连结四边形各边中点所得的四边形是平行四边形
D.等腰梯形的两条对角线相等
2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠=60°,则∠AED的大小是()
A.60°. B.50°. C.75°. D.55°
3.正方形的对角线长为a,则它的对角线的交点到各边的距离为()
(3)正方形:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.
2.判定:
(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.
(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.
A、 a B、 a C、 D、2 a
4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱
形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=_____度
5.师傅做铝合金窗框,分下面三个步骤进行
(1)如图,先裁出两对符合规格的铝合金
窗料(如图①),使AB=CD,EF= GH;
(2)摆放成如图②的四边形,则这时窗框
见自己的脚?问平面镜至多离地面多高?(已知小明身高1.60米)
5.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、
DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由,
添加的条件__________,理由:
三:【课后训练】
1.正方形具有而矩形不一定具有的性质是()
A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直
法要解决此题,需建构数学模型,将实际问题转化成数学问题来解决,
即已知:如图,四边形ABCD中,AB∥CD,AD∥BC,边CD与边BC上的高相等,试判断四边形ABCD的形状.
6.检查你家(或教室)的门框(或方桌面)是不是矩形,如果仅有一根较长的绳子,你怎样检查?并解释其中的道理。
7.如图,在△ABC中,∠ACB=90○,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE.
即△ABD、△ACF、△BCE,请回答下列问题:
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
5.在一次数学兴趣小组活动中,组长将两条等宽的长纸条倾斜地重
叠着,并问同学,重叠部分是一个什么样的四边形?同学说:这是
一个平行四边形.乙同学说:这是一个菱形.请问:你同意谁的看
(1)写出y与x的函数关系,并确定自变量x范围.
(2)有人提出一个判断:“关于动点P,⊿PBC面积与
ΔPAD面积之和为常数”.请你说明此判断是否正确,并说明理由
10.如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P对同时出发,用t(秒)表示移动的时间(0<t<6),那么:
2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形
的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四
边形ABEF就是一个最大的正方形,他的判断方法是________-
3.如图,在菱形ABCD中,AC、BD相交于点O,且CA:BD=l: ,
若AB=2,求菱形ABCD的面积.
4.如图,以△ABC的三边长为边在BC的同一侧分别作三个等边三角形,
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论
章节
第六章
课题
矩形、菱形、正方形
课型
复习课
教法
讲练结合
教学目标(知识、能力、教育)
1.掌握菱形、矩形、正方形的概念,了解它们之间的关系.
2.掌握菱形、矩形、正方形、的有关性质和常用的判别方法.
3.进一步掌握综合法的证明方法,能够证明与矩形、菱形以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论.
教学重点
菱形、矩形、正方形的概念及其性质
教学难点
数学思想方法的体会及其运用。
教学媒体
学案
教学过程
一:【课前预习】
(一):【知识梳理】
1.性质:
(1)矩形:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.
(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.
(1)求证:四边形ACEF是平行四边形;
(2)当上B的大小满足什么条件时,
四边形ACEF是菱形?请回答并证明你的结论;
(3)四边形ACEF有可能为正方形吗?为什么?
8.如图,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.求证:BE=CF.
9.如图,矩形ABCD中,AB=8,BC=6,对角线AC上有一个动点P(不包括点A和点C).设AP=x,四边形PBCD的面积为y.
2.周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()
A.98 B.96 C.280 D.284
3.如图,在菱形ABCD中,∠BAD=80,AB的垂直平分线EF交
对角线A C于点F、E为垂足,连结DF,则∠CDF等于()
A.80°B.70°C.65°D.60°
4.如图,小明想把平面镜MN挂在墙上,要使小明能从镜子里看
(3)正方形:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.
3.面积计算:
(1)矩形:S=长×宽;(2)菱形:(是对角线)
(3)正方形:S=边长2
4.平行wk.baidu.com边形与特殊平行四边形的关系
(二):【课前练习】
1.下列四个命题中,假命题是()
的形状是,根据的数学道理是____.
(3)将直角尺靠紧窗框的一个角(如图③)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④)说明窗框合格,这时窗框是_________,根据的数学道理是______________
二:【经典考题剖析】
1.下列四边形中,两条对角线一定不相等的是()
A.正方形B.矩形C.等腰梯形D.直角梯形
A.两条对角线互相平分且相等的四边形是正方形
B.菱形的一条对角线平分一组对角
C.顺次连结四边形各边中点所得的四边形是平行四边形
D.等腰梯形的两条对角线相等
2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠=60°,则∠AED的大小是()
A.60°. B.50°. C.75°. D.55°
3.正方形的对角线长为a,则它的对角线的交点到各边的距离为()
(3)正方形:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.
2.判定:
(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.
(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.
A、 a B、 a C、 D、2 a
4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱
形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=_____度
5.师傅做铝合金窗框,分下面三个步骤进行
(1)如图,先裁出两对符合规格的铝合金
窗料(如图①),使AB=CD,EF= GH;
(2)摆放成如图②的四边形,则这时窗框
见自己的脚?问平面镜至多离地面多高?(已知小明身高1.60米)
5.如图,在四边形ABCD中,E、F、G、H分别是边AB、BC、CD、
DA的中点,请添加一个条件,使四边形EFGH为菱形,并说明理由,
添加的条件__________,理由:
三:【课后训练】
1.正方形具有而矩形不一定具有的性质是()
A.四个角都是直角;B.对角线相等;C.对角线互相平分;D.对角线互相垂直
法要解决此题,需建构数学模型,将实际问题转化成数学问题来解决,
即已知:如图,四边形ABCD中,AB∥CD,AD∥BC,边CD与边BC上的高相等,试判断四边形ABCD的形状.
6.检查你家(或教室)的门框(或方桌面)是不是矩形,如果仅有一根较长的绳子,你怎样检查?并解释其中的道理。
7.如图,在△ABC中,∠ACB=90○,BC的垂直平分线DE交BC于D,交AB于E,F在DE的延长线上,并且AF=CE.
即△ABD、△ACF、△BCE,请回答下列问题:
(1)四边形ADEF是什么四边形?
(2)当△ABC满足什么条件时,四边形ADEF是矩形?
5.在一次数学兴趣小组活动中,组长将两条等宽的长纸条倾斜地重
叠着,并问同学,重叠部分是一个什么样的四边形?同学说:这是
一个平行四边形.乙同学说:这是一个菱形.请问:你同意谁的看
(1)写出y与x的函数关系,并确定自变量x范围.
(2)有人提出一个判断:“关于动点P,⊿PBC面积与
ΔPAD面积之和为常数”.请你说明此判断是否正确,并说明理由
10.如图,在矩形AB CD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P对同时出发,用t(秒)表示移动的时间(0<t<6),那么:
2.如图,一张矩形纸片,要折叠出一个最大的正方形,小明把矩形
的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四
边形ABEF就是一个最大的正方形,他的判断方法是________-
3.如图,在菱形ABCD中,AC、BD相交于点O,且CA:BD=l: ,
若AB=2,求菱形ABCD的面积.
4.如图,以△ABC的三边长为边在BC的同一侧分别作三个等边三角形,
(1)当t为何值时,△QAP为等腰直角三角形?
(2)求四边形QAPC的面积,提出一个与计算结果有关的结论
章节
第六章
课题
矩形、菱形、正方形
课型
复习课
教法
讲练结合
教学目标(知识、能力、教育)
1.掌握菱形、矩形、正方形的概念,了解它们之间的关系.
2.掌握菱形、矩形、正方形、的有关性质和常用的判别方法.
3.进一步掌握综合法的证明方法,能够证明与矩形、菱形以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论.