三元相图分析
第二十讲三元相图总结精选全文完整版
可编辑修改精选全文完整版第二十讲三元相图总结第五节三元相图总结一、主要内容:三元系的两相平衡三元系的三相平衡三元系的四相平衡三元相图的相区接触法则三元合金相图应用举例二、要点:三元系的两相平衡特点,共轭曲面,共轭曲线,三元系三相平衡特点(共晶型,包晶型),等温截面的相区接触法则,三元系的四相平衡特点,三元共晶反应型,包晶反应型,三元包晶反应型,利用单变量线的走向判断四相平衡类型,相区接触法则三、方法说明:掌握三元合金相图的特点,使学生能够看懂并应用三元相图,重点是掌握相区接触法则,利用单变量线判断四相平衡的类型,利用杠杆定律,重心法则估算出各组成相的相对含量授课内容:一、三元系的两相平衡三元相图的两相区以一对共轭曲面为边界,所以无论是等温截面还是变温截面都截取一对曲线为边界。
在等温截面上平衡相的成分由两相区的连线确定,可用杠杆定律计算相的相对含量。
在变温截面上,只能判断两相的温度变化范围,不反应平衡相的成分。
二、三元系的三相平衡三元系的三相平衡区的立体模型是一个三棱柱体,三条棱边为三个相成分的单变量线。
三相区的等温截面图的三个顶点就是三个相的成分点。
各连接一个单相区,三角形的三个边各邻接一个两相区。
可以用重心法则计算三个相的含量。
如何判断三相平衡是二元共晶反应还是二元包晶反应?在垂直截面图中,曲边三角形的顶点在上方的是二元共晶反应;顶点在下方的是二元包晶反应。
三、三元系的四相平衡三元系的四相平衡,为恒温反应。
如果四相平衡中由一个相是液体三个相是固体,会有如下三种类型:1)三元共晶反应:2)包共晶反应:3)三元包晶反应:四个三相区与四相平衡平面的邻接关系有三种类型:1)在四相平面之上邻接三个三相区,是三元共晶反应。
2)在四相平面之上邻接两个三相区,是包共晶反应。
3)在四相平面之上邻接一个三相区,是三元包晶反应。
液相面的投影图应用的十分广泛。
以单变量线的走向判断四相反应类型:当三条液相单变量线相交于一点时,在交点所对应的温度必然发生四相平衡转变。
三元系统相图
三元系统相图
一、三元系统相图概述
三元凝聚系统相律: F=C-P+1=4-P
1、三元系统组成表示方法
——浓度(组成)三角形 应用: 1)已知点 的位置, 确定其组成; 2)已知组成,确定 点的位置;
双线法:
2、浓度三角形规则
(1)等含量规则 等含量规则:平行于浓度 三角形一边的直线上的各点, 其第三组分的含量不变,即: MN线上C%相等。
在在mn外mpn二三元系统相图基本类型一具有一个低共熔点的简单三元系统相图二生成一个一致熔融二元化合物的三元系统相图三具有一个一致熔融三元化合物的三元系统相图四生成一个不一致熔融二元化合物的三元系统相图五具有一个不一致熔融三元化合物的三元系统相图六生成一个固相分解的二元化合物的三元系统相图七具有多晶转变的三元系统相图八形成一个二元连续固溶体的三元系统相图九具有液相分层的三元系统相图一具有一个低共熔点的简单三元系统相图1立体相图2平面投影图投影图上温度表示法
T转 > Te3 、 T转 < Te2——多晶转变点P
T转 < Te2 、Te3——多晶转变点P1、P2
(八)形成一个二元连续固溶体的三元系统相图
(九)具有液相分层的三元系统相图
总结:
分析实际三元系统(复杂三元系统)相图的步骤
一、判断化合物的性质;
二、划分副三角形; 三、判断界线上温度变化——连(结)线规则; 四、判断界线性质——切线规则; 五、确定三元无变量点的性质——重心原理;
(三) 具有一个一致熔融三元化合物的三元系统相图
(四) 生成一个不一致熔融二元化合物的三元系统相图 1、相图组成
(1)不一致熔融化合物S不在自己的相区内; (2)化合物S性质的改变,导致CS连线、无变 量点P、界线的性质改变。 (a)CS连线 (b)无变量点:P点
第五章 三元相图
B
B%
C%
A
← A% C% →
C
b c
a
图 部分浓度三角形
§5.1.2 浓度三角形中具有特定意义的线
1)与某一边平行的直线
C
含对角组元浓度相等
A% d C% c
Bc C% 100% BC
A
B B% 图 平行于浓度三角形某一条边的直线
确定O点的成分 1)过O作A角对边的平行线 2)求平行线与A坐标的截距 得组元A的含量 3)同理求组元B、C的含量
三元系中如果任意两个组 元都可以无限互溶,那么它们 所组成的三元合金也可以形 成无限固溶体,这样的三元合 金相图,叫三元匀晶相图。
相图概况
[1] 特征点: ta, tb, tc- 三个纯组 元的熔点; [2]特征面:液相面、固相面; [3]相区:L, α, L+α。
图 三元匀晶相图
§5.3.1 相图分析
( A B )
Ax nE nA Ee
( A B C )
Ax ne nA Ee
§5.4.2 组元在固态下有限溶解,具有共晶转变的三 元相图
1.相图分析
从占有空间的角度看,固态有限互溶三元共晶相图比固态 完全不互溶三元共晶相图要多三个单相区(α、 β、 γ)和三个 固态两相区(α+β、 β+ γ、 α+ γ)。
图 过成分三角形顶点的变温截面图
图 平行于成分三角形一边的变温截面图
用垂直截面图可以分析合金的平衡结晶过程,了解合金在 平衡冷却过程中发生相变的临界温度,以及可以了解合金在 一定温度下所处的平衡状态。 但是,用垂直截面图不能了解合金在一定温度下的平衡相 成分和平衡相的重量。
图 变温截面图的应用
第六章 三元相图
来计算。
如右图中的合金o,其中的
A
C
相与 相的相对量分别为:
% mo 100%
mn
三元相图中的杠杆定律
% on 100%
mn
6-1 三元相图基础
3. 重心法则:当三元系合金
B
处于三相平衡时,研究它们之间
的成分和相对量的关系,则须用
重心法则。如右图中,O为合金
( )
的成分点,P、Q、S分别为三个
三条三相共晶转变线相交于 a
E点。成分为 E 的液相在该点温
l
度下发生四相平衡共晶转变: f
LE TE A B C
E点称为三元共晶点,其所对应 m
的温度成为四相共晶转变温度。 A
c
e3 k
j
e1
b
e2
p g Eh
C
三元共晶点 E与三个固相的 成分点m、n、p 组成的水平面称 为四相平衡共晶转变平面。
由于第三组元的加入,三个
二元共晶点在三元系中均演化成
为三相共晶转变线 e1E、e2E 和 e3E。当液相成分沿着这三条曲 线变化时,则分别发生三相共晶
转变: e1 E e2E e3E
L AB L BC L AC
a c
e3
l
k
f j
e1
b
e2
m
p
g
A
Eh C
n
B
固态互不溶解的三元共晶相图
6-2 固态互不溶解的三元共晶相图
6-1 三元相图基础
三、三元相图中的杠杆定律及重心法则
1. 直线法则:一定温度下,三元系材料处于两相平衡 时,材料的成分点和其两个平衡相的成分点必然位于同一条 直线上,该规律称为直线法则或三点共线原则。
三元相图的绘制详解
三元相图的绘制详解在材料科学、化学等领域,三元相图是一种非常重要的工具,它能够直观地展示三种组分在不同条件下的相态变化和平衡关系。
三元相图的绘制并非易事,需要对相关的理论知识有深入的理解,并掌握一定的实验技巧和数据处理方法。
下面,就让我们一起来详细了解三元相图的绘制过程。
要绘制三元相图,首先得明确什么是三元相图。
简单来说,三元相图是表示在恒压和恒温下,由三种组分构成的系统中,各相的状态与成分之间关系的图形。
它通常由等边三角形组成,三角形的三个顶点分别代表三种纯组分。
绘制三元相图的第一步是确定研究的体系和实验条件。
这包括选择要研究的三种物质,设定温度、压力等参数。
在确定了体系和实验条件后,接下来就是进行实验获取数据。
实验方法多种多样,常见的有热分析法、金相法、X 射线衍射法等。
以热分析法为例,我们将不同成分的样品加热或冷却,通过测量样品的温度随时间的变化,来确定相变点。
在实验过程中,需要精确控制温度变化的速率,以确保测量结果的准确性。
同时,要对多个不同成分的样品进行测试,以获得足够的数据来绘制相图。
当我们获得了大量的实验数据后,就可以开始着手绘制相图了。
绘制的过程中,需要将实验得到的相变温度和成分数据标注在等边三角形的坐标上。
在标注数据时,要注意坐标的转换和计算。
因为在三元相图中,成分通常用质量分数或摩尔分数来表示,而不是直接用实验中测量得到的数值。
比如说,如果我们知道了三种组分 A、B、C 的质量分数分别为 wA、wB、wC,那么在等边三角形坐标中,对应的坐标点可以通过以下公式计算:对于 A 组分,横坐标 xA = wA /(wA + wB + wC) ×边长对于 B 组分,纵坐标 yB = wB /(wA + wB + wC) ×边长通过这样的计算,我们就可以将实验数据准确地标注在相图上。
标注完数据点后,接下来就是连接这些点,形成相区的边界线。
这需要根据相律和热力学原理来判断。
三元相图分析
19
(2)变温截面 3个三相区
共晶相图特征:水平线 1个三相区
三相共晶区特征:曲边三角形。 应用:分析合金结晶过程,确定组织 变化. 局限性:不能分析成分变化。(成分 在单变量线上,不在垂直截面上)
5
6.2 三元系平衡转变的定量法则
6.2.1 直线定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合 金的成分点和两个平衡相的成分点必然位于成分三角形内的 同一条直线上。
(由相率可知,此时系统有一个自由度,表示一个相的成分 可以独立改变,另一相的成分随之改变。)
杠杆定律:用法与二元相同。
6
平衡相含量的计算:所计算相的成分点、合金成分点和二 者连线的延长线与对边的交点组成一个杠杆。合金成分点为 支点。计算方法同杠杆定律。
8
6.3 三元匀晶相图
1 相图分析 点:Ta, Tb, Tc-三个纯组元的熔点; 面:液相面、固相面; 区:L, α, L+α。
9
2 三元固溶体合金的结晶规律 液相成分沿液相面、固相成分沿固相面,呈蝶形规律变化。
2
6.1三元相图的成分表示法 6.1.1 浓度三角形(等边、等腰、直角三角形) (1)已知点确定成分; (2)已知成分确定点。
等边浓度三角形
3
等腰浓度三角形
直角浓度三角形
4
6.1.2 成分三角形中特殊的点和线 (1)平行于某条边的直线:其上合金所含由此边对应顶点 所代表的组元的含量一定。 (2)通过某一顶点的直线:其上合金所含由另两个顶点所 代表的两组元的比值恒定。
23
合金结晶过程分析; (4)投影图 相组成物相对量计算(杠杆定律、重心定律)
物理化学三元相图详解
E(
L F
B 0,
S C L消失
)
(5)熔体M冷却析晶过程 固相:B B B B B BS w B SC M
4.液相到达低共 熔点E时,固相 组成到w点,液 相同时析出BSC, 固相由w逐渐靠 向M,到达M时,
液相消耗完毕, 析晶结束
3.到达在界线上v点后, 同时析出B β和S, F=1,液相组成沿着 界线变化,固相组成 离开B
液相消耗完毕, 析晶结束
当固相组成点达 到熔体原始组成 点时,冷却析晶
结束
v u x
w
液相在E点析晶时,固相 组成由w向M移动,刚离 开w时,L%=Mw/Ew。 到达x时,L%=Mx/Ex,
可见液相不断减少。达 到M点是L%=0
液相:M
L B F 2
u(B
L
B
)
L F
B 2
v L B S F 1
2.在多晶转变等温 线u上Bа全部转变 为Bβ后继续降温
v u
w
1.熔体M在初晶区 B内先析出Bа,液 相组成沿背向线 变化,固相组成
在B
(6)M结晶结束时各相的百分含量
结晶结束是晶相为B、S、C 利用双线法,过M做三角形 SC、SB两边的平行线Mb,
Md,可得 B:S:C=Cb:db:dB
b
d
(7)熔体N冷却析晶过程
(5)熔体1冷却析晶过程
1、由1点所在副三 角形判出1的冷却 析晶结束的无变量
点为E4
2、由1点所在初晶 区得出1首次析晶 为B,得到固相组 成点,应用背向线
规则知道液相组成 变化路径
a b
液相:1 L B a L B A E5( B L,A B ) L B A E4( L A B S1)
第5章-2---三元相图1
5.13 四相平衡共晶系
5.13.4 综合投影图
冷却过程中有 四相反应
L-a+b+
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系 L
L-a
合金 o
L-a+b
L-a+b+
a+a + b+a+b++b+
L
合金 o’
L-b
L-a+b
a+b
b+a+b+a+
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.3、垂直截面
5.13 四相平衡共晶系
5.13.4 综合投影图
1、作法:将立体图中 各空间曲面、曲线投 影到成分三角形
2、用途: a、可得到各个面的投影 b、可得到各相区的投影 c、各种成分的平衡冷却
过程 d、组织分区图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
5.13.4 综合投影图
5.13 四相平衡共晶系
I a; II a + bII ; III a + bII + II ; IV a + (a + b ) + bII ; V a + (a + b ) + bII + II ; VI a + (a + b ) + (a + b + ) + bII + II
用杠杆定理
5.12 三相平衡三元
5.12.2 几种典型的三相平衡三元系
5.12 三相平衡三元系
三元相图
三元系统相图一、相律及组成表示法根据吉布斯相律 f = c-p+2p -相数c -独立组分数f -自由度数2 -温度和压力外界因素凝聚态系统不考虑压力的影响,相律为:f = c-p + 1(温度)(一)相律三元相图比二元相图多一个组元,根据相律,三元凝聚系统:f =c -p +1=4 -p,当p=1 时,f max=3 ( 即两个成分变量x1、x2和温度的变化)当f=0时,体系具有做多的平衡相P=4 (四相共存)在硅酸盐系统中经常采用氧化物作为系统的组分。
一元系统如:SiO2Al2O3-SiO2二元系统CaO-Al2O3-SiO2三元系统注意区分:2CaO.SiO2(C2S) ;CaO-SiO2;K2O.Al2O3..4SiO2 -SiO2f =c -p +1=4 -p•最大自由度f max=3是指两个独立的浓度变量和一个温度变量•如何用相图表示?•一般用正三棱柱•三个顶点表示三个纯组分•纵坐标表示温度•三角形中表示各种配比的混合物•由于A+B+C为一恒定值,所以三者中只有两个是独立的变量三坐标的立体图平面投影图相图图1 三元匀晶相图图2 三元共晶相图(二)三元系统组成的表示方法浓度三角形:在三元系统中用等边三角形来表示组成。
(组成的百分含量可以是质量分数,亦可是摩尔分数)。
顶点:单元系统或纯组分;边:二元系统;内部:三元系统。
图3 浓度三角形909090808080707070606060505050404040303030202020101010cEM DaABCa图4 双线法确定三元组成CABMbc a一个三元组成点愈靠近某一角顶,该角顶所代表的组分含量必定愈高。
例题1:在浓度三角形中:•定出P 、R 、S 三点的成分。
•若有P 、R 、S 三点合金的质量分别为2,4,7Kg ,将其混合构成新合金,求混合后该合金的成分。
•定出Wc=0.80,W A /W B 等于S 中的W A /W B 时的合金成分。
第六节 三元相图解读
3、三元相图的表示方法
以水平浓度三角形表示成分,以垂直浓度三 角形的纵轴表示温度,三元相图是一个三角 棱柱的空间图形。一般由实验方法测定。 但由于形状复杂,多采用等温截面、垂直截 面和投影图来表示和研究。
等温截面是平行于浓度三角形在三元空间图 形上所取的界面。表示一定温度下不同合金 所处相的状态,不同温度的等温截面可分析 三元合金中随温度发生的变化。
三元相图引言
在恒压下,二元系只有两个独立变量:温 度和成分,相图是平面图。三元系将有温 度和两个成分参数构成的三个独立变量, 因此三元相图是空间立体图,给表达和学 习认识上带来相当的困难。
6.1 概述
1、三元相图成分表示方法--浓度三角形
浓度三角形为等边三角形。顶点代 表纯组元A、B、C。三边表示相应的 二元合金;按顺时针或逆时针方向 标注合金成分;三角形内任意一点x 的三组元成分确定:过x点分别做三 边的平行线,分别截取wA=Cb, wB=Ac, wC=Ba 。 Cb+Ac+Ba=AB=BC=CA=1 相应地也可以根据合金成分确定合 金在相图中的位置。
6-3 三元共晶相图
一 、组元在固态互不相溶的共晶相图
(1)相图分析 面: 液相面:3个 两元共晶面:6个 三元共晶面:1个 区: 单相区:4个 两相区:3个 三相区:4个 四相区:1个
6-3 三元共晶相图
(1)相图分析 区: 单相区:4个 两相区:3个 三相区:4个 四相区:1个
2
( ) 结 晶 过 程
—— 适用于两相平衡的情况
WB
M" O " N "
A
B
N (b)
N’ MNO点在一条直线上
O
O’
M
(a)
三元合金相图
2、Fe-C-Cr三元系的水平截面
当投影图只有靠近成分三角形一个角的一部分时,可以用直 角坐标表示成分。
Fe-C-Cr系三元合金在工业上被广泛应用,如不锈钢0Cr13、 1Cr13、 2Cr13、高碳高铬模具钢Cr12等。
陶瓷材料有: 硅酸盐产品 CaO-Al2O3-SiO2 耐火材料 MgO-Al2O3-SiO2
可见,三元相图有重要的实用价值。但三元相图测定困难, 工作量太大,完整的三元相图资料不多。现有的也多是局部的 截面图或投影图。
1、三元合金的成分表示方法
成分(浓度)三角形
采用等边三角形表示三个组元 的成分。三角形的三个顶点分别 为3个组成元素(100%),三角 形内任一点(如o点),即可代 表任一三元合金的成分。
确定o点合金成分的具体方法: 通过o点分别作三角形3 个边的3 条平行线,则Ca = wA,即o点合 金中A组元的含量;同样, Ab = wB, Bc = wC。
证明:根据等边三角形的性质 Ca +Ab +Bc =AB = BC = CA=1 所以,wA+wB+wC =1=100%
例:在成分三角形ABC中确定三元合金40%A-30%B-30%C的 成分点。
对于三元合金两相平衡共存时,只有 测得其中一相的成分,才能确定另一相 得成分。
4、垂直(变温)截面图分析
为了方便通常取通过两条特殊直线的垂直截面。
垂直截面的用途
分析成分在该垂直截面上的合金在一定温度时的状态。 说明: ➢在垂直截面上不能应用杠杆定律计算相的相对量。 ➢垂直截面与水平截面图都是由实验测得的,并非由立体相图 截得。相反,三元立体相图则是由一系列的水平截面和垂直截 面作出的。
第五章 三元相图
5.1
三元相图的成分表示法
C
二元系的成分可用一条 直线上的点来表示;三元 系合金有两个独立的成分 参数,所以必须用一个平 面三角形来表示,这个三 角形叫做成分三角形或浓 度三角形。常用的成分三 角形是等边三角形,有时 也用直角三角形或等腰三 角形。 A
A%
C%
B%
B
浓度三角形
5.1.1 浓度三角形 1. 等边三角形 三角形的三个顶点A,B, C分别表示3个纯组元, 三角形的边AB,BC, CA分别表示3个二元系 的成分坐标,三角形内 的任一点都代表一定成 分的三元合金. A 一般按顺时针(或逆时针) 标注组元浓度。
L(三元) ΔT α(三元)
自由度:f=c-P+1=3-2+1=2 故三元匀晶转变区可有两个自由度: 温度和相成分。
5.3.1 相图分析
1 画图 (1) 先画一成份三角形 (应为正三角形) (2) 画温度轴 (3) 画二元匀晶相图(每 两个合金上存在一个二 元相图) ---三元系立体图可视为三 个二元系在空间的延伸 液相面----三个二元系的液相线 所围成的面. 固相面----三个二元系的固相线 所围成的面.
5.4
三元共晶相图
TA A2 A3 A1 E3 E C2 C3 C1 C TB
5.4.1 组元在固态互不溶,具有共晶转变的相图
一、相图分析
1. 画图 (1) 先画一成份三角形
(2) 画温度轴
(3) 画二元共晶相图
E1 TC E2
B2 B3
B1 B
三个二元共晶相图向空间 A 延伸 (4) 画出四相平衡共晶转变平 面A1B1C1 (5) 三个二元系共晶点向空间 延伸为三条共晶沟线,交 A1B1C1面于E点,称为共晶点
物理化学,三元相图
B 10 20 30 40 II
50
C% 60 70 80 90
50 40 ← A%
30
20 10
C
课堂练习
1. 确定合金I、II、 III、IV的成分
III 点: A%=20% B%=20% C%=60% 70 90 80
B 10 20 30
60 B% 50
40 30 20
40
50
C% 60
III
LA
B
e2 E2
L B
e
e3 E3
L C
C
E3
TC
E2
L C
E1 E3
LA+ B
E2
L B +C
LA+ C
EAe1源自Be e2e3
C
E1 E3
LA+ B
E2
L B +C
LA+ C
E TA TB E1
三 相 平 衡 共 晶 线
——
A3 A2 A1
B3 B2
E2 B1
A
E3
TC E C3 C2 C1
C
3. 直线法则与重心法则
1)直线法则 —— 适用于两相平衡的情况
三元合金R分解为 α与 β 两个新相, 这两个新相和原合金 R点的浓度必定 在同一条直线上。 B
投影到任何一边上,按二 元杠杆定律计算
C% B% g’ R
fg f ' g ' R W ef e' f ' R W
三元相图
一、三元相图几何特征
1. 成分表示法
—— 浓度三角形
等边三角型 B%
B
C%
+ 顺时针坐标
第8章 三元相图
fm、e1E、gn为成分变温 线对应L+α +β 相区;
hn、e2E、ip为成分变温
线对应L+β +γ 相区; kp、e3E、lm为成分变温 线对应L+γ +α 相区; 它们在四相面之上。 mm’、nn’、pp’为成分变 温线对应α +β +γ 相区,
在四相面之下。
三元共晶相图分析-单相区
单相区是由固相面和 溶解度曲面包围的空 间。 有L α β γ
Q—ω A=20%,ω B=40%,ω C=40%,并且P合金的质量分数占新合金R的
75%,求新合金R的成分
三元相图中的杠杆定律及重心定律
3、重心法则 1)三相平衡时,当温度恒定,自由度为0,三个平衡相的成分为确定值; 2)三个两相平衡—连接三角形,P、Q、S分别代表三个平衡相α 、β 、γ 的 成分点;
等温截面上的三相平衡区为直边三角形
2、变温截面 1)平行于AB边的cd垂直平面 结晶过程分析 室温组织:初晶A+二元共晶(A+C) +三元共晶(A+B+C)
2)通过成分三角形顶点A的Ab变温截面
3、投影图 结晶过程分析 组织组成物的含量
另一种算法: 相组成物的含量
=
8.3 固态有限互溶的三元共晶相图
Ⅵ
α +β +γ
8.4 三元相图小结
一、单相状态 相律:f=4-1=3 二、两相平衡 三、三相平衡 如何判断三相平衡是二元共晶反应还是二元包晶反应?
四、四相平衡 1)由邻接关系判断四相平衡转变类型; 2)由变温截面判断四相平衡转变类型;
3)由单变量线的位置和温度走向判断四相平衡转变类型
本章小结
以这是液相线和固相线的走向不代表它们的成分变化,尽管形状类似二元相
三元系统相图分析及析晶规律
点、液相组成点和固相(或混合物)的组成点始终在一条直 线上。 (3)无论熔体M在三角形的何种位置,析晶产物都是A、 B、C 三种晶相,且都在三元低共熔点上析晶结束,因此三 元低共熔点一定是析晶的结束点。
2015物理与电子工程学院青年教师课堂教学比赛
4、杠杆规则的应用
(1)当液相组成点刚刚到达D点:
2015物理与电子工程学院青年教师课堂教学比赛
3、重心规则
用途:判断无变量点的性质 内容:无变量点处于其相应副三角形的重心位,则为共熔点; 无变量点处于其相应副三角形的交叉位,则为单转熔点; 无变量点处于其相应副三角形的共轭位,则为双转熔点; ## 副三角形:指与该无变量点液相平衡的三个晶相组成点连 接成的三角形。
2015物理与电子工程学院青年教师课堂教学比赛
2015物理与电子工程学院青年教师课堂教学比赛
2. 平面投影图
C
.
e2
t1
e3
t2
A
t2 E t2
.
B
.
t1
e1
2015物理与电子工程学院青年教师课堂教学比赛
说明:
(1)三棱边:A、B、C 的三个一元系统;
(2)三侧面:构成三个简单二元系统状态图,并具有相 应的二元 低共熔点;
(3)液相面: 液相面代表了一种二相平衡状态 f 个液相面以上的空间为 熔体的单相区 f
温度下降的方向
(3)对一些特殊的点 如各组分及化合物的、无变
量点等,将其温度直接标入图中或列表注明。
2015物理与电子工程学院青年教师课堂教学比赛
M
.
4、结晶路程
C
F
Mt1
. .
e2
t2
.
.
材料学基础第5章三元相图
材料科学基础
第五章
5.6三元相图小结
材料科学基础
第五章
一、单相状态 f=3-1+1=3,而一个温度变量和两个成分变量之间没有任何
相互制约的关系,因此,不论是等温截面还是变温截面,单相区可能具 有多种多样的形状。 二、两相平衡 立体图:共轭曲面。 成分变化:蝶形规则。 等温图:共轭曲线(可用杠杆定律) 变温截面:判定转变温度范围和相转变过程,不能用杠杆定律。 三、三相平衡 立体图:三棱柱,棱边是三个平衡相单变量线。
二、投影图
材料科学基础
第五章
投影图的作用:合金结晶过程分析、相组成物相对量计算、组织组成 物相对量计算。
图8.17 三元共晶相图的投影区
表8.2 各典型区域合金的凝固组织过程及室温组织
材料科学基础
第五章
区
凝固过程
室温组织
Ⅰ
L→α
α
Ⅱ
L→α ,α→βⅡ
α+βⅡ
Ⅲ
L→α ,α→βⅡ,α β
α+βⅡ+γⅡ
(1)当给定合金在一定温度下处于两相平衡状态时,若其中一相的成分 给定,则根据直线法则,另一相的成分点必位于两已知成分点连线的 延长线上。 (2)如果两个平衡相的成分点已知,则合金的成分点必然位于两平衡相 成分点的连线上,根据两平衡相的成分,可用杠杆定律求出合金的成 分。
5.2.2重心定律
x,y,z分别为α,β,γ成分点,则
材料科学基础
第五章
投影图有两种。一种是把空间相图中所有相区间的交线部投影到浓度 三角形中,借助对立体图空间构造的了解,可以用投影图来分析合 金的冷却和加热过程。另一种是把一系列水平截面中的相界线投影 到浓度三角形中。每一条线上注明相应的温度,这样的投影图叫等 温线投影图。等温线可反映空间相图中各种相界面的变化趋势,等 温线越密,表示这个相面越陡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两条推论 (1)给定合金在一定温度下处于两相平衡时,若其中一个
相的成分给定,另一个相的成分点必然位于已知成分点连线 的延长线上。
(2)若两个平衡相的成分点已知,合金的成分点必然位于 两个已知成分点的连线上。
8
6.2.2 重心定律 在一定温度下,三元合金三相平衡时,合金的成分点为三
个平衡相的成分点组成的三角形的质量重心。(由相率可知, 此时系统有一个自由度,温度一定时,三个平衡相的成分是 确定的。)
材料科学基础
太原科技大学 材料科学与工程学院 材料科学基础课程教学团队
第6章 三元相图
❖ 6.1 三元相图的成分表示法 ❖ 6.2 三元系平衡转变的定量法则 ❖ 6.3 三元匀晶相图 ❖ 6.4 三元共晶相图 ❖ 6.5 三元合金相图的四相平衡转变 ❖ 6.6 具有化合物的三元相图及三元相图的简化分割 ❖ 6.7 三元相图应用举例
29
6.6 具有化合物的三元相图及三元相图的简化分割
30
❖ 6.7 三元合金相图应用举例 6.7.1
LC
6.7.2
❖ 三元相图小结
6
6.2 三元系平衡转变的定量法则
6.2.1 直线定律 (1)共线法则:在一定温度下,三元合金两相平衡时,合 金的成分点和两个平衡相的成分点必然位于成分三角形内的 同一条直线上。
(由相率可知,此时系统有一个自由度,表示一个相的成分 可以独立改变,另一相的成分随之改变。)
杠杆定律:用法与二元相同。
7
24
合金结晶过程分析; (4)投影图 相组成物相对量计算(杠杆定律、重心定律)
组织组成物相对量计算(杠杆定律、重心定律)
பைடு நூலகம்25
❖ 6.4.3三相平衡包晶转变的相图特征 ❖ 垂直截面图上,具有包晶转变的三相区形状常为一个顶点
在下(生成相),两个顶点在上(反应相)的曲边三角形。 ❖ 在水平截面图上具有包晶转变的三相区也为三角形。
6.4 三元共晶相图
6.4.1 组元在固态互不溶,具有共晶转变的相图 1. 相图分析 点:熔点;二元共晶点;三元共晶点。
14
面: 区:
液相面 固相面 两相共晶面 三相共晶面 两相区:3个 单相区:4个 三相区:4个 四相区:1个
15
❖ 投影图
6.4.2 组元在固态有限溶解,具有共晶转变的三元相图 (1)相图分析
液相面 固相面(组成) 面: 二相共晶面 三相共晶面 溶解度曲面:6个 两相区:6个 区: 单相区:4个 三相区:4个 四相区:1个
20
(2)变温截面 3个三相区
共晶相图特征:水平线 1个三相区
三相共晶区特征:曲边三角形。 应用:分析合金结晶过程,确定组织 变化. 局限性:不能分析成分变化。(成分 在单变量线上,不在垂直截面上)
三元相图的主要特点 (1)是立体图形,主要由曲面构成; (2)可发生四相平衡转变; (3)一、二、三相区为一空间。
3
6.1三元相图的成分表示法 6.1.1 浓度三角形(等边、等腰、直角三角形) (1)已知点确定成分; (2)已知成分确定点。
等边浓度三角形
4
等腰浓度三角形
直角浓度三角形
5
6.1.2 成分三角形中特殊的点和线 (1)平行于某条边的直线:其上合金所含由此边对应顶点 所代表的组元的含量一定。 (2)通过某一顶点的直线:其上合金所含由另两个顶点所 代表的两组元的比值恒定。
平衡相含量的计算:所计算相的成分点、合金成分点和二 者连线的延长线与对边的交点组成一个杠杆。合金成分点为 支点。计算方法同杠杆定律。
9
6.3 三元匀晶相图
1 相图分析 点:Ta, Tb, Tc-三个纯组元的熔点; 面:液相面、固相面; 区:L, α, L+α。
10
2 三元固溶体合金的结晶规律 液相成分沿液相面、固相成分沿固相面,呈蝶形规律变化。
6.5 三元合金相图的四相平衡转变 6.5.1立体图中的四相平衡
共晶转变 类型: 包共晶转变
包晶转变
相区邻接(四相平衡面) 4个单相区点接触; 与6个两相区线接触; 与4个三相区面接触。
27
6.5.2 投影图中的四相平衡平面 根据12根单变量判断; 根据液相单变量判断.
28
6.5.3 变温截面中的四相平衡 四相平衡区:上下都有三相区邻接。 条件:邻接三相区达4时; 判断转变类型 类型:共晶、包共晶、包晶。
21
(2)等温截面图 应用:可确定平衡相及其成分;可运用杠杆定律和重心定律。
是直边三角形 三相平衡区 两相区与之线接 (水平截面与棱柱面交线)
单相区与之点接 (水平截面与棱边的交点,表 示三个平衡相成分。)
相率相区的相数差1; 相区接触法则: 单相区/两相区曲线相接;
两相区/三相区直线相接。
23
(立体图不实用) 共轭线:平衡相成分点的连线。
11
3 等温截面(水平截面) (1)做法:某一温度下的水平面与相图中各面的交线。 (2)截面图分析 3个相区:L, α, L+α; 2条相线:L1L2, S1S2(共轭曲线); 若干连接线:可作为计算相对量的杠杆(偏向低熔
点组元;可用合金成分点与顶点的连线近似代替;过给定合 金成分点,只能有唯一的共轭连线。)
12
4 变温截面(垂直截面)
(1)做法:某一垂直平面与相图中各面的交线。 (2)二种常用变温截面
经平行于某条边的直线做垂直面获得; 经通过某一顶点的直线做垂直面获得。 (3)结晶过程分析 成分轴的两端不一定是纯组元; *注意: 液、固相线不一定相交;
不能运用杠杆定律(液、固相线不是成分变化线)。
13