某水闸闸室结构稳定计算

合集下载

(完整版)闸室稳定计算2

(完整版)闸室稳定计算2

一、根据给定相关资二、1《水闸设计规范》2《水工建筑物抗震3《水闸》水利水电三、四、1水闸等级为4级,2345678系数:基9该地基土质属岩基五、1结构自重G =γV 式中:G ——结构自重γ——砼容重,25kN/m 3;V ——结构体积汤南干渠渠首进水闸闸室稳定计算2水重式中:W ——水重标准γ'——水的容10kN/m 3B 0——闸室总净3mh ——水深(m),l ——闸门中线3水压力式中:P ——水压力标B ——水压力计6m;其它符号意义同4浮托力式中:U 1——浮托力标V ——底板体积h ——上游或下其它符号意义同5渗透压力式中:U 2——渗透压力'W Bhlγ=21'2P Bh γ=10'()U V hB γ=+21'2U hLBγ=∆Δh ——闸室上下L ——闸室长7m;其它符号意义同上6地震惯性力式中:F i ——作用在质点i 的水平a h ——水平向设计地震加速0.25G Ei ——集中在质点i 的重力αi ——质点i 的动态分布系g ——重力加速度。

9.81m/s 27地震动水压力式中:F——单位宽度动水压力标ρw ——水体质量密度标准1kN/m 3h——计算水深, 1.8m;其它符号意义同上六、1 基地压力计算ξ——地震作用的效应折减系数,取值为F=0.65a h ξρw h 2= 1.03kN/mξWMAG ∑∑±=max min σi h Ei F =a G ig αξA=BL式中:——闸室基底∑G——作用在闸∑M——作用在闸矩之和(kNA——底板面积W——闸室基底B——闸底板垂L——闸底板顺2闸室抗滑稳定式中:K c——沿闸室底f——闸室基底∑H——作用在闸∑G——作用在闸2闸室抗浮稳定式中:K f——闸室抗浮∑V——作用在闸∑U——作用在闸maxminσ∑∑=HGfKC∑∑=UVKfWMAG∑∑±=maxminσ216W BL=。

水闸稳定计算知识分享

水闸稳定计算知识分享

允许值
2 1.1 1.25
备注 偏外河侧
<[η] >[Kf] >[Kc]
外河为上游,内河为下游)
0.6
排架长1
0.6
0.3
排架宽1
0.3
2
排架高1
3.9
2
排架长2
1.3
0.3
排架宽2
0.3
0.39
排架高2
0.4
3.69
排架长3
0.3
2
排架宽3
4
0.3
排架高3
0.4
5.4
排架数
2
4
6
10.7
力臂(m) 6.85 6.85 6.10 12.95 6.10 12.95 0.85 3.95 12.95 6.40 7.75 7.75 6.80 10.36 11.20 9.20 7.95 9.20 7.75 7.95 3.95 3.95 0.53 ΣM=
满足要求 满足要求 满足要求源自上游交通桥高0.4
电机层楼板长1
边墩数
2
上游交通桥墩面积
0.1
电机层楼板长2
边墩高1
5
下游工作桥长
1.5
电机层楼板宽
边墩高2
4
下游工作桥宽
6
闸室房屋楼板厚
边敦厚
0.5
下游工作桥高
0.2
闸室房屋楼板长
边墩顺水流长度1
12.2
后墙高
5
闸室房屋楼板宽
边墩顺水流长度2
1.5
后墙厚
0.4
房屋长
中墩高1
5
后墙宽
体积(m3) 57.60 14.60 143.10 23.00

水闸稳定计算范文

水闸稳定计算范文

水闸稳定计算范文
水闸稳定计算是指通过对水闸各个部分的力学特性和流体力学特性进
行综合分析和计算,来评估水闸的可靠性、稳定性和安全性。

水闸作为一
种常用的防洪工程设施,在设计和运行中需要考虑各种力学和水力因素,
以确保水闸能够正常运行并达到预期的防洪效果。

首先,水闸结构的稳定性是水闸稳定计算的基础。

水闸结构主要包括
闸门、闸墩、闸底等部分。

闸门是控制水位和水流的重要部分,其稳定性
直接影响到水闸的正常运行和持久性能。

闸墩是支撑闸门的主要承载构件,需要考虑其在水压力和水力冲击下的稳定性。

闸底是水闸的基础部分,需
要考虑地基承载力和稳定性。

其次,水闸的水力特性也是水闸稳定计算的重要内容。

水闸在运行过
程中所受到的水压力、水流速度和水流方向等因素会对水闸产生一定的力
学影响。

通过对水闸的水力特性进行分析和计算,可以确定水闸的耐冲击
性能、水封性能和水流控制能力。

此外,材料力学特性的考虑也是水闸稳定计算的重要内容之一、水闸
所使用的材料需要具备足够的强度和刚度,以保证水闸在运行和防洪过程
中的稳定性和安全性。

通过对材料的强度和刚度进行计算和分析,可以确
定水闸的材料选择和结构设计。

总的来说,水闸稳定计算是一项繁琐而重要的工作,需要综合考虑力学、流体力学和材料力学等多个方面的因素。

只有通过全面而准确的计算
和分析,才能够确保水闸的可靠性和安全性。

这也是水闸设计和运行中不
可或缺的重要环节。

水闸稳定计算

水闸稳定计算
3.728153752 >1.2
5mpa
Co
H
0 2222.47
Co
H
0 3488.725
98.86666667
5.852273911 >1.2
满足稳定要求
项目
1 2 3 4 5 6 7
三,水闸稳定和闸底应力计算(校核工况)
垂直力G
水平力H
力臂LX
作用力名称
(KN)
(KN)
(m)
底板
11875
0
闸墩
11016
-0.6
上部荷载
1736
-1.37
上游水重
7350
-2.25
下游水重
2016
3.75
浮托力
-10716
渗透压力
-2599.2
-2
弯矩M (KN.m)
0 -6609.6 -2378.32 -16537.5
7560 0
5198.4
8
闸门重
9
上游水压力
10
下游水压力
11
上游泥沙压力
12
浪压力
13
总计
200.79
1.5
0.33 9.26
300 0 0 78.2562 154.179 -12234.5848
浪压力
16.2
5.37
地震力
1365.485
总计
22541.6
3488.725
弯矩M (KN.m)
0 -6609.6 -2378.32 -7323.75
0 0 4240.8 300 3450.141 -99 78.2562 86.994
-8254.4788
B 12

水闸闸室结构计算

水闸闸室结构计算

水闸闸室结构计算在闸室布置和稳定分析之后,还需对闸室各部分构件进行计算,验算其强度,以便最后确定各构件的形式、尺寸及构造。

闸室是一个空间结构,受力比较复杂,可用三维弹性力学有限元法计算。

为了简化计算,一般分成胸墙、闸墩、底板、工作桥及交通桥等单独构件分别计算,同时又考虑相互之间的连接作用。

以下仅简要介绍闸墩、底板和胸墙的结构计算。

1闸墩闸墩结构计算的内容主要包括闸墩应力计算及平面闸门槽(或弧形闸门支座)的应力计算。

1. 平面闸门闸墩应力计算平面闸门闸墩的受力条件主要是偏心受压,可假定闸墩为固定于底板上的悬臂梁,其应力状况可采用材料力学的方法进行分析。

闸墩应力主要有纵向应力(顺水流方向)和横向应力(垂直水流方向)。

闸墩每个高程的应力都不同,最危险的断面是闸墩与底板的结合面,因此,应以该结合面作为计算面,并把闸墩视为固支于底板的悬臂梁,近似地用偏心受压公式计算应力。

当闸门关闭时,纵向计算的最不利条件是闸墩承受最大的上下游水位差时所产生的水压力(设计水位或校核水位)、闸墩自重以及上部结构等荷载(图7-48)。

在此情况下,可用式(7-40)验算闸墩底部上、下游处的铅直正应力σ,即 2x G M L A I σσ=∑∑上下 (7-40) 式中:G ∑为铅直方向作用力的总和;x M ∑为全部荷载对墩底截面中心轴x x -的力矩总和;A 为墩底截面面积;x I 为墩底截面对x x -轴的惯性矩,可近似取用()30.9812x I d L =,d 为闸墩厚度;L 为墩底长度。

图 7-48 闸墩结构计算示意图(第5版 图7-45 图名相同)1p 、2p —上、下游水平水压力;1G —闸墩自重;3p 、4p —闸墩两侧水平水压力;2G —工作桥重及闸门重;z F —交通桥上车辆刹车制动力;3G —交通桥重在水闸检修期间,当一孔检修(即上、下游检修闸门关闭而相邻闸孔过水)时,闸墩承受侧向水压力、闸墩自重及其上部结构重等荷载(图7-48),这是横向计算最不利的情况。

水闸稳定计算案例

水闸稳定计算案例

水闸稳定计算案例一、工程概况。

咱们来看看这个水闸啊,它在一条挺重要的小河上。

这个水闸的任务可不小呢,要控制水位、调节流量,就像一个严格的交通警察在指挥着水流的来来去去。

水闸是混凝土结构的,闸室的长度有个20米,宽度呢,10米。

上下游的水位差有时候大,有时候小,最大的时候能到5米呢,就像水在上下游之间搭起了一个5米高的小瀑布(当然是被闸挡住流不过去的时候)。

二、荷载计算。

# (一)自重。

首先是水闸自身的重量,这就像它自己的体重一样,是个稳定的力量。

闸室的混凝土墙啊、底板啊,都是实打实的重量。

我们根据混凝土的体积和密度(混凝土密度大概是2500千克每立方米),算出闸室结构的自重是500吨。

这就好比一个超级大胖子稳稳地坐在那里,不容易被推倒。

# (二)水压力。

1. 上游水压力。

上游的水可是个有劲儿的家伙,它对闸室产生的压力可不能小看。

根据水力学的公式,水压力等于水的密度乘以重力加速度乘以水深。

这里上游水深4米,水的密度是1000千克每立方米,重力加速度按9.8米每二次方秒算。

那上游水压力在闸室垂直面上的分布就像一个三角形,底部压力最大,顶部压力为0。

算出来总的上游水压力就有800千牛呢,这感觉就像有一群大力水手在推着闸室的上游面。

2. 下游水压力。

下游也有水啊,不过水位低一点,水深2米。

同样按照上面的公式算下来,下游水压力在闸室垂直面上的分布也是个三角形,总的下游水压力是200千牛。

就好像下游也有几个小不点在推着,但是力量比上游的小多了。

# (三)扬压力。

扬压力这个东西有点狡猾,它是因为水在闸基下渗流产生的向上的压力。

咱们想象一下,水在闸基下面偷偷摸摸地往上顶,想要把闸室往上抬起来呢。

通过一些专业的计算方法(比如说渗透系数、地下水位等参数的分析),算出来扬压力的合力是300千牛。

这就像有个看不见的小恶魔在下面使坏,想把闸室给顶歪了。

三、稳定计算。

# (一)抗滑稳定计算。

1. 计算公式。

抗滑稳定就是看闸室能不能抵抗住水平方向的滑动。

水闸过流能力及稳定计算

水闸过流能力及稳定计算

水闸过流能力及结构计算计算说明书***市水利电力勘测设计院2011 年08_月29_日1、水闸过流能力复核计算水闸的过流能力计算对 于平底闸,当为 堰流时,根据 《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:式中:B 0—— 闸孔总净宽,(m );Q ――过闸流量,(m 3/s );H 0――计入行进流速水头的堰上水深,(m ); h s ――由堰顶算起的下游水深,(m ); g ――重力加速度,采用 9.81,(m/s 2);m ――堰流流量系数,采用 0.385;£ --- 堰流侧收缩系数;b 0――闸孔净宽,(m );b s ――上游河道一半水深处的深度,(m ); b 箱涵过水断面的宽度,m ; hc 进口断面处的水深,m ;淹没系数,按自由出流考虑,采用 1.0 ;设计下泄 流量 过水断 侧收缩 上游总 过流断面 淹没 流速 流量Q系数m 面宽度b系数£ 水头H 。

水深h c系数os 系数©5.20.385 2.0 0.912 4.76 1.412 1 0.95已知过闸流量(3度,经试算得:综上,过流断面尺寸为2.5m x 2.0m (宽X 高),设计下泄流量Q 为5.2m 3/s , 过流能力满足要求QH o— 0.171 1上b s2、结构计算** 堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。

(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用I、U级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。

闸门重 2.352X 9.81=23.07 KN ;闸底板重25X 4.0X 0.7X 4.仁287 KN ;闸墩重25X 0.8X 4X 2*2=320 KN ;平台板,梁25X(0.25X0.45X 2+1.05X 0.15)X 2.5=23.91 KN;柱25X2.82X0.4X0.4X4=45.12 KN;启闭力-100 KN ;启闭机重0.56X9.81=5.49 KN;启闭梁25X(0.3X0.5+0.25X0.4+1.35X0.12)X 2X3.5=72.1 KN;工作桥25X(5.9X0.12+0.2X0.25X3)X2.0=42.9 KN;25X(6.28X0.13X2X0.13+1.2X0.15X5X0.15)X 2=34.73 KN;启闭房砖墙22X0.864X4.1X4=311.73 KN;刀自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN;水重10X2.0X2.0X2.5=100 KN;由表可知浪压力为2.35 KN ; 有表可知土压力为38.49 KN ; 闸前静水压力 (27.7+47.7)X 2/2X 2.5=188.5 KN ; 离截面形心距离e=22 2.771I Z =O .91(2.77 +4.77 卜 30.5X 2X 10X 2X 2.5=-50KN ;扬压力计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式f、G--HK c>k ]c式中:Kc ――为抗滑稳定安全系数;K c 1 ――规范要求的抗滑稳定安全系数最小值;a G——作用在防洪闸上的全部垂直力总和;a H——作用在防洪闸上的全部水平力总和;f——闸室基底面与地基之间的摩擦系数,取0.44)计算结果工况一:\ G =951.5 KN ;a H =33.33 KN ;0.4X951 .5 、卄口 *亠K c= =11.41 > 1.2 满足要求;33 .33工况二:' G =1001.5 KN ;' H =224.18 KN0.0(1001 .5 卄厂十「K c= =1.78> 1.2 满足要求。

水闸稳定计算书

水闸稳定计算书

第四章排水闸稳定及结构计算1.各排水闸概况1.1水文资料根据龙门县城堤防总体规划,县城河堤共有5个排水闸,西林河有两个排水闸:龙门中学排水闸和老干局排水闸,白沙河有三个排水闸:师范排水闸、石龙头排水闸、及罗江围排水闸。

河堤上的排水闸主要作用是:平时能正常排泄内积水,洪水到来时关闸挡水,不让洪水涌入。

根据水文资料,排水闸排涝标准按十年一遇(P=10%)洪水,24小时暴雨产生的洪水总量,24小时排干计算。

根据《龙门县城区防洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表1.1-1。

表1.1-1 各排水闸洪水成果表1.2地质资料根据《龙门县城区防洪工程地质勘探可行性研究报告》,可知各排水闸地基主要物理指标表1.2-1。

表1.2-1 各排水闸地基土质主要物理指标表1.3等级与安全系数根据《龙门县城堤防加固工程可行性研究报告》西林河、白沙河大堤加固工程等级为三等,水闸为主要建筑物,其等级为三等,根据《水闸设计规范SL265-2001》,水闸整体抗滑稳定安全系数为:基本组合:1.25;特殊组合Ⅰ:1.10。

土基上闸室基底应力最大值与最小值之比的允许值为:基本组合:2.50;特殊组合3.0.闸基抗渗稳定性要求水平段和出口段的渗流坡降必须小于规范要求,见下表6.0.4。

表6.0.4 水平段和出口段允许渗流坡降值1.4地震烈度龙门县基本地震烈度为Ⅵ,按《水闸设计规范SL265-2001》,设计时不考虑地震作用。

2.主要计算公式及工况2.1闸孔净宽B 0计算公式根据《水闸设计规范SL265-2001》,水闸的闸孔净宽B 0可按公式(A.0.1-1)~(A.0.1-6)计算:2302Hg m QB σε=(A.0.1-1)单孔闸 4001171.01s s b b b b ⎪⎪⎭⎫ ⎝⎛--=ε (A.0.1-2)多孔闸,闸墩墩头为圆弧形时 NN bZ εεε+-=)1( (A.0.1-3)4001171.01Z ZZ d b b d b b +⎪⎪⎭⎫ ⎝⎛+--=ε (A.0.1-4)400000221171.01b d b b b d b b Z b Z b ++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=ε (A.0.1-5)4.000131.2⎪⎪⎭⎫⎝⎛-=H h H h s s σ (A.0.1-6) 式中 0B ——闸孔总宽度(m ); Q ——过闸流量(m 3/s );0H ——计入行近流速水头的堰上水深(m ),在此忽略不计; g ——重力加速度,可采用9.81(m/s 2); m ——堰流流量系数,可采用0.385;ε——堰流侧收系数,对于单孔闸可按公式(A.0.1-2)计算求得或由表A.0.1-1查得;对于多孔闸可按公式(A.0.1-3)计算求得;b 0——闸孔净宽(m );b s ——上游河道一半水深处的宽度(m ); N ——闸孔数;Z ε——中闸孔侧收系数,可按公式(A.0.1-4)计算求得或由表A.0.1-1查得,但表中b s 为b 0+d z ; d z ——中闸墩厚度(m );b ε——边闸孔侧收系数,可按公式(A.0.1-5)计算求得或由表A.0.1-1查得,但表中b s 为b Zb d b ++20; b b ——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m );σ——堰流淹没系数,可按公式(A.0.1-6)计算求得或由表A.0.1-2查得;hs ——由堰顶算起的下游水深(m )。

闸室稳定计算

闸室稳定计算

闸室稳定计算(1)闸室基底应力计算依据“水闸规范”当结构布置及受力情况对称时按第29页(7.3.4-1)计算。

e=B/2-∑M/∑GP max =∑G/A*(1+6*e/B)P min =∑G/A*(1-6*e/B)式中:P max --闸室基底应力的最大值;P min --闸室基底应力的最小值;∑G--作用在闸室上的全部竖向荷载(t );∑M--作用在闸室上的全部竖向和水平向荷载对于基础底面垂直水流方向的形心轴的力矩(t ·m);A--闸室基底面的面积(m 2);B --底板沿水流方向的长度(m)。

e --偏心距设计水位273.58底板高程264.24基本资料:闸室的稳定计算钢筋砼容重为2.5t/m3,进口段底板座于强风化白垩系砂砾岩上,中等透水,承载征值300kPa,f'=1.1,C'=1.1MPa。

五级建筑物水闸稳定基本组合抗滑稳定系数不小于1.05,特殊组合不小于1.0;最大基底应力与最小基底应力之比基本组合不大于2.0,特殊组合不大于2.5。

22程264.24上游9.34备注体积计算12.5644.3*3.6*0.7+(0.4+0.8)*0.4*0.5*2*3.696.723*4*8.062.25927.06*0.4*0.80.5255*0.35*0.31.444*3*0.123.95520.4*0.4*12.36*21.97760.4*0.4*12.360.546*0.3*0.366.87.62121.8*0.27*7+0.3*0.3*0.3*8+1.98*0.12*12+0.18*0.8*83.66*5*0.1275.8160.5*18*3.6*3.6*0.65427.454441/2*9.8*9.34*9.343.1361/2*9.8*0.8*0.833.7129.8*0.8*4.3196.79380.5*9.8*9.34*4.3,承载力特滑稳定系数不小于组合不大于2.0,特47.86329.34*4.3*3.6-96.720.8*8。

(完整版)闸室稳定计算

(完整版)闸室稳定计算

1.50
3.29
3.30
10.87
1.50
73.50
3.30
242.55
1.50
-2.63
3.30
-8.66
1.45
6.09
3.05
18.57
1.00
64.68
0.40
25.87
1.00
8.66
-0.25
-2.17
150.40
-1.700
-255.68
2.82
22.40
-1.700
-38.08
2.82
121.18 18.05 86.74 141.24 122.70 29.11 14.25
启闭机 机房
交通桥 底梁 端梁
桥面板 汽车荷载 防撞护栏
合计
5.50
3.0
16.50
-1.700
-28.05
4.00
2.31
430.00
1.0
430.00
-1.700
-731.00
4.00
60.20
1.42
25.00
1.22
(偏向下游正号)
kN/m2 kN/m2 <2.0

100.00
kN/m2
满足要求,《水闸设计规范》P30,SL265-2001
11.50 11.50
26.57 692.30
6.00
28.67
6.10
7.48
6.35
75.06
6.40
35.84
6.80
45.73
2030.82
25.00
46.97
2.0
93.94
1.500
140.91

水闸过流能力及稳定计算

水闸过流能力及稳定计算

水闸过流能力及结构计算计算说明书审查校核计算***市水利电力勘测设计院2011 年 08 月 29日1、水闸过流能力复核计算水闸的过流能力计算对于平底闸,当为堰流时,根据《水闸设计规范》(SL265-2001)附录A.0.1规定的水力计算公式:2302H g b m Q s εσ=22'02ϕg bh Q h H c c ⎪⎪⎭⎫ ⎝⎛+=4001171.01ss b b b b ⎪⎪⎭⎫ ⎝⎛--=ε 式中:B 0—— 闸孔总净宽,(m );Q ——过闸流量,(m 3/s );H 0——计入行进流速水头的堰上水深,(m ); h s ——由堰顶算起的下游水深,(m ); g ——重力加速度,采用9.81,(m/s 2); m ——堰流流量系数,采用0.385; ε——堰流侧收缩系数; b 0——闸孔净宽,(m );b s ——上游河道一半水深处的深度,(m ); b ——箱涵过水断面的宽度,m ; hc 进口断面处的水深,m ;s σ——淹没系数,按自由出流考虑,采用1.0;ϕ——流速系数,采用0.95;已知过闸流量Q=5.2(m 3/s )先假设箱涵过流断面净宽确定箱涵过流断面高度,经试算得:综上,过流断面尺寸为2.5m ×2.0m (宽×高),设计下泄流量Q 为5.2m 3/s ,过流能力满足要求。

2、结构计算**堤防洪闸均为钢筋砼箱涵结构,对防洪闸进行抗滑稳定、抗倾覆稳定和墙基应力计算。

(1)抗滑稳定计1)计算工况及荷载组合工况一:施工完建期,荷载组合为自重+土压力工况二:外河设计洪水位,荷载组合为自重+土压力+扬压力+相应的闸前闸后静水压力+风浪压力2)荷载计算计算中砼强度等级为C20,钢筋采用Ⅰ、Ⅱ级,保护层厚度梁25mm、板20mm,符号规定:力向下为正,向上为负,力矩逆时针为正,顺时针为负。

闸门重 2.352×9.81=23.07 KN;闸底板重25×4.0×0.7×4.1=287 KN;闸墩重25×0.8×4×2*2=320 KN;平台板,梁25×(0.25×0.45×2+1.05×0.15)×2.5=23.91 KN;柱25×2.82×0.4×0.4×4=45.12 KN;启闭力-100 KN;启闭机重0.56×9.81=5.49 KN;启闭梁25×(0.3×0.5+0.25×0.4+1.35×0.12)×2×3.5=72.1 KN;工作桥25×(5.9×0.12+0.2×0.25×3)×2.0=42.9 KN;25×(6.28×0.13×2×0.13+1.2×0.15×5×0.15)×2=34.73 KN;启闭房砖墙22×0.864×4.1×4=311.73 KN;∑自重=23.07+287+320+23.91+45.12-100+5.49+72.1+38.815+340=1016.98KN;水重10×2.0×2.0×2.5=100 KN;由表可知浪压力为2.35 KN ;有表可知土压力为38.49 KN ;闸前静水压力 (27.7+47.7)×2/2×2.5=188.5 KN ; 离截面形心距离 e=()()377.477.277.477.222⨯++⨯⨯=0.91 扬压力 0.5×2×10×2×2.5=-50KN ;计算工况荷载汇总(对闸室基底面形心求矩)3)抗滑稳定计算公式 []cc K HGf K ≥⋅=∑∑式中:Kc ——为抗滑稳定安全系数;[]c K ——规范要求的抗滑稳定安全系数最小值;∑G ——作用在防洪闸上的全部垂直力总和 ;∑H ——作用在防洪闸上的全部水平力总和;f ——闸室基底面与地基之间的摩擦系数,取0.4 4)计算结果工况一:∑G =951.5 KN ;∑H =33.33 KN ; K c =33.335.9514.0⨯=11.41>1.2 满足要求;工况二:∑G =1001.5 KN ;∑H =224.18 KNK c =18.2245.10014.0⨯=1.78>1.2 满足要求。

排水闸稳定及结构计算

排水闸稳定及结构计算

排水闸稳定及结构计算1.各排水闸概况1.1水文资料根据xx县城堤防总体规划,县城河堤共有5个排水闸,西林河有两个排水闸:xx中学排水闸和老干局排水闸,白沙河有三个排水闸:师范排水闸、石龙头排水闸、及罗江围排水闸。

河堤上的排水闸主要作用是:平时能正常排泄内积水,洪水到来时关闸挡水,不让洪水涌入。

根据水文资料,排水闸排涝标准按十年一遇(P=10%)洪水,24小时暴雨产生的洪水总量,24小时排干计算。

根据《xx县城区防洪工程洪水计算书》可知各排水闸的水位资料,详见排水闸洪水成果表1.1-1。

表1.1-1 各排水闸洪水成果表1.2地质资料根据《xx县城区防洪工程地质勘探可行性研究报告》,可知各排水闸地基主要物理指标表1.2-1。

表1.2-1 各排水闸地基土质主要物理指标表1.3等级与安全系数根据《xx县城堤防加固工程可行性研究报告》西林河、白沙河大堤加固工程等级为三等,水闸为主要建筑物,其等级为三等,根据《水闸设计规范SL265-2001》,水闸整体抗滑稳定安全系数为:基本组合:1.25;特殊组合Ⅰ:1.10。

土基上闸室基底应力最大值与最小值之比的允许值为:基本组合:2.50;特殊组合3.0.闸基抗渗稳定性要求水平段和出口段的渗流坡降必须小于规范要求,见下表6.0.4。

表6.0.4 水平段和出口段允许渗流坡降值1.4地震烈度xx 县基本地震烈度为Ⅵ,按《水闸设计规范SL265-2001》,设计时不考虑地震作用。

2.主要计算公式及工况2.1闸孔净宽B 0计算公式根据《水闸设计规范SL265-2001》,水闸的闸孔净宽B 0可按公式(A.0.1-1)~(A.0.1-6)计算:2302Hg m QB σε=(A.0.1-1)单孔闸 4001171.01s s b b b b ⎪⎪⎭⎫ ⎝⎛--=ε (A.0.1-2)多孔闸,闸墩墩头为圆弧形时 NN bZ εεε+-=)1( (A.0.1-3)4001171.01Z ZZ d b b d b b +⎪⎪⎭⎫ ⎝⎛+--=ε (A.0.1-4)400000221171.01b d b b b d b b Z b Z b ++⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--=ε (A.0.1-5)4.000131.2⎪⎪⎭⎫⎝⎛-=H h H h s s σ (A.0.1-6) 式中 0B ——闸孔总宽度(m ); Q ——过闸流量(m 3/s );0H ——计入行近流速水头的堰上水深(m ),在此忽略不计; g ——重力加速度,可采用9.81(m/s 2); m ——堰流流量系数,可采用0.385;ε——堰流侧收系数,对于单孔闸可按公式(A.0.1-2)计算求得或由表A.0.1-1查得;对于多孔闸可按公式(A.0.1-3)计算求得;b 0——闸孔净宽(m );b s ——上游河道一半水深处的宽度(m ); N ——闸孔数;Z ε——中闸孔侧收系数,可按公式(A.0.1-4)计算求得或由表A.0.1-1查得,但表中b s 为b 0+d z ; d z ——中闸墩厚度(m );b ε——边闸孔侧收系数,可按公式(A.0.1-5)计算求得或由表A.0.1-1查得,但表中b s 为b Zb d b ++20; b b ——边闸墩顺水流向边缘线至上游河道水边线之间的距离(m );σ——堰流淹没系数,可按公式(A.0.1-6)计算求得或由表A.0.1-2查得;hs ——由堰顶算起的下游水深(m )。

(完整版)闸室稳定计算

(完整版)闸室稳定计算

4.95
25.00
123.75
2.00
0.75
25.00
18.80
8.0
0.22
25.00
5.60
4.0
0.60
25.00
15.00
4.0
3.54
25.00
88.50
1.0
3.19
25.00
79.65
1.0
0.13
25.00
3.15
6.0
35.40
0.25
8.85
1.0
0.35 闸室长度 7.00 闸室宽度 13.200
闸室稳定计算表(施工完建期)——自重、地震
水平地震加速度αh
部位
闸室部分
边墩
闸墩 闸门槽
上游圆头
中墩
闸墩
闸门槽
边墩后土



闸门
底板
闸底板 齿墙
上部结构
立柱
排架
横梁
顶梁
面板
机架桥
纵梁
端梁
人群荷载
0.981
地震作用效应折减系数ζ 自重荷载
体积 (m3)
容重kN/m3
单重 (kN)
数量
实体为正
35.00
总重 (kN)
向下为正
1750.00
顺水流向 力臂(m)
下游为正
0.00
力矩 kN.m
顺时针为 正
0.00
-25.00
-1.700
42.50
62.75
-2.270 -142.43
1400.00 0.000
0.00
-50.00
-1.700
85.00

水闸设计及闸室稳定计算

水闸设计及闸室稳定计算

[附录一: 泄洪冲砂闸及溢流堰的水力计算1.1设计资料:根据设计任务书中提供的资料和该枢纽布置段的基本地形资料本工程中的河流属于山溪性河流天然来水量多集中在洪水季节,平时来水量仅占全年来水量的10%;河水中泥沙含量较大尤其是伴随洪水中的泥沙较多;再根据其地形资料来看本工程布置段的地形坡度比较合适,因此在选择泄洪冲砂闸地板高程1852.40m 。

根据上述本工程中的泄洪冲砂闸为宽顶堰,堰顶高程1852.40m ,过闸水流流态为堰流。

汛期通过闸室的设计洪水流量Q 设=1088m 3/s,校核洪水流Q 校=1368 m 3/s 。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0;m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385; ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头; b —闸门净宽;来洪水时洪水将由溢流堰和泄洪冲砂闸两部分共同承担,这样可减去一部分闸孔的净宽并设置溢流侧堰初步拟定溢流堰为折线形实用堰。

初步拟定溢流堰堰顶高程=进水闸设计流量的堰顶水头对应的水位+(0.2—0.3m )=进水闸闸底高程1853.60m +闸前水位1.40m +超高0.2m =1856.4m采用共同水位法和堰流公式计算两种工作情况下的特征洪水位:先假设一个水位,用堰流公式分别计算过堰流量和过闸流量,二者相加等于实际流接近计算工作情况下的洪水流量时,该水位就为所求。

因为泄洪冲砂闸为宽顶堰所以尺寸拟定用堰流公式:232Hg mbQ δε=δ- 为淹没系数,取为1.0m ---为流量系数,因为是前面无坎的宽顶堰所以m=0.385;计算溢流堰时因为溢流堰为折线形实用堰m=0.3.ε--为侧收缩系数,先假定为1.0;H--- 位总水头,初设阶段不考虑行进流速,即假设的堰上水头。

b —闸门净宽计算结果如附表1-1,1-2(a )设计洪水情况下:洪水流量Q=1018 m 3/s 。

水闸计算(防渗~稳定)

水闸计算(防渗~稳定)
构件名称 底板
算式 25× (16.0× 1.5+(1+2)× 1/2 × 2)× 28.5 25× (14.5× 1.5+3.14× (1.5/2)2/20.3× 0.3× 4-0.3 × 0.5× 2)× 13.0 25× (15× 1.0+3.14×
重力(kN) 19237.5
力臂 (m) 0.000
164 2
左(-)
水平力(KN) 右(+)
力臂(m) 6.35 3.40 2.00
11323.19
下游水压 P3 力 浮托力 渗透压力 浪压力 合计
23443.64 36625.64 8248.88 485.35 42726.77 -11635.10
2.48 0.00 0.71 10.22
稳定分析 pmax pmin p平均 97.67254 89.72558022 93.6990618 基底不均匀系数 1.088569649 Kc 1.468891801
14364.2
-0.142
-2039.7
1674.0 2248.7
-3.990 3.920
-6679.3 8814.7
381.75
-2.950
-1126.2
672
-2.950
-1982.4
267.9 705.6 207.972 46900.83
-6.000 -2.950 -2.950
-1607.4 -2081.5 -613.5 -7988.0
设计反向 42333.691 9956.571 0.235 0.389 0.623 0.619 7.941 11.854 22.254 0.775 1.112 1.112 40.000 1.050 1.050 217.097

水闸稳定计算

水闸稳定计算
(2)摩擦桩
当硬土层埋深较深时,桩只能插入到软土层的一定深 度,利用桩与周围土壤的摩擦力支承上部荷载,称为摩擦 桩。水闸多采用摩擦桩。
.
(四)其他方法 振冲砂桩法、强夯法、高压
旋喷法、真空预压法等等。
.
回答以下问题:
1、水闸稳定分析包括哪些内容?计算公式是 什么?
2、水闸地基处理有哪些方法? 3、换土垫层进行地基处理时,砂垫层的作用
1.作用
在软土层厚度较大的地基上,桩基础是解决地基 承载力不足的有效方法。设置桩基础后,能够提高 地基的承载力和抗滑稳定性,减少沉陷量。
2.桩基础型式(按施工方式分)
桩基础按施工方式分为:打入混凝土预制桩和钻 孔灌注混凝土桩两种。
(1)打入式预制桩
打入式预制桩一般采用钢筋混凝土桩,直径 d=0.25~0.55m。现场预制桩的长度在25~30m;工厂 预制桩一般长不超过12m,便于运输。
当闸室抗滑稳定安全系数不能满足规范规定的允许安 全系数时,可采取下列措施提高闸室稳定性。
(1) 适当将闸门向闸室下游一端移动布置,或将底板向上 游端适当加长,充分利用闸室水重。(增加G)
(2) 改变闸室结构尺寸,增加自身重量。
•增加底板厚度时,由于其位于水下,受到水的浮力,有 效重量小,不经济。
•增加闸墩厚度时,虽然增加了自重,但同时也增加了闸 室前缘宽度和挡水面积,因而也同时增加了水平推力。
(5-39)
式中 f’——闸室基底面与岩石地基之间的抗剪断摩擦系数, 查表5—17;
C’——闸室基底面与岩石地基之间的抗剪断粘结力, kPa,查表5—17
闸室稳定性的判断,要求 :
土基上: KC [K土] [K土]查表5-13 岩基上: KC [K岩] [K岩]查表5-14

水闸闸室底板结构计算

水闸闸室底板结构计算

假定闸室地基反力在顺水流方向按直线分布(图1),在垂 直水流方向是均匀分布(图2),把闸墩作为底板的支座, 一般为固端约束。
倒置梁法
(图1)
q1—底板自重; q2—作用在闸室底板上 的水重; q3—浮托力; q4—渗透压力; q5—地基反力; (图2)
计算时,分别在闸门的上游段和闸门的下游段沿底 板横向切取若干单位宽度的板条,并视为倒置于闸墩上 的连续梁。倒置梁上的荷载为均布荷载,为
q = q 1+ q2+q3 +q 4+ q5 (其中q1、q2为负)
计算步骤: 1.选取闸底板的计算简图; 2.计算作用在闸底板上的荷载; 3.计算闸底板的内力并绘制闸底板的弯矩图; 4. 计算底板配筋。
1、选取计算简图 2、计算作用在闸底板上的荷载
3、计算梁内力 按连续梁计算
计算时,要计算每一个特征断面的内力,算好后画 出弯矩图,并画出弯矩包络图,配筋时,选最大的弯矩 来计算。
3计算梁内力按连续梁计算计算时要计算每一个特征断面的内力算好后画出弯矩图并画出弯矩包络图配筋时选最大的弯矩来计算
水闸闸室底板结构计算
倒置梁法
闸底板是一块由混凝土浇筑而成的弹性基础板,受 力比较复杂。对于它的强度分析,目前在工程实践中, 一般是近似地将空间问题用截条法简化成平面问题。且 由于闸墩沿水流方向的刚度很大,底板沿水流方向的弯 曲变形远小于沿垂直水流方向弯曲变形。因此,可从底 板中沿垂直水流方向截取为单位宽度的板条(简化为梁) 进行分析。 计算方法一般有: 弹性地基梁法: 直线反力法 倒置梁法 有限元法 适用条件:相对密度小于或等于0.50的砂土地基,可采 用反力直线分布法;粘性土地基或相对密度大于0.50的砂 土地基,可采用弹性地基梁法;结构简单的中小型水闸可 用倒置梁法;大中型水闸及结构复杂的可用有限元法;岩 基上水闸用基床系数法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
一、计算成果 (2)
二、基本资料 (2)
三、计算公式 (3)
四、计算过程及结果表格 (4)
五、附图 (16)
一、计算成果
本算稿对西大盈泵闸闸室的抗滑、抗浮及地基应力进行了计算。

计算结果一览表如下:
经计算,闸室的地基应力、抗滑、抗浮、均满足《水闸设计规范》(SL265—2001)要求。

二基本资料
2.1计算依据
《水闸设计规范》(SL265—2001)
2.2工程等别与建筑物级别
水闸主要建筑物——泵房、消力池以及外江翼墙均为3级建筑物,临时建筑物级别为5级。

2.3地震烈度
根据设计大纲:本工程位于地震基本烈度7度区域,主要建筑物抗震设计烈度为7度。

2.4水位组合
特征水位与水位组合
注:以上水位均为上海吴淞高程。

注:西大盈泵闸设计代表站为赵屯站 2.4 容重
钢筋混凝土:25kN/m 3;
三、 基本公式
3.1 闸室沿基础底面的抗滑稳定安全系数应按以下公式计算:
式中Kc ——抗滑稳定安全系数;
∑G ——作用于闸室基础底面以上的全部竖向荷载(包括泵房基础底面上的扬压力在内,kN );
∑H ——作用于闸室基础底面以上的全部水平向荷载(kN ); A ——闸室基础底面面积(m 2);
f ’——闸室基础底面与地基之间摩擦角φ0的正切值,即f ’=t
g φ0 C 0——闸室基础底面与地基之间的黏结力(kPa )。

3.2闸室抗浮稳定安全系数应按以下公式计算:
式中Kf ——抗浮稳定系数;
∑V ——作用与闸室基础底面以上的全部重力(kN ); ∑U ——作用于闸室基础底面上的扬压力(kN )。

3.3 闸室基础底面应力应根据闸室结构布置和受力情况等因素计算确定。

本方案为矩形基础,不考虑双向受力,应按以下公式计算:
式中P max ——闸室基础底面应力的最大值或最小值(kPa );
∑M x ——作用于闸室基础底面以上的全部水平向和竖向荷载对于基础底面形心的力矩
(kN-m );
W ——闸室基础底面对于该底面截面抵抗矩(m 3)。

∑∑+=
H
CoA
G f Kc '∑∑=
U
V K f W
M
A
G P ∑∑±=
max min。

相关文档
最新文档