《物理场论》标量矢量和张量40页PPT

合集下载

标量场和矢量场

标量场和矢量场

2、矢量相加和相减可用平行四边形法则求解:
A B
B
A
B
A
AB
B
矢量的乘法
1)矢量与标量相乘
v kA
evx
kAx
evykAy
evzkAz
evAvk
v A
标量与矢量相乘只改变矢量的大小,不改变方向。
2)矢量与矢量点乘
A B | A || B | cosAB Ax Bx Ay By Az Bz
设矢量 A与三个坐标轴 x, y, z 的夹角分别为, , ,则
z
Ax Acos
Ay Acos
v Az
v A
Az Acos
A A(ex cos ey cos ez cos ) 任一方向的单位矢量为
v Ax
o
eA ex cos ey cos ez cos x
v Ay
y
2
2.位置矢量
R2 [(x x)2 ( y y)2 (z z)2 ]
3
3.矢量的代数运算
v A
evx
Ax
evy
Ay
evz
Az
v B
evx
Bx
evyLeabharlann ByevzBz
矢量的加法和减法
v A
v B
evx
( Ax
Bx
)
evy (Ay
By
)
evz
( Az
Bz
)
说明:
1、矢量的加法符合交换律和结合律:
vv vv vv v v vv A B B A (A B) C A (B C)
A B | A || B | sin AB en Ax
Ay
Az

《物理场论》标量位矢量位和波动方程

《物理场论》标量位矢量位和波动方程
《物理场论》第1篇:物理场论基础
第3节 标量位、矢量位和波动方程
张元中
中国石油大学(北京)地球物理与信息工程学院
主要内容
1. 矢量场的分类 2. 标量位 3. 矢量位 4. 波动方程
1、矢量场的分类
无源场:若


A

0
,则
A
为无源场,又称
无散场,涡旋场,如磁感应强度场。
无旋场:若
3、矢量位
矢量位:若场
B是无源场,

B

0
,则可找到
一个矢量场
(x,
y,
z,
t)
,使其满足


B
,称



B
的矢量位(矢位,矢势)。
散度是对源的精细描述,散度为0必定无源。
如果一个矢量场散度处处为零,即


A

0

则矢量场中的每条矢线都将闭合。
典型的例子是磁力线
矢量场
A
与势函数
v
的关系是
A

v

有势场是一个梯度场。
有势场的势函数有无穷多个,相互之间差一个
常数。
定理:矢量场
A
为有势场的充要条件是
A
为无
旋场。即
A 0。
有势场也称为保守场或无旋场。
(u) 0的物理意义是:对应有梯度的矢量场 必无旋。简言之:有势必无旋。
y,
z),使其满足

A

称为
标量位(标位,标势)。 此为无旋场叫有位
(势)场的原因。
定义
:设有矢量场

大学物理第一章矢量分析 ppt课件

大学物理第一章矢量分析 ppt课件

6
(2)标量乘矢量
(3)矢量的标积(点积)
两矢量的标量积也称为点积(本书称为标积)。
定义一个矢量在另一矢量上的投影与另一矢 B
量模的乘积,结果为标量。
θ
A
电磁场与电磁波
第1章 矢量分析
7
(4)矢量的矢积(叉积)
亦称叉积,结果仍为一个矢量,用矢量C表示,C的大小 为A和B组成的平行四边形的面积,方向垂直与矢量A和B构成 的平面且A、B和C三者符合右手螺旋法则。
电磁场与电磁波
第1章 矢量分析
16
4. 坐标单位矢量之间的关系
电磁场与电磁波
第1章 矢量分析
17
1.3 标量场的梯度
标量场和矢量场 确定空间区域上的每一点都有确定物理量与之对应,称在
该区域上定义了一个场。 如果物理量是标量,称该场为标量场。
例如:温度场、电位场、高度场等。
如果物理量是矢量,称该场为矢量场。
梯度在该方向上的投影。 • 标量场的梯度垂直于通过该点的等值面(或切平面)
梯度运算的基本公式:
电磁场与电磁波
第1章 矢量分析
24
例1.3.1 设一标量函数 ( x, y, z ) = x2+y2-z 描述了空间标量
场。试求:
(1) 该函数 在点 P(1,1,1) 处的梯度,以及表示该梯度方向
的单位矢量。
电磁场与电磁波
第1章 矢量分析
33
同理,分析穿出另两组侧面的净通量,并合成之,即得由点P 穿出该六面体的净通量为
根据定义,则得到直角坐标系中的散度 表达式为
电磁场与电磁波
第1章 矢量分析
34
散度的表达式: 直角坐标系
圆柱坐标系
球坐标系

第一章矢量分析与场论-ppt课件

第一章矢量分析与场论-ppt课件

坐标元
1.8 微分元 恣意元 微分元是矢量微、积分的根底。
坐标元
坐标线元
坐标平面元dσ
坐标体元dv
dx 直 dy
dz dρ
dx= dx ex
dy= dz=
ey dy ez
dρ= dz eρ
dφ= dρ ej
dddσσσ=假yx ==设: xd=σc,z =
yd=σc,ρ = zdd=σσc,φz ==
A× (B×C) = (A ·C) B - (A·B) C
A·(B×C) = B ·(C×A) = C ·(A×B)


‖ Ax Ay Az
[ABC] = [BCA] = [CAB] = Bx By Bz
Cx Cy Cz
假设 B=C 那么 A·B = A ·C及A×B = A ×C 成立 B C 假设 A·B = A ·C及A×B = A ×C 那么 B=C不一定成立
er(90°s,iφn+θ9c0o°sφ)·ez ez sinθ sinφ
cosθ
ex
= sin(θ+90°) cosφ
sin (θ+90°) sinφ cos (θ+90°)
ey
sin90° cos(φ+90°) sin90° sin(φ+90°) cos90°
ez sinθ cosφ
sinθ sinφ
因此:ex = 1/√2er-1/√2eφ , ey = 1/√2er+1/√2eφ , ez = - eθ
∴ A = 3√2er -2 eθ +√2 eφ ②对于点(√2,√2,2) : sinθ = sinφ= cosθ= cosφ=1/√2

场论,标量场的梯度, 矢量场的散度和旋度ppt课件

场论,标量场的梯度, 矢量场的散度和旋度ppt课件

若S 为闭合曲面
SA dS
在直角坐标系中,通量可以写成
ψ AdS Axdydz Aydzdx Azdxdy
S
S
物理意义:表示流入和流出闭合面S的矢量通量的代数和。
矢量场的通量
在电场中,电位移矢量在某一曲面上的面积分就是矢量通过该曲面的电通量; 在磁场中,磁感应强度在某一曲面上的面积分就是矢量通过该曲面的磁通量。 20
2、散度的物理意义及特点:
1) 矢量场的散度代表矢量场的通量源的分布特性; 表示矢量场在一点处的流入或流出的大小
2) 矢量场的散度是一个标量;
3) 矢量场的散度是空间位置的函数;
22
divA 0
发射源/正源
divA 0
吸收源/负源
divA 0
无源
23
散度 Divergence of a vector field
L
l1 xex ;l2 yey ;
l3 x(ex );l4 y(ey )
l3 l4
Ax (3)
Ax (x,
y y, z)
Ax (1)
Ax y
y
Ay (2)
Ay (x
x,
y, z)
Ay (4)
Ay x
x
y
A
x
(x, y, z) l1
A•
dl
(
Ay
Ax
)xy
L
x y
( A)z xy ( A)nˆ S
21
散度 Divergence of a vector field
1、定义:当闭合面 S 向某点无限收缩时,矢量 A 通过该闭合面S 的 通量与该闭合面包围的体积之比的极限称为矢量场 A 在该 点的散度,以 div A 表示,即

大学物理矢量PPT课件

大学物理矢量PPT课件
把 [a,b] 分 成 n个 小 y 区 间[ xi 1, xi ], 长 度 为 xi xi xi1;
在每个[ xi1, xi ] 上
任 取 一 点 i,
o
x1
a
xi1 i xi
xn1
b
x
以 [ xi1, xi ]为底,f (i ) 为高的小矩形面积为
Ai f (i )xi
Ax
O Ax
X


如果A Axi Ay j 和 B Bxi By j , 则有:



C Cxi Cy j B A (Ax Bx )i (Ay By ) j
显然:
C x Ax Bx
C y Ay By
第1章 运动的描述
矢量的加法: 两个矢量相加
C AB
AB
矢量的减法: 两个矢量相减
C' A B A (B)
差矢量方向:
减数终端→被减数终端
第1章 运动的描述
A
C
B

C'
A
B
矢量的内积
a

b

ab
(点乘、标乘):

0, cos 1, a b ab
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.
第1章 运动的描述
观察下列演示过程,注意当分割加细时, 矩形面积和与曲边梯形面积的关系.

预备知识-场论与张量基础

预备知识-场论与张量基础

张量基础知识
张量的简单例子 张量的数学定义 对称张量的性质 张量与对称性的关系
张量的简单例子-电导率
对于均匀导体,电流密度J与电场强度E同向,其大小成比例关系-欧姆 定律
J=sE 或 Ji=sEi (i=1,2,3)。此处,s为电导率,标量。
对于晶体而言,J与E将不再同向。欧姆定律变为
[定理] 任何一个张量总可以分解为一个对称张量和一个反对 称张量之和,并且分解的方法是唯一的。
共轭张量:若Tij(i,j=1,2,3)为张量,则可以证明, Tji(i,j=1,2,3) 也为张量。我们称它们互为共轭张量。
T11 T12 T13 T T21 T22 T23
T31 T32 T33
p
,je
, j
j1 i 1
j1
比较两边3系数,得
p
, j
a ji pi
(4)
i1
矢量的数学定义
同样可得
3
pi
a ij
p
, j
(5)
i 1
矢量的数学定义:若有一组数p1, p2, p3, 当坐标系变换后变为p1’, p2’, p3’, 并且满足(4)和(5)式的关系,则这一组数构成一个矢量。
T11 T21 T31
(13)
Tc T12 T22 T32
T13 T23 T33
张量分解定理之证明
设有一个张量T,我们假定它可以分解为对称张量S与反对 称张量A之和。即
T=S+A
(14)
两边取共轭,于是 Tc=Sc+Ac
而S=Sc, Ac=-Ac,所以
Tc=S-A
(15)
由式(14)与(15)解得
3
ei, aij ej

矢量场与标量场以及计算方法PPT课件

矢量场与标量场以及计算方法PPT课件
场: 如果在某一空间区域内的每一点,都对应着某个物理量 的一个确定的值,则称在此区域内确定了该物理量的一个场。
换句话说, 在某一空间区域中,物理量的无穷集合表示 一种场。如在教室中温度的分布确定了一个温度场,在空间电 位的分布确定了一个电位场。(物理量的值可相等)
场的一个重要的属性是它占有一定空间,而且在该空间
•终点一般称为矢性函数A(t)的矢端曲线。
第3页/共60页
z
Z
P(X, Y, Z)
r
Aazz Aaxx O
Y Aayy
y
X
x
图1-1 直角坐标系中一点的投影
第4页/共60页
02. 矢量的乘积
•矢量的乘积包括标量积和矢量积。
1) 标量积
任意两个矢量A与B的标量积
(Scalar Product)是一个标量,
第28页/共60页
2. 旋度
设 A ex Ax ey Ay ez Az dl exdx eydy ezdz

A dl
L
L ( Axdx Aydy Azdz)
s
(
Az y
Ay z
)dydz
(Ax z
Az x
)dzdx (Ay x
Ax y
)dxdy
•上式右面的积分可以看成是矢量
M为S中的某一点,令 向S p点收缩,则
有旋度定义的极限形式:
第30页/共60页
rotn
A
=
lim
S 0
l A dl lim d
S
S0 S ds
由此可见, rotnA表示矢量场A在P点的环量密度,它与该 点的曲面元的法线方向有关。当旋度rotA与n的方向相同时, 环量密度取得最大值。

第一章-场论及张量初步分析

第一章-场论及张量初步分析

全国范围内温度场分布
速度场
速度场
速度场
电场
磁场
均匀场:同一时刻场内各点 函数值都相等
定常场:场内函数值不随时 间t改变
均匀场
定常场
1.2 场的几何表示
等高线
等高线
根据等高线的相对位置、疏密程度 看出标量函数-高度的变化状况
矢量场的几何表示
矢量的大小是一个标量,可以用等位 面的概念来几何表示,矢量的方向则 采用矢量线来表示。
rotxa
az y
a y z
rot y a
ax z
az x
rot z a
a y x
ax y
1.6 环量. 旋度. 斯托克斯定理
极限存在的证明: Stockes公式:线积分与面积分的关系 中值公式:面积分与函数值的关系
i jk
rota
x y z
ax ay az
1.6 环量. 旋度. 斯托克斯定理
矢量线:线上每一点的切线方向与该 点的矢量方向重合
dr
r r
根据矢量定义有: a dr 0
直角坐标形式:
1.3 梯度-标量场不均匀性的量度
对于给定标量场 (r,t),用它的梯度
来表明在任一时刻标量场中每点邻域 内的函数变化。
函数在M点上沿曲线S方 向的方向导数:
表明函数φ(r,t)在M点上 沿曲线S方向的变化率
p31
p13
1 2
p23
p32
0
二阶反对称张量
2 1
0
张量分解定理
二阶张量可以唯一地分解成为一个对称张 量和一个反对称张量之和。
P
1 2
P
Pc
1 2
P
Pc

1第一章-场论与张量基本知识

1第一章-场论与张量基本知识

(r), a(r)
1.1 标量、矢量、场
场的几何表示
标量场可用函数等值面(线)来表示。 可直观看出函数值的大小分布,以及变 化快慢
矢量场可用矢量线来表示。 任一点的矢量方向可由矢量线的切线方 向定出;也可以从矢量线的疏密程度估 计矢量在各点的大小。
1.2 标量场的梯度
方向导数(Directional Gradient)
1. 如果一个方程式或表达式的一项中,一种下标只出现一次,则 称之为自由指标,自由指标在表达式或方程的每一项中必须只 出现一次。 2. 如果在一个表达式或方程的一项中,一种指标正好出现两次, 则称之为哑指标,它表示从1到3求和。哑指标在其他任何项中 可以刚好出现两次,也可以不出现。 3. 如果在一个表达式或方程中的一项中,一种指标出现的次数多 于两次,则是错误的。
2 3
2
ij ij ij ij
i 1 j 1
3
3
1111 1212 1313 21 21 22 22 23 23 31 31 32 32 33 33
1.4 张量表示法
自由指标: 定义:凡在同一项内不重复出现的指标。如
i j k x y z
是一个矢性微分算子,即在运算中具有矢量和微分的双重性质, 其运算规则是:
u u u u i j k x y z
Ay Ax A A i j z k x y z
Az Ay Ax Az Ay Ax A y z i z x j x y k
2 ( ) ( ),ij xi x j
uk ,ij
2uk xi x j
1.5 坐标变换与张量定义

电磁场与微波技术01场论.ppt

电磁场与微波技术01场论.ppt
A B xˆ(Ax Bx ) yˆ( Ay By ) zˆ( Az Bz )
4
1.1 矢量的基本运算公式 1.1.2 矢量的基本公式
(3) 标量积和矢量积
矢量的相乘有两种定义-标量积(点乘)和矢量积(叉乘)。
标量积A·B A B AB cosaAB
A B B A
并有 xˆ yˆ yˆ zˆ zˆ xˆ 0, xˆ xˆ yˆ yˆ zˆ zˆ 1
例如,在直角坐标下,
如温度场,电位场,高度场等;
如流速场,电场,涡流场等。
标量场 矢量场
3
1.1 矢量的基本运算公式 1.1.2 矢量的基本公式
设 A xˆAx yˆAy zˆAz
B xˆBx yˆBy zˆBz
(1) 矢量的数乘
aA xˆaAx yˆaAy zˆaAz
(2) 矢量的加法和减法
M
l3 3 3
r 1 1 0 2 1 2 1
所以
l M 2 3 2 3 2 3 226
1.3.3 梯度的物理意义
• 标量场的梯度是一个矢量,是空间坐标点的函数;
• 梯度的大小为该点标量函数 的最大变化率,即该点最
大方向导数; • 梯度的方向为该点最大方向 导数的方向,即与等值线(面)
相垂直的方向,它指向函数的
dz y2z
解得矢量方程 xz2c1yx2 c2
c1和c2是积分常数。
16
1.2.3 场图
形象描绘场分布的工具--场线 标量场--等值线(面)。 其方程为 h (x, y, z) const
矢量场--矢量线
其方程为 Adl 0
在直角坐标下:
Ax Ay dx dy
在某一温度上沿什么方向温度变化最快?

《物理场论》标量矢量和张量

《物理场论》标量矢量和张量

一个数量场可以用一个数性函数 u 来表示。通 常假定数性函数 u是单值、连续且有一阶连续的
偏导数。
数量场的等值面
等值面:数性函数 u 取相同值的点连接起来构
成的一个曲面,定义为:
u(x, y, z) C ( C 为常数)
比如温度场的等温面,电位场的等电位面等。
由隐函数存在定理可知,在函数 u 为单值,且
证明:将
C
D
看作一个矢量,由矢量混合积
的旋转法则可以得到:
( A B) (C D) A [B (C D]
A [C(B D) D(B C)]
( A C)(B D) ( A D)(B C)
P(x, y, z) r
o
xex
yey
y
x
矢量的点积
矢量点积的物理背景:广泛的应用。
W

F
s
常力
F
W


F

ds
O 变力
s
矢量的点积
矢量点积的矩阵表示:矢量可以用列矩阵表示。




A Axex Ayey Azez
Ax
A

P(x, y, z)
yj
y
矢量均可以表示为基的线性组合
r xi yj zk
r xex yey zez
矢量的概念
z
矢量的模:矢量的长度
r

r

x2 y2 z2
zez
r
o
xex
单位矢量:一个矢量与其模相除。 x
r

矢量分析与场论okPPT课件

矢量分析与场论okPPT课件

P 尾
①矢量的表示: ②矢量的大小:
E 、 E 或 OP
模或绝对值
E O首
(|E| 、E、 |E|或 |OP|)
③矢量的方向: 单位长度矢量: E 0 ,|E 0| =1
E= |E| E0
3
(一)矢量分析
三、矢量的坐标表示:
①直角坐标系:
z
A A x e x A y e y A z e z
②分配律: A ( B C ) A B A C
③与数量叉积:
(k A ) B k (A B )
④ 特殊的叉积:
平行: AB0 正交:|AB|A10 B
(一)矢量分析
五、矢量的乘法: (二)矢量积、叉积:
⑤ 不服从交换律: A B (B A )
⑥在坐标系内计算叉积:
ex ey ez
复习
矢量分析 场论
1
第一部分
整体概述
THE FIRST PART OF THE OVERALL OVERVIEW, PLEASE SUMMARIZE THE CONTENT
(一)矢量分析
一、标量:
只有大小而没有方向的量
(长度、时间、电压、体积、温度、电量等)
既有大小又有方向的量
二、矢量: (力、速度、电场强度、磁感应强度等)
v(x,y,z)
,力场
F(x,y,z)
空间任一点都有一矢量 A , A是空间坐标(、时间)的函数。
动态场:场量与时间有关 (时变场)
f( x ,y ,z ,t),A ( x ,y ,z ,t)
静态场:场量与时间无关 (恒定场)
f(x ,y ,z ),A (x ,y ,z )
12
(二)场 论
④ 特殊的点积: 同向、反向、正交

矢量分析与场论基础课件

矢量分析与场论基础课件

A yˆ = Ay
A zˆ = Az
直角坐标分量的求法
A的 方 向 与xˆ、yˆ、zˆ的 夹 角 分 别 为、、
Az
A
Ax
A cos
Ay
A cos
o Ay
Ax
Az A cos
y
、、

为A的
方向角
cos、cos 、cos

为A的
方向余弦
x
直角坐标系中 A矢量的模值计算公式:
A =A=
• 矢量(vector) (又称向量):
既有大小又有方向的量,如力、速度、动量。 电磁理论中的矢量:电场强度、磁场强度等。
二、矢量的表示方法: • 图示法:一定长短的有向箭头
矢量的方向
矢量的大小(称为模值、模)
• 写法上:手写带箭头上标的字母,如 A、 a
印刷黑体(仅印刷品中采用)
• 矢量的模值表示为:A 或 A
第一章 矢量分析与场论基础
主要内容:
1.1 矢量的基本运算 1.2 矢量函数 1.3 场论基础 1.4 常用正交曲线坐标系
1.1 矢量的基本运算
1.1.1 矢量的概念
一、标量和矢量:
• 标量(scalar):
只有大小没有方向的量, 用数值表示,如温度、 质量、体积。电磁理论中的标量:电量、电位、 电阻等等
B
A
二、矢量与标量的乘法和除法
• 模值: pA = p A
• 方向:
p>0 p <0
A pA pA
例子: F=ma
• 规则:
设 p , q均为实数
pqA pqA
p
qA
pA
qA
p A B pA pB

.标量场和矢量场(PPT精品)18页PPT

.标量场和矢量场(PPT精品)18页PPT

.标量场和矢量场(PPT精品)
16、人民应该为法律而战斗,就像为 了城墙 而战斗 一样。 ——赫 拉克利 特 17、人类对于不公正的行为加以指责 ,并非 因为他 们愿意 做出这 种行为 ,而是 惟恐自 己会成 为这种 行为的 牺牲者 。—— 柏拉图 18、制定法律法令,就是为了不让强 者做什 么事都 横行霸 道。— —奥维 德 19、法律是社会的习惯和思想的结晶 。—— 托·伍·威尔逊 20、人们嘴上挂着的法律,其真实含 义是财 富。— —爱献 生
谢谢!
51、 天 下 之 事 常成 于困约 ,而败 于奢靡
53、 伟 大 的 事 业,需 要决心 ,能力 ,组织 和责任 感。 ——易 卜 生 54、 唯 书 籍 不 朽。——乔 特
55、 为 中 华 之 崛起而 读书。 ——周 恩来
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档