【教案】 用三边比例关系判定三角形相似(3)

合集下载

相似三角形的判定——利用三边关系PPT课件

相似三角形的判定——利用三边关系PPT课件
知2-练
1.如图,在4×4的正方形网格中,是相似三角形的是 ( C) A.①和② B.②和③ C.①和③ D.②和④
感悟新知
知2-练
2.如图,若A,B,C,P,Q及甲、乙、丙、丁都是方
格纸中的格点,为使△PQR∽△ABC,则点R应是
甲、乙、丙、丁四点中的( C )
A.甲
B.乙
C.丙
D.丁
课堂小结
出热量.
夯实基础·逐点练
5 【南京建邺区期末】下表为几种物质在1标准大气压 下的熔点和沸点,下列说法中正确的是( )
物质 铁 水银 酒精 钨
熔点/℃ 1 535 -38.8 -117 3 410
沸点/℃ 2 750 357 78 5 927
夯实基础·逐点练
11 下列现象中不属于熔化现象的是( B )
A.2.5,3
B.43,53
C.1.6,2.4
D.2.5,3 或43,53或 1.6,2.4
感悟新知
知识点 2 网格上相似三角形的判定
知2-练
例2 图a、图b 中小正方形的边长均为1,则图 b 中的哪一 个三角形 ( 阴影部分 ) 与图 a 中的△ABC 相似?
图a
图b
解题秘方:利用网格的特征用勾股定理求各边的长,
感悟新知
知识点 1 三边成比例的两个三角形相似
知1-导
我们学习过判定三角形全等的 SSS 方法,能不能通过三
边来判定两个三角形相似呢? 任意画 两个三角形△ABC 与△A′B′C′,使△ABC 的边长
是△A′B′C′ 的边长的 k 倍.
分别度量 ∠A和∠A′, ∠B 和 ∠B′ ,∠C 和∠C′ 的大小, 它们分别相等吗 ? 由此你有什么发现 ?
整合方法·提升练

相似三角形的判定(3)教案

相似三角形的判定(3)教案

子长县秀延初级中学教学设计过程,获得结论后,与同伴交流;只要画图和测量尽可能准确,则会得到它们的比值相等,从而初步了解“有两个角对应相等的两个三角形相似”的结论.问题2如图,在△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′,则△ABC~△A′B′C′吗?说说你的理由.判定定理3如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.试一试如图,点D是AB边上一点,且∠ACD=∠B,试问:图中是否存在能够相似的二角形?如果存在,请指出来,并说明理由. 【教学说明】现学现用,巩固所学新知识.问题3对于直角三角形,我们知道“有一条直角边和斜边对应相等的两个直角三角形是全等的”,那么如果两个直角三角形中,有一条直角边与斜边的比对应相等,这样的两个直角三角形相似吗?教师应先与学生一道交流,找出两个直角三角形的已知条件有哪些(用图形和符号语言来表述),从这些条件到所探讨的结论之间还缺少什么条件,能否通过推理计算获得相应条件,从而引出利用勾股定理来探讨第三条对应边之间关系而获得结论.直角三角形相似的特殊判定方法:斜边和直角边对应成比例的两个直角三角形相似. 论应予以帮助,查找问题,尽量让他们也能获得正确结论.教师应引导学生论证上述结论,在学生动笔前给予适当点拨,让学生能独立完成说理.在巡视时,对有困难的学生给予指导,并给出足够的时间,锻炼学生的合情推理能力.让学生独立完成,或相互交流获得论证过程.三、合作研学、重组构建例1教材P35例2.例2如图,Rt△ABC中,CD是斜边AB边上的高线.求证:(1)△ABC~△CBD;(2)CD2=AD•DB.例1可让学生自主探究,独立完成,再相互交流.例2则需师生共同探讨,利用直角三角形及高线定义找出图中能够相等的角,从而获得相似的三角形有哪些,进而可解决问题. 证明过程可由学生自己完成,教师再挑选两至三份作业予以展示,共同评析,达到掌握本节知识的目的.达标检测1.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.2.如图,AD、BE是AABC的高线,它们相交于点 F.求证:AF • DF=BF • EF.3.如图,△ABC中,CD是边AB上的高,且BDCDCDAD,试求∠ACB的大小.课堂小结1.本节学习两种判定三角形相似的方法,它们分别是什么?2.总结一下判定两个直角三角形相似的方法.作业设计必做题:教材P34练习1题2题选做题:3.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,5,6,另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?。

4.4.3利用三边判定三角形相似(教案)

4.4.3利用三边判定三角形相似(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形相似的基本概念、重要性和应用。通过实践活动和小组讨论,加深了对三边判定法的理解。我希望大家能够掌握这些知识点,并在解决实际问题中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
另外,学生在解决实际问题时,往往不知道如何从题目中提取关键信息,运用三边判定法求解。为了帮助学生克服这一困难,我打算在课堂上多设置一些情境题,让学生在实际情境中学会寻找解题线索,培养他们的观察能力和问题解决能力。
此外,小组讨论环节,学生们表现得积极主动,能够充分发表自己的观点,但有时也会出现讨论偏离主题的现象。针对这个问题,我会在下次讨论前,明确讨论要求和目标,引导学生围绕主题展开讨论确保讨论的有效性。
b.在解题过程中,指导学生如何从题目中提取关键信息,识别出可以使用三边判定的条件。
c.通过设置典型例题,引导学生总结解题思路和技巧,培养学生的解决问题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“利用三边判定三角形相似”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否观察过两个三角形看起来非常相似的情况?”比如,两张不同大小的三角形纸片,它们的形状非常相似,只是大小不同。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形相似的奥秘。
五、教学反思
在今天的教学中,我发现学生们对三角形相似的概念有了初步的认识,但在具体运用三边判定法时,还存在一些问题。首先,部分学生在判断三角形是否相似时,容易忽略三边比例相等这一关键条件,导致判断失误。针对这一点,我计划在接下来的课程中,通过增加典型例题的讲解,让学生反复练习,以便加深他们对判定条件的理解。

三边对应成比例两三角形相似PPT学习教案

三边对应成比例两三角形相似PPT学习教案

第5页/共15页
A
A’
B
C
A' B' B' C' A' C' AB BC AC
B’
C’
∴△ABC∽△A’B’C’
如果一个三角形的三条边和另一个三角形 的三条边对应成比例,那么这两个三角形相
简似单.地说:三边对应成比例,两三角形相似.
第6页/共15页
在△ABC和△A′B′C′中,已知:AB=6cm,BC=8cm,AC=
探究
边S 边S 边S
A
已知:
AB A1B1
BC B1C1
AC A1C1
.
求证:△ABC∽△A1B1C1. A1
B
C B1
C1
有效利用预备定理去求证。
第4页/共15页
证明:在线段 A1B(1 或它的延长线)上截取
,过A1点DD作AB
的定理可得
,.E∽A1B1C1
三边对应成比例两三角形相似
会计学
1
1. 对应角___相__等__, 对应边—成——比—例——的两个三角形, 叫做相似三角形 .
2. 相似三角形的对——应—角——相—等—, 各对应边成——比—例———。
3.如何识别两三角形是否相似? 1、定义判定 2、相似三角形预备定理:平行于三。角形一边的直
线和其他两边(或两边的延长线)相交,构成的三
A
B
C
第12页/共15页
相似三角形的判定方法: 定义判定法:三角对应相等,三边对 应成比例,两三角形相似。 平行于三角形一边的直线与其他两边( 或延长线)相交,所构成的三角形与原三角 形相似; 三边对应成比例的,两三角形相似.
第13页/共15页
• 不经历风雨,怎么见彩虹 • 没有人能随随便便成功!

新版【冀教版适用】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

新版【冀教版适用】初三数学上册《【教案】 用三边比例关系判定两三角形相似》

用三边比例关系判定两三角形相似一、教学目标知识与技能掌握两个三角形相似的判定条件(三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).过程与方法会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.情感态度与价值观经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.二、重、难点重点:掌握相似三角形的SSS 判定方法,能运用SSS 进行证明难点:熟练应用相似三角形的SSS 判定定理进行证明三、课堂引入1.复习引入(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中, 如果k A C CA C B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有A C CA CB BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?2.教材中的思考,并引导同学们探索与证明.3.【归纳】三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.三、例题讲解例1(补充)如图△ABC ∽△DCA ,AD ∥BC ,∠B=∠DCA .(1)写出对应边的比例式;(2)若AB=10,BC=12,CA=6.求AD 、DC 的长.例2(补充)在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长.四、课堂练习1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有()A.1对B.2对C.3对D.4对3.如图,DE∥BC,(1)如果AD=2,DB=3,求DE:BC的值;(2)如果AD=8,DB=12,AC=15,DE=7,求AE和BC的长.4.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长.。

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

《27.2.1 相似三角形的判定(第3课时)》教学设计-人教九下优质课精品

27.2.1相似三角形的判定(第3课时)一、内容和内容解析1.内容判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.2.内容解析全等是相似中放缩比例为1的特殊情形,这为我们提供了一个思路:类比判定两个三角形全等的“SSS”“SAS”方法,发现并提出判定两个三角形相似的简单方法.在探究“三边成比例的两个三角形相似”的过程中,学生通过度量,发现结论成立,再通过作与△A'B'C'相似的三角形,把证明相似的问题转化为证明所作三角形与△ABC全等的问题.“两边成比例且夹角相等的两个三角形相似”的证法与前一个判定方法的证明方法类似,再次体现了定理“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”的基础性作用.基于以上分析,确定本节课的教学重点是:判定定理“三边成比例的两个三角形相似”和“两边成比例且夹角相等的两个三角形相似”.二、目标和目标解析1.目标(1)理解三角形相似的两个判定定理.(2)会运用三角形相似的两个判定定理解决简单的问题.2.目标解析达成目标(1)的标志是:理解两个判定定理的含义,能分清条件和结论,能用文字语言、图形语言和符号语言表示.达成目标(2)的标志是:会用两个判定定理判定两个三角形相似,从而解决简单的问题.三、教学问题诊断分析在两个判定定理的证明过程中,教科书作了一个中介三角形,使之与要证的三角形相似,再利用相似三角形对应边成比例和已知条件证明“中介三角形”与原三角形全等,这种转化的方法学生往往难以想到.其中通过线段的比相等证明线段相等,不同于以往常用的证明线段相等的方法,也会给定理的证明带来一定难度.基于以上分析,确定本节课的教学难点是:判定定理“三边成比例的两个三角形相似”的证明.四、教学过程设计 1.问题引入,类比猜想问题1 (1)两个三角形全等有哪些简便的判定方法?(2)全等是相似比为1的特殊情形.如图1,类比三角形全等的判定,判定△ABC 与△A'B'C'相似,是否有简便的判定方法?你有什么猜想?师生活动:问题(1)由学生口答.问题(2)组织学生分小组讨论,然后全班交流.如果学生对“两角对应相等的两个三角形相似”是否正确存在疑问,可存疑,留在下一节课解决.对学生提出的判断三角形相似的方法进行归纳整理,指出本节课先研究“三边”和“两边及其夹角”的情形.设计意图:通过全等三角形与相似三角形之间特殊与一般的关系,运用类比的思维方式,让学生猜想出两三角形相似的简单判定方法,从而引出下一步要探究的问题.2.画图探究,初步感知问题2 在△ABC 与△A'B'C'中,如果满足B A AB ''=C B BC ''=C A AC''=k ,那么能否判定这两个三角形相似?师生活动:(1)画图探究.教师引导学生任意画△ABC ,取一个便于操作的k 值(如21,2等),得到△A'B'C'的三边长,再作出△A'B'C'.指导学生把画好的三角形剪下,比较它们的对应角是否相等,判断这两个三角形是否相似.(2)教师借助《几何画板》对k 取任意值的情况进行演示,让学生归纳发现的结论.并说明k =1时两个三角形全等,即全等是相似的特殊情况.设计意图:在教师的指导下,学生通过自己动手,探索新知,并与他人交流探讨,感受探索过程.k 取1时,两个三角形全等,取其他值时,两个三角形相似,进一步感受相似与全等的紧密联系.《几何画板》的动态演示,有利于学生更直观地发现结论.ABCA 'B 'C '图13.构造中介,证明定理问题3 怎样证明“三边成比例的两个三角形相似”呢? 师生活动:(1)学生结合图形写出已知、求证并交流讨论.(2)当学生感到无处入手时,教师用学生剪出的△ABC 与△A'B'C'的纸片为模型,用较小的△ABC 放置于较大△A'B'C'的上(学生取的k 值不同,可能会出现两种图形,但证明的本质是相同的),点A 与点A'重合,点B 在边A'B'上,记为点D ,将点C 在A'C'上的位置记为点E .教师追问1:B'C'与DE 有什么位置关系?为什么? 师生活动:学生直观发现B'C'∥DE .教师追问2:由B'C'与DE 的位置关系可得到△A'DE 与△A'B'C'相似吗?为什么? 师生活动:学生回答由“平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似”,得到△A'DE 与△A'B'C'相似.教师追问3:我们先构造了一个与△ABC 全等的中介△A'DE ,得到△A'DE ∽△A'B'C',然后可得△ABC ∽△A'B'C'.这为我们证明“三边成比例的两个三角形相似”提供了一个思路:能否在△A'B'C'上作一个与△A'B'C'相似的△A'DE ,再证明它与△ABC 全等呢?如何作?师生活动:(1)学生思考交流.教师展示学生的不同作法,并请学生说明△A'DE 与 △ABC 全等的原因.(2)由学生整理出证明思路,教师板书,从而得到三角形相似的判定定理.设计意图:让学生在操作中发现解决问题的方法:作DE ∥B'C',证明△A'DE ∽△A'B'C',从而把证明“△ABC 与△A'B'C'相似”的问题转化为证明△ABC ≌△A'DE 的问题.4.类比实验,自主探究问题4 全等三角形有“SAS ”的判定方法,类似地,△ABC 和△A'B'C'中,如果满足B A AB''=C A AC''=k ,且∠A =∠A',那么能否判定这两个三角形相似? 师生活动:(1)教师借助《几何画板》对k 取任意值的情况进行演示,看△ABC 和△A'B'C'的另一组对应边的比是否为k ,另两组对应角是否相等.问:图中的△ABC 与△A'B'C'相似吗?为什么?学生提出猜想的结论.(2)学生模仿上一个定理的证明,讨论问题4的证明思路,在课后完成证明过程. (3)师生小结判定定理二的内容.并追问:对于△ABC 和△A'B'C',如果B A AB ''=C B BC'',且∠B =∠B',这两个三角形一定相似吗?如果将∠B =∠B'换成∠C =∠C',这两个三角形一定相似吗?为什么?让学生试着画画看,找出反例即可.设计意图:学生有前面探究活动的经验,教师提出问题后,利用《几何画板》辅助,学生容易获取初步结论,而且仿照上一个定理的证明,容易得到这个命题的证明思路.最后,学生通过考虑“两边和其中一边的对角”的情形,加强对三角形相似条件的理解与记忆.5.运用结论,解决问题例 根据下列条件,判断△ABC 和△A'B'C'是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm , A'B'=12 cm ,B'C'=18 cm ,A'C'=24 cm . (2)∠B =120°,AB =7 cm ,AC =14 cm , ∠A'=120°,A'B'=3 cm ,A'C'=6 cm .师生活动:师生共同分析从题干的条件中是否可能得到两个三角形相似的条件,教师提醒学生注意第(2)题中的角是不是已知两边的夹角.设计意图:使学生学会从现有条件中得到判定三角形相似的条件. 6.变式训练,巩固提高判断图中的两个三角形是否相似,并求出x 和y .师生活动:学生自主答题,写出相应的解答过程,然后互评. 设计意图:巩固本节课所学的相似三角形的判定定理. 7.回顾小结回顾本节课的学习,回答下列问题: (1)你学到了哪些判定三角形相似的方法? (2)你认为证明两个三角形相似的思路是什么?设计意图:引导学生归纳本节课的知识点及判定定理的证明思路. 8.布置作业A BDE C y ° x 4530 54 36 46°20 图2152025402745图11.教科书第34页练习第1,3题. 2.教科书第42页习题27.2第2(1),3题.3.证明判定定理“两边成比例且夹角相等的两个三角形相似”(画图,写出已知、求证,并进行证明).六、目标检测设计1.下列条件中可以判定△ABC ∽△C B A '''的是( ). A .AC AB =''''C A B A B .AC AB =''''C A B A ,∠B =∠B' C .B A AB ''=''C A AC =C B BC''D .''B A AB =''C A AC设计意图:考查对三角形相似的两个判定定理的条件特征的理解. 2.如图,已知△ABC ,则下列四个三角形中,与△ABC 相似的是( ).设计意图:考查判定定理“两边成比例且夹角相等的两个三角形相似”的应用. 3.在△ABC 和△A'B'C'中,AB =6,BC =8,AC =5,A'B'=3,B'C'=4,则当A'C'=______时,△ABC ∽△A'B'C'.设计意图:考查用“三边成比例的两个三角形相似”判定两个三角形相似.4.如图,在平面直角坐标系中,A (4,0),B (0,2),如果点C 在x 轴的正半轴上(点C 与点A 不重合),当点C 的坐标为 时,△BOC 与△AOB 相似.设计意图:结合平面直角坐标系的知识,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.5.如图,在正方形ABCD 中,点P 是BC 上的一点,BP =3PC ,点Q 是CD 中点,求证:△ADQ ∽△QCP .ABCDQP (第5题)A B C 555 555 55 56675° 75°30° 40° A B CD(第4题)设计意图:结合勾股定理,考查用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似.。

《27.2.1 三边成比例的两个三角形相似》教案、导学案

《27.2.1 三边成比例的两个三角形相似》教案、导学案

27.2.1 相似三角形的判定第2课时 三边成比例的两个三角形相似【教学目标】1.理解“三边成比例的两个三角形相似”的判定方法;(重点)2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题.【教学过程】一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如图所示的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似【类型一】 直接利用定理判定两个三角形相似在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF =3,EF =4,则△ABC 和△EDF 相似吗?为什么?解析:已知△ABC 和△EDF 都是直角三角形,且已知两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =AB ED,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例.【类型二】网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,判断△ABC和△DEF是否相似,并说明理由.解析:首先由勾股定理,求得△ABC和△DEF的各边的长,即可得ABDE=ACDF=BCEF,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC和△DEF相似.解:△ABC和△DEF相似.由勾股定理,得AB=25,AC=5,BC=5,DE=4,DF=2,EF=25,∵ABDE=ACDF=BCEF=254=52,∴△ABC∽△DEF.方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.【类型三】利用相似三角形证明角相等如图,已知ABAD=BCDE=ACAE,找出图中相等的角,并说明你的理由.解析:由ABAD=BCDE=ACAE,证明△ABC∽△ADE,再利用相似三角形对应角相等求解.解:在△ABC和△ADE中,∵ABAD=BCDE=ACAE,∴△ABC∽△ADE,∴∠BAC=∠DAE,∠B=∠D,∠C=∠E.方法总结:在证明角相等时,可通过证明三角形相似得到.【类型四】利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A,B,C,D之间建有公路,已知AB=14千米,AD=28千米,BD=21千米,BC=42千米,DC=31.5千米,公路AB与CD平行吗?说出你的理由.解析:由图中已知线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB与CD平行.∵ABBD=1421=23,ADBC=2842=23,BDDC=2131.5=23,∴△ABD∽△BDC,∴∠ABD=∠BDC,∴AB∥DC.方法总结:如果在已知条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似”的判定方法.【类型五】利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm,60cm,80cm,另一个三角形教具的一边长为20cm,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,已知一个三角形的三边和另一个三角形的一边,则我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm的边长的对应边为50cm时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:20cm,24cm,32cm;②当长为20cm的边长的对应边为60cm时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:503cm,20cm,803cm;③当长为20cm的边长的对应边为80cm时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm,60cm,80cm,∴另一个三角形对应的三边分别为:12.5cm,15cm,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可避免漏解.三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似;2.利用相似三角形的判定解决问题.【教学反思】因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.27.2.1 相似三角形的判定第2课时三边成比例的两个三角形相似一、学习目标1.初步掌握“三组对应边的比相等的两个三角形相似”的判定方法的判定方法.2.能够运用三角形相似的条件解决简单的问题.二、重点、难点重点:掌握这种判定方法,会运用这种判定方法判定两个三角形相似.难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.三、课堂引入1.复习提问:(1) 两个三角形全等有哪些判定方法?(2) 我们学习过哪些判定三角形相似的方法?(3) 全等三角形与相似三角形有怎样的关系?(4) 如图,如果要判定△ABC与△A’B’C’相似,是不是一定需要一一验证所有的对应角和对应边的关系?2.(1)提出问题:首先,由三角形全等的SSS 判定方法,我们会想如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么能否判定这两个三角形相似呢?3. 探究任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?与同学交流一下,看看是否有同样的结论。

最新北师大版九年级上册数学【教案】利用三边关系判定两三角形相似

最新北师大版九年级上册数学【教案】利用三边关系判定两三角形相似

利用三边关系判定两三角形相似
●教学目的: 使学生掌握三角形相似的判定定理3和它的应用.
●教学重点: 判定定理3
●教学难点: 判定定理3的应用
●教学过程:
复习:
1.判定三角形相似目前有哪些方法?
2.回忆三角形相似判定定理1、2的证明的方法.
新授
(一)导入新课
三角形全等的判定中AA S 和ASA,SAS 对应于相似三角形的判定的判定定理1,2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)
(二) 做一做
画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和A C CA
''都等于给定的值k.
(1)设法比较∠A 与∠A ′的大小;
(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.
改变k 值的大小,再试一试.
定理3:三边:成比例的两个三角形相似.
(三)例题学习
例:如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE
,∠BAD=20°,求∠CAE 的度数.
解:∵AB AD =BC DE =AC AE
, ∴△ABC ∽△ADE(三边成比例的两个三角形相似).
∴∠BAC=∠DAE,
∴∠BAC-∠DAC =∠D AE-∠DAC,
即∠BAD=∠CAE.
∵∠BAD=20°,
∴∠CAE=20°.
三:巩固练习
四、小结
本节学习了相似三角形判定定理3,一定用时要注意它们使用的条件.五、作业:
板书设计:。

相似三角形的判定教案

相似三角形的判定教案

相似三角形的判定教案相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似.③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答.判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似.注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A, ACAB3∴△ADE∽△ABC.DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果)1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形.2.如图所示,DE∥FG∥BC,图中共有相似三角形()A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

九年级数学上册《三条边对应成比例的两个三角形相似》优秀教学案例

九年级数学上册《三条边对应成比例的两个三角形相似》优秀教学案例
4.关注学生个体差异,实施差异化教学
本案例中,教师关注学生的个体差异,针对不同层次的学生布置难易适度的习题。这种差异化教学策略使每个学生都能在课堂上找到适合自己的学习节奏,提高学习效果。
5.反思与评价相结合,促进学生的自主学习
本案例强调反思与评价的重要性,教师通过课堂观察、学生自评和互评等多种方式,全面评估学生的学习效果。这种评价方式有助于学生认识到自己的优点和不足,培养自我反思、自主学习的习惯,为学生的终身学习打下坚实基础。
此外,我还会要求学生在课后进行自我反思,总结自己在课堂上的收获和不足,为下一节课的学习做好准备。通过这样的方式,使学生在完成作业的过程中,进一步巩固和深化对相似三角形性质的理解。
五、案例亮点
1.生活化的情景创设
本教学案例的最大亮点之一是紧密联系学生的生活实际,通过展示校园内外的三角形物体,引导学生从生活中发现数学问题。这种情景创设使得学生对相似三角形的概念有了更直观、生动的认识,激发了他们的学习兴趣,提高了课堂的吸引力。
(三)学生小组讨论
在学生小组讨论的环节,我会将学生分成小组,每组挑选一道具有代表性的习题进行讨论。讨论过程中,学生需要共同分析问题,探讨解题思路,并尝试用相似三角形的性质来解决问题。
我会在各组之间巡回指导,提供必要的帮助和提示,鼓励学生发表自己的观点,倾听他人的意见,通过合作交流,共同解决问题。
(四)总结归纳
(二)过程与方法
1.通过观察、发现、讨论等教学活动,培养学生独立思考、合作交流的能力。
2.引导学生运用已学的几何知识和方法,探索相似三角形的性质,培养学生的创新精神和实践能力。
3.通过解答例题、习题,让学生掌握相似三角形性质的应用,提高学生分析问题和解决问题的能力。
4.鼓励学生将所学知识运用到实际生活中,培养学生的数学应用意识和实际操作能力。

文档:三边成比例的两个三角形相似教案

文档:三边成比例的两个三角形相似教案

学生编号学生姓名授课教师辅导学科九年级数学教材版本上教课题名称相似三角形的判定课时进度总第()课时授课时间7月14日教学目标1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

2.培养学生的观察﹑动手探究、归纳总结的能力,感受相似三角形与相似多边形;相似三角形与全等三角形的区别与联系,体验事物间特殊与一般的关系。

3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。

重点难点重点:判定两个三角形相似的预备定理难点:探究两个三角形相似的预备定理的过程同步教学内容及授课步骤知识点归纳:1、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。

相似用符号“∽”来表示,读作“相似于”。

相似三角形对应边的比叫做相似比(或相似系数)。

2.相似三角形的等价关系:(1)反身性:对于任一△ABC,都有△ABC∽△ABC;(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC(3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。

3、三角形相似的判定(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。

④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。

⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似课程引入:1、相似三角形的定义是什么?如果///,,CCBBAA∠=∠∠=∠∠=∠,//////CAACCBBCBAAB==,那么ΔABC∽ΔA/B/C/2、相似三角形与全等三角形有什么内在的联系呢?全等三角形是相似比为 1 的特殊的相似三角形。

【教案】相似三角形的判定——利用三边关系

【教案】相似三角形的判定——利用三边关系

档相似三角形的判定——利用三边关系【知识与技能】会说判定两个三角形相似的方法:三边对应成比例的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力. 【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理3以及推导过程,并会用判定定理3来证明和计算.【教学难点】相似三角形的判定定理3的运用.一、复习:1.现在要判断两个三角形相似有哪几种方法?有三种方法,(1)是根据定义;(2)判定定理1;(3)判定定理22.如图△ABC 中,D 、E 是AB 、AC 上三等分点(即AD =13AB ,AE =13AC),那么△ADE 与△ABC 相似吗?你用的是哪一种方法?同学们可以动手量一量,量什么东西后可以判断它们能否相似?(可能有一部分同学用量角器量角,有一部分同学量线段,看看能否成比例)无论哪一种,都应肯定他们,是正确的,要求同学说出是应用哪一种方法判断出的。

二、新课讲解 同学们通过量角或量线段计算之后,得出:△ADE ∽△ABC 。

从已知条件看,△ADE 与△ABC 有一对应角相等,即∠A =∠A(是公共角),而一个条件是AD =13AB ,数 AE =13AC ,即是AD AB =13,AE AC =13;因此AD AB =AE AC。

△ADE 的两条边 AD 、AE 与△ABC 的两条边AB 、AC 会对应成比例,它们的夹角又相等,符合上节课我们学习的定理2,同学们再动手测量一下线段DE,及线段BC 的长,你们发现了什么?这个结论我们一会再做总结。

请同学再做一次实验,看看如果两个三角形的三条边都成比例,那么这两个三角形是否相似?看课本69页“做一做”。

通过实验得出:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简单说成:三边成比例两三角形相似。

例5:△ABC 和△A ′B ′C ′中,AB =6cm ,BC =8cm ,AC =l0cm ,A ′B ′=18cm ,B ′C ′=24cm ,A ′C ′=30cm ,试证明△ABC 和△A ′B ′C ′相似。

《用三边比例关系判定两三角形相似》课件

《用三边比例关系判定两三角形相似》课件

方法:首先把两个三角形的边分别按照从小到大的顺
序排列,找出两个三角形的对应边;再分别计算小、
中、大边的比。最后看三个比是否相等,若相等,则
两个三角形相似,否则不相似.
特别地,若三个比相等且等于1,则两个三角形全等.
感悟新知
知2-练
1 如图,若A,B,C,P,Q,甲,乙,丙,丁都是方 格纸中的格点,为使△PQR∽△ABC,则点R应是甲, 乙,丙,丁四点中的( ) A.甲 B.乙 C.丙 D.丁
解法提醒: 利用三边对应成比例判定两三角形相似的方法: ①把两个三角形的边分别按照从小到大的顺序排列,找出两 个三角形的对应边; ②分别计算小、中、大三组对应边的比; ③看三个比是否相等,若相等,则两个三角形相似,否则不 相似.
感悟新知
解:易知 AC 2,BC 2,AB 10.
知识图点(1)中,相三似角三形角的形三的边判长定分定别为理的1,应5,用2 2;
感悟新知
知识点 1 三边成比例的两个三角形相似
知1-讲
(1)如图,在半透明纸上画一个△ABC,使AB=1.5cm,
AC=2. 5 cm,BC=2 cm.再画一个△A′B′C′使A′B′=
3 cm, A′C′=5 cm, B′C′=4 cm.
感悟新知
知1-讲
(2)比较△ABC与△A′B′C′各个角,它们对应相等吗? 这两个三角形相似吗? 把你的结果与同学交流. 我们猜想:三边对应成比例的两个三角形相似.
2.利用三边成比例判定三角形相似的“三步骤”: (1)排序:将三角形的边按大小顺序排列; (2)计算:分别计算它们对应边的比值; (3)判断:通过比较比值是否相等判断两个三角形是否相似.
由勾股定理,得
BC AB2 AC2,BC AB2 AC2 .

九年级数学上册《三条边对应成比例的两个三角形相似》教案、教学设计

九年级数学上册《三条边对应成比例的两个三角形相似》教案、教学设计
-运用启发式教学法,引导学生自主探究相似三角形的性质,培养他们的发现问题和解决问题能力。
-结合直观演示法,利用几何画板等教学工具,形象直观地展示相似三角形的性质。
-采用小组合作、讨论交流等方式,培养学生的团队协作能力和口头表达能力。
2.教学过程:
-导入新课:通过一个实际生活中的问题,引出相似三角形的定义,让学生初步感知相似三角形的应用。
-各小组派代表进行汇报,展示他们的讨论成果。
2.教学目的:
-培养学生的团队协作能力和口头表达能力。
-加深学生对相似三角形性质的理解,拓展他们的思维。
(四)课堂练习
1.教学活动设计:
-设计具有梯度性的练习题,让学生独立完成,巩固相似三角形的性质和判定方法。
-针对不同层次的学生,提供不同难度的题目,使他们在练习中提高。
-激发学生对相似三角形性质的好奇心,调动他们的学习兴趣。
-引导学生从生活中发现数学问题,体会数学与生活的紧密联系。
(二)讲授新知
1.教学活动设计:
-通过几何画板动态演示,让学生直观地观察并发现相似三角形的性质。
-结合教材,讲解相似三角形的定义,阐述三条边对应成比例的两个三角形相似的原因。
-通过具体例子,讲解相似三角形的判定方法,如SSS(Side-Side-Side)判定法。
1.激发学生对数学学习的兴趣,培养他们的学习积极性。
2.培养学生勇于探索、敢于创新的精神,增强他们的自信心。
3.通过相似三角形的学习,让学生感受到几何图形的美,提高他们的审美能力。
4.培养学生严谨、认真的学习态度,使他们认识到细节在数学学习中的重要性。
5.引导学生将数学知识与实际生活相结合,培养他们用数学眼光观察世界的能力。
3.案例分析:结合实际案例,让学生运用相似三角形的判定方法,解决具体问题。

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)

相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。

【说课稿】 用三边比例关系判定三角形相似

【说课稿】 用三边比例关系判定三角形相似

用三边比例关系判定三角形相似尊敬的领导、各位老师,大家好:今天我说课的内容是人教版初中数学九年级下册《相似三角形的判定》第二课时的内容。

我将从教材分析、教法分析、学法指导、教学程序四个方面来对本课进行说明。

教材分析:一、地位和作用在这之前,学生学习了全等三角形的相关知识,相似三角形是全等三角形的拓广和发展,而相似三角形的判定是相似三角形的主要内容之一,相似三角形的判定是进一步对相似三角形的本质和定义的全面研究,也是相似三角形性质的研究基础,同时还是研究圆中比例线段和三角函数的重要工具,可见一相似三角形的判定占据着重要的地位。

二、教学目标基于对教材、教学大纲的认识和学生的已有的认知结构和心理特征的分析,我确定了本节的教学目标:知识目标:1、经历三角形相似的判定定理1 的探索及证明过程。

2、能应用定理1判定两个三角形相似,解决相关问题。

能力目标:让学生经历观察、实验、猜想、证明的过程,培养学生提出问题、分析问题的能力。

情感目标:通过学生积极参与,激发学生学习数学的兴趣,体验数学的探索与创造的快乐。

三、重难点依照教材和教学大纲的要求,为了能更好的完成本节课的教学目标,我制定了本节课教学的重、难点和关键。

重点:本节教学的重点是使学生了解判定定理并学会应用难点:了解判定定理的证明方法是难点关键:即重难点的突破方法(1)判定方法1的探究是让学生通过作图展开的,我们在教学过程中,要通过从作图方法的迁移过程,让学生进一步感受,由特殊的全等三角形到一般相似三角形,以及类比认识新事物的方法.(2)讲判定方法1时,要扣住“对应”二字,一般最短边与最短边,最长边与最长边是对应边.根据以上的教学分析,制定本节课的教法和学法。

教法分析:针对初三学生的年龄特点和心理特征,以及他们的知识水平,根据教学目标,本节课采用探究发现式教学法和参与式教学法为主,利用多媒体引导学生始终参与到学习活动的全过程中,处于主动学习的状态。

学法指导这节课主要采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程。

相似三角形的判定三边对应成比例

相似三角形的判定三边对应成比例

A
5
8
D
10
B 12
C
E
F
变式训练: 如图,已知△ABC与△DEF中,AB=5,BC=12,AC=8, DE=10,则当DF=____,EF=____时,△ABC和△DEF相似.
D
10
A
5
8
E D
F
B 12
C F
10
E F
D
10
E
3:如图,在6×6的正方形方格中,△ABC与△DEF的 顶点都在边长为1的小正方形的顶点上, (1)填空: BC=___2___, AC=___1_0____
你有哪些收获 还有什么疑问吗
课后练习:1、P85练习1-2 2、P89练习4
EF=_2___2__, DF=__2__10_____.
(2)△ABC与△DEF相似 A 吗若相似,请给出证明,若 不相似,请说明理由.
B C
F
D
E
4.如图,
AB AD
=
AC AE
=
BC DE
,
求证:∠1=∠2.
D
A 1
2
E
B
C
判定三角 形相似的 方法
定义 判定方法1 判定方法2 判定方法3 判定方法4
DE=6,EF=9,DF=12
边按大小顺序依次排列,然后 比较它们对应的比值是否相等
不相似
例1:如图已知
AB BC AC AD DE AE
,并说明你的理由.
.找出图中相等的角
解:在ΔABC 和ΔADE 中,
A
ABBCAC AD DE AE
∴ ΔABC∽ΔADE .
E
B
C
D
∴∠BAC =∠DAE , ∠B =∠D , ∠C = ∠E .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

27.2.4 用三边比例关系判定三角形相似
一、教学目标
知识与技能
掌握两个三角形相似的判定条件(三条边的比对应相等,则两个三角形相似)——
相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).
过程与方法
会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题.
情感态度与价值观
经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展同学们的探究、交流能力.
二、重、难点
重点:掌握相似三角形的判定方法,能运用进行证明
难点:熟练应用相似三角形的判定定理进行证明
三、课堂引入
1.复习引入
(1)相似多边形的主要特征是什么?
(2)在相似多边形中,最简单的就是相似三角形.
在△与△A ′B ′C ′中, 如果k A C CA C B BC B A AB =''=''=''. 我们就说△与△A ′B ′C ′相似,记作△∽△A ′B ′C ′,k 就是它们的相似比.
反之如果△∽△A ′B ′C ′,则有A C CA C B BC B A AB ''=''=''.
(3)问题:如果1,这两个三角形有怎样的关系?
2.教材中的思考,并引导同学们探索与证明.
3.【归纳】
三角形相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似.
三、例题讲解
例1(补充)如图△∽△,∥,∠∠.
(1)写出对应边的比例式;
(2)若10126.求、的长.
例2(补充)在△中,∥,,1,4,5,求的长.
四、课堂练习
1.(选择)下列各组三角形一定相似的是()A.两个直角三角形B.两个钝角三角形
C.两个等腰三角形D.两个等边三角形
2.(选择)如图,∥,∥,则图中相似三角形一共有()
A.1对B.2对C.3对D.4对
3.如图,∥,
(1)如果2,3,求的值;
(2)如果8,12,15,7,求和的长.
4.如图,在□中,∥,2:3,4,求的长.。

相关文档
最新文档