铅酸电池充放电特性

合集下载

铅酸电池充放电特性

铅酸电池充放电特性

密封铅酸蓄电池的充放电特性电源技术 2009-04-04 10:33 阅读360 评论0字号:大中小1、电池的放电特性电池的放电特性是一组曲线(见图1)。

在一定的环境温度下(图中为25℃),随放电电流的不同,电池端电压与放电时间的关系称为放电曲线。

由放电曲线可以看出如下特性:(1)放电时间最长的曲线,放电时间为10小时,电流恒定,我们称之为10小时放电率曲线,由此测定的电池容量用C10表示C10=6A×10h=60Ah如果用1小时恒流放电来测定这同一只电池,则C1=41.9A×1h=41.9Ah由此可见电池的容量是在标定了放电制式之后才是一个可比的确定值。

(2)无论放电电流大小,在放电的初始阶段都会使端电压下降较多,然后略有回升的现象,这是因为电池从充电状态转变为放电状态的瞬间,电池极板附近的电荷快速释放出来,而离极板较远的电荷需要逐渐运送到极板附近,然后才能释放出来,这个过程形成了电池端电压有较大的低谷。

(3)无论放电电流大小,电池端电压最终将出现急剧下降的拐点,以这些曲线的拐点连接得到的曲线就称为安全工作时的终止电压曲线,UPS的电池电压工作终点都是设计在这条拐点曲线附近的。

拐点之后的曲线具有电压急剧下降的趋势,直到放电曲线的终点,这些终点连接得到的曲线称为最小终止电压曲线,它表示放电电压低于此曲线后将造成电池的永久性失效,即电池不能再恢复储电能力。

由此可见UPS中设计有防止电池深度放电的保护功能是极为必要的。

2、电池的充电特性电池的充电特性曲线也是在25℃温度下测量和标度的(见图2)。

充电曲线通常有三条:(1)充电电流曲线:在充电开始阶段,充电电流是一个恒定值,随着充电时间的推移,充电电流逐渐下降,并最终趋于0。

这是由于在放电过程中,电池内的电荷大量流失,由放电转变为充电时,电荷的增长速度较快,化学反应将产生大量的气体和热量,对于密封电池来说,即使通过安全阀可以将气体和热量排放掉,但氢离子和水将同时损失掉,使电池的储能下降,因此必须限定充电的电流值,随着电池容量的恢复,充电电流将自动下降。

铅酸电池知识

铅酸电池知识

铅酸蓄电池的电压与充电放电特性一、铅酸蓄电池的电动势和开路电压1、电动势定义电池在开路时,正极平衡电极电势与负极平衡电极电势之差,由电池中进行的反应所决定,与电池的形状、尺寸无关。

电动势表达式为:E=Eθ+RT/nFlna(H2SO4)/a(H2O)式中 E——电池电动势;Eθ——所有反应物的活度或压力等于1时的电动势,称为标准电动势(V);R——摩尔气体常数,为8.3J/(Kmol);T——温度(K);F——法拉弟常数(96500C/mol);n——电化学反应中的电子得失数目。

电动势是电池在理论上输出能量大小的量度之一,如果其它条件相同,电动势愈高的电池,理论上能输出的能量就愈大,实用价值就愈高。

2、电动势的产生电动势也等于组成电池的两个电极的平衡电势之差,即E=φe,+-φe,-,式中φe即为平衡电极电势。

电极电势的产生,与建立双电层有关。

将一金属电极插入含有该金属离子的溶液中,由于该离子在金属中与溶液中的化学势不同,因而发生金属离子在电极与溶液之间的转移。

在静电力作用下,这种转移很快达到动态平衡。

这时电极表面所带电荷符号与电极表面附近溶液层中离子所带电荷符号相反,数量相等,于是在电极与溶液的界面处形成双电层,对应于双电层的建立,电极和溶液间便产生一定的电势差,称为平衡电极电势。

电极电势的符号和数值取决于金属的种类和溶液中离子的浓度。

电极电势φe实际上由两部分组成,即紧密层电势和分散层电势。

3、开路电压电池在开路状态下的端电压即开路电压,也是两极的电极电势之差,但不是平衡电势,而是稳定电势或混合电势之差。

理论上,电池的开路电压不等于电动势,但数值上可能要接近。

铅酸蓄电池的电动势的电动势是硫酸浓度的函数。

开路电压也是硫酸浓度的函数。

电池的开路电压与电解液密度的关系可用下式计算:开路电压=d+0.85式中d——在电池电解液的温度下,电解液的密度(g/cm3)4、稳定电势的建立电极金属离子与溶液中金属离子间建立的动态平衡Me—2e Me2+ (1)它只是一种理想状况,如上述平衡电极电势的建立。

储能技术习题答案4

储能技术习题答案4

第4章习题答案4-1铅酸电池的原理是什么?请写出它的反应方程式。

解:传统铅酸电池的电极由铅及其氧化物制成,电解液采用硫酸溶液。

在充电状态下,铅酸电池的正极主要成分为二氧化铅,负极主要成分为铅;放电状态下,正负极的主要成分均为硫酸铅。

放电时,正极的一氧化铅与硫酸反应生成硫酸铅和水,负极的铅与硫酸反应生成硫酸铅;充电时,正极的硫酸铅转化为二氧化铅,负极的硫酸铅转化为铅。

铅酸电池反应如下。

正极:PbO2+3H'+HSO;+2e^PbSO4+2H2O负极:Pb+HSO;<=>PbSθ4+H,+2b总反应:Pbθ2÷Pb+2H2SO4<=>2PbSθ4+2H2O4-2请简述铅酸电池的工作方式。

解:铅酸电池主要有充电放电制和定期浮充制两种充电方式。

充电放电制是指铅酸电池组充电过程与放电过程分别进行的一种工作方式,即先用整流装置给铅酸电池组充满电后,再由铅酸电池的负载供电(放电),然后再充电、再放电的一种循环工作方式。

充电放电制主要用于移动型铅酸电池组。

例如,汽车摩托车启动用铅酸电池组、铅酸电池车辆用铅酸电池组等,当有两组相同型号的固定型铅酸电池组,一组工作, 而另一组备用时,一般也采用这种工作方式。

定期浮充制就是整流设备与铅酸电池组并联并定期轮流向负载供电的一种工作方式。

也就是说,由整流设备和铅酸电池组所构成的直流电源,部分时间由铅酸电池向负载供电;其他时间由整流设备浮充铅酸电池组供电,即整流设备在直接向负载供电的同时,还要向铅酸电池充电(浮充),以补充铅酸电池放电时所消耗的能量以及因局部放电所引起的容量损失。

4-3简述铅酸电池的充放电特性。

解:铅酸蓄电池充电曲线如下图所示,其内部反应如下:图4-17习题4-3示意图(1)在电池充入电量至70%~80%之前,利用整流器的限流特性维持充电电流不变,此 过程电池端电压几乎呈直线上升;(2)当电流的端电压上升至稳压点附近时,由于充电历程已到中后期,此时正极板上 PbSO4数量已不多,使交换电流密度随反应面积的变小而增大,所以电化学极化作用己经变 小,而电池内阻也明显减少。

分析锂电池包和铅酸电池的充放电效率对比

分析锂电池包和铅酸电池的充放电效率对比

分析锂电池包和铅酸电池的充放电效率对比锂电池包与铅酸电池这两者经常会被大家进行比较,尤其是在UPS应用方面。

主要因为锂电池包与铅酸电池是现在UPS上最常用的储存能量的电池。

其中铅酸电池是从UPS出现起就沿用至今的储能电池,而锂电池包是近几年迅速发展起来的相较于铅酸电池有着更多优势的储能电池。

锂电池UPS相较于铅酸UPS有着众多的优势之处,在这些优势之中,锂电池包与铅酸电池充放电效率的差异也是一大对比之处。

锂电池包和铅酸电池的充放电效率对比锂离子电池放电时,它的工作电压总是随着时间的延续而不断发生变化,用电池的工作电压做纵坐标,放电时间,或容量,或荷电状态(SOC),或充放电深度(DOD)做横坐标,绘制而成的曲线称为充放电曲线。

根据充放电曲线,可以判断电池工作性能是否稳定,以及电池在稳定工作时所允许的最大电流。

以下两张图分别是铅酸电池和锂电池包的充放电曲线,从曲线图中可以直观的得出两者的充放电效率,哪种电池效率更高,大家自己也能判断。

对于同样的完全充电的铅酸电池,在相同的温度下,采用不同倍率的放电电流,其放电输出特性有很大的差别,造成动力不稳定。

铅酸电池充放电曲线对于同样的完全放电的锂电池包,在相同的温度下,采用不同倍率的放电电流,其放电输出特性非常稳定,与铅酸电池相比充放电效率要高许多。

锂电池包充放电曲线除了充放电效率方面,锂电池包相较于铅酸电池有优势,在其他一些方面,锂电池包也有着许多的优势之处。

锂电池包和铅酸电池的其他方面对比体积重量同等体积下,锂电池包的体积和重量均为铅酸的三分之一,能够有效节省安装空间,更有利于空间的规划,便于集中管理,减少运维成本。

材料组成锂电池包一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。

铅酸电池是一种电极主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。

锂电池包的组成材料相较于铅酸电池在安全环保方面都有着很大的优势,如果锂电池包发生泄漏,泄漏出的液体也不会对工作人员及周围环境产生较大的威胁。

铅酸蓄电池充放电的原理

铅酸蓄电池充放电的原理

铅酸蓄电池充放电的原理铅酸蓄电池作为一种化学电源,广泛应用于各个领域。

接下来,我们将详细介绍铅酸蓄电池的充放电原理。

一、铅酸蓄电池结构铅酸蓄电池的基本结构由正负极板和电解液组成。

正极板上的活性物质为二氧化铅(PbO2),负极板上的活性物质为绒状铅(Pb)。

电解液主要为硫酸(H2SO4)。

在电池内部,正负极板分别与电解液形成半电池,两个半电池相互连接,构成一个完整的铅酸蓄电池。

二、充放电过程1.放电过程放电过程中,正极板上的二氧化铅得到电子,负极板上的绒状铅失去电子。

电子通过外部电路流动,形成电流。

同时,正负极板上的硫酸铅(PbSO4)逐渐积累,电解液浓度下降。

2.充电过程充电过程中,外部电源对电池进行反向充电,使得负极板上的硫酸铅逐渐转化为二氧化铅,正极板上的二氧化铅转化为硫酸铅。

电解液中的硫酸铅离子得到电子,生成硫酸。

随着充电的进行,电解液浓度逐渐升高,直至达到充电完成。

三、充放电特性1. 自放电特性铅酸蓄电池在储存过程中,由于内部化学反应的进行,会自然放电。

自放电速率受温度、电解液密度等因素影响。

2.极化现象随着放电过程的进行,正负极板上的硫酸铅逐渐积累,导致极板电势发生变化。

正极板电势逐渐趋向于负,负极板电势逐渐趋向于正。

极化现象加剧,会影响电池的放电性能。

3.充电特性充电过程中,电池内部发生化学反应,电解液浓度逐渐升高。

当电解液浓度达到一定值时,电池充电完成。

此时,正负极板上的活性物质分别为二氧化铅和绒状铅。

总之,铅酸蓄电池的充放电原理涉及活性物质的转化、电解液浓度的变化以及电流的流动。

了解这些原理,有助于我们更好地掌握铅酸蓄电池的使用和维护方法,确保电池性能的稳定。

蓄电池名词解释和特性说明

蓄电池名词解释和特性说明

铅酸蓄电池特性说明&&名词解释(本文内容为普通蓄能类铅蓄电池)一.STANDBY USE/CYCLING USE 浮充使用/循环使用I nitial current :less than 1.75A:初始电流不超过1.75A。

一般充电时,电池在未接入回路时内阻可能很小,为保护电池充电电流不能太大。

Standby use :浮充使用:表示长时间持续充电,只有需要时才放电。

如UPS。

Cycling use :循环使用:表示快速的充放电使用。

如电动车,需要经常性充电。

以上仅为某一品牌电池铭字简解,不同品牌略有差异。

二.放电电流/终止电压放电是蓄电池的最基本功能。

但过放电却能导致蓄电池性能急剧下降甚至永久性损坏。

在寿命功效最大化的情况下,蓄电池放电应在0.05C—3C之间。

汽车蓄电池等某些特殊用途的蓄电池,瞬间放电10倍C(C为25℃下标称容量)甚至以上,也只是瞬间而已。

一般铅蓄电池的放电电流和终止电压具有“类负相关”关系。

不同品牌的铅蓄电池,放电电流/终止电压略有不同,其极板材质、化学成分和制作工艺导致差异的存在。

超过某一放电电流下终止电压的下限额度就会发生过放电。

若难免而发生了反复过放电情况,应及时充电甚至维护。

以下为某一品牌铅蓄电池放电电流/终止电压数据:正常工作温度25℃下,三.放电容量不同放电率下蓄电池容量不同。

以下为某一品牌铅蓄电池不同放电电流下的放电容量。

结论得出:放电电流Ix越大,电池所能放出的容量Cx越小。

铅蓄电池标称容量一般是:20—25℃左右的时候,10小时的放电量,就是标称容量。

进而可以得出,0.1C的放电量,可以放电10个小时。

四.其他注意事项①.温度.铅蓄电池正常温度范围为15℃—50℃。

温度过高过低,都会影响性能。

建议长期使用温度20℃—40℃。

对于60V以下蓄电池,温度补偿不明显,可以不予考虑。

②.充电电流/功率.铅蓄电池正常充电电流应小于0.25C。

充电电压应小于14.5(快速循环充放电时,充电电压要小于15V)。

试析铅酸蓄电池结构与充放电特性

试析铅酸蓄电池结构与充放电特性

试析铅酸蓄电池结构与充放电特性摘要:铅酸蓄电池分固定式和移动式两种。

移动式铅酸蓄电池主要用于车辆和船舶,设计时着重考虑使其体积小、重量轻、耐振动和移动方便;固定式铅酸蓄电池在设计时则可少考虑移动的要求,而着重考虑容量大、寿命长,可制成大容量蓄电池。

目前,发电厂中普遍采用固定式铅酸蓄电池,以下试析铅酸蓄电池基本构造及充放电特性等。

关键词:铅酸蓄电池;基本构造;充电;放电;特性1 铅酸蓄电池基本结构铅酸蓄电池的主要组成部分为正极板、负极板、电解液和容器。

正极板一般做成玻璃丝管式结构,增大极板与电解液的接触面积,以减小内电阻和增大单位体积的蓄电容量。

玻璃丝管内部充填有多孔性的有效物质,通常为铅的氧化物;玻璃丝管可以防止多孔性有效物质的脱落。

负极板为涂膏式结构,即将铅粉用稀硫酸及少量的硫酸钡、松香等调制成糊状混合物,填在铅质或铅合金栅格骨架上。

为了增大极板与电解液的接触面积,表面有棱纹凸起。

极板经过特殊处理加工后,正极板的有效物质为褐色的二氧化铅PbO2,负极板的有效物为灰色的铅棉。

为了防止极板之间发生短路,在正、负极板之间用微孔材料隔板隔开。

而正、负极板浸没于电解液中,上缘比电解液面低10mm以上。

电解液是由纯硫酸(H2SO4)和蒸馏水配制而成的稀硫酸。

电解液密度的高低,影响着蓄电池容量的大小。

电解液密度过小,产生的离子少,蓄电池的内阻相应加大,使放电时消耗的电能加大,容量减小。

电解液密度愈大,蓄电池容量愈大。

但如果电解液密度过高,蓄电池极板受腐蚀和隔离物损坏也就愈快,缩短了蓄电池的寿命。

2 蓄电池的充电特性蓄电池充电后,正极板恢复为原来的二氧化铅PbO2,负极板恢复为原来的铅棉Pb ,并生成硫酸H2SO4 ,电解液由稀变浓,即其密度将恢复为原来的规定值。

从充电和放电的化学反应式可看出,蓄电池的充电和放电过程是一个可逆的化学变化过程。

充电时,电解液变浓,密度增大,放电时,电解液变稀,密度减小。

2.1恒流充电特性当蓄电池以恒定不变的电流进行连续充电时,充电初期,两极板上立即有硫酸析出,有效物质细孔内的电解液密度骤增,蓄电池电动势很快上升,必须提高外加电压,才能保持恒定的电流充电。

铅酸蓄电池特点

铅酸蓄电池特点

铅酸蓄电池特点铅酸蓄电池特点铅酸蓄电池是一种常见的储能设备,广泛应用于汽车、UPS、太阳能发电系统等领域。

它具有以下特点:一、化学反应机制铅酸蓄电池的正极为氧化铅(PbO2),负极为纯铅(Pb),电解液为稀硫酸溶液。

在充电时,外部电源提供直流电,使氧化铅还原成铅酸和水,同时纯铅被氧化成二价离子Pb2+,溶于电解液中。

在放电时,二价离子Pb2+与硫酸根离子SO42-结合形成四价离子PbSO4,并释放出两个电子,这些电子通过外部负载流回正极,氧化还原反应继续进行。

二、容量与工作原理1. 容量铅酸蓄电池的容量通常用安时(Ah)表示。

容量大小取决于正极和负极的表面积、活性物质的含量以及电解液浓度等因素。

2. 工作原理在充放过程中,正负极上都会发生物理和化学变化。

充电时,氧化铅被还原成铅酸和水,同时纯铅被氧化成二价离子Pb2+,溶于电解液中。

放电时,二价离子Pb2+与硫酸根离子SO42-结合形成四价离子PbSO4,并释放出两个电子,这些电子通过外部负载流回正极,氧化还原反应继续进行。

三、优点1. 价格低廉铅酸蓄电池是一种价格相对较低的储能设备。

2. 长寿命在合适的使用条件下,铅酸蓄电池可以拥有较长的使用寿命。

3. 安全性高铅酸蓄电池不易引起火灾或爆炸等事故,安全性较高。

4. 可靠性强由于铅酸蓄电池是一种成熟的技术,在使用过程中可靠性较高。

5. 具有自放电特性铅酸蓄电池具有自放电特性,在长时间不使用时也能保持一定的充电状态。

四、缺点1. 重量大由于铅酸蓄电池的正负极均为铅,因此它的重量相对较大。

2. 能量密度低铅酸蓄电池的能量密度相对较低,无法满足某些高功率、高能量应用的需求。

3. 环保性差铅酸蓄电池中含有大量的铅和硫酸等有害物质,废弃后会对环境造成一定的污染。

五、应用领域1. 汽车起动电源铅酸蓄电池是汽车起动电源的主要储能设备,在汽车行业得到广泛应用。

2. 太阳能发电系统太阳能发电系统需要储存太阳能发出的电能,铅酸蓄电池是其中一种常见的储能设备。

12v12a铅酸电池放电电流

12v12a铅酸电池放电电流

12v12a铅酸电池放电电流12V 12A铅酸电池放电电流铅酸电池是一种常见的蓄电池,具有较高的能量密度和较低的成本,因此在各种应用中广泛使用。

其中,12V 12A铅酸电池是一种常见的规格,本文将探讨其放电电流及其相关内容。

我们需要了解电池的放电特性。

铅酸电池的放电电流是指在放电过程中,电流从电池正极流向负极的大小。

对于12V 12A铅酸电池来说,其放电电流为12安培(A),即在放电过程中,电池会提供12安培的电流给外部电路使用。

接下来,我们来探讨一下12V 12A铅酸电池放电电流的应用领域。

由于其较为适中的电流输出,这种规格的铅酸电池常被应用于一些中小功率的电子设备中。

例如,安防监控系统中的摄像头、家用电器中的逆变器以及一些便携式电子设备中的电源等。

这些设备通常需要较长的使用时间,因此需要一种能够提供持续稳定电流输出的电池。

12V 12A铅酸电池的放电电流也与电池的容量有一定的关系。

电池容量是指电池能够存储的电荷量,单位通常为安时(Ah)。

对于12V 12A铅酸电池来说,其容量并未明确给出,但通常在商业市场上能够找到的12V 12A铅酸电池的容量为20Ah左右。

因此,这种电池在放电过程中,可以持续提供12安培的电流,供电时间大约为1.6小时左右。

我们也需要关注电池的放电特性及其对电池寿命的影响。

铅酸电池放电时,电池内部的化学反应会产生一些副产物,例如硫酸、铅酸等。

这些副产物会逐渐堆积在电池的正负极板上,导致电池的容量逐渐下降。

因此,在使用12V 12A铅酸电池时,我们应该避免过度放电,以延长电池的使用寿命。

一般来说,当电池电压降至11V左右时,就应该停止使用并进行充电。

我们还需要了解一些与12V 12A铅酸电池放电电流相关的安全注意事项。

首先,在使用电池时,应遵循正确的电路连接方式,确保正负极连接正确,以免发生短路或火灾等危险。

其次,电池在放电时会产生一定的热量,因此应确保电池周围有足够的通风空间,以防止过热。

3-蓄电池的工作原理与特性

3-蓄电池的工作原理与特性
普通规定铅蓄电池的额定开路电压为2.0V。
开路电压(静止电动势)公式
1)当温度为25℃时:
Es=0.84+ρ25℃(V)
式中:Es—静止电动势(V)
0.84—温度换算系数
ρ25℃--25℃时的电解液密度(g/cm3)
汽车用蓄电池的电解液密度普通在1.12-1.30g/cm3之
间,因此ES=1.97~2.15(V)
2)当温度不为25℃时,密度修正为:
ρ25℃=ρ+β(t-25)
式中:ρ—实测密度(g/cm3)
β—密度的温度换算系数。数值为0.00075g/cm3.含义为:电解液温升1℃,密度下降0.00075g/cm3.
t—实测温度(℃)
(3)蓄电池端电压的测量
端电压包括开路电压、放电电压和充电电压,取决于蓄电池的工作状况。
度过高、过低时,电
解液的电阻都会增大。
因此,适当采用低密度电解液和提高电解液温度(如冬
季对电池采取保温措施),对降低蓄电池内阻、提高起动性
能十分有利。
2、蓄电池的内阻
(1)组成
电解液电阻、极板电阻、隔板电阻、联条与极柱接触电
阻等。
(2)影响因素1)放电程度
放电程度越高,PbSO4越多,极板电阻越大。
电解液的电阻与其密度和温度有关。如6-Q-75型铅酸蓄电池在温度为+40C时的内阻为0.01Ω,而在-20C时内阻为0.019Ω,可见,内阻随温度降低而增大。
电解液电阻与密度的关系如图2-22所示。由图可见,
电解液密度为
1.20g/cm3(15C)
时其电阻最小。同时,
在该密度下,电解液
的粘度也比较小。密
1)开路电压:在发机电未正常工作时测量的蓄电池端电压为开路电压。普通为12V。

铅酸蓄电池放电特性图文说明

铅酸蓄电池放电特性图文说明

蓄电池放电特性图文说明铅蓄电池的放电特性就是指蓄电池的在恒定流放电状态下的电解液相对密度ρ(15℃)、蓄电池端电压Uf随放电时间变化的规律,图5-11是将某型号铅蓄电池以5A进行放电时测得的规律曲线。

电解液相对密度是随放电时间的增大按直线规律减小的。

因为在恒流放电中,单位时间的硫酸消耗量是一个定值的缘故。

铅蓄电池的放电程度和电解液相对密度成正比。

电解液相对密度每下降0.04,蓄电池约放掉25%额定容量Qe的电量。

图5-11 放电特性曲线图5-12 充电特性曲线放电过程中,端电压的变化规律由三个阶段组成:第一阶段(OA):端电压由2.11V迅速下降到2.0V左右。

这是因为放电前尖入极活性物质孔隙内部的硫酸迅速变为水,而极板外部的硫酸还来不及向极板孔隙内渗透;析板内部电解液相对密度迅速下降,端电压迅速下降。

第二阶段(AB):端电压由2.0V下降到1.95V,基本呈直线规律缓慢下降。

这是因为该阶段单位时间极板孔隙内部消耗的硫酸量与孔隙孔外部向极板孔隙内部渗透补充的硫酸量相等,处于一种动平衡状态的缘故。

第三阶段:端电压迅速由1.95V下降到1.75V。

其原因是:极板表面已形成大量硫酸铅(其体积是海绵状铅的2.68倍,是二氧化铅的1.86倍),堵塞了了孙隙,渗透能力下降;同时单位时间的渗透量小于极板内硫酸的消耗量,极板内电解液相对密度迅速下降,此时应停止放电,如果继续放电,端电压在短时间内将急剧下降到零,致使蓄电池过度放电,导致蓄电池产生硫化故障,缩短其使用寿命。

蓄电池电到终止电压时应及进停止放电,极板孔隙中的电解液与整个容量中的电解液相互渗透,趋于平衡,电池的端电压会有所回升。

铅蓄电池放电终了特征是:单格电池电压下降到放电终止电压(以20h放电率放电时终止电压为1.75V);电解液相对密度下降到最小值。

放电终止电压与放电电流大小有关,放电电流越大,连续放电的时越短,允许的放电终止电压也越低,见表5-4。

蓄电池的充放电特性

蓄电池的充放电特性

蓄电池的充放电特性.txt小时候觉得父亲不简单,后来觉得自己不简单,再后来觉得自己孩子不简单。

越是想知道自己是不是忘记的时候,反而记得越清楚。

蓄电池的充放电特性2010-08-23 网络转载蓄电池具有自放电效应。

从生产制造车间到用户使用,大约要延误数月的时间。

以PA-NASONIC 蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。

蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。

目前在UPS中普遍采用两种充电方式:浮充和脉充。

所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。

脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。

1.充电电压由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。

为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。

对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。

浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。

当浮充电压超过14V时,即认为是过电压充电。

严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。

2.充电电流蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。

举例来讲,如果是100Ah 的蓄电池:C为100A。

松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。

充电电流过大或过小都会影响蓄电池的使用寿命。

理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。

72v20ah铅酸放电电流

72v20ah铅酸放电电流

72v20ah铅酸放电电流近年来,72v20ah铅酸电池在各种电动设备中得到了广泛应用。

本文将从四个方面对72v20ah铅酸电池进行详细分析,以帮助大家更好地了解这一产品。

一、了解72v20ah铅酸电池的基本参数72v20ah铅酸电池,从名称上看,其电压为72V,容量为20Ah。

这是一种中型电池,适用于功率较大的电动设备。

其重量约为20-30公斤,尺寸为长×宽×高约为500×400×300mm。

二、分析72v20ah铅酸电池的放电特性72v20ah铅酸电池的放电电流一般在5-15Ah之间,放电速率较慢。

在正常使用条件下,电池可维持较长时间的使用。

需要注意的是,电池的放电电流与电动设备的功率密切相关,过高或过低的放电电流都会影响电池的使用寿命。

三、探讨72v20ah铅酸电池在不同应用场景下的表现1.电动自行车:72v20ah铅酸电池适用于功率较大的电动自行车,可以满足日常通勤需求。

在正常使用条件下,电池可维持约30-40公里的续航里程。

2.电动滑板车:72v20ah铅酸电池适用于中短途运输的电动滑板车。

电池容量较大,可满足用户在平坦道路上的行驶需求。

3.电动工具:72v20ah铅酸电池在电动工具中的应用也较为广泛。

例如,电动扳手、电动螺丝刀等功率较大的工具都可以使用这种电池。

4.太阳能储能系统:72v20ah铅酸电池可用于太阳能储能系统,满足家庭或小型商业场所的电力需求。

四、总结72v20ah铅酸电池的优缺点优点:1.容量较大,续航能力强。

2.价格相对较低,适用于各类电动设备。

3.技术成熟,性能稳定。

缺点:1.充电速度较慢,充电次数有限。

2.重量和体积较大,搬运不便。

3.环境污染较严重,回收处理成本高。

综上所述,72v20ah铅酸电池在众多电动设备中具有广泛的应用前景。

然而,随着新技术的不断发展,如锂离子电池等,72v20ah铅酸电池在未来可能会逐渐被更环保、性能更优越的电池取代。

蓄电池参数、规格特性解读

蓄电池参数、规格特性解读

铅酸蓄电池参数、规格特性及其解读本文以汤浅NP系列蓄电池为例,对其相关参数进行解读,包括:电池各小时率容量、电池放电C率以及电池放电时间速查表、放电特性曲线、限流恒压充电特性曲线、电池温度与放电容量曲线、电池自放电曲线的解读。

1. 各小时率容量下图是汤浅NP系列铅酸蓄电池的规格参数,以“NP4-6”型号为例:4为电池容量,单位为AH,6为标称电压,单位为V。

但是可以看到,在20h率时,电池容量为4AH,10小时率时,其容量仅为3.7HA。

那么,不同的小时率是什么意思呢,为什么在不同小时率下的容量会不一样呢?下面进行逐一解答。

①电池放电电流(放电时间)与容量的关系先说结论:电池容量随着放电电流的增大而减小。

下图是通过蓄电池充放电综合测试仪进行试验后得到的铅酸蓄电池恒流放电散点图:可以看出放电电流越大,电压下降越快。

因为放电电流越大,放电程度越深,内阻升高的越快,其电压降也随之升高,端子压降便降低的越快。

同时,根据P=I²R可知,在电池内阻一定的情况下,放电电流越大,那么内阻损耗越大,电池实际容量就越小。

反过来,放电时间越短,那么其放电电流越大,电池容量便越小。

②各小时率容量由于电池的实际容量是随着放电时间的变化而变换,因此,必须在一个统一的标准下来确定其标称容量。

国内为C10标准,即电池在放电10小时、单格电池电压不小于1.75V情况下的容量为标称容量。

国外的部分厂家为C20标准,我们再回头看上面的参数,汤浅NP系列的电池在放电20小时的容量即为其标称容量。

实际上,关于这一点,GB51194-2016《通信电源设备安装工程师设计规范》中便有相关的说明。

下表即是摘自其中,同样地,电池放电时间越短,其实际容量越小。

需要进一步了解的读者可以查看《关于UPS系统电池组配置方法的探讨》这篇文档。

2. 电池放电C率电池放电C率表示电池放电电流与标称容量的比率,如对于0.8AH的电池,0.05C表示放电电流为0.05×800mAH=40mA。

72v铅酸电压参数

72v铅酸电压参数

72v铅酸电压参数72V铅酸电压参数铅酸电池是一种常见的储能设备,被广泛应用于电动车、太阳能储能系统等领域。

其中,72V铅酸电池是一种常见的规格,具有一定的特点和参数。

本文将从充放电特性、容量、寿命和安全性等方面介绍72V铅酸电池的主要参数。

一、充放电特性72V铅酸电池的充放电特性是指其在充电和放电过程中的性能表现。

充电特性主要包括充电电压、充电电流和充电效率。

放电特性主要包括放电电压、放电电流和放电时间。

1. 充电特性72V铅酸电池的充电电压通常为84V左右,充电电流一般为电池容量的0.1C,充电效率在80%以上。

充电过程中,需要控制好充电电压和电流,以避免过充和过流的情况发生,保证电池的安全和寿命。

2. 放电特性72V铅酸电池的放电电压范围通常为60V-72V,放电电流根据不同应用场景而有所不同。

放电时间取决于电池容量和负载功率的大小。

放电过程中,需要注意避免过放,以免对电池产生不可逆的损害。

二、容量72V铅酸电池的容量是指在标准条件下所能释放的电荷量。

容量的单位一般为安时(Ah)。

不同的电池厂家和型号会有不同的容量值,一般在20Ah到100Ah之间。

容量越大,电池所能提供的电能就越多,使用时间也更长。

三、寿命72V铅酸电池的寿命是指在正常使用条件下,电池能够保持正常性能的时间。

寿命与充放电循环次数和工作温度有关。

一般情况下,72V铅酸电池的寿命可以达到300-500次充放电循环。

同时,高温和低温环境对电池的寿命也有一定的影响,应尽量避免极端温度环境下使用。

四、安全性72V铅酸电池的安全性是指电池在正常使用过程中的安全性能。

铅酸电池属于一种相对安全的电池类型,但仍需注意以下几点:1. 充电时要使用合适的充电器,避免过充;2. 放电过程中要避免过放,以免损坏电池;3. 避免短路和过流,以防电池发生过热或爆炸;4. 避免电池长时间存放不用,以免自放电过大而损坏电池。

72V铅酸电池作为一种常见的储能设备,具有充放电特性、容量、寿命和安全性等参数。

铅酸蓄电池常见基本知识

铅酸蓄电池常见基本知识

铅酸蓄电池常见基本知识1、铅酸蓄电池的发展历史和现状2、阀控式铅酸蓄电池的定义3、阀控式铅酸蓄电池的分类4、阀控式铅酸蓄电池的基本原理5、阀控式铅酸蓄电池的性能参数6、阀控式铅酸蓄电池的自放电7、阀控式铅酸蓄电池的基本结构8、阀控式铅酸蓄电池的设计9、阀控铅酸蓄电池的充放电特性10、阀控式铅酸蓄电池容量的影响因素11、阀控铅酸蓄电池的失效模式12、阀控铅酸蓄电池的使用13、bosfa2V系列电池推荐使用条件及维护方式14、bosfa12V系列电池推荐使用条件及维护方式15、阀控密封蓄电池在维护过程中应注意的一些问题16、电池的安装过程、放电过程及注意事项17、相比同类产品的优势18、bosfa蓄电池的参数设置及维护管理铅酸蓄电池的发展历史和现状蓄电池是1859年由普兰特(Plante)发明的,至今已有一百多年的历史。

铅酸蓄电池自发明后,在化学电源中一直占有绝对优势。

这是因为其价格低廉、原材料易于获得,使用上有充分的可靠性,适用于大电流放电及广泛的环境温度范围等优点。

到20世纪初,铅酸蓄电池历经了许多重大的改进,提高了能量密度、循环寿命、高倍率放电等性能。

然而,开口式铅酸蓄电池有两个主要缺点:①充电末期水会分解为氢,氧气体析出,需经常加酸、加水,维护工作繁重;②气体溢出时携带酸雾,腐蚀周围设备,并污染环境,限制了电池的应用。

近二十年来,为了解决以上的两个问题,世界各国竞相开发密封铅酸蓄电池,希望实现电池的密封,获得干净的绿色能源。

1912年ThomasEdison发表专利,提出在单体电池的上部空间使用铂丝,在有电流通过时,铂被加热,成为氢、氧化合的催化剂,使析出的H2与O2重新化合,返回电解液中。

但该专利未能付诸实现:①铂催化剂很快失效;②气体不是按氢2氧1的化学计量数析出,电池内部仍有气体发生;③存在爆炸的危险。

60年代,美国Gates公司发明铅钙合金,引起了密封铅酸蓄电池开发热,世界各大电池公司投入大量人力物力进行开发。

铅酸电池最佳放电深度

铅酸电池最佳放电深度

铅酸电池最佳放电深度铅酸电池是广泛应用于汽车、摩托车等交通工具以及太阳能和风能等能源储备设备中的一种电池。

在使用铅酸电池时,了解和控制放电深度是非常重要的,它直接影响电池的寿命和性能。

放电深度指的是电池在使用过程中所承受的放电程度,以百分比表示。

铅酸电池的最佳放电深度是指在不损害电池寿命的情况下,最大程度地利用电池的容量。

这个最佳放电深度往往是根据电池的类型和设计特性而定的。

对于一般铅酸电池来说,最佳放电深度通常在50%左右。

也就是说,当电池放电到50%容量时,就应该及时进行充电,以避免超过这个百分比继续放电。

这是因为铅酸电池在放电过程中,电解液中的硫酸会逐渐被转化为水,导致电解液的浓度降低。

如果电池过度放电,浓度过低将会导致电池内部的化学反应难以进行,从而影响电池的性能和寿命。

在实际使用中,为了延长铅酸电池的寿命,最好不要把电池放电到超过80%的程度。

这样能够保证电池能在正常寿命内进行多次循环充放电。

而如果经常超过80%放电,电池的寿命将会大大降低。

此外,还应注意避免电池的过度充电。

虽然铅酸电池相对比较耐用,但过度充电同样会对电池的寿命和性能产生负面影响。

在充电时,宜采用恰当的充电器,并严格遵守充电指示灯的指示,以免过度充电造成电池的过量充电和气体产生,甚至可能导致电池爆炸。

总之,对于铅酸电池来说,最佳放电深度是非常重要的,它直接关系到电池的寿命和性能。

在使用过程中,应尽量避免将电池放电到超过50%的程度,并注意避免过度充电。

这样能够确保电池在正常寿命范围内发挥最佳性能,延长电池的使用寿命。

在购买和使用电池时,也应该选择优质品牌和符合规定的充电设备,以确保安全和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

密封铅酸蓄电池的充放电特性
电源技术 2009-04-04 10:33 阅读360 评论0
字号:大中小
1、电池的放电特性
电池的放电特性是一组曲线(见图1)。

在一定的环境温度下(图中为25℃),随放电电流的不同,电池端电压与放电时间的关系称为放电曲线。

由放电曲线可以看出如下特性:
(1)放电时间最长的曲线,放电时间为10小时,电流恒定,我们称之为10小时放电率曲线,由此测定的电
池容量用C10表示
C10=6A×10h=60Ah
如果用1小时恒流放电来测定这同一只电池,则
C1=41.9A×1h=41.9Ah
由此可见电池的容量是在标定了放电制式之后才是一个可比的确定值。

(2)无论放电电流大小,在放电的初始阶段都会使端电压下降较多,然后略有回升的现象,这是因为电池从充电状态转变为放电状态的瞬间,电池极板附近的电荷快速释放出来,而离极板较远的电荷需要逐渐运送到极板附近,然后才能释放出来,这个过程形成了电池端电压有较大的低谷。

(3)无论放电电流大小,电池端电压最终将出现急剧下降的拐点,以这些曲线的拐点连接得到的曲线就称为安全工作时的终止电压曲线,UPS的电池电压工作终点都是设计在这条拐点曲线附近的。

拐点之后的曲线具有电压急剧下降的趋势,直到放电曲线的终点,这些终点连接得到的曲线称为最小终止电压曲线,它表示放电电压低于此曲线后将造成电池的永久性失效,即电池不能再恢复储电能力。

由此可见UPS中设计有防
止电池深度放电的保护功能是极为必要的。

2、电池的充电特性
电池的充电特性曲线也是在25℃温度下测量和标度的(见图2)。

充电曲线通常有三条:
(1)充电电流曲线:在充电开始阶段,充电电流是一个恒定值,随着充电时间的推移,充电电流逐渐下降,并最终趋于0。

这是由于在放电过程中,电池内的电荷大量流失,由放电转变为充电时,电荷的增长速度较快,化学反应将产生大量的气体和热量,对于密封电池来说,即使通过安全阀可以将气体和热量排放掉,但氢离子和水将同时损失掉,使电池的储能下降,因此必须限定充电的电流值,随着电池容量的恢复,充电电流将自动下降。

充电电流下降10mA/Ah以下时即认为电池已基本充满,转入浮充电状态。

电池放电越深,则恒流充电的
时间越长,反之则较短。

(2)充电电压曲线:在电池恒流充电阶段,电池的电压始终是上升的,因此有时又称为升压充电。

当恒流充电结束时,电池的电压基本保持不变,称为恒压充电。

在恒压充电阶段,电池的电流逐渐减小,并最终趋于0,结束恒压充电阶段,转入浮充电,以保持电池的储能,防止电池的自放电。

(3)充电容量曲线:在恒流充电阶段,电池的容量基本呈线性增长;在恒压充电阶段,容量增长的速度减慢;恒压充电结束后,容量基本恢复到100%大约需要24小时左右;转入浮充电后,容量基本不再明显增长。

由充电曲线还可以看到一组虚线,是电池放电50%后的充电特性,与100%放电后的充电特性相比,恒流充电时间明显缩短,恒压充电9小时左右,容量基本恢复到100%。

由以上可知:
①恒流充电是为了恢复电池的电压;
②恒压充电是为了恢复电池的储能;
③浮充电是为了抑制电池的自放电或保持储能。

UPS设计的电池放电容量通常为50%~70%额定容量,一般放电后最好连续充电24小时。

无论50%放电还是100%放电,恒流充电都是0.1C10(6A),恒压充电都是6.75V(2.25V/cell),这是在25℃环境温度下进行的。

如果温度上升,则充电电压必须下降;否则电池内的化学反应会加强,产生大量的气体,使电池内的压力增加,并经减压阀将气体释放,使电池内的电解液减少,将造成电池的提早老化,减少电池的使用寿命。

许多品牌UPS正是根据这一原理,设计了浮充电压随温度而变化的功能,以优化电池的使用寿命
阀控铅酸蓄电池放电特性研究
电源技术 2009-04-04 10:16 阅读299 评论0
字号:大中小
在许多的电池使用场合都希望得知电池放电期间的剩余电量。

因此,蓄电池监测装置的一个最重要功
能是剩余电量(SOC)的计算。

目前的电池电量计算技术在蓄电池深度循环放电使用的场合发展日趋成熟,尤其是在锂离子( Li-ion )电池的应用,因为锂离子电池的充放电容量效率接近100%,与放电电流和工作温度的关系不大,因此,
其智能化的技术相对简单。

阀控铅酸蓄电池(Valve Regulated Lead Acid Battery--VRLAB)电池的放电过程是一个动态非线性过程,对其放电过程的物理化学反应的研究有利于监测装置和算法的设计。

1、VRLA蓄电池的工作原理
VRLA蓄电池的工作原理与传统蓄电池类似,其放电和充电的电极反应可以用双极硫酸盐理论来描述:
和二氧化铅的晶体结构有关,二氧化铅有α-PbO2 和β-PbO2 的两种变体,通常得到的是两种变体的综合值。

因此,铅酸蓄电池的电动势除了与标准位有关外,还与硫酸的浓度有关。

电池的电动势受温度影响,其温度系数表示电池电动势与温度之间的关系,也可以用来计算一些热力学参数。

因为电池的电动势与电池反应的焓变有关,它们的关系可以用吉布斯--亥姆次方程式表示:。

相关文档
最新文档