相交线计算题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线计算题Newly compiled on November 23, 2020

1.如图所示,在长方形的台球桌桌面上,选择适当的方法击打白球,可以使白球经过两次反弹后将黑球直接撞入中洞,此时∠1=∠2,∠3=∠4,且∠2+∠3=90°,∠4+∠5=90°.如果黑球与洞口连线和台球桌面边缘的夹角为∠5=40°,那么∠1应等于多少度才能保证黑球进入中洞

2.取一张正方形纸片ABCD,如图

(1)折叠∠A,设顶点A落在点A′的位置,折痕为EF;如图(2)折叠∠B,使EB沿EA′的方向落下,折痕为EG.试判断∠FEG的度数是否是定值,并说明理由.

3.如图所示,直线AB,CD,EF相交于点O,∠AOF=3∠FOB,∠AOC=90°,求∠EOC的度数.

4.如图所示,O为直线AB上一点,

1

3

AOC BOC

∠=∠,OC是∠AOD的平分线.

(1)求∠COD的度数;

(2)判断OD与AB的位置关系,并说明理由.

5.如图所示,将长方形纸片折叠,使点A落在点A′处,BC为折痕,BD是∠A′BE的平分线,试求∠CBD的度数.

6.如图所示,点O在直线AB上,OE平分∠COD,且∠AOC︰∠COD︰∠DOB=1︰3︰2,求∠AOE的度数.

7.如图所示,直线AB、CD分别交EF于点G、H,若∠2=∠3,∠1=50°,求∠4的度数.

8.如图所示,直线AB,CD相交于点O,且∠AOC=80°,OE把∠BOD分成两部分,且∠BOE︰∠EOD=2︰3,则∠EOD=________.

9.如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.

10.如图所示,已知l1,l2,l3相交于点O,∠1=∠2,∠3︰∠1=8︰1,求∠4的度数.

11.如图所示,三条直线相交于一点,求∠1+∠2+∠3的度数.

12.如图,直线AB与CD相交于点E,∠1=∠2,EF平分∠AED,且∠1=50°,求∠AEC的度数.

13.如图所示,直线AB截直线CD和EF,构成8个角,指出图中的同位角、内错角、同旁内角.

14.如图所示,AO⊥BO于O,CO⊥DO于O,∠BOD=30°,求∠AOC的度数.15.如图所示,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设管道的方案.方案一:分别过C,D作AB的垂线,垂足分别为E,F,沿CE,DF 铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么

16.如图所示,直线AB,CD相交于点O,OE⊥CD,OF⊥AB,∠DOF=65°,求∠BOE和∠AOC.

17.如图所示,小明家在A处,他要去在同一条路上的B,C,D,E四家商店中的某一家商店买东西,则他至少要走多少米才可以买到东西

参考答案

1.40度

【解析】因为∠1=∠2,∠2+∠3=90°,所以∠1+∠3=90°.又因为∠3=∠4,所以∠1+∠4=90°,因为∠4+∠5=90°.∠5=40°,所以∠1=∠5=40°,所以∠1应等于40°才能保证黑球进入中洞.

2.为定值

【解析】由折叠可知,∠FEA′=∠FEA ,∠GEB =∠GEA′,所以12

FEA A EA ''∠=∠,12

GEA A EB ''∠=∠.因为∠A′EB +∠A′EA =180°,所以1111()180902222

GEA FEA A EB A EA A EB A EA ''''''∠+∠=∠+∠=∠+∠=⨯︒=︒,即∠FEG 的度数为定值.

3.设∠BOF =x°,则∠AOF =3x°.

因为x +3x =180(邻补角互补),所以x =45,即∠BOF =45°,

所以∠AOE =∠BOF =45°(对顶角相等),所以∠EOC =∠AOC -∠AOE =90°-45°=45°.

【解析】这是一道综合题,应综合运用“邻补角互补”、“对顶角相等”等知识转换已知条件,从而进行求解.

4.45° OD ⊥AB

【解析】(1)OC 平分∠AOD ,设∠COD =x°,则∠AOC =x°,∠BOD =2x°,∠AOC +∠COD +∠BOD =180°,即x°+x°+2x°=180°,解得x =45,所以∠COD =45°.

(2)由(1)知,∠BOD =2x°=90°,所以OD ⊥AB .

5.90°

【解析】因为点A 折叠后落到点A′处,所以∠ABC =∠A′BC .又因为BD 是∠A′BE 的平分线,所以∠A′BD =∠EBD ,所以

11()1809022

CBD CBA DBA ABA EBA ''''∠=∠+∠=∠+∠=⨯︒=︒,即∠CBD 的度数是90°. 6.75度

【解析】因为∠AOC ︰∠COD ︰∠DOB =1︰3︰2,

所以设∠AOC=x°,则∠COD=3x°,∠DOB=2x°.又因为AB为直线,所以∠AOC+∠COD+∠DOB=180°,

即x+3x+2x=180,x=30.所以∠AOC=30°,∠COD=3x°=90°.

因为OE平分∠COD,所以

1

45

2

COE COD

∠=∠=︒,所以∠AOE=∠AOC+∠COE=

30°+45°=75°.

7.130度

【解析】因为∠2=∠3,∠2=∠1(对顶角相等),所以∠3=∠1=50°.所以∠4=180°-∠3=180°-50°=130°(邻补角性质).

8.48°

【解析】因为∠BOE︰∠EOD=2︰3.故可设∠BOE=2k°,∠EOD=3k°.根据对顶角相等可得出∠BOD=∠AOC=80°,所以2k°+3k°=80°,可得k=16°,所以∠EOD=3k°=3×16°=48°.

9.度

【解析】因为∠1=∠2(对顶角相等),且∠2=65°,所以∠1=65°.因为∠1=2∠3,所以∠3=°.因为∠4=∠3(对顶角相等),所以∠4=°.

10.36度

【解析】因为∠1=∠2,∠3︰∠1=8︰1,所以

8

3180144

10

∠=︒⨯=︒.因为∠4与∠3

互为邻补角,所以∠4=36°.

11.180度

【解析】如图所示,由“对顶角相等”,可得∠2=∠4.由平角的定义,知∠1+∠4+∠3=180°,所以∠1+∠2+∠3=180°.

相关文档
最新文档