初等数论1习题参考答案
初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12; 0(2420)=_880_2、设比n是大于1的整数,若是质数,则a=_2.3、模9的绝对最小完全剩余系是_卜4, -3, -2, -1,0,1,2,3,4}.4、同余方程9x+12=0(mod 37)的解是x三11 (mod 37)。
5、不定方程18x-23y=100 的通解是x=900+23t, y=700+18t t Z。
.6、分母是正整数m的既约真分数的个数为—(山)_。
7、18100被172除的余数是_殛。
9、若p是素数,则同余方程L 1 l(modp)的解数为p-1 。
二、计算题疋11X 20 0 (mod lO5)o1、解同余方程:3解:因105 = 3 5 7,同余方程3x211X 20 0 (mod 3)的解为x 1 (mod 3),同余方程3x211X 38 0 (mod 5)的解为x0, 3 (mod 5),同余方程3x211X 20 0 (mod 7啲解为x2, 6 (mod 7), 故原同余方程有4解。
作同余方程组:x (mod 3), x b2 (mod 5), x b3 (mod 7),其中®=1, b2 = 0, 3, b3 = 2, 6,由子定理得原同余方程的解为x 13, 55, 58, 100 (mod 105)o2. 判断同余方程/三42(mod 107)是否有解?*3x7 2 3 7)=(二)(一)(―-)107 107 107 1072 3 I 。
, 2 v( —) = -1, ( — ) = (-1) 2 2(ArL) = -<±) = L 107 107 3 3.-.(—) = 1 107故同余方程x 2三42(mod 107)有解。
3、求(12715C +34) 23除以ill 的最小非负余数。
解:易知 1271 = 50 (mod 111)0由 502 =58 (mod 111) , 503 三58X50三 14 (mod 111), 509=143=80 (mod111)知 502G = (509)彳x50三803X50三803x50三68x50三70 (mod 111) 从而505C=16 (mod 11 l)o故(12715C +34) 2c = (16+34) 20 =502G =70 (mod 111)三、证明题1、 已知p 是质数,(a,p) =1,证明:(1) 当 Q 为奇数时,a p l +(p-l)A =O (mod p);(2) 当a 为偶数时,衣三°(mod p)。
初等数论 1 习题参考答案
附录1 习题参考答案第一章习题一1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b =(a)q,即a b,a b及a b。
反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。
2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mnpq可知m p mq np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。
4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。
5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 =3Q r12r22知r1 = r2 = 0,即3a且3b。
3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。
初等数论练习题一(含答案)
初等数论练习题⼀(含答案)《初等数论》期末练习⼆⼀、单项选择题1、=),0(b ().A bB b -C bD 02、如果1),(=b a ,则),(b a ab +=().A aB bC 1D b a +3、⼩于30的素数的个数().A 10B 9C 8D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C (mod )ac bc m ≡/D b a ≠5、不定⽅程210231525=+y x ().A 有解B ⽆解C 有正数解D 有负数解6、整数5874192能被( )整除.A 3B 3与9C 9D 3或97、如果a b ,b a ,则( ).A b a =B b a -=C b a ≥D b a ±=8、公因数是最⼤公因数的().A 因数B 倍数C 相等D 不确定9、⼤于20且⼩于40的素数有().A 4个B 5个C 2个D 3个10、模7的最⼩⾮负完全剩余系是( ).A -3,-2,-1,0,1,2,3B -6,-5,-4,-3,-2,-1C 1,2,3,4,5,6D 0,1,2,3,4,5,611、因为( ),所以不定⽅程71512=+y x 没有解.A [12,15]不整除7B (12,15)不整除7C 7不整除(12,15)D 7不整除[12,15]12、同余式)593(m od 4382≡x ().A 有解B ⽆解C ⽆法确定D 有⽆限个解⼆、填空题1、有理数ba ,0,(,)1ab a b <<=,能写成循环⼩数的条件是(). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( ). 3、不⼤于545⽽为13的倍数的正整数的个数为( ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( )n ,⽽且与n ()的正整数的个数.5、设b a ,整数,则),(b a ()=ab .6、⼀个整数能被3整除的充分必要条件是它的()数码的和能被3整除.7、+=][x x ().8、同余式)321(m od 75111≡x 有解,⽽且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ).11、b a ,的最⼩公倍数是它们公倍数的( ).12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最⼩公倍数?2、求解不定⽅程2537107=+y x .(8分)3、求??563429,其中563是素数. (8分) 4、解同余式)321(m od 75111≡x .(8分) 5、求[525,231]=?6、求解不定⽅程18116=-y x .7、判断同余式)1847(m od 3652≡x 是否有解?8、求11的平⽅剩余与平⽅⾮剩余.四、证明题1、任意⼀个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、⼀个能表成两个平⽅数和的数与⼀个平⽅数的乘积,仍然是两个平⽅数的和;两个能表成两个平⽅数和的数的乘积,也是⼀个两个平⽅数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯⼀的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》期末练习⼆答案⼀、单项选择题1、C2、C3、A4、A5、A6、B7、D8、A9、A 10、D 11、B 12、B⼆、填空题1、有理数ba ,1),(,0=b a b a ,能写成循环⼩数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,⽽且解的个数为( 3 ). 3、不⼤于545⽽为13的倍数的正整数的个数为( 41 ).4、设n 是⼀正整数,Euler 函数)(n ?表⽰所有( 不⼤于 )n ,⽽且与n (互素)的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、⼀个整数能被3整除的充分必要条件是它的(⼗进位)数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,⽽且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最⼩公倍数是它们公倍数的( 因数 ).12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最⼩公倍数?解:因为(24871,3468)=17所以[24871,3468]= 17346824871?=5073684 所以24871与3468的最⼩公倍数是5073684。
初等数论习题与答案、及测试卷
初等数论习题与答案、及测试卷1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证:)12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈?,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax by ax ++/00 (y x ,为任意整数)b by ax a by ax /,/0000++∴ ,/(00b a by ax +∴ 又有b b a a b a /),(,/),( 0/),(by ax ba +∴故),(00b a by ax =+4 证:作序列 ,23,,2,0,23,b b b b b b ---则a 必在此序列的某两项之间即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2 ,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 2 1,21+-=-=+=,则有21212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 01,21++=-=+-=则同样有 2b t ≤综上存在性得证下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+?=+=?2,2,222211b t b t t bs t bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1)令S=n14131211+++++,取M=p k 75321-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
《初等数论》各章习题参考解答
3
1
48
,
在100! 的分解式中的指数
2
100!
100 2
100 4
100 8
100 16
100 64
50
25
12
6
1
94
,
100! 294 348 k 447 348 k 1247 3k,k, 6 1。
故 nmax 47 , M min 3k , k, 6 1。
k
+
1 位正整数,记其最左边
那一位数字为 a Î {2,5},则 xk' + 1 = a´ 10k + xk' ,其中 xk' 是由 2 和 5 组成的十进制 k 位
正整数,由 2k+ 1
若 k = 轾犏臌3 n = 8 ,则 3创5 7篡8 n 840 n ,从而 k = 轾犏臌3 n 吵轾犏臌3 840 9 > 8 ,矛盾!
若 k = 7 ,则 3创4 5篡7 n 420 n ,但 n < 840 ,所以最大的正整数 n = 420 。
6.证明:当 n = 1 时,存在唯一的 x1 = 2 ,则有 21 x1 ;当 n = 2 时,存在唯一的 x2 = 52 ,有 22 x2 ;当 n = 3 时,存在唯一的 x3 = 552 ,有 23 x3 。
n 炒2a
3b 创5g
7 11
77创
k 2
k 3
k 5
77 30
k 3。
由 k ³ 11 ,可得 k ³
11 12
(k
+
1),从而
n>
77 30
壮k 3
77 30
113 123
《初等数论》各章习题参考解答
《初等数论》各章习题参考解答第一章习题参考解答1.解:因为25的最小倍数是100,9的最小倍数是,所以满足条件的最小正整数11111111100a =。
2.解:3在100!的分解式中的指数()1001001001003100!33113148392781⎡⎤⎡⎤⎡⎤⎡⎤=+++=+++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 在100!的分解式中的指数()1001001001001002100!50251261942481664⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++=++++=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,∴ ()9448474847100!2343123,,61k k k k =⋅⋅=⋅⋅=⋅=。
故 max 47n =,min 3M k =,(),61k =。
故 当M 最小值是3的倍数,但不是2的倍数。
3.解:112121n n n n x x ++++++等价于()()21221n n n x x x ++-+-,从而3x ³(n 就不会太大,存在反向关系)。
由()()22121n nn x x x -+-?+,得()()2212n n n x x -+?,即()()()121122nn x x -+?。
若2n ³,则()()()()251221114242nn x xx x-?+??,导致25140x x -+?,无解。
所以,只有1n =,335314x x x +-?,只能是37,14x +=,从而4,11x =。
综上所述,所求正整数对()()(),4,111,1x n =、。
4.解:按题意,2m n >>,记*,m n k k N =+?;则()222211111n n k nk n k k a a a a a a a a a a a a +++-+-?-+--++-22211111n k k n k k a a a a a a a a a ++?---+?-+-,故 存在无穷多个正整数a 满足2111n k k a a a a ++-+-。
(完整版)初等数论练习题答案
初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
《初等数论》习题集及答案
《初等数论》习题集及答案《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m - p ∣mn + pq ,则m - p ∣mq + np 。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p 是n 的最小素约数,n = pn 1,n 1 > 1,证明:若p >3n ,则n 1是素数。
5. 证明:存在无穷多个自然数n ,使得n 不能表示为a 2 + p (a > 0是整数,p 为素数)的形式。
第 2 节1. 证明:12∣n 4 + 2n 3 + 11n 2 + 10n ,n ∈Z 。
2. 设3∣a 2 + b 2,证明:3∣a 且3∣b 。
3. 设n ,k 是正整数,证明:n k 与n k + 4的个位数字相同。
4. 证明:对于任何整数n ,m ,等式n 2 + (n + 1)2 = m 2 + 2不可能成立。
5. 设a 是自然数,问a 4 - 3a 2 + 9是素数还是合数?6. 证明:对于任意给定的n 个整数,必可以从中找出若干个作和,使得这个和能被n 整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x ,y ∈Z ,17∣2x + 3y ,证明:17∣9x + 5y 。
5. 设a ,b ,c ∈N ,c 无平方因子,a 2∣b 2c ,证明:a ∣b 。
6. 设n 是正整数,求1223212C ,,C ,C -n n n n 的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a ,b 是正整数,证明:(a + b )[a , b ] = a [b , a + b ]。
4. 求正整数a ,b ,使得a + b = 120,(a , b ) = 24,[a , b ] = 144。
5. 设a ,b ,c 是正整数,证明:),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a =。
初等数论试题及答案高一
初等数论试题及答案高一一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 2B. 4C. 6D. 8答案:A2. 一个数的因数包括它自己吗?A. 是B. 否答案:A3. 一个数的倍数包括它自己吗?A. 是B. 否答案:A4. 两个连续整数的乘积一定是合数吗?A. 是B. 否答案:B5. 一个数的最小倍数是多少?A. 它自己B. 2C. 1D. 0答案:A6. 一个数的最大因数是多少?A. 它自己B. 2C. 1D. 0答案:A7. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A8. 一个数的质因数分解中,质因数的个数至少有几个?A. 1B. 2C. 3D. 0答案:A9. 以下哪个数是素数?A. 1B. 2C. 9D. 10答案:B10. 一个数的因数个数是奇数还是偶数?A. 奇数B. 偶数答案:B二、填空题(每题4分,共20分)1. 一个数的最小质因数是______。
答案:22. 一个数的最小非零因数是______。
答案:13. 一个数的最大因数是______。
答案:它自己4. 一个数的最小倍数是______。
答案:它自己5. 一个数的倍数个数是______。
答案:无限三、解答题(每题10分,共50分)1. 证明:对于任意的正整数n,2n总是偶数。
证明:假设n为任意正整数,那么2n = 2 * n。
因为2是偶数,所以2n也是偶数。
2. 证明:对于任意的正整数n,n^2 - 1是奇数。
证明:假设n为任意正整数,那么n^2 - 1 = (n - 1)(n + 1)。
因为n - 1和n + 1是连续的整数,所以它们中必有一个偶数和一个奇数。
因此,它们的乘积是奇数。
3. 找出100以内的所有质数。
答案:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 974. 证明:如果p是质数,那么p^2 - 1是合数。
初等数论第三版复习题解答
第一章 整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a L ,,,都是m 得倍数,12n q q q L ,,,是任意n 个整数,则1122n n q a q a q a +++L 是m 得倍数.证明:Q 12,,n a a a L 都是m 的倍数。
∴ 存在n 个整数12,,n p p p L 使 1122,,,n n a p m a p m a p m ===L又12,,,n q q q L 是任意n 个整数1122n nq a q a q a ∴+++L1122n n q p m q p m q p m =+++L1122()n n p q q p q p m =+++L即1122n n q a q a q a +++L 是m 的整数 2.证明 3|(1)(21)n n n ++证明 (1)(21)(1)(21)n n n n n n n ++=+++-Q (1)(2)(1)(1)n n n n n n =+++-+又(1)(2)n n n ++Q ,(1)(2)n n n -+是连续的三个整数 故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知 3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++.证: ,a b Q 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++Q (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b bb b ---L L 则a 必在此序列的某两项之间 即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证.下证唯一性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> 而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<L L∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
初等数论答案01
第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b 整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
所以d 1是素数。
证毕。
推论 任何大于1的合数a 必有一个不超过a 的素约数。
证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。
初等数论课后习题答案.pptx
而b是••个有限数, f顷,便.=。 二(。0)=01) = 04)=(斗而)=(L,L" J =〔砧+。)=L ,存在其求法为
(a,t>) = (b,a-bs) = (a — bs,b — (a —血)禹)=… .(76501,9719) = (9719,76501-9719x7) = (S4«8,9719-S468) -(1251,8468-1251x6)
© 下证唯一性
当B 为奇数时,设 & =bs-^t=bsl +4 则|ETJ = p?(q _$)| >|Z?|
而时磚周達却一勺副+市岡矛盾故
当0为偶数时,“不咐、举^如队此时?为整数
3-?=ai+?=小 £+(_?),%=?,kJ E?
学最大公因数与辗转相除法
I.讹叨推论4.1
推论41小b的公■数.与3, m的因数相同一
=(3J) 丄 证明木节(I)式屮的"最
4
证:由P3§1习观4知在(1.盘3。沙=蛙,叩応囈
2
log log 2
§3整除的进一步性质及最小公倍數
1. 证明两整数a, b互质的充分与必要条件是:存在两个整数s, t满足条件ax+bt = \
证明 必要性-若(fl,fe) = l.则由推论1.1知存在两个整数s, t满足:as+bt=(a,b)
as+ bt = \
充分性。若存在整数s, t使as+bt= 1,则a, b不全为0°
又因为(a,b)\a,(a,b)\b .所以(a,b\as + bt)即(<z,b)ll°
又皿*”。. .*,&) = I
自考初等数论第一章试题及答案
自考初等数论第一章试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 9C. 17D. 20答案:C2. 一个数能被3整除的特征是什么?A. 该数的各位数字之和能被3整除B. 该数的最后两位能被3整除C. 该数的倒数能被3整除D. 该数的各位数字之积能被3整除答案:A3. 如果a和b是互质数,那么它们的最大公约数是多少?A. 1B. aC. bD. ab答案:A二、填空题4. 一个数的最小倍数是______。
答案:它本身5. 100以内最大的质数是______。
答案:976. 如果两个数的最大公约数是12,最小公倍数是72,那么这两个数分别是______和______。
答案:12和72三、解答题7. 证明:如果a是质数,那么a^2 + a与1同为质数。
证明:假设a是质数,那么a只有1和a两个因数。
考虑a^2 + a,我们可以看到它不能被a整除,因为a^2 + a = a(a + 1),而a与a + 1是互质的。
如果a^2 + a是合数,那么它必须有一个大于1小于a^2 + a的因数,但这与a是质数矛盾,因为这意味着a^2 + a有除了1和a^2 + a之外的因数。
因此,a^2 + a与1同为质数。
8. 一个数被7除余1,被8除余3,被9除余4,求这个数。
解答:设这个数为x,根据题意我们有以下三个同余方程:x ≡ 1 (mod 7)x ≡ 3 (mod 8)x ≡ 4 (mod 9)我们可以使用中国剩余定理来解决这个问题。
首先找到7, 8, 9的乘积,即504,然后计算每个方程的Mi和Mi':M1 = 504 / 7 = 72, M1' = 1 (因为72 * 1 % 7 = 1)M2 = 504 / 8 = 63, M2' = 3 (因为63 * 3 % 8 = 3)M3 = 504 / 9 = 56, M3' = 2 (因为56 * 2 % 9 = 4)接下来计算x:x = (1 * 72 * 1) + (3 * 63 * 3) + (4 * 56 * 2)= 72 + 567 + 448= 1087但是我们需要找到小于504的最小正整数解,所以我们对1087取模504:x = 1087 % 504 = 87因此,满足条件的最小正整数是87。
初等数论作业答案
初等数论1:[单选题]已知361a是一个4位数(其中a是个位数),它能被5整除,也能被3整除,则a的值是()。
A:0B:2C:5D:9参考答案:C2:[单选题]下面的()是模4的一个简化剩余系。
A:4,17B:1,15C:3,23D:13,6参考答案:B3:[单选题]小于20的正素数的个数是()。
A:11B:10C:9D:8参考答案:D 4:[单选题]下面的数是3的倍数的数是()。
A:19B:119C:1119D:11119参考答案:C5:[单选题]-4除-39的余数是()。
A:3B:2C:1D:0参考答案:C6:[单选题]一个正整数n的各位上的数字是0或1,并且n能被2和3整除,则最小的n 是()。
A:1110B:1101C:1011D:1001参考答案:A7:[单选题][[4.5]+[3.7]]等于()。
A:3B:4C:7D:8参考答案:C8:[单选题]{{1.8}+{2.9}}等于()。
A:0.4B:0.5C:0.6D:0.7参考答案:D 9:[单选题]100与44的最小公倍数是()。
A:4400B:2200C:1100D:440参考答案:C10:[单选题]使3的n次方对模7同余于1的最小的正整数n等于()。
A:6B:2C:3D:13参考答案:A11:[单选题]设a,b,c,d是模5的一个简化剩余系,则a+b+c+d对模5同余于()。
A:0B:1C:2D:3参考答案:A12:[单选题]下面的()是不定方程3x + 7y = 20的一个整数解。
A:x=0,y=3B:x=2,y=1C:x=4,y=2D:x=2,y=2参考答案:D13:[单选题]下面的()是模4的一个完全剩余系。
A:9,17,-5,-1B:25,27,13,-1C:0,1,6,7D:1,-1,2,-2参考答案:C14:[单选题]下面的()是模12的一个简化剩余系。
A:0,1,5,11B:25,27,13,-1C:1,5,7,11D:1,-1,2,-2参考答案:C15:[单选题]若a,b均为偶数,则a + b为()。
《初等数论》版习题解答
《初等数论》版习题解答第⼀章整数的可除性§1 整除的概念·带余除法 1.证明定理3定理3 若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴存在n 个整数12,,n p p p 使 1122,,,n n a p m a p m a p m ===⼜12,,,n q q q 是任意n 个整数1122n nq a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明(1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+ ⼜(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+3|(1)(2)(1)(1)n n n n n n ∴+++-+从⽽可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最⼩整数,则00()|()ax by ax by ++.证:,a b 不全为0,x y Z ?∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最⼩整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++ 00|(,).ax by a b ∴+ ⼜有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+故00(,)ax by a b +=4.若a ,b 是任意⼆整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成⽴,并且当b 是奇数时,s ,t 是唯⼀存在的.当b 是偶数时结果如何?证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在⼀个整数q ,使122q q b a b +≤<成⽴ ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有 02222b q q qa bs t ab a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-下证唯⼀性当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=-> ⽽111,22b bt t t t t t b ≤≤∴-≤+≤ ⽭盾故11,s s t t == 当b 为偶数时,,s t 不唯⼀,举例如下:此时2b为整数 11312(),,22222b b b b b b b t t ?=?+=?+-=≤§2 最⼤公因数与辗转相除法 1.证明推论4.1推论4.1 a ,b 的公因数与(a ,b )的因数相同.证:设d '是a ,b 的任⼀公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r =∴d '|1a bq -1r =, d '|122b r q r -=,┄, d '|21(,)n n n n r r q r a b --=+=,即d '是(,)a b 的因数。
《初等数论(闵嗣鹤、严士健)》课后习题解答
第一章 整数的可除性§1 整除的概念·带余除法1.证明定理3:若12n a a a ,,,都是m 得倍数,12n q q q ,,,是任意n 个整数,则1122n n q a q a q a +++是m 得倍数.证明:12,,n a a a 都是m 的倍数。
∴ 存在n 个整数12,,n p p p 使1122,,,n n a p m a p m a p m ===又12,,,n q q q 是任意n 个整数1122n n q a q a q a ∴+++1122n n q p m q p m q p m =+++1122()n n p q q p q p m =+++即1122n n q a q a q a +++是m 的整数2.证明 3|(1)(21)n n n ++ 证明 (1)(21)(1)(2n n n n n n n ++=+++-(1)(2)(1)(n n n n n n =+++-+又(1)(2)n n n ++,(1)(2)n n n -+是连续的三个整数故3|(1)(2),3|(1)(1)n n n n n n ++-+ 3|(1)(2)(1)(1)n n n n n n ∴+++-+从而可知3|(1)(21)n n n ++3.若00ax by +是形如ax by +(x ,y 是任意整数,a ,b 是两不全为零的整数)的数中最小整数,则00()|()ax by ax by ++. 证:,a b 不全为0∴在整数集合{}|,S ax by x y Z =+∈中存在正整数,因而有形如ax by +的最小整数00ax by +.,x y Z ∀∈,由带余除法有0000(),0ax by ax by q r r ax by +=++≤<+则00()()r x x q a y y q b S =-+-∈,由00ax by +是S 中的最小整数知0r =00|ax by ax by ∴++00|ax by ax by ++ (,x y 为任意整数) 0000|,|ax by a ax by b ∴++00|(,).ax by a b ∴+ 又有(,)|a b a ,(,)|a b b 00(,)|a b ax by ∴+ 故00(,)ax by a b +=4.若a ,b 是任意二整数,且0b ≠,证明:存在两个整数s ,t 使得||,||2b a bs t t =+≤成立,并且当b 是奇数时,s ,t 是唯一存在的.当b 是偶数时结果如何? 证:作序列33,,,,0,,,,2222b b b bb b ---则a 必在此序列的某两项之间即存在一个整数q ,使122q q b a b +≤<成立 ()i 当q 为偶数时,若0.b >则令,22q qs t a bs a b ==-=-,则有02222b q q q a bs t a b a b b t ≤-==-=-<∴<若0b < 则令,22q qs t a bs a b =-=-=+,则同样有2b t <()ii 当q 为奇数时,若0b >则令11,22q q s t a bs a b ++==-=-,则有 1102222b b q q t a bs a b a b t ++-≤=-=-=-<∴≤ 若 0b <,则令11,22q q s t a bs a b ++=-=-=+,则同样有2b t ≤,综上所述,存在性得证. 下证唯一性: 当b 为奇数时,设11a bs t bs t =+=+则11()t t b s s b -=->而111,22b bt t t t t t b ≤≤∴-≤+≤ 矛盾 故11,s s t t == 当b 为偶数时,,s t 不唯一,举例如下:此时2b 为整数11312(),,22222b b b b bb b t t ⋅=⋅+=⋅+-=≤§2 最大公因数与辗转相除法1.证明推论4.1:推论4.1 a ,b 的公因数与(a ,b )的因数相同. 证:设d '是a ,b 的任一公因数,∴d '|a ,d '|b 由带余除法111222111111,,,,,0n n n n n n n n n n a bq r b r q r r r q r r r q r r r r b---++-=+=+=+==≤<<<<∴(,)n a b r = ∴d '|1a bq -1r =, d '|122b rq r -=,┄, d '|21(,)n n n n r r q r a b --=+=, 即d '是(,)a b 的因数。
初等数论课后习题答案
1 证明:n a a a ,,21 都是m 的倍数。
∴存在n 个整数n p p p ,,21使n n n m p a m p a m p a ===,,,222111又n q q q ,,,21 是任意n 个整数m p q p q q p a q a q a q n n n n )(22112211+++=+++∴即n n a q a q a q +++ 2211是m 的整数2 证: )12)(1()12)(1(-+++=++n n n n n n n )1()1()2)(1(+-+++=n n n n n n )1()1/(6),2)(1(/6+-++n n n n n n1()1()2)(1(/6+-+++∴n n n n n n从而可知12)(1(/6++n n n3 证: b a , 不全为0∴在整数集合{}Z y x by ax S ∈+=,|中存在正整数,因而有形如by ax +的最小整数00by ax +Z y x ∈∀,,由带余除法有00000,)(by ax r r q by ax by ax +<≤++=+则b q y y a q x x r ∈-+-=)()(00,由00by ax +是S 中的最小整数知0=rax by ax ++∴/00 下证8P 第二题by ax byax++/00 (y x ,为任意整数) b byaxa byax /,/0++∴,/(0ba byax+∴ 又有b b a a b a /),(,/),(/),(by axb a +∴ 故),(00b a byax=+4 证:作序列 ,23,,2,0,2,,23,b b b b b b ---则a 必在此序列的某两项之间(区间段)即存在一个整数q ,使b q a b q 212+<≤成立(i 当q 为偶数时,若.0>b 则令b q a bs a t q s 2,2-=-==,则有22220b t b q b q a b q a t bs a <∴<-=-==-≤若0<b 则令b q a bs a t q s 2,2+=-=-=,则同样有2b t <)(ii 当q 为奇数时,若0>b 则令b q a bs a t q s 21,21+-=-=+=,则有2021212b t b q a b q a bs a t b ≤∴<+-=+-=-=≤-若 0<b ,则令b q a bs a t q s 21,21++=-=+-=则同样有 2b t ≤综上 存在性得证 下证唯一性当b 为奇数时,设11t bs t bs a +=+=则b s s b t t >-=-)(11而b t t t t b t b t ≤+≤-∴≤≤1112,2矛盾 故11,t t s s ==当b 为偶数时,t s ,不唯一,举例如下:此时2b 为整数 2,2),2(2212311b t b t b b b b b ≤=-+⋅=+⋅=⋅2,2,222211b t b t t bst bs a ≤-=+=+=5.证:令此和数为S ,根据此和数的结构特点,我们可构造一个整数M ,使MS 不是整数,从而证明S 不是整数(1) 令S=n14131211+++++,取M=p k 75321⋅⋅⋅-这里k 是使n k≤2最大整数,p 是不大于n 的最大奇数。
初等数论练习题标准答案
初等数论练习题一一、填空题1、d(2420)=12; ϕ(2420)=_880_2、设a,n 是大于1的整数,若an -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(m od 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y =100的通解是x =900+23t,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m)_。
7、18100被172除的余数是_256。
8、⎪⎭⎫ ⎝⎛10365 =-1。
9、若p 是素数,则同余方程x p - 1 ≡1(mo d p)的解数为 p -1 。
二、计算题1、解同余方程:3x2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (m od 3)的解为x ≡ 1 (mo d 3), 同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mo d 7)的解为x ≡ 2,6 (mod 7), 故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b3 (mo d 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-•--•-)()()()(),()()()(),()())()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论练习题与答案
初等数论练习题一一、填空题1、 (2420)=27; (2420)=_880_2、设 a , n 是大于 1 的整数,若 a n -1 是质数,则 a=_2.3、模 9 的绝对最小完全剩余系是 _{-4 ,-3,-2, -1,0,1,2,3,4}.4、同余方程 9x+12≡0(mod 37)的解是 x ≡11(mod 37)。
5、不定方程 18x-23y=100 的通解是 x=900+23t ,y=700+18tt Z 。
.6、分母是正整数 m 的既约真分数的个数为 _ ( m) _。
7、18100被 172除的余数是 _256。
8、65=-1。
103p19、若 p 是素数,则同余方程 x1(mod p) 的解数为 p-1 。
21、解同余方程: 3x 11x 20 0 (mod 105) 。
同余方程 3x 2 11x 20 0 (mod 3) 的解为 x 1 (mod 3) ,同余方程 3x 2 11x 38 0 (mod 5) 的解为 x 0, 3 (mod 5) ,同余方程 3x 2 11x 20 0 (mod 7) 的解为 x 2,6 (mod 7) ,故原同余方程有 4 解。
作同余方程组: x b 1 (mod 3) ,x b 2 (mod 5) ,x b 3 (mod 7) ,其中 b 1 = 1 ,b 2 = 0 ,3,b 3 = 2 ,6,由孙子定理得原同余方程的解为x 13,55, 58,100 (mod 105) 。
2、判断同余方程 x 2 ≡42(mod 107)是否有解?解: 42 ) ( 2 37)( 2 )(3 )(7 ) 107 107 1071071072 ) 33 1 107 1107 )2 )7)(7 1 107 1107 2 )(,( )( )22( ( ,( )22 () ( 11071107133110717 7( 42) 1 107故同余方程 x 2≡ 42(mod 107)有解。
初等数论试题及答案大学
初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。
答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。
答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。
答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。
答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。
证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。
特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。
这意味着2^(p-1) - 1是p的倍数。
2. 计算:求1到100之间所有素数的和。
答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。
证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。
如果a + b是素数,那么a + b至少有3个不同的素因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1 习题参考答案第一章习题一1. (ⅰ) 由a b知b = aq,于是b = (a)(q),b = a(q)及b =(a)q,即a b,a b及a b。
反之,由a b,a b及a b 也可得a b; (ⅱ) 由a b,b c知b = aq1,c = bq2,于是c = a(q1q2),即a c; (ⅲ) 由b a i知a i= bq i,于是a1x1a2x2a k x k = b(q1x1 q2x2q k x k),即b a1x1a2x2a k x k;(ⅳ) 由b a知a = bq,于是ac = bcq,即bc ac; (ⅴ) 由b a知a = bq,于是|a| = |b||q|,再由a 0得|q| 1,从而|a| |b|,后半结论由前半结论可得。
2. 由恒等式mq np= (mn pq) (m p)(n q)及条件m p mnpq可知m p mq np。
3. 在给定的连续39个自然数的前20个数中,存在两个自然数,它们的个位数字是0,其中必有一个的十位数字不是9,记这个数为a,它的数字和为s,则a, a 1, , a 9, a 19的数字和为s, s 1, , s 9, s 10,其中必有一个能被11整除。
4. 设不然,n1= n2n3,n2p,n3p,于是n = pn2n3p3,即p3n,矛盾。
5. 存在无穷多个正整数k,使得2k1是合数,对于这样的k,(k1)2不能表示为a2p的形式,事实上,若(k 1)2= a2p,则(k 1 a)( k 1 a) = p,得k 1 a = 1,k 1 a = p,即p = 2k 1,此与p为素数矛盾。
第一章习题二1. 验证当n =0,1,2,… ,11时,12|f(n)。
2.写a = 3q1r1,b = 3q2r2,r1, r2 = 0, 1或2,由3a2b2 =3Q r12r22知r1 = r2 = 0,即3a且3b。
3.记n=10q+r, (r=0,1,…,9),则n k+4-n k被10除的余数和r k+4-r k=r k(r4-1)被10 除的余数相同。
对r=0,1,…,9进行验证即可。
4. 对于任何整数n,m,等式n2 (n 1)2 = m2 2的左边被4除的余数为1,而右边被4除的余数为2或3,故它不可能成立。
5 因a4 3a2 9 = (a2 3a 3)( a2 3a 3),当a = 1,2时,a2 3a 3 = 1,a4 3a2 9 = a2 3a 3 = 7,13,a4 3a2 9是素数;当a 3时,a2 3a 3 > 1,a2 3a 3 > 1,a4 3a2 9是合数。
6. 设给定的n个整数为a1, a2, , a n,作s1 = a1,s2 = a1a2,,s n = a1a2a n,如果s i中有一个被n整除,则结论已真,否则存在s i,s j,i < j,使得s i与s j 被n除的余数相等,于是n s j s i = a i + 1a j。
第一章 习 题 三1. (ⅰ) 因为da 和d |a | 是等价的,所以a 1, a 2, , a k 的公约数的集合与|a 1|, |a 2|, ,|a k | 的公约数的集合相同,所以它们的最大公约数相等; (ⅱ),(ⅲ) 显然; (ⅳ) 设(p , a ) = d ,则d p ,d a ,由d p 得d = 1或d = p ,前者推出(p , a ) = 1,后者推出p a 。
2. (ⅰ) 由da i 推出d y 0 = (a 1, a 2, , a k ); (ⅱ) 分别以y 0和Y 0表示集合A = { y ;y =∑=ki i i x a 1,x i Z ,i k }和A *= { y ;y =∑=ki i i x ma 1,x i Z , i k }中的最小正整数,显然有Y 0 = |m |y 0; (ⅲ) 在推论2中取m = ,并用δδδk aa a ,,,21 代替a 1, a 2,, a k 即可。
3. (ⅰ) 若p |/a ,则(p , a ) = 1,从而由pab 推出p b ; (ⅱ) 在(ⅰ)中取a = b 可得; (ⅲ) (a , b 1b 2b n ) = (a , b 2b n ) = = (a , b n ) = 1。
4. 由恒等式9(2x 3y ) 2(9x 5y ) = 17y 及172x 3y 得172(9x5y ),又(17, 2) = 1,故179x 5y 。
5. 设(a , b ) = d ,则a = da 1,b = db 1,(a 1, b 1) = 1,由a2b 2c 得a 12b 12c ,a 12c ,因为c 无平方因子,所以a 1 = 1,a = d ,b = ab 1,即a b 。
6. 设12122321212232122C C C )C ,,C ,(C ---=+++=n n nn n n n n n d ,由知d 22n 1,设2k |n 并且2k+1不整除n ,由2k +1||1122112C 2C 2C |--+=i n i n k n in 及,i = 3, 5, , 2n 1,得d = 2k + 1。
第一章 习 题 四1. (ⅰ),(ⅱ) 显然; (ⅲ) 设m 1 = [a 1, a 2, , a k ],m 2 = [ |a 1|, |a 2|, , |a k | ],则由a i m 1推出|a I |m 1,即m 2m 1,同理可得m 1m 2,故m 1 = m 2; (ⅳ) 显然a|b |,b|b |,又若am ,b m ,m > 0,则|b | m ,故有[a ,b ] = |b |。
2. 设m 是a 1, a 2, , a n 的任一个公倍数,由a 1m ,a 2m 知[a 1, a 2] = m 2m ,由m 2m ,a 3m 知[m 2, a 3] = m 3m ,,由m n1m ,a n m 知[m n 1, a n ] = m n m ,即[a 1, a 2,, a n ]m 。
3. 只须证),()(),()(b a b b a b a b a ab b a ++=+,即只须证(b , a b ) = (a , b ),此式显然。
4. 由a b = 120及ab = (a , b )[a , b ] = 24 144 = 3456解得a = 48,b = 72或a = 72,b = 48。
5. 因为),)(,)(,(],][,][,[),,(],,[22222222a c cb b ac b a a c c b b a ca bc ab c b a c b a ==,,故只须证明(a , b , c )(ab , bc , ca ) = (a , b )(b , c ) (c , a ),此式用类似于例3的方法即可得证。
6. 设s = 1k2k9k,则由2s = (1k9k) (2k8k) (9k1k) = 10q 1及2s = (0k9k) (1k8k) (9k0k) = 9q 2得102s 和92s ,于是有902s ,从而1 29 = 45s 。
第一章 习 题 五1. (ⅰ) a b 知b = ab 1,由性质(ma , mb ) = |m |(a , b )得(a , b ) = (a , ab 1) = a (1, b 1) = a ; (ⅱ) 由性质(ma , mb ) = |m |(a , b )得(a , b ) = (2a 1, 2b 1) = 2(2a 1,b 1); (ⅲ)由性质(a , b ) = 1 (a , bc ) = (a , c )得(a , b ) =(a , 2b 1) = (a , b 1); (ⅳ) 由性质(a , b ) = (|a b |, b )及(a , b ) = 1(a , bc ) = (a , c )得(a , b ) = (||2ba ,b )。
2. 作辗转相除:1387 = (162)(8) 91,162 = 91(2) 20,91 = 20 4 11,20 = 11 1 9,11 = 9 1 2,9 = 2 4 1,2 = 1 20,由此得n = 6,q 1 = 8,q 2 = 2,q 3 = 4,q 4 = 1,q 5 = 1,q 6 = 4,x = (1)n 1Q n = 73,y = (1)nP n = 625,又(1387, 162) = r n = 1,故138773162625 = 1 = (1387, 162)。
3. (27090, 21672, 11352) = (4386, 10320, 11352) = (4386, 1548, 2580)= (1290, 1548, 1032) = (258, 516, 1032) = (258, 0, 0) = 258。
4. (F n + 1, F n ) = (F n F n 1, F n ) = (F n 1, F n ) = = (F 1, F 2) = 1。
5. 设除数为d ,余数为r ,则由d 4582 2836 = 1746,d 5164 4582 = 582,d 6522 5164 = 1358知d(1746, 582, 1358) = 194,由此得d = 97,r = 23或d = 194,r = 120。
6. 作辗转相除:a = bq 1 r 1, 0 < r 1 < |b |, b = r 1q 2 r 2, 0 < r 2 < r 1,r n 2 = r n 1q n r n ,0 < r n < r n 1, r n 1 = r n q n 1 r n 1,r n 1 = 0。
由第一式得2a1 =)12()12()12(]1)2[(21222111111111-+-=-+-=-+-+r b r q b r r r r bq Q ,即),(),(),(),(211111r r r b r b b a r b a M M M M M M M M M Q M M ==+=。
类似可得,等,于是),(),(),(),(11b a r r r r b b a M M M M M M M M n n n =====+ 。
第一章 习 题 六1. (ⅰ) 显然d =k kp p p γγγ 2121(0 ii,1 i k )是n 的正因数。
反之,设d 为n 的任一个正因数,由d n 知对每一个p i ,d 的标准分解式中p i 的指数都不超过n 的标准分解式中p i 的指数,即d 必可表示成k kp p p γγγ 2121(0ii,1 i k )的形式; (ⅱ) 类似于(ⅰ)可证得。