集美大学船舶结构力学(48学时)第八章杆件的扭转理论(2014)1学时资料
材料力学教学大纲(48学时)
《材料力学》教学大纲制订单位:机械工程学院安全工程系执笔人:李晋一、课程基本信息1.课程中文名称:材料力学2.课程英文名称:Mechanics of materials3.适用专业:非金属材料专业4.总学时:48学时(其中理论40学时,实验8学时)5.总学分:3学分二、本课程在教学计划中的地位、作用与任务本课程是非金属材料管理专业的一门专业基础课,通过本门课程的学习,可以使学生掌握基本受力构件的强度、刚度和稳定性控制方法,从而为工程项目决策提供基本技术手段。
三、理论教学内容与教学基本要求(40学时)1、第一章绪论(2学时)材料力学的任务。
变形固体的基本假设。
外力及其分类。
内力、截面法和应力的概念。
变形与应变。
杆件变形的基本形式。
2、第二章拉伸、压缩与剪切(4学时)轴向拉伸与压缩的概念与实例。
轴向拉伸或压缩时横截面上的内力和应力。
直杆轴向拉伸或压缩时斜截面上的应力。
材料在拉伸时的力学性能。
材料在压缩时的力学性能。
失效、安全系数和强度计算。
轴向拉伸或压缩时的变形。
轴向拉伸或压缩时的变形能。
拉伸、压缩静不定问题。
3、第三章扭转(4学时)扭转的概念与实例。
外力偶矩的计算、扭矩和扭矩图。
纯剪切。
圆轴扭转时的应力。
圆轴扭转时的变形。
4、第四章弯曲内力(4学时)弯曲的概念与实例。
受弯杆件的简化。
剪力和弯矩。
剪力方程和弯矩方程、剪力图和弯矩图。
载荷集度、剪力和弯矩间的关系。
5、第五章弯曲应力(4学时)纯弯曲。
纯弯曲时的正应力。
横力弯曲时的正应力。
弯曲剪应力。
提高弯曲强度的措施。
6、第六章弯曲变形(6学时)工程中的弯曲变形问题。
挠曲线的微分方程。
用积分法求弯曲变形。
用叠加法求弯曲变形。
简单静不定梁。
提高弯曲刚度的一些措施。
7、第七章应力状态和强度理论(6学时)应力状态概述。
两向和三向应力状态的实例。
两向应力状态分析—解析法。
两向应力状态分析—图解法。
三向应力状态。
广义虎克定律。
强度理论概述。
四种常用强度理论。
8、第八章组合变形(6学时)组合变形和叠加原理。
集美大学 船舶结构力学(48学时)第二章 单跨梁(3)2014年 4学时
3)单跨梁弯曲要素表类同 《材力》的对应表,但要 注意船舶结构力学符号法 则。 4)注意弯矩图的叠加;剪力 图的叠加(正负抵消)。
五、弯矩图与剪力图 1) 定义:载荷作用下梁 截面的弯矩和剪力沿梁轴 线的分布图形。 2)绘制目的:
a. 最为直观地描述弯曲梁的 内力分布; b. 帮助工程师预测和分析载 荷作用下结构的基本变形情 况。
3
求梁右端转角
梁右端的转角,用叠加法求 得如下:
Ml Ql Pl l 6 EI 24EI 16EI 2 Ql 32EI
2
2
画梁的弯矩图也采用
叠加法:先分别画出M、Q、 P单独作用下简支梁的弯矩、 剪力图,
P
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 16EI
六、单跨梁的弯曲要素 表及叠加原理应用
1.(普通)叠加法: 仅应用弯曲要素表及 叠加原理求静定或超静定 单跨梁特殊点的弯曲要素 并画内力图的方法。
2.单跨梁力法: 应用简支梁弯曲要素 表、叠加原理及变形协调 条件或静力平衡条件求超 静定单跨梁特殊点的弯曲 要素并画内力图的方法。
3、在应用弯曲要素表及 叠加原理解题时,应充 分了解已有的弯曲要素 表的种类、应用范围、 坐标及符号法则。
EI , l
P ql
q
EI , l
P ql
解:据叠加原理有
q
q
vq
EI , l
P
vP
P
EI , l
P
EI ,ቤተ መጻሕፍቲ ባይዱl
M图
中点挠度
端点转角大小
0.25 Pl
Pl3 48EI
m l2 中点挠度 16EI
船舶结构力学课后题答案
目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b) 2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++ =2220.157316206327Pl Pl Pl EI EI EI-+=⨯2291()(1)3366Ml Ml Pl l EI EI EIθ-=+-+ =2220.1410716206327Pl Pl Pl EI EI EI---=⨯()()()2222133311121333363l l p l l v m m EIl EI ⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+ ⎪⎣⎦⎝⎭=2372430pl EIc) ()44475321927682304ql ql qll v EI EI EI=-=()23233'11116(0)962416683612lq l ql plqlql v EI EI EIEIEI ⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图 2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。
8-扭转
13:57
工程力学电子教案
扭
转
19
沿外圆周的切向,如下图所示。
T φ
MT( MT =T)
上述内容主要说明: (1) 薄壁圆筒圆周上各点处的切应变相同; (2) 薄壁圆筒圆周上各点处的切应力相等;
13:57
工程力学电子教案
扭
转
20
(3) 薄壁圆筒圆周上各点处剪应力的方向沿外周线的 切线。 对于薄壁圆筒(d 很小),横截面上其它各点 处的切应力可以认为与外圆周处相同,即不沿径向 变化。于是可以认为薄壁圆筒受扭时,横截面上的 切应力大小处处相等,方向则垂直于相应的半径。 即如图中所示。
m b b T ′ o′ b O B m m MT T x
l
m
由
即
∑Mx(F)= 0
T – MT = 0 MT = T
13:57
工程力学电子教案
扭
转
6
扭矩的正负号由右手螺旋法则规定: 使卷曲右手的四指其转向与扭矩MT的转向相 同,若大拇指的指向离开横截面,则扭矩为正;反 之为负。 例:
MT MT
(a)
T
φ
MT( MT =T)
13:57
工程力学电子教案
扭
转
21
这样,知道了切应力t 的分布规律后 ,便可以利用 静力学关系 M t d A r
T
A
r —— 用平均半径r0代替
则 从而有
M T t r0 d A t r0 A
t M T /( r0 A)
A
M T /( r0 2 π r0 )
13:57
工程力学电子教案
扭
转
10
例题 6-6
集美大学船舶结构力学(48学时)第三章 力法(1)2014(2学时)
静定基
这时原来仅受均布荷重q作用的静 不定的双跨梁变为受均布荷重q与集中 力R共同作用的静定的单跨梁;
2)比较前后两种梁的变 形情况,根据变形一致 (协调、连续)条件建 立方程式;
原超静定结构
v1 0
静定基
变形一致条件:
v1 0
静定基
变形一致条件:
v1 0
vq1 vR1 0
4
3
Rl 5ql 0 5 6 EI 24 EI R ql 4
P
M图
中点挠度大小
3
端点转角大小
2
m
Pl Pl EI , l 48EI 16EI Pl / 4 2 m ml ml ml 左 右 查单跨梁的弯曲要素表(附录A表A-2),得到: 3EI 6EI 16EI
Q
EI , l
Ql / 8
(力法基本未知数数目与结构的 静不定次数相同。)
2、在去掉约束或截断处, 列出变形一致(连续) 方程式以保证基本结构 的变形与原结构的变形 相同。
(方程数目与基本未知数数目相同。)
3、从变形一致(或连续、 协调)方程式中求出未 知“力”,进一步可求 出结构的其他弯曲要素。
五、三弯矩方程法 1、三弯矩方程式:一般来 说,在用力法的第二种方法 (截面法)解静不定杆系问 题时,列出的变形连续方程 式(或称节点转角连续方程) 是以各断面弯矩为未知数的 方程组,
1 2 M 1 ql 14
3 2 M2 ql 28
7)画弯矩图
求出了 M 1 、M 2 后, 就可以分别对两个单跨 梁1-2、2-3画弯矩图。
其中每一个单跨梁 的弯矩图都可以用叠加 法来画。最后组合起来 得到双跨梁的弯矩图, 图3-7(a)。
集美大学船舶结构力学(48学时)第三章 力法(3)2014(2学时)
216EI v 2 3 11l
M 2 M1 5 R2 ql l 2
因此,有方程:
216 EI M 2 M1 5 v ql 2 3 11l l 2
将此式与上面两方程联立 问题则解决。
题9 求下图 M , v , R 。 1 1 1
据3.6改 (教材52页)
梁的左半段断面惯性矩 为 I 1 ,右半段断面惯性矩 为 I 2 ,可以设想在断面变 化处加上一个柔性系数 A= ∞ 的弹性支座,如图4-27b)所示, 于是就可以按弹性支座上双跨 梁的方法来计算了。
静定基
v AR
EI1
R10
R R12
EI 2
v
静力平衡方程?
R0
A
转角连续方程式?
因此,可列出中间支座断面的 转角连续方程式:
R10
R12
3
l v1 AR1 ( R10 R12 ) 12EI 2 R ql 3
题8
(教材49页例2) 图3-26a所示的具有弹 性支座的多跨梁,试求其断 面弯矩、节点挠度和作用在 弹性支座上的力。
解:1、静定基:
M1
q 1
EI , l
M2
q
E,4I ,4l
M2
3
11l 3 A 216EI
即: 原模型:
A l3 6 EI
静定基:
EI , l EI , l
变协方: 4 4 5 q(2l ) 1 R(2l ) AR 384 EI 48 EI
由此直接解得:
R
v1 AR
可以去掉 中间的弹性支 座代以支反力 R,再利用变 形连续条件列 方程式求解。
R 5ql / 8
(最新修订)船舶结构力学课件第三章 力法( 4)2014(2学时)集美大学轮机工程学院(总48学时)
ql Rl 384EI 192EI
v交 2 Rl 48EI1
3 1
4
3
2
变协方
v主2 v交2
2)根据变形一致条件(节点2 处挠度相等),有变形连续方 程式为 v主2 v交2 即
ql Rl Rl 384EI 192EI 48EI1
(A)
4
3
3 1
2、 再考虑撤去无荷重杆 1-3,在节点2(梁4-5的中 点)处加一弹性支座的情 况:如图3-16(c)所示,
1
x
1
EI , l 3
1
P
1
EI , l
两端刚固无载杆:
2
A
l3 192EI
l A 192 EI 1 公式
v/R
3 1
P
1
EI , l 3
4 2 EI , l EI , l
1
1
R
4 2 EI , l 3 EI , l
1
1
l R v2 AR 192EI
3
例3:
将下图所示的杆系 简化为具有弹性支座的 单跨梁。
其计算模型如该图所示, 图中甲板间肋骨的下端 暂时假定是自由支持的。
1
3-18
1. 先用力法来解这个刚架:
2 3
3-18 1
1)静定的基本结构图形如图 3-18(b)所示;
2
3
2
l ll EI
静定基
l1 1l 1 EI
1
变协方: 21 23
3-18
2)建立支座2处的转角连续 方程式即 21 23
q
z
q
x
y
q
显然: 由力法去支座法有
集美大学_船舶结构力学(48学时)第一章_绪论(2014年)
4、船体梁:把船整体当作一 根梁(空心变截面梁)静置于 静水中或波浪上,以研究船体 总纵强度等。
5、船体总纵强度(总强度):
将船视为船体梁来研究船 在纵向分布的重力与浮力作用 下的弯曲变形与应力等强度问 题。
思考:静水、波浪、中拱、中 垂。(参考图1-1、图片等)
中拱、中垂?
中拱、中垂?
以远洋干货船船体结构甲 板舱口部分(图1-7)为例介 绍板架模型的建立:
(参见图1-9)
(图1-4 a)
在计算舱口纵桁和舱口端横梁 在垂直于甲板载荷作用下的弯曲应 力和变形时,可将其取为图1-7a所 示的井字型平面杆系计算图形,即 板架。
以远洋干货船船体结构舱底部 分(图1-7)为例介绍船底板 架模型的建立:
但应注意到这些计算图形具有一 定的近似性。
四、空间结构及板梁组合结构
随着计算机的应用和发展,可采用 更切合实际的计算模型,使结构计算更 加精确可靠。
1、空间结构计算模型举例:图19 大舱口货船悬臂梁结构的计算 模型。
该空间杆系计算模型放弃了以
往模型中舱口纵桁刚性支撑悬臂梁 的假定,更切合实际。可同时算出 甲板纵桁、舱口纵桁、舱口端横梁、 悬臂梁及肋骨的应力与变形。
图1-8a所示的为双甲板船在舱口处横剖面的肋 骨框架计算图形:
刚架的进一步简化:仅由横梁与肋骨 组成的刚架(图1-8b)
考虑到实际船体结构中肋板的 尺寸远较肋骨的大,所以计算时可 将肋骨下端作为刚性固定端。把肋 板放到船底板架中去研究,而得。
注:以上介绍的矩形板、连续梁、板 架和刚架是船体结构中比较典型而 且比较简单的计算图形,应用结构 力学中的经典理论和方法,由手算 就能得到结果。
船舶结构力学
Structural Mechanics of Ship
(参考答案)集美大学船舶结构力学初参数法单元测试题
集美大学船舶与海洋工程专业2012级船舶结构力学初参数法单元测试题(参考答案及评分标准)1.已知单跨梁如图1所示,试写出该梁用初参数表达的挠曲线及边界条件(不必确定初参数;梁端外力并入边界条件之中)。
(10分)图1 解:挠曲线方程:224302000)2(22462)(l x EI m x EI q x EI N x EI M x v x v --++++=θ (2分) 梁左端边界条件:P A v N M +-==000000;αθ (4分) 梁右端边界条件:1'''1''';A v EIv v EIv l l l l =-=α (4分) 2.两端刚性固定的单跨梁如图2所示,不受外荷重作用,当其左、右支座分别发生已知位移21,v v 时, 试求挠曲线。
(15分)图2解:1) EIx N EI x M v x v v v 62)(0,30201010++===θ (5分) 2)代入梁右边条0)(',)(2==l v v l v 有: 0262200230201=+=++l EIN l EI M v l EI N l EI M v (4分) 3)由上式得:31202120)12;)6l v v EI N l v v EI M --=-=(( (4分) 4) 331222121)2)3)(x lv v x l v v v x v ---+=(( (2分) 3.试求出图3所示单跨梁的挠曲线。
(5分) l EI ,x y omlEI ,x y o P图3解:1) 00=N (2分); 2) l EI m =0θ (2分);3)22)(x EI m lx EI m x v -=(1分)。
集美大学船舶结构力学(48学时)第二章 单跨梁(4)2014(1学时)
若
h / l 1 / 10
v2 0.01v1
,则
结论: 1、若梁的高度与长度相比 很小,则剪切对弯曲的影 响也很小而可忽略不计;
2、在船体结构中对于细 长的骨架,可以无须考虑 剪切对弯曲的影响; 3、对于大型油轮中的高腹 板梁,要考虑剪切影响, 在计算船体总弯曲挠度时, v1 。 v2 的10% 约取
l4 k u 2 4 EI
(J2-93)
5、简支弹性基础梁跨中有 集中力的弯曲要素:
Pl Pl v ' ( 左端 ) ( u ) 0 v(中) 2 (u ) 16 EI 48EI
3
2
Pl M (中) 0 (u ) 4
P N (右端 ) 0 (u ) 2
6、当u>0时,弹性基础梁 的辅助函数随u的增加而 减少(参见附录C). l4 k 如:u: 0--5 u 2 4 EI 2 (u) : 1--0.006
Pl v(中) 2 (u ) 48EI
3
这说明了随着弹性基 础刚度的增加弯曲要素将 逐渐减少。
考研概念题: 有下列的弹性基础梁(a) (b) (c),试判定;它们中梁中点 挠度最大的为( ), 最小的为( ), 判定的主 要依据为( )。
8P
(a)
l4 k u 2 4 EI
EI , l
弹性基础梁弯曲问题的几个 结论:
1、随着弹性基础刚度的增加弯 曲要素将逐渐减少,也说明 有弹性基础时梁的变形将比 没有弹性基础时小些。
2、当k(弹性基础刚度)一定 时,梁的弯曲要素与外荷 重成线性关系。
3、若弹性基础梁上受到 不同的外荷重时,仍可 应用叠加原理求出该梁 的弯曲要素。
4、弹性基础梁的刚度参数 u(教材27页):
船舶结构力学
Pre
Next
Exit
11
6、船舶碰撞
★船舶碰撞:船舶之间或船舶与其它海洋结构物
的碰撞,导致船体受损。
Pre
Next
Exit
12
船舶结构力学学习——要掌握在给定的外力作用下如何确定
船体结构中的应力与变形,包括研究受压构件的稳定性问题。
“船舶结构力学”是研究船体结构中板与骨架的强度与 稳定性的科学
★对船体(包括海洋结构物)进行船体结构 设计与强度、稳定性计算。
1 良好的航行性能
船舶 完成
任务 2 良好的工作性能
的 前提
3 具有一定的强度
船舶具有一定的强度,是指船体结构在正常 的使用过程和一定的使用年限中具有不破坏 或不发生过大的变形的能力,以保证船舶能 正常地工作。
Pre
Next Exit
3
传统解船体强度的方法: 静置法
Pre
Next Exit
4
静置法:将船体梁静置于静水和静置于波浪上,然后按静水效应
研究船舶在重力和浮力作用下发生的弯曲变形和应力。
船
第一类载荷为固定载荷,也称常载荷
体
结
包括船体结构自重,主机、辅机、锚机、舵机、救生设备等
构
第二类载荷为变化载荷—随航线及运输任务的不同而变
二、研究内容
阐述问题-《船舶结构力学》研究内容
★研究船舶在外载荷作用下的结构响应(受力与变形)。 ★外载荷:重力、浮力、波浪载荷、冲击力以及惯性力等等。
首要问题
分析船体受力和变形的主要特征
建模: 把船整体当作一根梁
来研究---即船体梁
将“船体梁”’(ship hull girder)静 置于静水中或波浪上,计算在船纵向 (船长方向)分布的重力与浮力作用下 的弯曲变形与应力。
集美大学 船舶结构力学(总48学时)第六章 能量法(1)(2学时)2014
EI
可得 图5-3
1 1 V P11 dV P 1d 2 2 再据 有
写出
1 dV Mdθ 2 1 M M dx 2 EI 2 1M dx 2 EI
线性体系一维弹性体 应变能的统一形式
Mdx d EI
而
1 M2 dV dx 2 EI
V
将
"
l
0
1 lM dV dx 2 0 EI
1 0
1
0
1
1
0
1 2 V k 1 2
2 0
(J6-11a)
应变能与广义位移的关系?
1 1 2 P P 1 1 1 2 2k
由以上推导可见应变能 是广义位移的二次函数。
1 2 1 2 P1 V k 1 V 2k 2
应变能与什么有关?
应变能只与载荷的最终数值有关, 或只与位移的最终数值有关。
1 l "2 EIv dx 弯曲 2 0 一般以弯曲为主的杆 l 1 '2 件,剪切和拉压应变能与 GA v dx s 2 弯曲应变能相比很小可忽 0 2 略不计。
1 l '2 u V EAu dx 2 0 1 l 扭转 104页 '2 GJ dx (5-8b) 2 0
1
2.应变能(变形能)(用V表示) 显然: V
W Pd
0
教材105页(5-11)
1
3.一维弹性体——受拉杆的外 力功或应变能、单位体积的 应变能:
外力功或应变能:V
W Al d
0
1
单位体积的应变能:V0
1
0
d
下面说明之:
集美大学 船舶结构力学(48学时)第二章 单跨梁(2)2014年 4学时
§2.2梁的支座及边界条件
基本概念: 1)梁端边界条件: 梁端弯曲要素的特 定值或弯曲要素之间的 特定关系式。
2)梁端支座情况与梁端边 界条件的关系: 梁端的边界条件取决 于梁端的支座情况,不同 的支座对梁有不同的约束, 从而就有不同的边界条件。
3)研究梁端边界条件的意 义: 确定初参数, 即确定挠曲线方程。
一、各种支座及相应的边界 条件 本节先介绍通常的刚性 支座和刚性固定及铰支端和 刚固端的边界条件,再介绍 弹性支座和弹性固定及弹支 端和弹固端的边界条件。
1、刚性支持端(参见图2-7) 简称刚支端又称铰支端或简 支端:
(它的弯曲要素的特定值?)
铰支(端) 简支(端)
固定铰支座 活动铰支座
简化表达
(梁左端用负号)
图2-11
6、弹性固定 1)定义: 该种固定(端)在受 弯矩作用后将产生一个正 比于弯矩的转角。
M
M k
左
(2-14)
P
M
k
右
记忆该式有利于使用叠加 法、力法、 位移法处理弹性固定端的 情况。
k
M
P
2)弹性固定的“柔性系数” /: M
7、弹性固定端(弹固端)的边 界条件: 由于对梁来说,支反力矩 M就是梁端的弯矩,因此就可 以把梁端转角与弯矩之间的关 系找到。 v0
0
x
y
M0x N0 x qx v v0 0 x 2 EI 6 EI 24EI m P 2 3 a ( x a) b ( x b) 2 EI 6 EI
2
3
4
解: (1)代入左端边界条件的挠曲 线方程式: 3 2 M0x N0 x v 2 EI 6 EI
船舶结构力学-第九章薄壁杆件扭转
§9-2 薄壁杆件的自由扭转
q2a bd t sq2q 3b cd t sq2q4d cd t sq2q 1d ad t s2 G2 A
或写成
q22dt sq121dt sq323dt sq424dts2G2A
上式写成通用形式为:
沿第i与第k 室的公共
绕第i室的 周线积分
qi
i
ds tk
qkikdt s壁2积G分2A
(9-13)
式中,i=1,2,3,…,n;
§9-2 薄壁杆件的自由扭转
qi Gqi
再将上式代入(9-14),最终得出各室剪流的计
算公式:
qi
qi
Ms It
(9-18)
式中,i=1,2,3,…,n。
10
三闭室截面如图 所示,两端受扭 矩Ms40k0N m
8 12 300
16
10 600
10
800
400
(图9-5)
求扭转惯性矩及 剪流
§9-1 概述
薄壁杆件在实际工程上应用非常广泛。如桥梁工程 和海洋工程中的箱形、工字型和槽形梁等等。就船舶 结构来说,船体骨架一般有薄壁杆件组成;整个船体 梁也是一根薄壁杆件。
§9-2 薄壁杆件的自有扭转
1.开口薄壁杆件的自有扭转
开口薄壁杆件的截面可以看作由若干狭长矩形截面 所组成。利用狭长矩形截面的杆件自有扭转时的计算 公式和如下两个假定可导出薄壁杆件自有扭转的计算 公式。这两个假定是: (1)假定开口薄壁杆件自由扭转时,截面在其本身平 面内形状不变,即在边形过程中,截面在其本身平面 内的投影只作刚性平面运动。此即为刚周边假定; (2)假定薄壁杆件中面上无剪切变形。
集美大学船舶结构力学(48学时)第六章能量法(3)2014 1学时
教学内容 : §6.6 李兹法(位能驻 值原理的近似解法之一)
教学目的: 李兹法可用来求解任 意结构形式,在任意载荷 作用下的梁的挠曲线。
有限元法的推导中 也应用了李兹法,所以 了解李兹法的思想、掌 握李兹法求解梁的弯曲 问题十分重要。
教学要求: 掌握用李兹法求解梁 的挠曲线的方法。
任意荷重: v( x) a1 sin ... l x 1) 0
EI , l
y
x
任意荷重:
x v( x) a1 (1 cos ) ... 2l
2 3
v( x) a1 x a2 x ...
EI , l
x
2)
0
y
对称荷重:
2x v( x) a1 (1 cos ) ... l
l 4ql4 1 ql4 vmax v( ) 5 (1 ) 0.013017 2 EI 243 EI
取第一项
4 4
误差:-0.03%
l 4ql ql vmax v( ) 5 0.013071 误差:0.04% 2 EI EI 4 4 l 5ql ql vmax v( ) 0.013021 精确值 2 384EI EI
2
题6:
0
y
P
取 v ( x ) a (1 sin 2l )
EI , l
x
x
EI V 2
l
0
v "2 ( x)dx
公式:
x 1 sin Bxdx sin 2 Bx 2 4B
2
U Pv( 0 )
(本题B
2l
)
V
EI