数学人教版七年级下册平面直角坐标系中的动点问题

合集下载

动点题直角坐标系初一数学题目

动点题直角坐标系初一数学题目

动点题直角坐标系初一数学题目
1. 在直角坐标系中,P(3, 4)和Q(5, 2)两个点,求线段PQ的长度。

2. 在直角坐标系中,A(-2, 3)和B(1, -1)两个点,求线段AB的
斜率。

3. 在直角坐标系中,C(2, 1)和D(-1, 4)两个点,求线段CD的
中点坐标。

4. 在直角坐标系中,E(0, 0)和F(3, 4)两个点,求线段EF的斜率。

5. 在直角坐标系中,G(2, 3)和H(6, 7)两个点,求线段GH的倾斜角度。

6. 在直角坐标系中,I(1, 2)和J(4, 5)两个点,求线段IJ的斜率,并判断该直线与x轴的交点。

7. 在直角坐标系中,K(3, 5)和L(3, -2)两个点,求线段KL的
长度。

8. 在直角坐标系中,M(-4, -5)和N(0, 0)两个点,求线段MN的倾斜角度。

希望以上题目能够帮助你更好地理解直角坐标系中的数学概念。

人教版七年级下册数学动点问题

人教版七年级下册数学动点问题

人教版七年级下册数学动点问题1.题目描述:给定平面直角坐标系上两个点A、B的坐标,以及一辆汽车从原点出发沿x轴行驶,求汽车到达离A点最近、离B点最近和距离两点和最短的位置坐标。

解题思路:根据勾股定理,可以求出汽车到达任意位置与A、B两点的距离,进而判断哪个位置离A、B最近,哪个位置距离两点和最短。

最终画出图像,标出所求位置的坐标。

2.题目描述:给定平面直角坐标系上三个点A、C和O,满足一定条件,求动点P、Q在规定时间内的运动,以及点F、G、E在特定条件下的运动情况。

解题思路:根据题目所给条件,可以求出点A、C、O的坐标,以及三角形ODP、ODQ的面积。

然后根据P、Q的速度和时间,求出它们的运动轨迹。

对于点F、G、E,根据题目所给条件,可以求出它们的坐标,进而分析它们的运动情况。

3.题目描述:给定平面直角坐标系上一个长方形ABCD的两个顶点坐标,以及一个点P的坐标,求长方形的面积和点P 在一定条件下的伴随点坐标。

解题思路:根据题目所给条件,可以求出长方形ABCD 的面积。

对于点P的伴随点,可以根据题目所给公式求出其坐标,然后根据题目所要求的点的伴随点,反复使用公式求出所求点的坐标。

2.若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为:对于任意的正整数n,An在x轴上方,即An的纵坐标大于0.因此,对于任意的正整数n,有bn>0.而An是由A1向上移动n个单位得到的,因此有An的纵坐标为b+n。

所以对于任意的正整数n,有b+n>0,即b>-n。

综上所述,a和b的取值范围为a∈R,b>-n。

4.如图,在平面直角坐标中,A(0,1),B(2,0),C(2,1.5).1)求△XXX的面积:设AB向量为a,AC向量为b,则△ABC的面积为|a×b|/2,其中×表示向量的叉积。

因为AB向量为(-2,1),AC向量为(2,0.5),所以|a×b|=|-4-1|=5,因此△ABC的面积为5/2.2)如果在第二象限有一点P(a,0.5),试用a的式子表示四边形ABOP的面积:四边形ABOP的面积等于△ABP的面积加上△AOP的面积。

数学人教版七年级下册平面直角坐标系中的动点问题

数学人教版七年级下册平面直角坐标系中的动点问题

回顾旧知
1.已知点A的坐标是(3,0),AB=5.(1)若点B 在x轴上时,则点B的坐标是 。(2)当 AB//y的坐标是(3,0),点A运动的速度是 2个单位/秒。 (1)若点A沿x轴正半轴运动5秒,则点B坐标 为 。(2)若点A沿x轴运动5秒,则 点B坐标为 。
巩固拓展
例2中,若△OPQ的面积为6 (1) 求t的值; (2)当点Q在边BC上时,过 点Q作QD⊥x轴是,交OP于点 M, 求出点M的坐标。
作业:
如图,平面直角坐标系中,四边形ABCD为长方形, 其中点A、C坐标分别为(-4,2)、(1,-4),且 AD//x轴,交y轴于点M,AB交x轴于点N. (1)求B、D两点坐标和长方形ABCD的面积; (2)一动点P从点A出发,以(1/2)个单位/秒的速 度沿AB向B运动,在点P运动过程中连接MP,OP,请 直接写出∠AMP、∠MPO、∠PON之间的数量关 系; (3)是否存在某一时刻t,使△AMP的面积等于 长方形面积的(1/3)?若存在,求t的值并求此时点 P的坐标;若不存在说明理由。
典例演练
例2、在长方形OABC中,OA=6,OC=4,点P是AB 边上的点,AP=3,以点 O为原点,OA所在直线为x 轴,OC所在直线为y轴,建立如图的平面角坐系, 动点Q从原点O出发,以2个单位/秒的速度沿 O→A→B→C 路线运动,当点Q运动到点C时,停止 运动,设运动时间为t。 (1)直接写出点B的坐标为 。 (2)求△OPQ的面积(用含t的式子表示)
典例演练
例1.如图,在平面直角坐标系中,点A,B的坐标分 别为(-1,0),(3,0),现同时将点A,B分别向上 平移2个单位,再向右平移1个单位,分别得到点 A,B的对应点C,D,连接AC、BD、CD。 (1)求点C、D的坐标; (2)若点P在线段BD上运动,写出∠CPO∠DCP、 ∠BOP的数量关系,并说明理由。 (3)若点P在直线BD上运动,请直接写出∠CPO、 ∠DCP、∠BOP的数量关系。

七年级下册数学平面直角坐标系中的动点问题

七年级下册数学平面直角坐标系中的动点问题

1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积ABDC S 四边形(2)在y 轴上是否存在一点P ,连接PA ,PB ,使PAB S ∆=ABDC S 四边形,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:①DCP BOP CPO ∠+∠∠的值不变,②DCP CPOBOP∠+∠∠的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.2.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 的坐标为(4,0),点C 的坐标为(0,6),点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着 O —A —B —C —O 的路线移动(即沿着长方形的边移动一周). (1)点B 的坐标为_______________.(2)当点P 移动了4秒时,描出此时点P 的位置,并求出点P 的坐标;(3)在移动过程中,当点P 到x 轴的距离为5个单位长度时,求点P 移动的时间.3.如图,在平面直角坐标系中,四边形OABC 为正方形,A 点在x 轴负半轴上,C 点在y 轴负半轴上,边长为4,有一动点P 自O 点出发,以每秒2个单位长度的速度沿O —A —B —C —O 运动,则何时S △PBC =4?并求出此时P 点的坐标.4 .如图 , △ A BO 的三个顶点的坐标分别为 O ( 0 , 0 ) , A ( 5 , 0 ) , B ( 2 , 4 ) .( 1 ) 求 △O AB 的面积; ( 2 ) 若 O , B 两点的位置不变 , 点 M 在 x 轴上 , 则点 M 在什么 位置时 , △O BM 的面积是 △ O AB 的面积的 2 倍? ( 3 ) 若 O , A 两点的位置不变 , 点 N 由点 B 向上或向下平移得 到 , 则点 N 在什么位置时 , △O AN 的面积是 △ O AB 的面积的 2 倍? O AB C yA B C O yP。

平面直角坐标系动点问题

平面直角坐标系动点问题

平面直角坐标系动点问题一、引言平面直角坐标系是数学中非常基础的概念,它可以用来描述二维空间中的点和图形。

在平面直角坐标系中,我们可以通过坐标轴上的数值来确定一个点的位置。

而动点问题则是将平面直角坐标系与运动学相结合,用于描述物体在平面内运动过程中的位置变化。

二、基本概念1. 平面直角坐标系平面直角坐标系由两条互相垂直的数轴组成,分别称为x轴和y轴。

它们交于原点O,并且每个点都可以用一个有序数对(x, y)来表示。

2. 动点动点是指在平面内移动的一个点,它可以沿着任意路径运动,并且在不同时间处于不同位置。

3. 运动学运动学是研究物体在空间中运动状态和规律的学科。

它包括了物体位置、速度、加速度等概念。

三、平面直角坐标系与动点问题1. 平移运动平移运动是指物体沿着一条直线或曲线路径做匀速运动,在这种情况下,我们可以通过简单地改变物体在x轴和y轴上的坐标来描述它的位置变化。

例如,一个物体从点A沿着直线运动到点B,我们可以通过改变x轴和y轴上的坐标来描述这个过程。

设A的坐标为(x1, y1),B的坐标为(x2, y2),则在t时刻物体的位置可以表示为:x = x1 + (x2 - x1) * ty = y1 + (y2 - y1) * t其中t表示时间,它的取值范围通常是0到1。

2. 旋转运动旋转运动是指物体绕固定点或者绕自身中心做圆周运动,在这种情况下,我们需要使用极坐标系来描述物体的位置。

极坐标系由极轴和极角两个参数组成,其中极轴表示物体到原点O的距离,而极角表示物体与x轴之间的夹角。

在旋转运动中,我们通常会使用弧度制来表示角度。

例如,一个物体以原点O为中心顺时针旋转α角度后到达点P,则P 的极坐标可以表示为:r = OP = √(x^2 + y^2)θ = α其中r表示距离原点O的距离,而θ表示与x轴之间的夹角。

3. 抛射运动抛射运动是指物体在空中做抛体运动,它的轨迹通常是一个抛物线。

在这种情况下,我们需要使用二元二次方程来描述物体的位置。

七年级下册数学动点问题解题技巧

七年级下册数学动点问题解题技巧

七年级下册数学动点问题解题技巧一、动点问题解题技巧概述。

1. 分析动点的运动轨迹。

- 明确动点是在直线(如数轴、坐标轴上的直线)上运动,还是在平面图形(如三角形、四边形的边或内部)中运动。

例如,在数轴上的动点,其位置可以用一个数来表示,而动点在平面直角坐标系中的坐标则需要用一对数(x,y)来表示。

2. 用含时间t(或其他变量)的代数式表示相关线段的长度。

- 若动点在数轴上,设动点的初始位置为a,速度为v,运动时间为t,则经过t时间后动点的位置为a + vt(当向右运动时v为正,向左运动时v为负),两点间的距离可以根据它们在数轴上的坐标相减的绝对值来表示。

- 在平面直角坐标系中,如果动点P(x,y)从点A(x_1,y_1)出发,沿x轴方向速度为v_x,沿y轴方向速度为v_y,运动时间为t,则x = x_1+v_xt,y=y_1 + v_yt。

对于线段长度,可以利用两点间距离公式d=√((x_2 - x_1)^2+(y_2 - y_1)^2),将坐标用含t 的式子代入来表示线段长度。

3. 根据题目中的等量关系列方程求解。

- 常见的等量关系有:线段相等、面积相等、三角形相似对应边成比例等。

例如,若两个三角形相似,根据相似三角形对应边成比例的性质列出方程,然后求解方程得到关于t(或其他变量)的值。

二、题目及解析。

1. 已知数轴上A、B两点对应的数分别为 - 1和3,点P为数轴上一动点,其对应的数为x。

- 若点P到点A、点B的距离相等,求点P对应的数x。

- 解析:因为点P到点A、点B的距离相等,所以| x - (-1)|=| x - 3|,即| x + 1|=| x - 3|。

当x+1=x - 3时,方程无解;当x + 1=-(x - 3)时,x+1=-x + 3,2x=2,解得x = 1。

- 若点P在点A、点B之间,且PA+PB = 4,求点P对应的数x。

- 解析:因为点P在A、B之间,PA=| x+1|=x + 1,PB=| x - 3|=3 - x,由PA+PB = 4可得x + 1+3 - x=4,恒成立,所以-1中的任意数都满足条件。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

初一数学下册动点问题

初一数学下册动点问题
解析:(1)对于图①,过点P作AB的平行线,然后根据平行线的性质可以证得:
∠APC=∠A+∠C。从而求得∠C的度数。
点P在线段EF上运动时(注意:关键词是线段),∠A、∠APC与∠C之间的关系就是:∠APC=∠A+∠C。证明方法参考(1).
当点P在FE延长线上运动时,过点P作AB的平行线,根据平行线的性质可以证得
分析:(1)根据角平分线的性质结合∠ADC=70°即可求得结果;
(2)过点E作EF∥AB,即可得到AB∥CD∥EF,从而可得∠ABE=∠BEF,∠CDE=∠DEF,再根据角平分线的性质可得∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°,即可求得结果;
(3)过点E作EF∥AB,根据角平分线的性质可得∠ABE= ∠ABC= n°,∠CDE= ∠ADC=35°,再根据平行线的性质可得∠BEF的度数,从而求得结果.
(5)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)给出下列结论:
解析:(1)根据平移规律:左右平移横变化,左减右加;上下平移纵变化,上加下减。
A(-1,0),向上平移2个单位后得到坐标为:(-1,2),再向右平移1个单位,得到点C(0,2);
B的坐标分别为(3,0),向上平移2个单位后得到坐标现(3,2),再向右平移1个单位得到点D(4,2)。
S△DOQ=1212OQ•xD=1212×2t×1=t,
∵S△ODP=S△ODQ,∴2-t=t,
∴解得:t=1,
∵∠2+∠3=90°,
又∵∠1=∠2,∠3=∠FCO,
∴∠GOC+∠ACO=180°,
∴OG∥AC,
∴∠1=∠CAO,
∴∠OEC=∠CAO+∠4=∠1+∠4,

人教版七年级下册数学动点问题完整版

人教版七年级下册数学动点问题完整版
人教版七年级下册数学动点问题
动点问题
1、如图6-7,已知A、B两村庄的坐标分别为(2,2)、(7,4),一辆汽车在 轴上行驶,从原点O出发.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
(3)请在图中画出汽车行驶到什么位置时,距离两村的和最短?
(1)线段BC的长为,点A的坐标为;
(2)如图1,EA平分∠CAO,DA平分∠CAH,CF⊥AE点F,试给出∠ECF与∠DAH之间满足的数量关系式,并说明理由;
(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分 ,ON平分 ,BN交ON于N,请依题意画出图形,给出 与 之间满足的数量关系式,并说明理由.
(2)在y轴上是否存在一点P,连结PA,PB,使S△PAB=S△PDB,若存在这样一点,求出点P点坐标,若不存在,试说明理由;
(3)若点Q自O点以个单位/s的速度在线段AB上移动,运动到B点就停止,设移动的时间为t秒,(1)是否是否存在一个时刻,使得梯形CDQB的面积是四边形ABCD面积的三分之一?
5、如图,△ABC的三个顶点位置分别是A(1,0),B(-2,3),C(-3,0).
(1)求△ABC的面积;
(2)若把△ABC向下平移2个单位长度,再向右平移3个单位长度,得到△ ,请你在图中画出△ ;
(3)若点A、C的位若点B、 C的位置不变,当点Q在x轴上什么位置时,使 .
7、如图,在平面直角坐标系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7)
(1)在坐标系中,画出此四边形;
(2)求此四边形的面积;
(3)在坐标轴上,你能否找一个点P,使S△PBC=50,若能,求出P点坐标,若不能,说明理由.

人教版七年级下册数学期末复习:动点问题压轴题

人教版七年级下册数学期末复习:动点问题压轴题

人教版七年级下册数学期末复习:动点问题压轴题1.如图,点A 在x 轴的负半轴上,点D 在y 轴的正半轴上,将三角形AOD 沿x 轴向右平移,平移后得到三角形BEC ,点A 的对应点是点B .已知点A 的坐标为(a ,0),点C 的坐标为(b ,c ),且a ,b ,c ()2640b c -+-=.(1)求点B 的坐标; (2)求证:∠DAE =∠BCD ;(3)点P 是线段BC 上一动点(不与点B 、C 重合),连接DP 、AP ,在点P 运动过程中,∠CDP 、∠DP A 、∠P AE 之间是否存在永远不变的数量关系?若存在,写出它们之间的数量关系,并请证明;若不存在,请说明理由.2.已知,直线12l l ∥,直线3l 和1l ,2l 分别交于C ,D 点,点A ,B 分别在直线1l ,2l 上,且位于直线3l 的左侧,动点P 在直线3l 上,且不和点C ,D 重合.(1)如图1,当动点P 在线段CD 上运动时,求证:∠APB =∠CAP +∠DBP ;(2)如图2,当动点P 在点C 上方运动时(P ,A ,B 不在同一直线上),请写出∠APB ,∠CAP ,∠DBP 之间的数量关系,并选择其中一种的数量关系说明理由.3.如图∠,平直角坐标系中,已知点A(a,0),B(0,b),其中a,b满足|2a﹣3b﹣39|=0,将点B向右平移24个单位长度得到点C.(1)点A和点C的坐标;(2)如图∠,点D为线段BC上一动点,点D从点C以2个单位长度/秒的速度向点B运动,同时点E为线段OA上一动点,从点O以3个单位长度/秒的速度向点A运动,设运动的时间为t秒(0<t<10),四边形BOED的面积记为S四边形BOED(以下同理表示),若S四边形BOED32≥S四边ACDE,求t的取值范围;(3)如图∠,在(2)的条件下,在点D,E运动的过程中,DE交OC于点F,求证:S△OEF>S△DCE总成立.4.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(1)如图1,∠ABC的面积为;(2)如图2,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.∠求∠ACD的面积;∠点P是x轴上一动点,若∠P AO的面积等于3,请求出点P的坐标.5.在平面直角坐标系中,O 为原点,点A (0,−3),B (−2,0).(1)如图∠,则三角形OAB 的面积为_______;(2)如图∠,将线段AB 向右平移5个单位长度,再向上平移4个单位长度,得到平移后的线段A ′B ′.连接OA ′,OB ′. ∠求三角形OA ′B ′的面积;∠P (−1,m )(m >0)是一动点,若SΔPOB ′=10,请直接写出点P 坐标.6.在平面直角坐标系中,(,1)A a ,(,3)B b 满足()210a +. (1)直接写出a 、b 的值:=a ;b = ; (2)如图1,若点(3,)P n 满足ABP △的面积等于6,求n 的值;(3)设线段AB 交y 轴于C ,动点E 从点C 出发,在y 轴上以每秒1个单位长度的速度向下运动,动点F 从点(8,0)-出发,在x 轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为t 秒,问t 为何值时,有2ABEABFSS=?请求出t 的值.7.如图1,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?解:由于点P是平行线AB,CD之间有一动点,因此需要对点P的位置进行分类讨论:如图1,当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为,如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为.(2)如图3,EQ,FQ分别平分∠PEB和∠PFD,且点P在EF左侧.∠若∠EPF=60°,则∠EQF=.∠猜想∠EPF与∠EQF的数量关系,并说明理由;∠如图4,若∠BEQ与∠DFQ的角平分线交于点Q1,∠BEQ1与∠DFQ1的角平分线交于点Q2,∠BEQ2,与∠DFQ2的角平分线交于点Q3;此次类推,则∠EPF与∠EQ2021F满足怎样的数量关系?(直接写出结果)8.已知直线1l、2l,直线3l与直线1l、2l分别交于点C和点D,在直线3l上有动点P(点P 与点C 、D 不重合),点A 在直线1l 上,点B 在直线2l 上.(1)如图∠,如果点P 在C 、D 之间运动时,且满足∠1+∠3=∠2,请写出1l 与2l 之间的位置关系并说明理由;(2)如图∠,如果12l l ∥,点P 在直线1l 的上方运动时,请写出∠1,∠2与∠3之间的数量关系并说明理由;(3)如图∠,如果12l l ∥,点P 在直线2l 的下方运动时,请直接写出∠P AC 、∠PBD 、∠APB 之间的关系(不需说明理由).9.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值; (3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).10.如图所示,已知//AM BN ,点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分ABP ∠和PBN ∠,分别交射线AM 于点C 、D ,且60CBD ∠=︒ (1)求A ∠的度数.(2)当点P 运动时,APB ∠与ADB ∠之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律. (3)当点P 运动到使ACB ABD =∠∠时,求ABC ∠的度数.11.已知点D 在∠ABC 内,E 为射线BC 上一点,连接DE ,CD .(1)如图1,点E 在线段BC 上,连接AE ,∠AED =∠A +∠D . ∠求证AB ∠CD ;∠过点A 作AM ∠ED 交直线BC 于点M ,请猜想∠BAM 与∠CDE 的数量关系,并加以证明;(2)如图2,点E 在BC 的延长线上,∠AED =∠A ﹣∠D .若M 平面内一动点,MA ∠ED ,请直接写出∠MAB 与∠CDE 的数量关系.12.如图1,在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(4,0),现同时将点A,B分别向上平移3个单位长度,再向左平移1个单位长度,分别得到A,B的对应点C,D,连接AC,BD,CD.图1图2(1)求点C,D的坐标.(2)P是x轴上(除去B点)的动点.∠连接PC,BC,使S△PBC=2S△ABC,求符合条件的P点坐标.∠如图2,Q是线段BD上一定点,连接PQ,请直接写出∠BPQ+∠PQB与∠CDB的数量关系.13.如图,在长方形ABCD中,AB=8cm,BC=6cm,点E是CD边上的一点,且DE=2cm,动点P从A点出发,以2c m/s的速度沿A→B→C→E运动,最终到达点E.设点P运动的时间为t秒.(1)请以A点为原点,AB所在直线为x轴,1cm为单位长度,建立一个平面直角坐标系,并用t表示出点P在不同线段上的坐标.(2)在(1)相同条件得到的结论下,是否存在P点使∠APE的面积等于20cm2时,若存在,请求出P点坐标;若不存在,请说明理由.14.如图,直线PQ∠MN,点C是PQ、MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图甲,请直接写出∠C 与∠1,∠2之间的数量关系; (2)若把一块三角尺(∠A =30°,∠C =90°)按如图乙方式放置,点D ,E ,F 是三角尺的边与平行线的交点,若∠AEN =∠A ,求∠BDF 的度数;(3)将图乙中的三角尺进行适当转动,如图丙,直角顶点C 始终在两条平行线之间,点G 在线段CD 上,连接EG ,且有∠CEG =∠CEM ,求GENBDF∠∠值.15.如图,在直角坐标系中,点A . C 分别在x 轴、y 轴上,CB∠OA ,OA=8,若点B 的坐标为()4,4.(1)直接写出点A , C 的坐标;(2)动点P 从原点O 出发沿x 轴以每秒2个单位的速度向右运动,当直线PC 把四边形OABC 分成面积相等的两部分时停止运动,求P 点运动时间;(3)在(2)的条件下,点P 停止运动时,在y 轴上是否存在一点Q ,连接PQ ,使三角形CPQ 的面积与四边形OABC 的面积相等?若存在,求点Q 的坐标;若不存在,请说明理由.16.如图,已知点(),B a b ,且a ,b 满足2130a b +-=.过点B 分别作BA x⊥轴、BC y⊥轴,垂足分别是点A、C.(1)求出点B的坐标;(2)点M是边OA上的一个动点(不与点A重合),CMA∠的角平分线交射线CB于点N,在点M运动过程中,CMNCNM∠∠的值是否变化?若不变,求出其值;若变化,说明理由.(3)在四边形OABC的边上是否存在点P,使得BP将四边形OABC分成面积比为1:4的两部分?若存在,请直接写出点P的坐标;若不存在,说明理由.17.如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD;(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=12S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;(3)点P是直线BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合),直接写出∠BAP、∠DOP、∠APO之间满足的数量关系.18.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB∠y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD∠AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM∠AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.19.如图1,在平面直角坐标系中,点A为x轴负半轴上一点,点B为x轴正半轴上一点,C(0,a),D(b,a),其中a,b满足关系式:|a+3|+(b-a+1)2=0.(1)a=___,b=___,∠BCD的面积为______;(2)如图2,若AC∠BC,点P线段OC上一点,连接BP,延长BP交AC于点Q,当∠CPQ=∠CQP时,求证:BP平分∠ABC;(3)如图3,若AC∠BC,点E是点A与点B之间一动点,连接CE,CB始终平分∠ECF,当点E在点A与点B之间运动时,BECBCO∠∠的值是否变化?若不变,求出其值;若变化,请说明理由.20.已知:在平面直角坐标系中,四边形ABCD是长方形,∠A=∠B=∠C=∠D=90°,AB∠CD,AB=CD=8,AD=BC=6,D点与原点重合,坐标为(0,0).(1)直接写出点B的坐标__________.(2)动点P从点A出发以每秒3个单位长度的速度向终点B匀速运动,动点Q从点C出发以每秒4个单位长度的速度沿射线CD方向匀速运动,若P,Q两点同时出发,设运动时间为t秒,当t为何值时,PQ∠y轴?(3)在Q的运动过程中,当Q运动到什么位置时,使∠ADQ的面积为9?求出此时Q 点的坐标?。

直角坐标系动点问题的诀窍

直角坐标系动点问题的诀窍

直角坐标系动点问题的诀窍在数学中,直角坐标系动点问题是经常出现的考题之一。

这类问题通常涉及到点在坐标系中的运动情况,需要根据给定的条件求解点的位置、速度等问题。

下面将探讨解决直角坐标系动点问题的一些技巧和方法。

1. 坐标系的建立首先,在解决动点问题时,需要建立一个合适的直角坐标系。

通常情况下,可以选择点的起始位置作为坐标系的原点,选择合适的方向作为坐标轴的正方向。

建立坐标系可以帮助我们清晰地描述点的位置,方便后续的计算。

2. 参数化方程在处理动点问题时,常常需要引入参数来描述点的运动情况。

可以选择时间作为参数,通过时间的变化描述点坐标的变化。

这样可以将点的位置用参数的函数表示,进而求解更为便利。

3. 计算速度和加速度动点问题通常需要求解点的速度和加速度,这可以通过对点的位置关于时间的导数来实现。

点的速度是位置矢量对时间的导数,而点的加速度是速度对时间的导数。

通过这些导数,可以分析点的运动特性。

4. 利用几何关系在解决动点问题时,常常可以利用几何关系简化计算。

例如,可以通过距离公式求两点之间的距离,或者利用角度关系求解问题。

合理运用几何知识可以提高问题求解的效率。

5. 建立方程组对于复杂的动点问题,可以建立方程组来求解。

通过分析问题的条件,建立方程组可以将问题转化为数学问题进行求解。

在建立方程组时,需要确保方程的数目与未知数的数目相等,以确保方程组有解。

结语通过以上技巧和方法,可以更加高效地解决直角坐标系动点问题。

在处理这类问题时,建议结合数学知识和逻辑推理,灵活运用各种方法,以便更好地理解问题并求解。

希望以上内容对您在解决直角坐标系动点问题时有所帮助。

人教版七年级数学下册难点探究专题:平面直角坐标系中的变化规律

人教版七年级数学下册难点探究专题:平面直角坐标系中的变化规律

难点探究专题:平面直角坐标系中的变化规律——掌握不同规律,以不变应万变◆类型一沿坐标轴方向运动的点的坐标规律探究1.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2016次运动后,动点P的坐标是________.2.(2017·阿坝州中考)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P2017的坐标是________.◆类型二绕原点呈“回”字形运动的点的坐标规律探究3.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.如图,由里向外数第2个正方形开始,分别是由第1个正方形各顶点的横坐标和纵坐标都乘2,3,…得到的,请你观察图形,猜想由里向外第10个正方形四条边上的整点个数共有( )A.10个 B.20个C.40个 D.80个第3题图第4题图4.(2017·温州中考)我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧P 1P 2︵,P 2P 3︵,P 3P 4︵,…得到斐波那契螺旋线,然后顺次连接P 1P 2,P 2P 3,P 3P 4,…得到螺旋折线(如图),已知点P 1(0,1),P 2(-1,0),P 3(0,-1),则该折线上的点P 9的坐标为( )A .(-6,24)B .(-6,25)C .(-5,24)D .(-5,25) ◆类型三 图形变化中的点的坐标探究5.(2017·河南模拟)如图,点A (2,0),B (0,2),将扇形AOB 沿x 轴正方向做无滑动的滚动,在滚动过程中点O 的对应点依次记为点O 1,点O 2,点O 3…,则O 10的坐标是( )A .(16+4π,0)B .(14+4π,2)C .(14+3π,2)D .(12+3π,0)6.如图,在直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1变换成三角形OA2B2,第三次将三角形OA2B2变换成三角形OA3B3.已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).(1)观察每次变换后的三角形有何变化,找出规律,按此变换规律再将三角形OA3B3变换成三角形OA4B4,则A4的坐标是__________,B4的坐标是__________;(2)若按(1)中找到的规律将三角形OAB进行了n次变换,得到三角形OA n B n,比较每次变换中三角形顶点坐标有何变化,找出规律,推测点A n的坐标是__________,点B n的坐标是__________.参考答案与解析1.(2016,0) 解析:结合图象可知,当运动次数为偶数次时,P点运动到x轴上,且横坐标与运动次数相等.∵2016为偶数,∴运动2016次后,动点P的坐标是(2016,0).2.(672,1) 解析:由已知得P7(2,1),P13(4,1),所以P6n+1(2n,1).因为2017÷6=336……1,所以P2017(336×2,1),即P2017(672,1).3.C 解析:每个正方形四个顶点一定为整点,由里向外第n个正方形每条边上除顶点外的整点个数如下表所示:可见,第n个正方形每条边上除顶点外还有(n-1)个整点,四条边上除顶点外有4(n-1)个整点,加上4个顶点,共有4(n-1)+4=4n(个)整点.当n=10时,4n=4×10=40,即由里向外第10个正方形的四条边上共有40个整点.故选C.4.B 解析:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离为21+5=26,所以P9的坐标为(-6,25),故选B.5.C6.(1)(16,3) (32,0) (2)(2n,3) (2n+1,0)解析:(1)∵A1(2,3),A2(4,3),A3(8,3),∴A4的横坐标为24=16,纵坐标为3.故点A4的坐标为(16,3).又∵B1(4,0),B2(8,0),B3(16,0),∴B4的横坐标为25=32,纵坐标为0.故点B4的坐标为(32,0).(2)由A1(2,3),A2(4,3),A3(8,3),可以发现它们各点坐标的关系为横坐标是2n,纵坐标都是3.故点A n的坐标为(2n,0).由B1(4,0),B2(8,0),B3(16,0),可以发现它们各点坐标的关系为横坐标是2n+1,纵坐标都是0.故点B n的坐标为(2n+1,0).专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图 第8题图8.(2016·呼和浩特中考)如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =15,AC =9,BC =12,阴影部分是△ABC 的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________;(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________;(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6.9.12 10.12 11.15 12.35 13.15 14.13 15.解:(1)4 2或3 (2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14;(2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16;(3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13;(2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 52 2 23 2 5 2 3 2 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。

七年级动点题

七年级动点题

七年级动点题
1. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求线段AB的中点D 的坐标。

2. 在平面直角坐标系中,点P(x,y)满足条件x+y=6,且P点的横坐标与纵坐标之和为10,求点P的坐标。

3. 在平面直角坐标系中,点A(-3,4),B(5,-2),C(0,1),求线段AB的长度。

4. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求线段AC的长度。

5. 在平面直角坐标系中,点A(-2,1),B(3,-4),C(5,6),求三角形ABC的面积。

6. 在平面直角坐标系中,点A(-4,2),B(6,-3),C(1,5),求线段AB的垂直平分线的方程。

7. 在平面直角坐标系中,点A(-1,-2),B(3,4),C(5,-6),求三角形ABC的内心I的坐标。

8. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求三角形ABC的外心O的坐标。

9. 在平面直角坐标系中,点A(-3,4),B(5,-2),C(0,1),求三角形ABC的高CD的长度。

10. 在平面直角坐标系中,点A(2,3),B(5,7),C(8,4),求三角形ABC的周长。

初一数学下册动点问题

初一数学下册动点问题

初一数学下册中的动点问题例1.如图,在平面直角坐标系中,点A ,B 的坐标分别为(-1,0),(3,0),现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)求点C ,D 的坐标及四边形ABDC 的面积(2)在y 轴上是否存在一点P ,连接PA ,PB ,使S △PAB =S 四边形ABDC ,若存在这样一点,求出点P 的坐标,若不存在,试说明理由.(3) 在x 轴上是否存在一点F ,使得三角形DFC 的面积是三角形DFB 面积的2倍,若存在请求出点F 的坐标;若不存在请说明理由。

ABDCS 四边形P D CBAOxy(4)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合),设△CDP 与△BOP 的面积和为S ,则S 的取值范围是什么?(5)点P 是线段BD 上的一个动点,连接PC ,PO ,当点P 在BD 上移动时(不与B ,D 重合)给出下列结论:例2在平面直角坐标系中,点A,B 分别是x 轴,y 轴上的点,且OA=a ,OB=b ,其中a,b 满足1632=+-+-+a b b a ,将B 向左平移18个单位得到点C 。

(1)求点A,B,C 的坐标;(2)点M,N 分别为线段BC ,OA 上的两个动点,点M 从点B 以1个单位/秒的速度向左运动,同时点N 从点A 以2个单位/秒的速度向右运动,设运动时间为t 秒(0≤t ≤12).①当BM=ON 时,求t 的值。

②是否存在一段时间,使得BOACNACM S S 四边形四边形<21?若存在,求出t 的取值范围结论,并求其值。

确的,请你找出来这个其中有且只有一个是正是定值是定值;,BOPCPODCP OPC BOP DCP ∠∠+∠∠∠+∠练习:1.如图,在长方形ABCD中,边AB=8,BC=4,以点O为原点,OA,OC所在的直线为y轴和x轴,建立直角坐标系.(1)点A的坐标为(0,4),则B点坐标为______,C点坐标为______;(2)当点P从C出发,以2单位/秒速度向CO方向移动(不超过O点),Q 从原点O出发以1单位/秒速度向OA方向移动(不超过A点),P,Q同时出发,在移动过程中,四边形OPBQ的面积是否变化?若不变,求其值;若变化,请说明理由.如图AB∥CD,动点P所在的位置不同,∠PCD,∠PAB,∠APB三个角的关系就不同。

初一平面直角坐标系动点问题

初一平面直角坐标系动点问题

平面直角坐标系动点问题(一)找规律1.如 1,一只跳蚤在第一象限及x 、y 上跳,在第一秒,它从原点跳到( 0,1),而后接着按中箭所示方向跳[ 即( 0,0)→( 0,1)→( 1,1)→( 1,0)→⋯ ] ,且每秒跳一个位,那么第35 秒跳蚤所在地点的坐是()1A.( 4, 0) B .( 5, 0) C .( 0, 5) D .( 5, 5)22、如2,全部正方形的中心均在座原点,且各与x 或 y 平行.从内到外,它的挨次2, 4,6, 8,⋯,点挨次用A1,A2, A3, A4,⋯表示,点A55的坐是()A、( 13, 13)B、( 13, 13)C、( 14, 14)D、( 14, 14)3.如 3,在平面直角坐系中,有若干个横、坐分整数的点,其序按中点的坐分( 1,0),( 2,0),( 2,1),(1,1),( 1,2),( 2 , 2 ),⋯的律摆列,依据个律,第2015 个点的横坐.4.在平面直角坐系中,一从原点O 出,按向上、向右、向下、向右的方向挨次不停移,每次移 1 个位,其行走路以下所示。

3(1)填写以下各点的坐:A1(____,____),A3(____,____), A12(____,____);(2)写出点A4n的坐(n是正整数);(3)指出从点A100到 A101的移方向.5.察以下有序数:( 3, 1)( 5,)( 7,)( 9,)⋯依据你的律,第100 个有序数是.6、察以下有律的点的坐:依此律, A11的坐,A12的坐.7、以 0 原点,正,正北方向x , y 正方向成立平面直角坐系,一个机器人从原点 O点出,向正方向走 3 米抵达 A1点,再向正北方向走 6 米抵达 A2,再向正西方向走 9 米抵达 A3,再向正南方向走12 米抵达 A4,再向正方向走15 米抵达 A5,按此律走下去,当机器人走到A6, A6的坐是.8、如,将 1 的正三角形OAP 沿x正方向翻2008 次,点P挨次落在点P, P , P,, P的地点,点P的横坐.12320082008yPA O P1x9、如,在平面直角坐系上有个点P(1,0),点 P 第 1 次向上跳 1 个位至点P1( 1,1),接着第 2 次向左跳 2 个位至点P2( 1, 1),第 3 次向上跳 1 个位,第 4 次向右跳 3 个位,第 5 次又向上跳 1 个位,第 6 次向左跳 4 个位,⋯,依此律跳下去,点P 第 100 次跳至点P100的坐是.点P第2009次跳至点P2009的坐是.4510、如 5,已知 A l( 1,0),A2( 1,1),A3( 1,1),A4( 1, 1),A5( 2, 1),⋯.点 A2007的坐.(二)几何综合问题1、已知点 A 的坐标是( 3,0)、AB=5,( 1)当点 B 在 X 轴上时、 求 点 B 的 坐 标 、 ( 2 ) 当ABxyyy8C CCDDD 6AOPBBAAOB B4-13xx-1O3x2A-5510-2S四边形ABDCS PABS四边形ABDC DCPBOPDCPCPO知 :在平面直角坐标系CPOBOP中 , 四边形 ABCD 是长方形 , ∠ A =∠ B =∠ C =∠D =90°, AB ∥ CD , AB =CD =8cm , AD =BC =6cm ,D 点与原点重合,坐标为 (0,0).( 1)写出点 B 的坐标 .( 2)动点 P 从点 A 出发以每秒3 个单位长度的速度向终点 B 匀速运动 , 动点 Q 从点 C 出发以每秒 4 个单位长度的速度沿射线CD 方向匀速运动 , 若 P , Q 两点同时出发 , 设运动时间为t 秒 , 当 t 为什么值时 , PQ ∥ BC ?( 3)在 Q 的运动过程中 , 当 Q 运动到什么地点时 , 使△ ADQ 的面积为 9? 求出此时 Q 点的坐标.6.如图在平面直角坐标系中,A ( a ,0),B ( b ,0),(﹣1, 2).且 |2a+b+1|+ =0.(1)求 a 、 b 的值;(2)①在 y 轴的正半轴上存在一点M,使 S△COM=S△ABC,求点 M的坐标.②在座标轴的其余地点能否存在点M,使 S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.7.如图,在下边的直角坐标系中,已知A( 0, a), B( b,0), C( b, 4)三点,此中 a, b知足关系式.(1)求 a, b 的值;(2)假如在第二象限内有一点P( m,),请用含 m的式子表示四边形 ABOP的面积;(3)在( 2)的条件下,能否存在点P,使四边形 ABOP的面积与△ ABC 的面积相等?若存在,求出点 P 的坐标;若不存在,请说明原因.8.在平面直角坐标系中,点 A( a, b)是第四象限内一点, AB⊥y轴于 B,且 B( 0, b)是 y 轴负半轴上一点, b2=16, S△AOB=12.(1)求点 A 和点 B 的坐标;(2)如图 1,点 D 为线段 OA(端点除外)上某一点,过点 D 作 AO垂线交 x 轴于 E,交直线AB于 F,∠ EOD、∠ AFD 的均分线订交于N,求∠ ONF的度数.(3)如图 2,点 D为线段 OA(端点除外)上某一点,当点 D 在线段上运动时,过点 D 作直线 EF 交 x 轴正半轴于 E,交直线 AB 于 F,∠EOD,∠AFD的均分线订交于点 N.若记∠ ODF=α,请用α的式子表示∠ ONF 的大小,并说明原因.。

(完整)初一年级平面直角坐标系动点问题(经典难题).docx

(完整)初一年级平面直角坐标系动点问题(经典难题).docx

完美 WORD 格式 .整理平面直角坐标系动点问题(一)找规律1.如 1,一只跳蚤在第一象限及 x 、y 上跳,在第一秒,它从原点跳到( 0,1),然后接着按中箭所示方向跳 [ 即( 0,0)→( 0,1)→( 1,1)→( 1,0)→⋯ ] ,且每秒跳一个位,那么第35 秒跳蚤所在位置的坐是()1A.( 4, 0)B.(5,0)C.(0,5)D.(5,5)22、如2,所有正方形的中心均在坐原点,且各与x 或 y 平行.从内到外,它的依次2, 4,6, 8,⋯,点依次用A1,A2, A3, A4,⋯表示,点A55的坐是()A、( 13, 13)B、( 13, 13)C、( 14, 14)D、( 14, 14)3.如 3,在平面直角坐系中,有若干个横、坐分整数的点,其序按中点的坐分( 1,0),( 2,0),( 2,1),(1,1),( 1,2),( 2 , 2 ),⋯的律排列,根据个律,第2015 个点的横坐.4.在平面直角坐系中,一从原点O 出,按向上、向右、向下、向右的方向依次不断移,每次移 1 个位,其行走路如下所示。

3(1)填写下列各点的坐:A1(____,____), A3(____,____), A12(____,____);(2)写出点A4n的坐(n是正整数);(3)指出从点A100到 A101的移方向.5.察下列有序数:( 3, 1)( 5,)( 7,)( 9,)⋯根据你的律,第100 个有序数是.6、察下列有律的点的坐:依此律, A11的坐,A12的坐.7、以 0 原点,正,正北方向x , y 正方向建立平面直角坐系,一个机器人从原点 O点出,向正方向走 3 米到达 A1点,再向正北方向走 6 米到达 A2,再向正西方向走 9 米到达 A3,再向正南方向走12 米到达 A4,再向正方向走15 米到达 A5,按此律走下去,当机器人走到A6, A6的坐是.8、如,将 1 的正三角形OAP 沿x正方向翻2008 次,点P依次落在点P, P , P,, P的位置,点P的横坐.12320082008yPA O P1x9、如,在平面直角坐系上有个点P(1,0),点 P 第 1 次向上跳 1 个位至点P1( 1,1),接着第 2 次向左跳 2 个位至点P2( 1,1),第 3 次向上跳 1 个位,第 4 次向右跳 3 个位,第 5 次又向上跳1个位,第 6 次向左跳 4 个位,⋯,依此律跳下去,点 P 第 100 次跳至点P100的坐是.点P第2009次跳至点P2009的坐是.4510、如 5,已知 A l( 1,0),A2( 1,1),A3( 1,1),A4( 1, 1),A5( 2, 1),⋯.点 A2007的坐.(二)几何综合问题1、已知点 A 的坐是( 3, 0)、 AB=5,( 1)当点 B 在 X 上、求点 B 的坐、( 2)当AB//y 、求点B的坐2、如,已知A、B 两村庄的坐分(2, 2)、( 7, 4),一汽在x 上行,从原点O出.(1)汽行到什么位置离A 村最近?写出此点的坐.(2)汽行到什么位置离B 村最近?写出此点的坐.(3)在中画出汽行到什么位置,距离两村的和最短?86B4A2-5510-24.如图,在平面直角坐标系中,点 A, B 的坐标分别为(- 1, 0),( 3,0),现同时将点 A, B分别向上平移 2 个单位,再向右平移 1 个单位,分别得到点 A,B 的对应点 C,D,连接 AC,BD,CD.(1) 求点 C, D 的坐标及四边形ABDC的面积S四边形ABDC yC DA O B-13x(2) 在y 轴上是否存在一点P,连接PA, PB,使S PAB=S四边形 ABDC,若存在这样一点,求出点 P 的坐标,若不存在,试说明理由.yC DA O B-13x(3) 点 P 是线段 BD上的一个动点,连接PC, PO,当点 P 在 BD上移动时(不与B, D 重合)DCP BOP DCPCPO给出下列结论:①的值不变,②的值不变,其中有且只CPO BOP有一个是正确的,请你找出这个结论并求其值.yC D5.已知 : 在平面直角坐标系中 , 四边形ABCD是长方形 , ∠A=∠B=∠C=∠D=90°,AB∥ CD, AB=CD=8cm,AD=BC=6cm, D点与原点重合,坐标为(0,0).( 1)写出点 B 的坐标.( 2)动点P从点A出发以每秒 3 个单位长度的速度向终点B匀速运动,动点 Q从点 C出发以每秒 4 个单位长度的速度沿射线CD方向匀速运动,若 P, Q两点同时出发,设运动时间为t秒 , 当t为何值时 , PQ∥BC?(3)在Q的运动过程中 , 当Q运动到什么位置时 , 使△ADQ的面积为 9? 求出此时Q点的坐标.6.如图在平面直角坐标系中,A( a,0),B( b,0),(﹣1, 2).且 |2a+b+1|+=0.(1)求 a、 b 的值;(2)①在 y 轴的正半轴上存在一点 M,使 S△COM= S△ABC,求点 M的坐标.②在坐标轴的其他位置是否存在点 M,使 S△COM= S△ABC仍成立?若存在,请直接写出符合条件的点 M的坐标.7.如图,在下面的直角坐标系中,已知A( 0, a), B( b,0), C( b, 4)三点,其中 a, b满足关系式.(1)求 a, b 的值;(2)如果在第二象限内有一点P( m,),请用含 m的式子表示四边形 ABOP的面积;(3)在( 2)的条件下,是否存在点P,使四边形 ABOP的面积与△ ABC 的面积相等?若存在,求出点 P 的坐标;若不存在,请说明理由.8.在平面直角坐标系中,点A( a, b)是第四象限内一点, AB⊥y轴于 B,且 B( 0, b)是2y 轴负半轴上一点, b =16, S△AOB=12.(1)求点 A 和点 B 的坐标;(2)如图 1,点 D 为线段 OA(端点除外)上某一点,过点 D 作 AO垂线交 x 轴于 E,交直线AB于 F,∠ EOD、∠ AFD 的平分线相交于N,求∠ ONF的度数.(3)如图 2,点 D为线段 OA(端点除外)上某一点,当点 D 在线段上运动时,过点 D 作直线 EF 交 x 轴正半轴于 E,交直线 AB 于 F,∠EOD,∠A FD的平分线相交于点 N.若记∠ ODF=α,请用α的式子表示∠ ONF 的大小,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾旧知
1.已知点A的坐标是(3,y轴时,则点B的坐标是 。
2.已知点A的坐标是(3,0),点A运动的速度是 2个单位/秒。 (1)若点A沿x轴正半轴运动5秒,则点B坐标 为 。(2)若点A沿x轴运动5秒,则 点B坐标为 。
典例演练
例1.如图,在平面直角坐标系中,点A,B的坐标分 别为(-1,0),(3,0),现同时将点A,B分别向上 平移2个单位,再向右平移1个单位,分别得到点 A,B的对应点C,D,连接AC、BD、CD。 (1)求点C、D的坐标; (2)若点P在线段BD上运动,写出∠CPO∠DCP、 ∠BOP的数量关系,并说明理由。 (3)若点P在直线BD上运动,请直接写出∠CPO、 ∠DCP、∠BOP的数量关系。
巩固拓展
例2中,若△OPQ的面积为6 (1) 求t的值; (2)当点Q在边BC上时,过 点Q作QD⊥x轴是,交OP于点 M, 求出点M的坐标。
作业:
如图,平面直角坐标系中,四边形ABCD为长方形, 其中点A、C坐标分别为(-4,2)、(1,-4),且 AD//x轴,交y轴于点M,AB交x轴于点N. (1)求B、D两点坐标和长方形ABCD的面积; (2)一动点P从点A出发,以(1/2)个单位/秒的速 度沿AB向B运动,在点P运动过程中连接MP,OP,请 直接写出∠AMP、∠MPO、∠PON之间的数量关 系; (3)是否存在某一时刻t,使△AMP的面积等于 长方形面积的(1/3)?若存在,求t的值并求此时点 P的坐标;若不存在说明理由。
典例演练
例2、在长方形OABC中,OA=6,OC=4,点P是AB 边上的点,AP=3,以点 O为原点,OA所在直线为x 轴,OC所在直线为y轴,建立如图的平面角坐系, 动点Q从原点O出发,以2个单位/秒的速度沿 O→A→B→C 路线运动,当点Q运动到点C时,停止 运动,设运动时间为t。 (1)直接写出点B的坐标为 。 (2)求△OPQ的面积(用含t的式子表示)
相关文档
最新文档