第5章光伏并网逆变器的电路拓扑(3)剖析

合集下载

光伏逆变器拓扑分析详解

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器Iván Patrao∗, Emilio Figueres, Fran González-Espín, Gabriel GarceráGrupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain文章信息文章历史:收到于2011年1月12日接受于2011年3月21日关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源摘要为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。

然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。

在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。

一方面,它是替代经典拓扑结构的基础上提出的。

另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。

2011爱思唯尔出版社有限公司版权所有目录1.前言 (3423)2.共模电压问题 (3424)3.桥拓扑功率变换器 (3425)3.1.全H桥 (3425)3.2.半H桥 (3425)3.3.高效可靠的逆变器的概念(HERIC) (3426)3.4.H5的拓扑 (3426)3.5.带发电控制电路的半H桥(GCC) (3426)4.基于多级拓扑的逆变器 (3427)4.1.级联H桥(CHB) (3427)4.2.中点钳位(NPC)半桥 (3427)4.3.飞电容(FC) (3428)4.4.电容分压器NPC半桥 (3428)4.5.ConergyNPC (3428)4.6.有源NPC(ANPC) (3429)5. 无变压光伏逆变器基本特性 (3429)6. 结论 (3429)鸣谢 (3430)参考文献 (3430)1.前言可再生能源,特别是那些光电源[1],由于对全球变暖的日益关注和政府对这些技术的扶持资助,近年来已经初步取得了很大的发展[2,3]。

非隔离型光伏并网逆变器主电路拓补结构分析

非隔离型光伏并网逆变器主电路拓补结构分析

BOOST双模式升压逆变
优点: • 光伏阵列电压较低时,Boost电路升压加逆变运行, 系统为两级能量变换;光伏阵列电压高于设定值 时,系统变为单级逆变系统,有助于系统效率的 提高。这种拓扑加大了光伏阵列设计安装的自由 度。 缺点: • 同第二种拓朴结构类似
多支路BOOST升压逆变
优点: • 同第二种拓朴结构类似 • 由于具有多个DC-DC电路,适合多个不同倾斜面 阵列接入,即阵列1~n可以具有不同的MPPT电 压,十分适合应用于光伏建筑。N一般为2或3。 缺点: • 同第二种拓朴结构类似
耦合电感式双BOOST逆变
• 本发明涉及光伏发电系统中耦合电感式双Boost逆变器电路。本 发明是由两个耦合电感式Boost电路共用直流电源构成,交流输 出取自两个耦合电感式Boost的输出电容之间。本发明解决了单 级逆变电路通过工频变压器升压方式并网和前级DC-DC升压电路、 后级是逆变器方法存在的功率开关管功率损耗较大、变压器功率损耗 大、转换效率低及光伏发电利用率低下等缺陷。本发明是两个耦合电 感式Boost电路,并采用全控型器件开关管,使逆变电路能实现 能量的四像限运行,耦合的电感在较低输入电压时和较小占空比情况 下Boost电路也能输出较高的电压,因此发明的并网逆变器无需 升压变压器,可以实现一级并网发电。 • 光伏发电系统中耦合电感式双Boost逆变器电路,其特征在于: 由两个耦合电感式Boost电路构成,交流输出取自两个耦合电感 式Boost的输出电容之间。 • 发明人:方宇 申请人:扬州大学 申请人地址:江苏省扬州市大学南路88号
H5桥逆变
SMA 的研发团队开发出了H 5 技术—— 一种全新的逆变桥接线方式—— 优化了光 伏系统的并网连接,并大大降低系统成本。于是,全球光伏逆变器中,转换效率高 达98%的首款逆变器在SMA诞生了。 逆变器的基本功能 H桥承担了逆变器的基本功能。一台逆变器通常有四个电气开关,用以调节输入和 输出之间的电流。起初,在逆变器的输入端,光伏组件产生的直流电都暂时储存在 电容器中。这样,电流就可以不受电气开关的影响,一直以峰值运行。由于电气开 关长期打开或关闭,电容器不断地放电,甚至可以说直流电达到了“抽空”状态。 于是,逆变器就只在并网和非并网两种状态下变换。在逆变器的输出端口有电感器, 将脉冲式直流电转化成正弦波式交流电,就可以持续不断地向地方电网进行并网供 电。 H5技术 创立了新标准 目前市场上大部分逆变器都在按照上述方式运行。H5技术的出现打破了这种模式。 因为即便H桥不运行的时候,仍然有电流存在,但却是向相反的方向流动:从逆变器 输出端流向电容器。为了防止并网时的电流波动,减少电流转换过程中的电量损耗, SMA的研发团队开发了一种全新的转换理念——H5技术:电气开关采用一种全新的 脉冲率,在原来四个电气开关的基础上加入了第五个开关,能够在电流自由流动时 防止电流向电容器的流回。这样,也大大减少了原先电流波动造成的电量损耗。 总之,第五个开关的增加,将转换过程的效率损耗降低了一半,达到2%。这样,采 用H5技术的逆变器转换效率就高达98%,这是光伏领域的一个里程碑。

三相光伏并网逆变器拓扑结构及其控制方案PPT课件

三相光伏并网逆变器拓扑结构及其控制方案PPT课件

10
0
5 10 15 25 30 35
U/V
环境参数不变时
.
光照变化时变化时
7
三相并网光伏逆变器基本拓扑及其控制方案
输入控制 输出控制
采用电压源型控制
若以电流源方式控
制逆变器,需要在
直流侧串联大电感。
.
导致系统响应变慢。
采用电流源型控制
输出电压被电网电 压钳位住,控制复
杂精度低。
8
中点钳位式逆变器拓扑结构及其控制方案
移相PWM
.
11
H桥级联式逆变器拓扑结构及其控制方案
.
另一种H桥级联式三相光伏并网逆变器
12
H桥级联式逆变器拓扑结构及其控制方案
阶梯波控制的SPWM
.
13
H桥级联式逆变器拓扑结构及其控制方案
混合H桥级联式三相光伏并网逆变器
.
14
直流母线式逆变器拓扑结构及其控制方案
L1
VD1
C1
C2
V7
PV
L1
100 75
50
温度升高
25
0
5 10 15 20 25 30
温度对U-P曲线的影响
5
三相并网光伏逆变器基本拓扑及其控制方案

.
6
三相并网光伏逆变器基本拓扑及其控制方案
P/W P/W
50
40
30
20 P1
10
P0
0
5
Pn
P3
P2
P4
10 15 25 30 35
U/V
50
40
P0
30
Pn
P2
P1
20
VD1

光伏并网逆变器拓扑结构的研究

光伏并网逆变器拓扑结构的研究

光伏并网逆变器拓扑结构的研究刘 凯* 丁竹青 黄 勇 山东化工职业学院 潍坊 261108摘要 本文主要对光伏发电的核心部分——逆变器的拓扑结构进行介绍,在传统拓扑构造的基础上,分析几种新型的拓扑结构,对其工作原理进行理论分析,并通过仿真验证理论分析的合理性。

关键词 光伏并网 逆变器 拓扑结构 理论分析*刘 凯:讲师。

2013年毕业于中国石油大学(华东)动力工程及工程热物理专业获硕士学位。

现从事职业教育工作。

联系电话:133****7766, E-mail :****************。

太阳能作为一种新能源,已经广泛应用于人类社会生活中,其中太阳能发电技术比较成熟,运营成本较低,更是解决能源短缺和环境污染的有效途径之一。

光伏并网发电系统中,光伏并网逆变器作为发电系统的核心部分,将太阳能组件与电网进行了有效的连接,对电力系统的安全稳定运行起着非常重要的作用。

1 传统电压逆变器光伏并网发电,是将光伏阵列产生的直流电转变为符合市电电网要求的工频交流电,并将其接入电网的过程。

逆变器则是可将直流电转换为交流电的电力变换设备,由于太阳能组件发出的是直流电,一般的负载多数为交流负载,因此,逆变器是太阳能发电技术中必不可少的一部分。

逆变器作为发电系统的重要组成,其太阳能发电的效率与逆变器的性能息息相关。

传统的光伏并网发电系统见图1,该系统是由太阳能组件、去耦大电容、传统逆变器、滤波电感部分和电网构成,其核心为传统电压源逆变器,通过驱动信号控制六个开关管的导通和关断而得到正弦规律变化的平均电压。

传统电压源逆变器结构简单,元器件少,但存在一些固有缺点:①由于直流侧并联大电容,相当于电压源,回路不允许短路,交流侧要求接感性负载或串接电感,以保证电压源逆变器可靠工作;②传统电压源型逆变器只可实现降压,其输出的交流电压低于直流母线上的电压,若希望得到较高的输出电压,需通过升压变换器将直流侧电压升高,从而满足电网电压的要求,增加升压变换器的发电系统可称为两级式并网发电系统,控制电路为级间控制,控制复杂,而且效率降低,成本较高;③逆变桥同一桥臂的上下两只开关管不允许同时导通,否则会工作在直通短路状态,为防止直通,需要加入死区时间,造成能量转换效率低,投入成本较高等。

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构首先,光伏并网逆变器的拓扑结构有很多种,常用的有串联逆变器、并联逆变器以及单相桥式逆变器等。

1.串联逆变器串联逆变器是将多个逆变单元串联在一起,通过分时工作的方式实现高电压输出。

它能够实现更高的输出功率和电压,适用于大容量的光伏发电系统。

2.并联逆变器并联逆变器是将多个逆变单元并联在一起,实现总输出功率的叠加。

它具有输出功率分散、可靠性高的特点,适用于小功率的光伏发电系统。

3.单相桥式逆变器单相桥式逆变器是采用单相桥式整流电路和逆变电路,能够实现交流输出。

它结构简单,适用于小功率的光伏发电系统。

选取逆变器的拓扑结构时,需要考虑光伏电池板的输出电压和功率以及电网的要求。

不同的拓扑结构有不同的特点和适用场景,设计者需要根据具体需求选择最合适的拓扑结构。

在硬件设计中,光伏并网逆变器的主要电路包括:整流电路、滤波电路、逆变电路和控制电路等。

1.整流电路:用于将光伏板输出的直流电转换为交流电。

常见的整流电路包括单相全波桥式整流电路和三相全波桥式整流电路等。

2.滤波电路:用于去除转换过程中产生的谐波和噪声,保证逆变器输出的电流和电压的纯净度。

常见的滤波电路有LC滤波电路和LCL滤波电路等。

3.逆变电路:用于将直流电转换为交流电,并注入电网。

常见的逆变电路有全桥逆变电路和半桥逆变电路等。

4.控制电路:用于控制逆变器的输出电流和电压,以及保护逆变器的安全运行。

控制电路通常包括微控制器、驱动电路、保护电路等。

在硬件设计过程中,需要选取合适的元器件和电路参数。

如选择功率器件时需要考虑功率损耗、开关速度等因素;选择电容和电感时需要考虑峰值电流和谐振频率等因素。

同时,还需要设计合理的散热系统来保证逆变器的温度和性能稳定。

总而言之,光伏并网逆变器的硬件设计和拓扑结构是实现光伏发电系统有效注入电网的关键。

合理的硬件设计和拓扑结构能够提高逆变器的效率和可靠性,从而提高光伏发电系统的整体性能。

第五章--单相并网逆变器

第五章--单相并网逆变器

第5章单相并网逆变器后级的DC- AC部分,采用单相全桥逆变电路,将前级 DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。

光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。

光伏并网逆变器拓扑结构按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。

5.1.1推挽式逆变电路推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。

它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。

U图5-1 推挽式逆变器电路拓扑推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。

因此适合应用于直流母线电压较低的场合。

此外,变压器的利用率较低,驱动感性负载困难。

推挽式逆变器拓扑结构如图5-1 所示。

5.1.2半桥式逆变电路}半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。

由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。

其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。

图5-2 半桥式逆变器电路拓扑5.1.3全桥式逆变电路全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。

在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。

光伏并网逆变器原理(详细)PPT课件

光伏并网逆变器原理(详细)PPT课件
光伏并网逆变器技术讨论
Page 1
内部资料
讨论内容:
一、常见光伏并网逆变器的拓扑结构
二、光伏并网逆变器相关技术要点
2.1 效率
2.2 直流输入电压适应范围
2.3 可靠性(保护配置方式和种类)
2.4 并网电流谐波
2.5 逆变控制策略
2.6 最大功率点跟踪方式
2.7 锁相技术特点
2.8 孤岛效应检测技术
•直接逆变系统 •工频隔离系统
Page 4
一 常见光伏并网逆变器的拓朴结构
• 高频隔离系统
• 高频升压不隔离系统
Page 5
• 多DC-DC(MPPT)、
单逆变系统
1 常见光伏并网逆变器的拓朴结构
1.1 直接逆变系统
Page 6
1 常见光伏并网逆变器的拓朴结构
直接逆变系统的优缺点
优点:
•省去了笨重的工频变压器:高效率(>97%)、重量轻、结构简单。
成本低。 缺点: (1)太阳电池板与电网没有电气隔离,太阳电池板两极有电网电压, 对人身安全不利。 (2) 直流侧太阳电池MPPT电压需要大于350V。这对于太阳电池组 件乃至整个系统的绝缘有较高要求,容易出现漏电现象。
Page 7
1 常见光伏并网逆变器的拓朴结构
1.2 工频隔离系统
Page 8
1 常见光伏并网逆变器的拓朴结构
2.9 监控软件和附件
三、 阳光电源相关产品介绍
Page 2
四、 相关业绩
一 常见光伏并网逆变器的拓朴结构
Page 3
• 光伏并网发电系统由光伏组件、光伏并网逆变器、计量装置及配电系
统组成。
• 太阳电池产生直流电能。
• 通过光伏并网逆变器直接将电能转化为与电网同频、同相的正弦波电

第章光伏并网逆变器的电路拓扑

第章光伏并网逆变器的电路拓扑

济南大学物理学院
21
输出负向电流
S-以电网频率开关。
2020/8/18
济南大学物理学院
22
这种变换器的主要特征:
1) 当不需要升压(即VPE>|Vg|)时,S1(S2) 以高频方式开关。
2)当升压电路工作(即VPE<|Vg|)时, S3(S4)以高频方式开关。
3)S+(S-)以电网频率开关工作,其通断 取决于电压的极性。
S1和S4以高频方式开 关,S5的开关状态与 S1、S4的正好相反。
2020/8/18
济南大学物理学院
35
这种变换器的主要特征:
全桥电路的开关管采用类似于双极性调制的方 式开关,即对角线上的开关管同时动作。在每一 次将桥臂上的所有开关管都关断并将S5闭合时, 就可以获得零电压状态。
优点:
1)滤波器上的电压是单极性的,从而降低 了铁芯损耗。
2020/8/18
济南大学物理学院
27
输出负向电流
S5和S6以高频方式 开关, S2和S3以电网 频率开关。
S5和S6以高频方式 开关, S2和S3以电网 频率开关。
2020/8/18
济南大学物理学院
28
这种变换器的主要特征:
1)S5和S6以高频方式开关, S1(S2)和S3 (S4)以电网频率开关。
2020/8/18
济南大学物理学院
5
图5-22 电压型高频链MI典型拓扑 c) 半桥式 d) 全桥式
2020/8/18
济南大学物理学院
6
电流型高频链微型光伏并网逆变器
图5-23 电流型高频链MI典型拓扑 a) 反激式 b) 推挽式
2020/8/18
济南大学物理学院

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器硬件设计以及拓扑结构

光伏并网逆变器及其拓扑结构的设计对于传统电力电子装置的设计,我们通常是通过每千瓦多少钱来衡量其性价比的。

但是对于光伏逆变器的设计而言,对最大功率的追求仅仅是处于第二位的,欧洲效率的最大化才是最重要的。

因为对于光伏逆变器而言,不仅最大输出功率的增加可以转化为经济效益,欧洲效率的提高同样可以,而且更加明显。

欧洲效率的定义不同于我们通常所说的平均效率或者最高效率。

它充分考虑了太阳光强度的变化,更加准确地描述了光伏逆变器的性能。

欧洲效率是由不同负载情况下的效率按照不同比重累加得到的,其中半载的效率占其最大组成部分。

因此为了提高光伏逆变器的欧洲效率,仅仅降低额定负载时的损耗是不够的,必须同时提高不同负载情况下的效率(图1)。

图 1: 欧洲效率计算比重1、功率器件的选型在通用逆变器的设计中,综合考虑性价比因素,IGBT是最多被使用的器件。

因为IGBT导通压降的非线性特性使得IGBT的导通压降并不会随着电流的增加而显著增加。

从而保证了逆变器在最大负载情况下,仍然可以保持较低的损耗和较高的效率。

但是对于光伏逆变器而言,IGBT的这个特性反而成为了缺点。

因为欧洲效率主要和逆变器不同轻载情况下效率的有关。

在轻载时,IGBT的导通压降并不会显著下降,这反而降低了逆变器的欧洲效率。

相反,MOSFET的导通压降是线性的,在轻载情况下具有更低的导通压降,而且考虑到它非常卓越的动态特性和高频工作能力,MOSFET成为了光伏逆变器的首选。

另外考虑到提高欧效后的巨大经济回报,最新的比较昂贵的器件,如SiC二极管,也正在越来越多的被应用在光伏逆变器的设计中,SiC肖特基二极管可以显著降低开关管的导通损耗,降低电磁干扰。

为了得到最大输入功率,电路必须具备根据不同太阳光条件自动调节输入电压的功能,最大功率点一般在开环电压的70%左右,当然这和具体使用的光伏电池的特性也有关。

典型的电路是通过一个boost电路来实现。

然后再通过逆变器把直流电逆变为可并网的正弦交流电。

第五章 光伏并网逆变器的电路拓扑总结

第五章 光伏并网逆变器的电路拓扑总结

5-25Βιβλιοθήκη 5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-20 多支路高频链光伏并网逆变器结构
5-26
5.4 多支路光伏并网逆变器
5.4.1 隔离型多支路光伏并网逆变器
图5-21 多支路高频链光伏并网逆变器系统整体控制框图
5-27
5.4 多支路光伏并网逆变器
5.4.2 非隔离型多支路光伏并网逆变器
图5-7 三相工频隔离型结构 a) 三相两电平 b) 三相三电平
5-10
5.2 隔离光伏并网逆变器
5.2.2 高频隔离型光伏并网逆变器
DC/DC变换型高频链光伏并网逆变器,单级容量一般在 几个千瓦以内,整机工作效率大约在93%以上。
图5-8 DC/DC变换型高频链光伏并网系统一 a) 电路组成 b) 波形变换模式
第五章
5.1 5.2 5.3 5.4 5.5
光伏并网逆变器的电路拓扑
光伏并网逆变器的分类 隔离型光伏并网逆变器 非隔离型光伏并网逆变器 多支路光伏并网逆变器 微型光伏并网逆变器
5-1
第五章 光伏并网逆变器的电路拓扑
光伏并网逆变器将太阳能电池输出的直流电转换成 符合电网要求的交流电再输入电网,是光伏并网系 统能量转换与控制的核心。 光伏并网逆变器的性能影响和决定整个光伏系统是 否能够稳定、安全、可靠、高效地运行,同时也是 影响整个系统使用寿命的主要因素。 本章将对光伏并网逆变器进行分类讨论。
5.2.1 工频隔离型光伏并网逆变器
优点:结构简单、可靠性高、抗冲击性能好、安全性高、无直流电 流问题。 缺点:体积大、质量重、噪声高、效率低。
图5-5 工频隔离变压器对系统效率的影响
5-8
5.2 隔离光伏并网逆变器

光伏逆变器拓扑结构分析与优化

光伏逆变器拓扑结构分析与优化

光伏逆变器拓扑结构分析与优化引言光伏逆变器是将光伏系统中直流电能转化为交流电能的重要装置。

其拓扑结构的合理设计和优化对于提高光伏电站的性能和效率至关重要。

本文将对光伏逆变器的拓扑结构进行分析与优化,以便在实际应用中更好地满足光伏系统的要求。

一、光伏逆变器的基本原理光伏逆变器是通过将光伏阵列产生的直流电能转化为交流电能,以满足实际用电需求。

光伏逆变器的工作原理可以简单概括为以下几个步骤:1. 光伏电池阵列发出的直流电能通过光伏逆变器输入端口进入逆变器。

2. 光伏逆变器通过拓扑结构中的电路元件,如开关管和电容电感等,将输入的直流电能转化为高频交流电能。

3. 交流电能经过滤波电路进行滤波处理后,输出到光伏系统的负载中,供电使用。

二、常见的光伏逆变器拓扑结构光伏逆变器的拓扑结构多种多样,常见的几种拓扑结构有:单相桥式逆变器、三相桥式逆变器、多电平逆变器等。

这些不同的拓扑结构具有各自的优点和适用场景,下面将进行简要介绍。

1. 单相桥式逆变器单相桥式逆变器是一种常见的拓扑结构,它通过四个开关管和四个二极管组成的桥臂电路实现电能转换。

其结构简单、可靠性高,适用于小功率的光伏系统。

然而,单相桥式逆变器输出的交流电压存在脉动及谐波干扰问题。

2. 三相桥式逆变器三相桥式逆变器是一种应用广泛的拓扑结构,它通过六个开关管和六个二极管组成的桥臂电路将直流电能转化为三相交流电能。

与单相桥式逆变器相比,三相桥式逆变器在输出交流电压的稳定性和谐波抑制性能上有较大的改进,适用于中等功率和高功率光伏系统。

3. 多电平逆变器多电平逆变器是一种高性能逆变器,它通过增加电平数量来减小输出电压的脉动及谐波干扰,提高输出电压的波形质量。

多电平逆变器适用于大功率的光伏系统,但其结构复杂、成本高,需要更多的开关管和电路元件。

三、光伏逆变器拓扑结构优化在光伏逆变器的设计和应用过程中,拓扑结构的优化是提高系统性能和效率的关键。

下面将对光伏逆变器拓扑结构的优化进行探讨。

光伏并网逆变器拓扑结构分析

光伏并网逆变器拓扑结构分析

光伏并网逆变器拓扑结构分析(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--光伏并网逆变器拓扑结构分析太阳能并网发电技术日益成为研究热点,并网逆变器作为光伏阵列与电网的接口设备,其拓扑结构决定着整个光伏并网发电系统的效率和成本,是影响系统经济可靠运行的关键因素。

由于光伏并网逆变器的结构拓扑种类众多、性能特点各异,其原理分析和性能比较:对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。

1.按有无变压器分类根据系统中有无变压器,光伏并网逆变器可分为无变压器型(Transformerless)、工频变压器型(Line-Frequency Transformer, LFT)和高频变压器型(High-Frequency Transformer, HFT)三种.图1是采用工频变压器型的拓扑结构,变压器置于工频电网侧,可有效阻止电流直流分量注入电网.高频变压器型中的变压器一般可放置在两个地方,如图2所示.图2(a)是把高频变压器置于DC-AC变换器内;图2(b)是把高频变压器置于DC-DC变换器内,两种方式均可实现隔离功能。

图工频电压器型拓扑结构图图 a图 b图2 高频变压器型的两种拓扑结构图工频变压器(LFT)与高频变压器(HFT)相比,体积大、重量重、价格上也无优势,因此,在有变压器拓扑方案的选择中,一般倾向于采用HFT来实现升压和隔离的功能.为了尽可能地提高光伏并网系统的效率和降低成本,在直流母线电压足够高时,也可采用不隔离的无变压器型拓扑方案。

由于输入与输出之间无电气隔离,无变压器型拓扑产生的对地漏电流成为一个需要解决的技术难题光伏模块存在一个随外部环境变化而变化且范围很大的对地寄生电容,其容值在~10 nF之间,所以由许多光伏模块串并联构成的光伏阵列对地寄生电容变得更大,从而可能导致相当大的对地漏电流.较大的对地漏电流一方面会严重影响变流器的工作模式;另一方面也会给人身安全带来威胁。

光伏并网逆变器工作原理及太阳能电池特性ppt课件

光伏并网逆变器工作原理及太阳能电池特性ppt课件
1.电流源 电流源是相对于电压源来说的. 对于电压源,电源输出到负载两端的电压试
图维持不变,这就是说,电源上的电压是恒定的, 从欧姆定律来看,就是电源电压V不变,I和R可 以变化,即V=IR
对于电流源,电源输出到负载的电流试图不 变,也就是来自电源的电流不变。这并不常见, 但确实存在,并且在许多场合得到应用,也遵从 欧姆定律,即V=IR
图中的U1为逆变器, U0为电网,Z1逆变器和电 网间的线路阻抗,i1是并 网电流,它们之间的关系 是i1=U1-U0/Z1,也就是要 实现并网,必须符合 U1>U0,这就是在直流电 压过低时不能并网的原因。
6
并网逆变器拓扑结构
现在,各个逆变器厂家的拓扑结构大同小异,最常见 的就是这种电压型电路拓扑结构,电压型就是直流母线侧 用大容量电容来支撑电压,如下图:
13
并网逆变器原理
14
并网逆变器原理
光伏并网逆变器通过检测直流电压、 电流和电网交流电压、电流来控制逆变器 三相逆变模块,由数字控制系统发出 PWM驱动信号,使逆变器发出与电网电 压同频、同相的交流电。
下图是我公司并网逆变器运行原理框 架图:
15
并网逆变器原理
16
谢谢大家!
17
有源逆变的典型特点是其输出端也是连 接到一个电源上,因此形象称有源逆变。 逆变器是做为一个电源把其自身能量输送 到另一个电源的过程就是并网发电。
5
并网逆变器拓扑结构
3.并网发电 光伏并网发电就是以电池板组件和逆变器作为一个电
源把光照转换的电能输送到电网这个无限大容量的电源中 供电网中的负载使用。如图所示:
在实际的光伏系统中,太阳能电池的输出功率同时受 到辐照强度S和电池温度T共同影响
12

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑讲解

第五章光伏并网逆变器的电路拓扑5.1 光伏并网逆变器的分类5.2 隔离型光伏并网逆变器5.3 非隔离型光伏并网逆变器5.4 多支路光伏并网逆变器5.5 微型光伏并网逆变器第五章光伏并网逆变器的电路拓扑光伏并网逆变器将太阳能电池输出的直流电转换成符合电网要求的交流电再输入电网,是光伏并网系统能量转换与控制的核心。

光伏并网逆变器的性能影响和决定整个光伏系统是否能够稳定、安全、可靠、高效地运行,同时也是影响整个系统使用寿命的主要因素。

本章将对光伏并网逆变器进行分类讨论。

5.1 光伏并网逆变器的分类根据光伏并网逆变器与电网的连接有无隔离变压器,可将光伏并网逆变器分为隔离型和非隔离型两大类,详细分类如图5-1所示。

图5-1 光伏并网逆变器分类5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构工频隔离型特点:主电路和控制电路相对简单,光伏阵列直流输入电压的匹配范围较大,可有效防止电网电流通过桥臂与人体在直流侧形成回路造成的人体伤害事故,保证系统不会向电网注入直流分量,有效的防止了配电变压器的饱和。

但体积大、质量重,增加了系统损耗及成本。

5.1 光伏并网逆变器的分类5.1.1 隔离型光伏并网逆变器结构高频隔离型特点:相比工频隔离型,具有较小的体积和质量,克服了工频隔离型的主要缺点。

图5-3 高频隔离型光伏并网逆变器结构a) DC/DC变换型 b) 周波变换型5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构与隔离型相比,省去了笨重的隔离变压器,体统结构简单、质量变轻、成本降低并提高了效率,将成为今后主要的光伏并网逆变器结构。

包括单级非隔离型和多级非隔离型。

图5-4 非隔离型光伏并网逆变器结构5.1 光伏并网逆变器的分类5.1.2 非隔离型光伏并网逆变器结构非隔离型的光伏并网系统中,光伏阵列与电网电压直接连接。

大面积的光伏阵列与大地之间存在较大的分布电容,因此会产生光伏阵列对地的共模漏电流。

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究

无变压器结构光伏并网逆变器拓扑及控制研究一、本文概述随着全球对可再生能源需求的持续增长,光伏发电技术因其清洁、可再生、无污染的特性,受到了广泛关注。

光伏并网逆变器作为光伏发电系统的核心设备,其性能直接影响到整个系统的运行效率和电能质量。

传统的光伏并网逆变器通常采用变压器结构,虽然这种结构在一定程度上能够实现电气隔离和电压匹配,但也存在体积大、成本高、效率低等问题。

因此,研究无变压器结构的光伏并网逆变器拓扑及其控制策略,对于提高光伏系统的整体性能、降低成本、推动光伏发电技术的广泛应用具有重要意义。

本文首先介绍了光伏发电系统的基本原理和并网逆变器的功能要求,阐述了无变压器结构光伏并网逆变器的研究背景和必要性。

随后,文章详细介绍了无变压器结构光伏并网逆变器的拓扑结构,包括其基本原理、电路构成以及与传统变压器结构逆变器的区别。

在此基础上,文章重点研究了无变压器结构光伏并网逆变器的控制策略,包括最大功率点跟踪控制、并网电流控制、孤岛效应检测与保护等方面。

通过理论分析和仿真实验,验证了所提控制策略的有效性和优越性。

文章对无变压器结构光伏并网逆变器的应用前景进行了展望,并指出了进一步研究的方向和可能的挑战。

本文的研究成果将为光伏发电技术的发展提供新的思路和方法,有助于推动可再生能源技术的快速发展和应用。

二、无变压器结构光伏并网逆变器拓扑随着可再生能源的日益普及,光伏(PV)技术已成为一种重要的清洁能源解决方案。

光伏并网逆变器是光伏系统的核心组成部分,其设计对于提高系统的效率和可靠性至关重要。

传统的光伏并网逆变器通常采用变压器结构,但近年来,无变压器结构的光伏并网逆变器因其高效率、低成本和紧凑的设计而受到了广泛关注。

无变压器结构光伏并网逆变器拓扑主要基于直接功率转换技术,省去了传统的工频变压器,从而降低了系统的体积和重量。

这种拓扑结构的关键在于使用高效的电力电子开关器件和先进的控制策略,实现直流(DC)到交流(AC)的直接转换。

光伏逆变器中的电路拓扑结构设计与研究

光伏逆变器中的电路拓扑结构设计与研究

光伏逆变器中的电路拓扑结构设计与研究随着太阳能光伏发电技术的迅速发展,光伏逆变器作为太阳能发电的重要组成部分,具有着越来越重要的作用。

光伏逆变器的作用是将太阳能电池模块发出的直流电转换为交流电,以供给电网使用。

电路拓扑结构是光伏逆变器设计中的重要部分,能够影响系统的性能和稳定性。

因此,本文将针对光伏逆变器中的电路拓扑结构进行设计与研究。

一、光伏逆变器电路拓扑结构的分类根据拓扑结构的不同,光伏逆变器可以分为单相桥式逆变器、三相桥式逆变器和多电平逆变器。

其中,单相桥式逆变器是一种简单的电路结构,适用于小型光伏发电系统;三相桥式逆变器更适合于较大规模的光伏发电系统;而多电平逆变器的逆变效率更高,也更加稳定,适用于大型光伏发电系统。

二、单相桥式光伏逆变器电路拓扑结构设计单相桥式光伏逆变器的电路结构简单,它将太阳能电池组成的直流电源通过开关管进行逆变,从而使得输出电压为交流电。

单相桥式光伏逆变器的设计中,采用了电感和电容进行过滤,以减小输出电压的波动度。

同时,为了保持输出电压的稳定性,还需要采用频率稳定器,通过调节频率来保持输出电压的稳定。

三、三相桥式光伏逆变器电路拓扑结构设计三相桥式光伏逆变器的电路结构比单相桥式光伏逆变器更为复杂,但是在大型光伏发电系统中,其性能和稳定性更加优越。

在三相桥式光伏逆变器的设计中,需要采用三相桥式整流器,将太阳能电池组成的直流电源变换为交流电。

然后,通过三相桥式逆变器将交流电转换为输出电压。

为了保证三相桥式光伏逆变器的稳定性,需要采用滤波器来减小输出电压的波动度。

此外,频率稳定器的设计中也十分重要,以保持输出电压的稳定性。

四、多电平光伏逆变器电路拓扑结构设计多电平光伏逆变器相比于单相桥式光伏逆变器和三相桥式光伏逆变器更加复杂,但是其逆变效率更高,输出电压波动度更小,稳定性更好。

在多电平光伏逆变器的设计中,我们需要采用多个桥式电路,并将其串联起来,以实现多电平输出。

多电平光伏逆变器的设计需要采用多个电感和电容进行过滤,同时还需要将频率稳定器进行升级,以保证输出电压的稳定性。

光伏逆变器拓扑结构研究

光伏逆变器拓扑结构研究

光伏逆变器拓扑结构研究随着可再生能源的兴起与发展,光伏发电技术逐渐成为一种重要的清洁能源技术。

而光伏逆变器作为光伏系统中的重要组成部分,起到将直流电能转换为交流电能的关键作用。

因此,光伏逆变器的拓扑结构研究具有重要的意义。

一、光伏逆变器的基本原理光伏逆变器是用于将光伏发电模块输出的直流电能转换为交流电能的设备。

其基本原理是在光伏电池产生的直流电能的基础上,通过逆变器将其转换为交流电能,并将其输出到电网中供电。

基本上,光伏逆变器主要由三部分组成:整流器、逆变器和输出滤波器。

其中,整流器将光伏电池产生的直流电能转换为脉宽调制信号,然后逆变器将脉宽调制信号转换为交流电能,并通过输出滤波器对其进行滤波输出。

二、传统的光伏逆变器拓扑结构在传统的光伏逆变器中,常见的拓扑结构主要包括单相桥式逆变器、三相桥式逆变器和全桥式逆变器。

1. 单相桥式逆变器单相桥式逆变器是最简单的拓扑结构之一,由四个开关管和四个二极管组成。

其工作原理是通过调控四个开关管的通断来控制输出的交流电压幅值和频率。

虽然结构简单,但由于存在开关管的损耗和开关频率的限制,单相桥式逆变器的效率相对较低。

2. 三相桥式逆变器三相桥式逆变器是目前应用最广泛的拓扑结构之一,由六个开关管和六个二极管组成。

其工作原理是通过调控六个开关管的通断来生成三相交流电压,并通过PWM技术对其进行调制,以控制输出的交流电压。

相较于单相桥式逆变器,三相桥式逆变器具有更高的效率和更好的电流波形质量。

3. 全桥式逆变器全桥式逆变器是由四个开关管和四个二极管组成的拓扑结构。

其工作原理是通过PWM技术产生的脉冲信号对开关管进行调制,控制输出电压的频率和幅值。

全桥式逆变器具有更好的电流波形质量和更高的效率,但由于结构复杂,成本较高。

三、新型光伏逆变器拓扑结构随着科技的不断进步和发展,新型的光伏逆变器拓扑结构也不断涌现。

其中,多电平逆变器、谐振逆变器和多级逆变器是具有潜力和广阔前景的新兴拓扑结构。

光伏逆变器拓扑分析详解

光伏逆变器拓扑分析详解

变压器拓扑电网连接的单相光伏逆变器Iván Patrao∗, Emilio Figueres, Fran González-Espín, Gabriel GarceráGrupo de SistemasElectrónicosIndustriales del Departamento de Ingeniería Electrónica, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain文章信息文章历史:收到于2011年1月12日接受于2011年3月21日关键词:多电平逆变、无变压器逆变器、光伏逆变器、可再生能源摘要为了提高效率,降低光伏系统的成本,使用的变压器光伏逆变器是一种越来越大的替代趋势。

然而,这种拓扑结构需要进一步研究,因为它提出了一些问题,有关电网和光伏发电机(如效率退化和安全问题)之间的电连接。

在本文中,着重介绍单相光伏风力发电并网逆变器,它基于已经推行的无变压拓扑结构。

一方面,它是替代经典拓扑结构的基础上提出的。

另一方面,研究显示,基于多层逆变器拓扑结构和经典的拓扑结构相比,没有漏电流产生。

2011爱思唯尔出版社有限公司版权所有目录1.前言 (3423)2.共模电压问题 (3424)3.桥拓扑功率变换器 (3425)3.1.全H桥 (3425)3.2.半H桥 (3425)3.3.高效可靠的逆变器的概念(HERIC) (3426)3.4.H5的拓扑 (3426)3.5.带发电控制电路的半H桥(GCC) (3426)4.基于多级拓扑的逆变器 (3427)4.1.级联H桥(CHB) (3427)4.2.中点钳位(NPC)半桥 (3427)4.3.飞电容(FC) (3428)4.4.电容分压器NPC半桥 (3428)4.5.ConergyNPC (3428)4.6.有源NPC(ANPC) (3429)5. 无变压光伏逆变器基本特性 (3429)6. 结论 (3429)鸣谢 (3430)参考文献 (3430)1.前言可再生能源,特别是那些光电源[1],由于对全球变暖的日益关注和政府对这些技术的扶持资助,近年来已经初步取得了很大的发展[2,3]。

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑

光伏并网逆变器的主电路拓扑光伏并网逆变器的主电路拓扑摘要:光伏并网逆变器是光伏发电系统的核心设备,其主电路拓扑与变换效率和安全性等主要指标密切相关。

本文讨论了光伏并网逆变器主电路拓扑的分类,重点介绍了作者所在实验室使用的三种拓扑。

1 引言跨入21世纪之后,全球正在面临能源危机,新能源已经成为世界经济发展中最具决定力的五大技术领域之一。

太阳能光伏发电技术作为新能源的重要一员得到了持续的发展。

太阳能光伏发电系统可区分为两大类:一是独立系统,二是并网系统。

独立系统是由太阳能电池直接给负载提供功率,多用于偏远的电网未到达地区的局部供电,易受到诸如时间和季节的影响。

独立系统结构图如图1所示。

其中,PV表示由光伏电池组成的光伏组件或光伏组件阵列。

光伏并网发电系统已经成为太阳能利用的主要形式。

并网发电系统的特点是通过控制逆变器,直接将太阳能电池阵列发出的直流电转换为交流电,输向电网,如图2所示。

其中,us表示电网电压。

寻求高性能、低造价的光伏材料和器件以减小光伏发电系统的自身损耗是其研究热点之一。

作为光伏阵列与电网系统间进行能量变换的并网逆变器,其安全性、可靠性、逆变效率、制造成本等因素对发电系统的整体投资和收益具有举足轻重的作用。

因此,对于拓扑结构的合理选择、提高系统效率和降低生产成本有着极其重要的意义。

2 光伏并网逆变器主电路拓分类并网逆变器的电路拓扑很多。

根据直流侧电源性质的不同可分为电压型逆变器和电流型逆变器,结构如图3。

当前,光伏并网逆变器主要采用直流侧以电压源形式的电压型逆变器。

根据逆变器的输入端和输出端是否隔离,可将逆变器分为隔离型和非隔离型。

隔离型逆变器又可分为高频变压器型和工频变压器型[4]。

工频变压器隔离型逆变器的变压器置于逆变器与电网之间,如图4所示。

这种方式可有效阻止逆变器输出波形中的直流分量注入电网,减小对电网的污染,并提高系统的安全性。

但是工频变压器会使系统成本明显升高。

高频变压器隔离型逆变器采用两级或多级变换,图5是一个例子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章
光伏并网逆变器的电路拓扑
5.1 光伏并网逆变器的分类 5.2 隔离型光伏并网逆变器 5.3 非隔离型光伏并网逆变器 5.4 多支路光伏并网逆变器 5.5 微型光伏并网逆变器 5.6 由H桥拓扑派生出的逆变器结构 5.7 由NPC拓扑派生出的逆变器结构
2018/10/24
济南大学物理学院
1
隔离型多支路光伏并网逆变器
2018/10/24
济南大学物理学院
8
由H桥拓扑派生出的逆变器结构 H5逆变器(SMA)
2018/10/24
济南大学物理学院
9
5.6.3 HERIC逆变器(Sunways)
2006年,Sunways公司申请了一项称之为 HERIC(高效率和可靠逆变器概念)的逆变器 拓扑结构专利,拓扑如图: 特点是在交流侧增加了一个采用两个背靠背 IGBT器件的旁路桥臂。
S1以高频方式开关, S2以电网频率开关。
2018/10/24
济南大学物理学院
40
输出负向电流
S4以高频方式开关, S3以电网频率开关。
S4以高频方式开关, S3以电网频率开关。
2018/10/24
济南大学物理学院
41
这种变换器的主要特征: 1) S1(S4)以高频方式开关, S2(S3)以电网频 率开关。 2)存在两种零电压状态:S2、D+=ON和S3、 D-=ON。在非单位功率因数下工作时,当 Vg>0,Ig<0时,S1和S3以互补的方式开关; 当Vg<0,Ig>0时,S2和S4以互补的方式开 关。
2018/10/24
济南大学物理学院
26
产生正向和负向交流电流的该拓扑 的开关状态如下: 输出正向电流
S5和S6以高频方式 开关, S1和S4以电网 频率开关。
2018/10/24
S5和S6以高频方式 开关, S1和S4以电网 频率开关。
27
济南大学物理学院
输出负向电流
S5和S6以高频方式 开关, S2和S3以电网 频率开关。
2018/10/24
济南大学物理学院
16
5.6.4 REFU逆变器(Refu Solar)
2007年, Refu Solar公司申请了一项称之为 REFU的逆变器拓扑结构专利,拓扑如图:
特点是使用了交流侧旁路的一个半桥电路以及 一个可旁路的DC-DC变换器。
升压旁路
升压电路
交流旁路
半桥电路
2018/10/24
2018/10/24
济南大学物理学院
19
输出正向电流
S3以高频方式开 关,S+以电网频率 开关。
2018/10/24
S+以电网频率开关。
济南大学物理学院
20
输出负向电流
S2以高频方式开 关,S-以电网频率 开关。
2018/10/24
S2以高频方式开 关,S-以电网频率 开关。
21
济南大学物理学院
2018/10/24
S5和S6以高频方式 开关, S2和S3以电网 频率开关。
28
济南大学物理学院
这种变换器的主要特征: 1)S5和S6以高频方式开关, S1(S2)和S3 (S4)以电网频率开关。 2)将直流旁路开关S5和S6置于OFF状态可获得零输出 电压。 当S5和S6处于OFF状态并且S2和S3处于ON状态 时,电流流通路径分成两条:一条由S1和续流二极管 S3(D3)构成,另一条由S4和续流二极管S2(D2)构成。这 样S2和S3处在ON状态而没有电流流过,因此也就不会 产生损耗。在零电压状态时的电流流通路径为:对应 正向电网电流的S4-D2或S1-D3,以及对应负向电网电流 的S2-D4或S3-D1,D+和D-的作用仅仅是将旁路开关钳 位至直流侧电压的一半。
2018/10/24
济南大学物理学院
24
评论: REFU拓扑是一种改进的半桥拓扑,它通过增 加交流旁路来产生损耗最低的零电压状态。由于 这种拓扑结构的效率高、漏电流及EMI低,因此 它非常适合应用于无变压器型光伏逆变器。
Refu公司已经将这种拓扑结构商业化,最高效率 可达98%。
应用于RefuSol(11/15kw)系列。数据来源: Photon International, 2008年9月。
2018/10/24
济南大学物理学院
36
2)效率可高达96%,这是因为零电压状态 时在L1(2)和CPV1之间不存在无功功率交换, 并且一个桥臂的开关频率量,因此产生的漏电流和EMI都很小。 缺点: 1)需要一个额外的开关管和4个二极管。 2)在死区钳位时,会得到双极性的输出电压, 从而增加了滤波器上的损耗。
2018/10/24
济南大学物理学院
2
非隔离型多支路光伏并网逆变器
图5-21 基于Boost变换器的非隔离型光伏并网逆变器结构
2018/10/24
济南大学物理学院
3
非隔离级联型光伏并网逆变器
2018/10/24
济南大学物理学院
4
电压型高频链微型光伏并网逆变器
图5-22 电压型高频链MI典型拓扑 a) 反激式 b) 推挽式
2018/10/24
济南大学物理学院
14
3)VPE中只含有电网频率分量而没有开关频率 分量,因此产生的漏电流和EMI都很小。
缺点: 需要两个额外的开关。 评论: HERIC改善了采用双极性调制的全桥逆变器 的性能,它通过交流旁路为电路增加零电压状态 提高了效率。由于这种拓扑结构效率高、漏电流 及EMI低,因此非常适合应用于无变压器型光伏 逆变器。
2018/10/24
济南大学物理学院
11
输出负向电流
S1和S4以高频方式 开关,S+以电网频 率开关。 输出正向电流
S2和S3以高频方式 开关,S-以电网频率 开关。
12
2018/10/24
济南大学物理学院
输出负向电流
S2和S3以高频方式开关,S-以电网频率开关。
2018/10/24
济南大学物理学院
Ingeteam公司已经将这种拓扑结构商业化,最高 效率可达96.5%。
应用于Inecon Sun TL(2.5/3.3/6kw)系列。数 据来源:Photon International, 2007年8月。
2018/10/24
济南大学物理学院
32
5.6.6 全桥零电压整流器------FB-ZVR 拓扑如图: 特点是这种拓扑源自HERIC,并加入了一个 双向电网短路开关,这个短路开关由一个二极 管桥、一个开关管(S5)和一个钳位至直流侧中 点电位的二极管组成。将全桥关断并将S5闭合可 以获得零电压状态。
2018/10/24
济南大学物理学院
5
图5-22 电压型高频链MI典型拓扑 c) 半桥式 d) 全桥式
2018/10/24
济南大学物理学院
6
电流型高频链微型光伏并网逆变器
图5-23 电流型高频链MI典型拓扑 a) 反激式 b) 推挽式
2018/10/24
济南大学物理学院
7
图5-23 电流型高频链MI典型拓扑 a) 半桥式 b) 全桥式
13
这种变换器的主要特征: 1) S1-S4和 S2-S3 以高频方式开关, S+ ( S- )以电网频率开关。 2)输出电压中存在两种零电压状态: S+=ON和S-= ON(当桥臂关断时)。 优点: 1)滤波器上的电压是单极性的,从而降低 了铁芯损耗。
2)效率可高达97%,这是因为零电压状态 时在L1(2)和CPV之间没有无功功率交换, 并且一个桥臂的开关频率低。
2018/10/24
济南大学物理学院
25
5.6.5 带有直流旁路的全桥逆变器-----FB-DCBP(Ingeteam) 2007年, Ingeteam公司申请了一项称之为FBDCBP的逆变器拓扑结构专利,拓扑如图: 特点是在传统H桥基础上加入了两个额外的直 流侧开关,以及两个额外的钳位二极管,用于 将输出电压钳位至接地的直流母线中点。 直流开关在零电压状 态时将光伏板和电网分 离,钳位二极管确保零 电压状态是接地的。
2018/10/24
济南大学物理学院
29
优点: 1)滤波器上的电压是单极性的,从而降低 了铁芯损耗。 2)直流旁路开关的额定电压仅为直流电压 的一半。 3)由于零电压状态时在L1(2)和CPV1(2)之间不存 在无功功率交换,全桥电路的开关频率低, 以及S5和S6上的电压额定值低,因此该拓扑的 效率高。 4)VPE中只含有电网频率分量而没有开关频率 分量,因此产生的漏电流和EMI都很小。
2018/10/24
济南大学物理学院
23
2)效率会高达98%,这是因为零电压状态 时在L1(2)和CPV之间不存在无功功率交换, 升压电路只在必要时工作,并且一个桥臂 的开关频率低。
3)VPE中只含有电网频率分量而没有开关频率 分量,因此产生的漏电流和EMI都很小。
缺点: 1)需要双直流电压。 2)需要两个额外的开关,但这两个开 关都以低频方式开关。
S1和S4以高频方式开 关,S5的开关状态与 S1、S4的正好相反。
2018/10/24
济南大学物理学院
35
这种变换器的主要特征: 全桥电路的开关管采用类似于双极性调制的方 式开关,即对角线上的开关管同时动作。在每一 次将桥臂上的所有开关管都关断并将S5闭合时, 就可以获得零电压状态。 优点: 1)滤波器上的电压是单极性的,从而降低 了铁芯损耗。
2018/10/24
济南大学物理学院
33
该电路输出正向和负向交流电流的开关 状态如下: 输出正向电流
S1和S4以高频方式开 关,S5的开关状态与 S1、S4的正好相反。
2018/10/24
S1和S4以高频方式开 关,S5的开关状态与 S1、S4的正好相反。
相关文档
最新文档