概率论与数理统计期末复习模拟试题

合集下载

精选2020概率论与数理统计期末模拟题库288题(含答案)

精选2020概率论与数理统计期末模拟题库288题(含答案)

2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.一个机床有1/3的时间加工零件A ,其余时间加工零件B 。

加工零件A 时停机的概率是0.3,加工零件A 时停机的概率是0.4。

求(1)该机床停机的概率;(2)若该机床已停机,求它是在加工零件A 时发 生停机的概率。

解:设1C ,2C ,表示机床在加工零件A 或B ,D 表示机床停机。

(1)机床停机夫的概率为1122()().(|)().(|)P B P C P D C P C P D A =+12110.30.43330=⨯+⨯=(2)机床停机时正加工零件A 的概率为11110.3().(|)33(|) = 11()1130P C P D C P C D P D ⨯==2.若A.B 相互独立,则下列式子成立的为( A )。

A. )()()(B P A P B A P = B. 0)(=AB P C. )|()|(A B P B A P = D. )()|(B P B A P =3.若随机事件A B ,的概率分别为6.0)(=A P ,5.0)(=B P ,则A 与B 一定(D )。

A. 相互对立B. 相互独立C. 互不相容D.相容4.设随机变量X ~N(μ,81),Y ~N(μ,16),记}4{},9{21+≥=-≤=μμY p X P p ,则( B )。

A. p1<p2B. p1=p2C. p1>p2D. p1与p2的关系无法确定5.在假设检验中, 下列说法错误的是( C )。

A. 1H 真时拒绝1H 称为犯第二类错误。

B. 1H 不真时接受1H 称为犯第一类错误。

C. 设α=}|{00真拒绝H H P ,β=}|{00不真接受H H P ,则α变大时β变小。

D. α.β的意义同(C ),当样本容量一定时,α变大时则β变小。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。

事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题填空题(每空3分,共45 分)1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)=P( A U B)=12、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B9发生且A不发生的概率相等,则A发生的概率为:_______________________ ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率:;没有任何人的生日在同一个月份的概率I Ae x, X c 04、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A=0, x>2分布函数F(x)= ,概率P{—0.5<X <1}=5、设随机变量X~ B(2,p)、Y~ B(1,p),若P{X>1} =5/ 9,贝U p =若X与丫独立,则Z=max(X,Y)的分布律:6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)=COV(2X-3Y , X)=7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时,丫"⑶;8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1nX =—S X i为n i 二样本均值,则日的矩估计量为:9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参数a的置信度为95%的置信区间:计算题(35分)1、(12分)设连续型随机变量X的密度函数为:「1求:1) P{|2X —1|<2} ; 2) Y =X 2的密度函数 S(y) ; 3) E(2X-1);2、(12分)设随机变量(X,Y )的密度函数为3、( 11分)设总体X 的概率密度函数为:X 1,X 2,…,X n 是取自总体X 的简单随机样本。

最新2020概率论与数理统计期末模拟考试288题(含标准答案)

最新2020概率论与数理统计期末模拟考试288题(含标准答案)
求(1)A;(2)分布函数F (x);(3)P (-0.5 < X <1)。)
解:
(3) P(-0.5<X<1)=F(1)—F(-0.5)=1
8.已知随机变量 的概率密度为 ,令 ,则Y的概率密度 为(A)。
A. B. C. D.
9.已知随机向量(X,Y)的协差矩阵V为
计算随机向量(X+Y, X-Y)的协差矩阵(课本116页26题)
.解:由于零件的长度服从正态分布,所以
所以 的置信区间为 经计算
的置信度为0.95的置信区间为 即(5.347,6.653)
3.设系统L由两个相互独立的子系统L1.L2串联而成,且L1.L2的寿命分别服从参数为 的指数分布。求系统L的寿命Z的密度函数。
解:令X.Y分别为子系统L1.L2的寿命,则系统L的寿命Z=min (X, Y)。
13.设随机变量X的密度函数为f (x),则Y = 7—5X的密度函数为(B)
14.设 是任意两个互相独立的连续型随机变量,它们的概率密度分别为 和 ,分布函数分别为 和 ,则(B)。
A. 必为密度函数B. 必为分布函数
C. 必为分布函数D. 必为密度函数
15.连续型随机变量X的密度函数f (x)必满足条件(C)。
解:DX=4, DY=9, COV(X,Y)=6
D(X+Y)= DX + DY +2 COV(X,Y)=25
D(X-Y) = DX + DY -2 COV(X,Y)=1
COV(X+Y, X-Y)=DX-DY=-5
故(X+Y, X-Y)的协差矩阵
10.某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得 。假定铜丝的折断力服从正态分布,问在显著水平 下,是否可以相信该厂生产的铜丝折断力的方差为16?

概率论与数理统计期末复习参考试题

概率论与数理统计期末复习参考试题

<概率论与数理统计>期末复习参考试题一、填空题1.设 A 、B 、C 是三个随机事件。

试用 A 、B 、C 分别表示事件 1〕A 、B 、C 至少有一个发生 2〕A 、B 、C 中恰有一个发生 3〕A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。

那么P(B )A =3.假设事件A 和事件B 互相独立, P()=,A αP(B)=0.3,P(AB)=0.7,那么α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅那么A=______________7. 随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,那么a =________b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,那么{0}P x <= _________ 9. 一射手对同一目的独立地进展四次射击,假设至少命中一次的概率为8081,那么该射手的命中率为_________10.假设随机变量ξ在〔1,6〕上服从均匀分布,那么方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,那么{max{,}0}P X Y ≥= 12.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{a b,c}X Y ≤≤<= 13.用〔,X Y 〕的结合分布函数F 〔x,y 〕表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,那么〔x,y 〕关于X 的边缘概率密度在x = 1 处的值为 15.)4.0,2(~2-N X ,那么2(3)E X += 16.设)2,1(~),6.0,10(~N Y N X ,且X 与Y 互相独立,那么(3)D X Y -=17.设X的概率密度为2()x f x -=,那么()D X =18.设随机变量X 1,X 2,X 3互相独立,其中X 1在[0,6]上服从均匀分布,X 2服从正态分布N 〔0,22〕,X 3服从参数为λ=3的泊松分布,记Y=X 1-2X 2+3X 3,那么D 〔Y 〕=19.设()()25,36,0.4xy D X D Y ρ===,那么()D X Y +=20.设12,,,,n X X X ⋅⋅⋅⋅⋅⋅是独立同分布的随机变量序列,且均值为μ,方差为2σ,那么当n 充分大时,近似有X ~ 或~ 。

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

概率论与数理统计期末考试题及答案

概率论与数理统计期末考试题及答案

模拟试题一(一)一、 填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。

P( A ∪B) = 。

3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A=, 分布函数F (x )= , 概率{0.51}P X -<<=;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y ,则Z=max(X,Y)的分布律:;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互,则D(2X-3Y)=, COV(2X-3Y, X)=;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k =时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11nii X X n ==∑为样本均值,则θ的矩估计量为:。

9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间:;二、 计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Yy ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。

最新2020年概率论与数理统计期末模拟考试288题(含答案)

最新2020年概率论与数理统计期末模拟考试288题(含答案)

2020年概率论与数理统计期末测试复习题288题[含答案]一、选择题1.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.9P A =,10021X X X ,,, 相互独立。

令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。

A. )(y Φ B.90()3y -Φ C.(90)y Φ- D.90()9y -Φ2.设离散型随机变量的概率分布为101)(+==k k X P ,3,2,1,0=k ,则)(X E =( B )。

A. 1.8B. 2C. 2.2D. 2.43.在假设检验中, 下列说法错误的是( C )。

A. 1H 真时拒绝1H 称为犯第二类错误。

B. 1H 不真时接受1H 称为犯第一类错误。

C. 设α=}|{00真拒绝H H P ,β=}|{00不真接受H H P ,则α变大时β变小。

D. α.β的意义同(C ),当样本容量一定时,α变大时则β变小。

4.设)(x Φ为标准正态分布函数,100,,2, 1, 0A,1 =⎩⎨⎧=i X i 否则,发生事件且()0.4P A =,10021X X X ,,, 相互独立。

令∑==1001i iX Y ,则由中心极限定理知Y 的分布函数)(y F 近似于( B )。

A. )(y ΦB.Φ C.(40)y Φ- D.40()24y -Φ5.设xx x n 12,,, 是一组样本观测值,则其标准差是(B)。

A.∑=--ni ix x n 12)(11B.∑=--n i i x x n 12)(11 C. ∑=-n i i x x n 12)(1 D.∑=-ni i x x n 1)(16.从某同类零件中抽取9件,测得其长度为( 单位:mm ):7.若随机事件A B ,的概率分别为6.0)(=A P ,5.0)(=B P ,则A 与B 一定(D)。

概率论与数理统计模拟试题集(6套,含详细答案)

概率论与数理统计模拟试题集(6套,含详细答案)

《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。

正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。

三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。

概率论及数理统计期末考试试题及解答

概率论及数理统计期末考试试题及解答

WORD格式.《概率论与数理统计》期末试题一、填空题(每题 3 分,共 15 分)1.设事件 A,B 仅发生一个的概率为0.3 ,且 P(A)P(B)0.5,则A,B起码有一个不发生的概率为 __________.答案: 0.9解:P(ABAB)0.3即0.3P(AB)P(AB)P(A)P(AB)P(B)P(AB)0.52P(AB)因此P(AB)0.1P(AB ) P(AB)1P(AB)0.9.2.设随机变量 X 听从泊松散布,且 P( X1)4P(X2),则P(X3)______.答案:1 e 16解答:P( X1)P ( X0)P(X1)ee,P(X2)e由 P(X1)4P(X2) 知 ee2e2即 210解得 1,故P(X3)e 3.设随机变量 X 在区间 (0,2)上听从平均散布,则随机变量密度为 f Y(y)_________.答案:2 221162YX在区间 (0,4)内的概率114,0y4,f( y) F(y)f(y)YYX2y解答:设 Y 的散布函数为 F Y(y),X的散布函数为F X(x) ,密度为2F(y)P(Yy)P(Xy)P(yXy ) F(y ) F(y )YXX由于 X~U(0,2) ,因此 F(y ) 0 ,即 F Y(y)F X(y )Xy0,.其余f X(x) 则专业资料整理WORD格式教育资料专业资料整理WORD 格式.故11,0y4,f( y) F(y)f(y )4yYYX2y0,其余.另解在 (0,2) 上函数2yx 严格单一,反函数为h(y)y因此11f(y)f(y)4,0y4,yYX2 y0,其余.4.设随机变量 X,Y 互相独立,且均听从参数为的指数散布,2P(X1)e ,则_________, P{min(X,Y)1}=_________.答案: 2,- 4P{min(X,Y)1}1e解答:2P(X1)1P(X1)ee ,故 2P{min(X,Y)1 }1P{min(X,Y)1 }1P(X1)P(Y1)41e.5.设整体 X 的概率密度为(1)x,0x1,f(x)1.0,其余X 1,X 2,,X 是来自 X 的样本,则未知参数的极大似然预计量为_________.n答案:$11n1xlnn i 1i解答:似然函数为nnL ( x ,L,x;)(1)x(1)(x,L,x)1ni1ni1nlnLnln(1)lnxii1dlnLn nlnx@0d1ii1专业资料整理WORD格式解似然方程得的极大似然预计为教育资料专业资料整理WORD格式.$11.n1ln xni 1i二、单项选择题(每题 3 分,共 15 分)1.设 A,B,C为三个事件,且A,B 互相独立,则以下结论中不正确的选项是(A)若 P(C)1 ,则 AC与 BC也独立 .(B)若 P(C)1 ,则 AUC 与 B 也独立 .(C)若 P(C)0 ,则 AUC 与 B 也独立 .(D)若 CB,则 A 与 C也独立 . ()答案:( D) .解答:由于概率为 1 的事件和概率为0 的事件与任何事件独立,因此(A),(B),(C)都是正确的,只好选(D) .事实上由图可见A与C不独立.SABC2.设随机变量X~N(0,1),X的散布函数为(x),则P(|X|2)的值为(A) 2[1(2)]. ( B) 2(2)1.(C) 2(2). ( D) 12(2). ()答案:( A)解答: X~N(0,1) 因此 P(|X|2)1P(|X|2)1P(2X2)1(2)(2)1[2(2)1]2[1(2)]应选(A).3.设随机变量 X 和 Y 不有关,则以下结论中正确的选项是(A)X 与 Y 独立 . ( B)D( XY)DXDY.(C)D(XY)DXDY. ( D) D(XY)DXDY.()教育资料专业资料整理WORD 格式.答案:( B )解答:由不有关的等价条件知,xy0cov ( x , y )0D( XY) DXDY+2cov ( x , y )应选( B ) .4.设失散型随机变量 X 和 Y 的结合概率散布为( X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)P1111 69183若 X,Y 独立,则 , 的值为( A )21.( )12.,A,9999 . ()( C )11( D )51,,661818答案:( A )解答:若 X,Y 独立则有P(X2,Y2)P(X2)P(Y2)Y123X1111 1121 169183()()() 11 3939233 21 111, 291899故应选( A ) .5.设整体 X 的数学希望为 ,X 1,X 2,L,X n为来自 X 的样本,则以下结论中正确的选项是(A)X1是的无偏预计量 . ( B)X1是的极大似然预计量 .(C)X1是的相合(一致)预计量 . ( D) X1不是的预计量 . ()答案:( A)解答:EX,因此 X1是的无偏预计,应选(A) .1三、( 7 分)已知一批产品中90%是合格品,检查时,一个合格品被误以为是次品的概率为0.5 ,一个次品被误以为是合格品的概率为0.02 ,专业资料整理WORD格式教育资料专业资料整理WORD格式.求( 1)一个产品经检查后被以为是合格品的概率;( 2)一个经检查后被以为是合格品的产品确是合格品的概率.解:设 A‘任取一产品,经查验以为是合格品’B‘任取一产品确是合格品’则( 1) P(A)P(B)P(A|B)P(B)P(A| B)0.9 0.950.10.020.857.P( B|A)0.9977( 2).P(A)0.857四、( 12 分)从学校乘汽车到火车站的途中有 3 个交通岗,假定在各个交通岗碰到红灯的事件是互相独立的,而且概率都是2/5. 设 X 为途中碰到红灯的次数,求 X 的散布列、散布函数、数学希望和方差 .解: X 的概率散布为23kk3kP(Xk ) C()()k0,1,2,3.355X0123即2754368PX 的散布函数为0,x0,27,0x1,12581F(x),1x2,125117,2x3, 1251,x3.EX26 3,55 2318DX3.5525五、( 10 分)设二维随机变量(X, Y) 在地区 D{(x,y)|x0,y0,xy1}上听从平均散布 . 求( 1) ( X,Y) 对于 X 的边沿概率密度;( 2) ZXY 的散布函数与概率密度 .专业资料整理WORD格式教育资料专业资料整理WORD格式.解:( 1) (X,Y)的概率密度为y2,(x,y)D1f(x,y)0,.x+y=1其余DD122x,0x1 x f(x)f(x,y)dy0z1x+y=zX0,其余(2)利用公式 f Z(z)f(x,zx)dx2,0x1,0zx1x2,0x1,xz1.此中 f(x,zx)0,0,其余其余 .当 z0或 z1时 f Z(z)0zzzz=x0z1时f(z)2dx2x2zZ故 Z 的概率密度为x f(z)2z,0z1,Z0,其余 .Z 的散布函数为0,z00,z0,zz2f(z)f(y)dy2ydy,0z1z,0z1,ZZ1,z1.1,z1或利用散布函数法0,z0,F(z)P(Zz)P(XYz)2dxdy,0z1,ZD11,z1.0,z0,2z,0z1,1,z1.2z,0z1,f(z)F(z)ZZ0,其余 .专业资料整理WORD格式六、( 10 分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标 Y 相222互独立,且均听从N(0,2)散布.求(1)命中环形地区D{(x,y)|1xy2}的教育资料专业资料整理.概率;( 2)命中点到目标中心距离WORD格式22ZXY的数学希望 .解:( 1)P{X,Y)D}f(x,y)dxdyyDx D01212221rr 2r11ed ( )eee ;88828124821( 2)222218EZE(XY)xyedxdy22xy 822rr 112882 rerdrderdr84000222 rrr21888reedredr2.0 022七、(11 分)设某机器生产的部件长度(单位:cm )2X~N( ,) ,今抽取容量为 16 的样20.16 本,测得样本均值x10 ,样本方差0.95 的置信区s. ( 1)求的置信度为间;(2)查验假定2H 0:0.1 (明显性水平为 0.05 ) .专业资料整理WORD格式(附注) t 0.05 (16)1.746,t 0.05 (15)1.753,t0.025 (15)2.132,2220.4 (16)26.296,0.05 (15)24.996,0.025 (15)27.488.解:(1)的置信度为 1 下的置信区间为ss( Xt(n1),Xt(n 1))/2/2nnX10,s0.4,n16,0.05,t(15)2.1320.25因此的置信度为0.95 的置信区间为(9.7868 , 10.2132 )(2)H0:0.1222(n1).的拒绝域为教育资料专业资料整理WORD格式.2215S2151.624 0.05 (15)24.996由于,0.5222424.996(15),因此接受H.0.26 0专业资料整理WORD格式教育资料专业资料整理。

概率论和数理统计期末考试复习题库

概率论和数理统计期末考试复习题库

概率论和数理统计期末考试复习题库数理统计练习一、填空题1、设A 、B 为随机事件,且P (A)=0.5,P (B)=0.6,P (B |A)=0.8,则P (A+B)=__ 0.7 __。

2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。

3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。

4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(--X X E =1,则=λ___1____。

5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时,成功次数的方差的值最大,最大值为 25 。

6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。

7、已知随机向量(X ,Y )的联合密度函数≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。

8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。

9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。

设Z =2X -Y +5,则Z ~ N(-2, 25) 。

10、θθθ是常数21? ,?的两个无偏估计量,若)?()?(21θθD D <,则称1?θ比2?θ有效。

1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。

2、设X ~B (2,p ),Y ~B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。

3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。

4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。

概率论与数理统计期末考试模拟试题3及答案

概率论与数理统计期末考试模拟试题3及答案

概率论与数理统计模拟题三一、单项选择题(每小题3分,共30分)1、设,,A B C 是随机事件,则()。

(A)AB A B =(B)()AB AB B=(C)AB C ABC =(D)()()AB AB Ω=2、若两个事件,A B 同时出现的概率()0P AB =,则()。

(A),A B 不相容(B)AB 是不可能事件(C),A B 未必是不可能事件(D)()0P A =或()0P B =3、设()0.6,()0.84,()0.4P A P AB P B A ===,则()P B =()。

(A )0.60(B )0.36(C )0.24(D )0.484、下面四个函数中可以作为随机变量分布函数的是()。

(A)0, 21(),1022, 0x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩(B)0, 0()sin ,01, x F x x x x ππ<⎧⎪=≤<⎨⎪≥⎩(C)0, 0()sin ,021, 2x F x x x x ππ⎧⎪<⎪⎪=≤<⎨⎪⎪≥⎪⎩(D)0, 011(),03211, 2x F x x x x ⎧⎪<⎪⎪=+≤≤⎨⎪⎪>⎪⎩5、当随机变量X 的可能值充满区间()时,函数()cos x x ϕ=能成为随机变量X 的概率密度。

(A )[0,2π(B )[,]2ππ(C )[0,]π(D )37[,]24ππ6、设随机变量2(3,2)XN ,且()()P X C P X C >=≤,则C =()。

(A )2(B )3(C )4(D )57、设随机变量X 与Y 相互独立,其分布律分别为X 01Y 01P1212P1212则()。

(A)X Y =(B)()1P X Y ==(C)1()2P X Y ==(D)1()4P X Y ==8、设随机变量X 服从参数为λ的指数分布,即()XE λ,则DX =()。

(A)λ(B)2λ(C)1λ(D)21λ9、设,X Y 是方差均大于零的随机变量,则下列命题中不正确的事()。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论与数理统计模拟试题5套带答案

概率论与数理统计模拟试题5套带答案

06-07-1《概率论与数理统计》试题A一、填空题(每题3分,共15分)1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X,且3.0}42{=<<X P ,则=<}0{X P __________.3. 设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___4.设12,,,n X X X 是取自总体),(2σμN 的样本,则统计量2211()n i i X μσ=-∑服从__________分布.5. 设),3(~),,2(~p B Y p B X,且95}1{=≥X P ,则=≥}1{Y P __________. 二、选择题(每题3分,共15分)1. 一盒产品中有a 只正品,b 只次品,有放回地任取两次,第二次取到正品的概率为 【 】 (A)11a a b -+-;(B) (1)()(1)a a a b a b -++-;(C) a a b +;(D) 2a ab ⎛⎫ ⎪+⎝⎭.2. 设随机变量X 的概率密度为()130, 其他c x p x <<⎧=⎨⎩则方差D(X)= 【 】(A) 2; (B)12; (C) 3; (D)13.3. 设A 、B 为两个互不相容的随机事件,且()0>B P ,则下列选项必然正确的是【 】()A ()()B P A P -=1;()B ()0=B A P ;()C ()1=B A P ;()D ()0=AB P .4. 设()x x f sin =是某个连续型随机变量X 的概率密度函数,则X 的取值范围是【 】()A ⎥⎦⎤⎢⎣⎡2,0π;()B []π,0; ()C ⎥⎦⎤⎢⎣⎡-2,2ππ;()D ⎥⎦⎤⎢⎣⎡23,ππ. 5. 设()2,~σμN X ,b aX Y -=,其中a 、b 为常数,且0≠a ,则~Y 【 】()A ()222,b a b a N +-σμ; ()B ()222,b a b a N -+σμ;()C ()22,σμa b a N +; ()D ()22,σμa b a N -.三、(本题满分8分) 甲乙两人独立地对同一目标射击一次,其命中率分别为0.5和0.4,现已知目标被命中,求它是乙命中的概率.四、(本题满分12分)设随机变量X 的密度函数为xx ee Ax f -+=)(,求: (1)常数A ; (2)}3ln 210{<<X P ; (3)分布函数)(x F .五、(本题满分10分)设随机变量X 的概率密度为()⎩⎨⎧<<-=其他,010),1(6x x x x f 求12+=X Y的概率密度.六、(本题满分10分)将一枚硬币连掷三次,X 表示三次中出现正面的次数,Y 表示三次中出现正面次数与出现反面次数之差的绝对值,求:(1)(X ,Y )的联合概率分布;(2){}X Y P>.七、(本题满分10分)二维随机变量(X ,Y )的概率密度为⎩⎨⎧>>=+-其他,00,0,),()2(y x Ae y x f y x求:(1)系数A ;(2)X ,Y 的边缘密度函数;(3)问X ,Y 是否独立。

《概率论与数理统计》期末考试试题及答案

《概率论与数理统计》期末考试试题及答案
解:因为 ,所以
(1)根据边缘概率与联合概率之间的关系得出-1 0 10 Nhomakorabea1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量
服从分布(要求给出自由度)。
三、(6分)设 相互独立, , ,求 .
解:0.88=
= (因为 相互独立)……..2分
求随机变量Y=2X+1的概率密度。
解:因为 是单调可导的,故可用公式法计算………….1分
当 时, ………….2分
由 ,得 …………4分
从而 的密度函数为 …………..5分
= …………..6分
六、(8分)已知随机变量 和 的概率分布为
而且 .
(1)求随机变量 和 的联合分布;
(2)判断 与 是否相互独立?
…………4分
即为[4.801,5.199]…………5分
令 ………..5分
于是 的最大似然估计:
。……….7分
十二、(5分)某商店每天每百元投资的利润率 服从正态分布,均值为 ,长期以来方差 稳定为1,现随机抽取的100天的利润,样本均值为 ,试求 的置信水平为95%的置信区间。( )

《概率论与数理统计》期末复习试卷4套+答案

《概率论与数理统计》期末复习试卷4套+答案
四、计算题
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

品2件)的箱子中丢失一件产品,但不知是几等品,今
从中任取2件产品,(1)求取到的都是一等品的概率;(2)已
知取到的都是一等品,丢失的也是一等品的概率。2 3
, 98
2’. 设A1, A2, A3是随机试验E的三个相互独立的事件, 已知P(A1)=, P(A2)=,P(A3)=,则三事件中至少有 一个发生的概率.
电池,测得它们的寿命为:19,18,22,20,16,25.设
电池的寿命近似服从正态分布。试问:这些结果是
否表明,这类型号的电池的平均寿命比该公司宣称
的要短?(显著水平=0.05)
附表 z0.05=1.65, z0.025=1.96,t0.05(5)=2.015 t0.025(5)=2.570,t0.05(6)=1.943,t0.025(6)=2.447
四”离散型随机变量X的分布律为
X
-2 1 3
Pk 0.15 0.5 0.35 求X的分布函数和E(2X+1)。
五、设随机变量X的概率密度函数为
f
(
x
)
3 2
x
2
1 x 1
0
其他
求(1)E(X),D(X);(2)P{|X-E(X)|≤D(X)};(3)F(x).
答案 (1)E(X)=0,D(X)=3/5
(D) P(B)P(A)
2.设随机变量X和Y的方差存在且不为零,则D(X+Y) =D(X)+D(Y)是( ) (A) X和Y不相关的充分条件,但不是必要条件; (B) X和Y独立的充分条件,但不是必要条件; (C) X和Y不相关的充分必要条件; (D) X和Y独立的充分必要条件。
3.若连续型随机变量X的分布函数为
x)
2x
1 x2 2 1 x2
1
2
1
x0 0 x1
1 x2 x2
六、设随机变量(X,Y)的联合概率密度函数为
求A。
Axy y x 1,0 y 1
f (x, y)
0
其它
六、设随机变量(X,Y)的联合概率密度函数为
8xy y x 1,0 y 1
f (x, y)
0
其它
设其直径X服从[0,3]上的均匀分布,则横截面积Y
的数学期望E(Y)=
.
3
4
4.从总体X~N(,2)中抽出容量为9的样本,算得样
本均值为 x =125,样本均方差为s=14,则的置信水
平为95%的置信区间为
. (114.24,135.76)
(附:z0.025=1.96,t0.025(8)=2.306,t0.05(8)=1.859)
(3)P{X+Y≤1}=1/6
六、设随机变量(X,Y)的联合概率密度函数为
8xy y x 1,0 y 1
f (x, y)
0
其它
求(1) 条件概率密度 fX|Y(x|y) , fY|X(y|x)
(2) Z=X+Y的概率密度函数。
(3) F(x, y)
七. 设总体X的概率密度为
f
(
x,
求(1) X与Y的边缘概率密度fX(x) , fY(y),并说明X与Y是
否相互独立?(2)Cov(X, Y),说明X与Y是否相关?
(3)P{X+Y≤1}。
答案
(1)
f
X
(
x
)
4
x 0
3
0 x 1, 其它
fY
(
y)
4
y(1 0
y2)
0 y1 其它
X与Y不独立
(2)Cov(X, Z)=4/225, X与Y相关 Nhomakorabea)
1
x 1 0
2 1
0 x1 其他
其中 > 1是未知参数. x1, x2,…,xn 是来自X的样本观
察值. 求(1) 的矩估计量;(2) 的最大似然估计量.
答案
ˆ矩
1 X
ˆ最

1
1 n
n
ln X i
i 1
八. 一公司声称其某种型号的电池的平均寿命至少 为21.5小时,有一实验室检验了该公司生产的6套
3.设随机变量X的概率密度函数为
2x 0 x 1
f
(x)
0
其他
求(1)Y=-3lnX的概率密度;(2)E(Y)
答若案设随(机1) 变fY量(Xy的) 概率32 e密0 2度3y 函数yy 为00
(2) E(Y ) 3 2
Cx 0 x 1
f
(x)
0
其他

求(1)C的值;(2)F(x);(3)P{a≤X≤b}
(2)P{|X-E(X)|≤D(X)}=27/125
0
(3)F (
x)
1
2
(1
1
x3
)
x 1 1 x 1
x1
五’、设随机变量X的概率密度函数为
f ( x) 2axx
0 x1 1 x2
0
其他
求(1)a的值;(2)P{1/2≤X≤2};(3)F(x).
答案 (1)a=1 ; (2)7/8
0
(3)F (
5.设X1, X2, … , Xn 是来自总体X~N(,2) 的样本, 且
n1
C ( Xi1 Xi )2 是2的无偏估计,则C=
1
. 2(n 1)
i 1
二、选择题
1.设A, B为随机事件,且BA,则以下各式不正确的
是(

(A) P(B|A)=P(B)
(B) P(AB)=P(A)
(C) P(AB)=P(A)
一、填空题 2011年概率统计模拟题1
1.一张考卷上有5道选择题,每道题有4个可能答
案,其中有一个答案是正确的,某考生靠猜测答
对4道题的概率是
.
C54
1 44
3 4
15 1024
2.已知P(A)=1/4, P(B|A)=1/3, P(A|B)=1/2,则P(A∪B)
=
.
1/3
3.一零件的横截面是圆,对截面的直径进行测量,
/
S
服从t(n-1)(D)(n
n
1)
X
2
1 服从
F(1, n 1)
三、解答题
Xi2
i2
1.一袋中装有8个红球和2个黑球,每次从中取1个球,
取后不放回,连续取两次,试求(1)取出的两个球颜色
相同的概率;(2)至少有一个黑球的概率。
29 17 ,
45 45
2. 装有10件某产品(其中一等品5件,二等品3件,3等
A
x0
F
(
x)
Cx
Bx 2 1x
2 1
2
1
0 x1 1 x2
x2
则常数A,B,C的取值为(
)
(A) A=-1,B=1/2,C=1 (B) A=0,B=1/2,C=2
(C) A=-1,B=1,C=2 (D) A=0,B=1,C=0
4. 在假设检验中,记H1为备择假设,则犯第一类 错误的概率是指( )
(A) H1真,接受H1 (B) H1不真,接受H1 (C) H1真,拒绝H1 (D) H1不真,拒绝H1
5.设 X 1 , X 2 , , X n 是来自标准正态总体的简单随机
样本,X 和 S 2分别是样本均值和样本方差,则( )
(A)X ~ N(0,1) (B) nX ~ N (0,1)
(C)X
答案 (1)Z的分布律 Z
0
1
Pk 2(1-p)p (1-p)2+p2
(2)X与Z的联合分布律
Z X
0
1
?求(1)Z=X+Y
0 (1-p)p (1-p)2
1 (1-p)p
p2
(2)Z=Max{X, Y}
(3)Z=Min{X, Y} 的分布律.
(3)Cov(X, Z)=p(-1+3p-2p2).
四’、在射击比赛中,每人射击3次(每次1发),约 定全部不中得0分,只中一弹得5分,中两弹得10分, 中三弹得20分,设某人每次射击命中率为0.6,求(1) 他得分值的分布律;(2)他得分值的数学期望。
3’.设随机变量X服从参数为1的指数分布,
求(1)Y=e X的概率密度;(2)E(1/Y)
四、设X,Y 相互独立,且P{X=0}=P{Y=0}=1-p, P{X=1}=P{Y=1}=p, (0< p<1),令
1 X Y为偶数 Z 0 X Y为奇数 求(1)Z的分布律;(2)X与Z的联合分布律;(3)Cov(X, Z).
简答: H0:≥ 0=21.5, H1: <21.5, 2未知,利用t检 验,检验统计量为 t X 0 ,其拒绝域为t≤-t(n-1)
Sn
算得t=-1.162>-2.015= -t0.05(5), 接受原假设,认为这种
型号的电池的平均寿命不比该公司宣称要短。
相关文档
最新文档