核反应堆热工基础-第一章
核反应堆工程 第1章(2009.3.3)(1)
绪论一、课程简介及要求1课程简介本课程是核能科学与技术专业的基础课程之一。
本课程较全面地介绍与核反应堆工程相关的专业知识,内容包括核反应堆物理,反应堆热工,堆结构和反应堆结构材料,燃料循环,各种核动力系统,核反应堆安全等知识,使学员在短时间内对核反应堆工程有一个较全面的了解。
为从事与核反应堆工程有关的工作打下知识基础。
绪论大学物理、核物理、传热学、热力学,流体力学等方面有一定的基础。
成绩:平时作业记录, ~20%作业要求: 依据充分,思路清晰,过程完备,书写工整; 按时,每周交上周作业。
期末测验: ~80%。
2 课程要求及考核办法3 课程特点:多学科知识基础;内容涵盖面广;涉及反应堆物理,核反应堆热工,反应堆材料,燃料循环,核反应堆安全。
内容多,知识面广。
4 教学方式:讲课+自学绪论5 教科书及参考书:教材:核反应堆工程,阎昌琪编,哈尔滨工程大学出版社等,2004,8。
面向核工程专业研究生,内容适合本科非核工程专业学生。
参考书:Nuclear Reactor Engineering ,S.Glasstone & A.sesonske ,Third edition ,1986.有中译本。
内容丰富,面广,96万字。
核反应堆工程原理,凌备备、杨延洲主编,原子能出版社原子能工业,连培生,原子能出版社,2002,5。
内容丰富,86万字绪论目录1第一章核裂变能2第二章核反应堆物理基本知识3 第三章反应堆结构与材料(非燃料材料) 4 第四章反应堆燃料系统5 反应堆热量导出6 反应堆安全7 各种核动力反应堆系统第一章核裂变能1.1 核能基础1.2 核裂变1.3 核裂变反应堆1.4 反应堆的发展史1.5 我国的核反应堆工程发展成就引言在1939年发现了核裂变现象这一件具有划时代意义的事件。
这一事件为一种全新的能源—原子能—的利用开辟了前景。
核能的发展与和平利用是20世纪科技史上最杰出的成就之一。
核能的利用中,核电的发展相当迅速,核电已被公认为是一种经济、安全、可靠、清洁的能源。
核反应堆热工分析复习
热工复习第二章堆的热源及其分布1. 裂变率:单位时间,单位体积燃料内,发生的裂变次数。
2. 释热率:堆内热源的分布函数和中子通量的分布函数相同3. 热功率:整个堆芯的热功率4. 热功率:计入位于堆芯之外的反射层、热屏蔽等的释热量5. 均匀裸堆:富集度相同的燃料均匀分布在整个活性区内;活性区外面没有反射层6. 堆芯功率的分布及其影响因素:燃料布置、控制棒、水隙及空泡。
7. 控制棒的热源:吸收堆芯的γ辐射:用屏蔽设计的方法计算;控制棒本身吸收中子的(n, α)或(n, γ)反应。
8. 慢化剂的热源:裂变中子的慢化;吸收裂变产物放出的β粒子的一部分能量;吸收各种γ射线的能量。
热源的分布取决于快中子的自由程10. 9.结构材料的热源:几乎完全是由于吸收来自堆芯的各种射线11. 停堆后的功率:燃料棒内储存的显热、剩余中子引起的裂变、裂变产物和中子俘获产物的衰变12. 导热:依靠热传导把燃料元件中由于核裂变产生的能量,从温度较高的燃料芯块内部传递到温度较低的包壳外表面的过程13. 自然对流换热:由流体内部密度梯度引起的流体的运动14. 大容积沸腾:由浸没在具有自由表面原来静止的大容积液体内的受热面所产生的沸腾 15. 流动沸腾:指流体流经加热通道时发生的沸腾16. 沸腾临界:由于沸腾机理的变化引起的换热系数的陡降,导致受热面的温度骤升 17. 临界热流密度:达到沸腾临界时的热流密度18. 快速烧毁:由于受热面上逸出的气泡数量太多,以至阻碍了液体的补充,于是在加热面上形成一个蒸汽隔热层,从而使传热性能恶化,加热面的温度骤 升;19.慢速烧毁:高含汽量下,当冷却剂的流型为环状流时,如果由于沸腾而产生 过分强烈的汽化,液体层就会被破坏,从而导致沸腾临界。
20. 过渡沸腾:是加热表面上任意位置随机存在的一种不稳定膜态沸腾和不稳定 核态沸腾的结合,是一种中间传热方式,壁面温度高到不能维持稳定的核态 沸腾,而又低得不足以维持稳定的膜态沸腾,传热率随温度而变化,其大小 取决于该位置每种沸腾型式存在的时间份额。
核反应堆热工分析
核科学与技术学院
2 堆芯功率的分布及其影响因素
轻水作慢化剂的堆芯中,水隙的存在引起附加慢化作 用,使该处的中子通量上升,提高水隙周围元件的功 率,增大了功率分布的不均匀程度
影
响
燃料布置
功
率
分
控制棒
布
的
因 水隙及空泡
素
克服办法:采用棒束型控制棒组件
核科学与技术学院
2 堆芯功率的分布及其影响因素
轻水作慢化剂的堆芯中,水隙的存在引起附加慢化作 用,使该处的中子通量上升,提高水隙周围元件的功 率,增大了功率分布的不均匀程度
整个堆芯的 热功率
计入位于堆 芯之外的反 射层、热屏 蔽等的释热 量
R f N f 正比 Nc 1.60211010 Fa Ef N f Vc
qv Fa E f N f
Nt Nc / Fa (qvVc )106 / Fa
106 E f N f Vc
核科学与技术学院
2 堆芯功率的分布及其影响因素
核科学与技术学院
1 核裂变产生能量及其分布
裂变碎片的动能 约占总能量的 84%
裂变能的绝大部 分在燃料元件内 转换为热能,少 量在慢化剂内释 放,通常取 97.4% 在 燃 料 元 件内转换为热能
核科学与技术学院
1 核裂变产生能量及其分布
不同核素所释放出来的裂变能量是有差异的,一般认为取
Ef 200MeV
核科学与技术学院
2 堆芯功率的分布及其影响因素
非均匀堆栅阵
用具有等效截面的圆来代替原来的正方形栅元 假设热中子仅在整个慢化剂内均匀产生
运用扩散理论,燃料元件内热中子通量分布的表达式:
AI0 (K0r)
若燃料棒表面处的热中子通量为 ,则在 s s,则:
热工基础 第一章 基本概念
������������ = ������������ − ������ ������������ ������ = ������������ − ������������
pg pb p>pb p pv p pb
p=0
p<pb
温度
表示物体冷热程度的物理量。相互接触的物体,当 他们的温度相同时,则表示他们处于热平衡
压力也就是在物理学中的压强(点击),按照分子 动力学的观点,气体压力是大量分子与容器避免 之间碰撞产生的宏观现象
������ ������ = [������/������2 ] ������
可以用绝对压力、表压力和真空度三种形式表示。
(1) 绝对压力 p
工质的真实压力,为状态参数。
(2) 表压力 pg
������������ = ������������������ ������ (m kg) ������������ ������ = ������������ (1 kmol)
������������ = ������������������ (n kmol)
1.2 状态参数 1.3 平衡状态 1.4 准静态过程及可逆过程 1.5 功和热量
系统中各处压力、温度均匀一致的状态,称为平衡状态。
当系统处于平衡状态的时候,系统中所有的状态参数都有
确定的数值,并且是一个定值。只有处于平衡状态的系统,
它的所有状态参数才会有确定的数值。
如果没有外界影响,平衡状态不会发生破坏,状
有 系 统
限 外 界
孤立系统
合理选择系统是进 行热力系统正确分 析求解的前提
一方面将一个对象抽象 成什么系统
第二方面,系统的边界 在哪
核反应堆工程 第1章(2009.3.3)(1)
绪论一、课程简介及要求1课程简介本课程是核能科学与技术专业的基础课程之一。
本课程较全面地介绍与核反应堆工程相关的专业知识,内容包括核反应堆物理,反应堆热工,堆结构和反应堆结构材料,燃料循环,各种核动力系统,核反应堆安全等知识,使学员在短时间内对核反应堆工程有一个较全面的了解。
为从事与核反应堆工程有关的工作打下知识基础。
绪论大学物理、核物理、传热学、热力学,流体力学等方面有一定的基础。
成绩:平时作业记录, ~20%作业要求: 依据充分,思路清晰,过程完备,书写工整; 按时,每周交上周作业。
期末测验: ~80%。
2 课程要求及考核办法3 课程特点:多学科知识基础;内容涵盖面广;涉及反应堆物理,核反应堆热工,反应堆材料,燃料循环,核反应堆安全。
内容多,知识面广。
4 教学方式:讲课+自学绪论5 教科书及参考书:教材:核反应堆工程,阎昌琪编,哈尔滨工程大学出版社等,2004,8。
面向核工程专业研究生,内容适合本科非核工程专业学生。
参考书:Nuclear Reactor Engineering ,S.Glasstone & A.sesonske ,Third edition ,1986.有中译本。
内容丰富,面广,96万字。
核反应堆工程原理,凌备备、杨延洲主编,原子能出版社原子能工业,连培生,原子能出版社,2002,5。
内容丰富,86万字绪论目录1第一章核裂变能2第二章核反应堆物理基本知识3 第三章反应堆结构与材料(非燃料材料) 4 第四章反应堆燃料系统5 反应堆热量导出6 反应堆安全7 各种核动力反应堆系统第一章核裂变能1.1 核能基础1.2 核裂变1.3 核裂变反应堆1.4 反应堆的发展史1.5 我国的核反应堆工程发展成就引言在1939年发现了核裂变现象这一件具有划时代意义的事件。
这一事件为一种全新的能源—原子能—的利用开辟了前景。
核能的发展与和平利用是20世纪科技史上最杰出的成就之一。
核能的利用中,核电的发展相当迅速,核电已被公认为是一种经济、安全、可靠、清洁的能源。
《热工基础》第一章
1
第一章 基本概念
本章重点介绍工程热力学中常用的基本 概念,了解和掌握这些基本概念是学习工程 热力学的基础。
1-1 热机、工质、热源与热力系统
热机:
能将热能转换为机械能的机器。如蒸汽 机、蒸汽轮机、燃气轮机、内燃机和喷气发 动机等。
2
3
工质:
实现热能和机械能之间转换的媒介物质。
例如:在活塞式热力机械中,活塞运动的 速度一般在10m/s以内,但气体的内部压力 波的传播速度等于声速,通常每秒数百米, 活塞运动的速度很慢,这类情况就可按准平 衡过程处理。
38
不平衡过程 :过程中并非每一点都
非常接近于平衡状态
平衡状态1
平衡状态2
39
思考: 准平衡过程和不平衡过程哪个常见? • 准平衡过程:一般均可视作 • 不平衡过程:会特别说明
36
在系统内外的不平衡势(如压力差、温
度差等)较小、过程进行较慢、弛豫时间非
常短的情况下,可以将实际过程近似地看作
准平衡过程。
非平衡态→近平衡态 时间
在状态参数坐标图上,准平衡过程可以近 似地用连续的实线表示。
p
1
2
v 37
在系统内外的不平衡势(如压力差、温度 差)不是很大的情况下,弛豫时间非常短, 可以将实际过程近似地看做准平衡过程。
(3)可逆过程
如果系统完成了某 一过程之后可以沿原路 逆行回复到原来的状态, 并且不给外界留下任何 变化,这样的过程为可 逆过程。
实际过程都是不可逆过程,如传热、混合、 扩散、渗透、溶解、燃烧、电加热等 。
可逆过程是一个理想过程。可逆过程的
条件:准平衡过程+无耗散效应。
不可逆过程无法恢复到初始状态? 错!
第1章核反应堆设计概论
核反应堆热工基础-第二章
4. 传热过程
(1)流体通过壁传热 (2)换热器
5. 流体无量纲物性特征参数
(1)普朗特数(Pr) • 表明流动边界层和热边界层的关系(~δf/ δt ),反 映流体物理性质对对流传热过程的影响。 c Pr a 来自(2)对流换热微分方程
t q x ( ) y 0 hx t y
(3)表面传热系数h
(4)有相变时的对流换 热
凝结换热:膜状凝结、 珠状凝结 沸腾换热: 按加热环境分:大容器沸腾、 管内强制对流沸腾; 按流体温度分: 过冷沸腾(欠热沸腾)、 饱和沸腾; 按传热面上的传热机理分: 泡核沸腾(核态沸腾)、 过渡沸腾、膜态沸腾
工质微观粒子所具有的能量。在分子尺度上它包括分子运动 所具有的内动能和分子间由于相互作用力所具有的内位能。 U=U(T,V)
焓(H)
H=U+pV 单位:J
开口系中,焓是流入(或流出)系统的工质所携带的取决 于热力学状态的总能量。 闭口系中,焓是复合的状态参数。
熵(S)
单位:J/K
表示任何一种能量在空间中分布的混乱(均匀)程度,能 量分布得越混乱(均匀),熵就越大。
4. 反应堆热工水力分析 (1)反应堆热工水力分析的任务 保证反应堆冷却剂系统在正常运行期间能把燃 料元件内产生的裂变能传送到核电厂的热力系 统,进行能量转换; 在停堆以后也能把衰变热传送出来, 保证反 应堆安全; 在事故工况下,缓解事故的后果; 对核物理设计、机械设计、测量仪表和控制系 统等的设计提出相关设计要求。
6. 热力循环
(1)理想循环:指忽略工作循环中的所有不可逆因素 后仍能近似地反映该类循环的基本特征的理想可 逆循环。 热效率
对于理想循环
式中,Q1为自高温热源获得的热量;Q2为向低温热源放出的热 量。
核反应堆热工分析
运用扩散理论,燃料元件内热中子通量分布的表达式:
AI0 ( K0r )
若燃料棒表面处的热中子通量为
s ,则:
,则在
s
处, r
R0
I0 ( K0r ) s I 0 ( K 0 R0 )
2
堆芯功率的分布及其影响因素
补偿棒
补偿棒是用于抵消寿期初大量的 剩余反应性的
2
堆芯功率的分布及其影响因素
轻水作慢化剂的堆芯中,水隙的存在引起附加慢化 作用,使该处的中子通量上升,提高水隙周围元件的 功率,增大了功率分布的不均匀程度
影 响 功 率 分 布 的 因 素
燃料布置 控制棒 水隙及空泡
克服办法:采用棒束型控制棒组件
2
1
核裂变产生能量及其分布
不同核素所释放出来的裂变能量是有差异的,一般认为 取 E f 200MeV
堆内热源及其分布还与时间有关,新装料、平衡运行和停堆后都不 相同 输出燃料元件内产生的热量的热工水力问题就成为反应堆设计的关 键
2
堆芯功率的分布及其影响因素
释热率
堆内热源的分 布函数和中子 单位体积的 通量的分布函 数相同 释热率
堆芯最大体积释热率
qv,max Fa E f N f 0
2
堆芯功率的分布及其影响因素
均匀裸堆中的中子通量分布
2
堆芯功率的分布及其影响因素
均匀装载燃料方案: 早期的压水堆采用此方案 优点:装卸料方便 缺点:功率分布过于不平均,平均燃耗低
燃料布置 控制棒 水隙及空泡
影 响 功 率 分 布 的 因 素
(r , z ) 0 J 0 (2.405
外推半径:R e
热工基础 1 第一章 基本概念
平衡不一定均匀,单相平衡态则一定是均匀的
平衡:时间上 均匀:空间上
Fundamentals of thermal engineering
热 工 基 础
1-2 平衡状态和状态参数
2、基本状态参数 热力学中常用的状态参数有压力、温度、比体 积、比热力学能、比焓、比熵等,其中可以直接测 量的状态参数如压力、温度、比体积,称为基本状 态参数。 (1)压力 单位面积上所受到的垂直作用力(即压强)
ds 0 , q 0 , 系统吸热; ds 0 , q 0 , 系统放热。 ds 0 , q 0 ,系统绝热,定熵过程。
比体积和密度二者相关,通常以比体积作为状态参数 。
Fundamentals of thermal engineering
热 工 基 础
1-3 状态方程与状态参数坐标图 1 状态公理 对于和外界只有热量和体积变化功(膨胀功或 压缩功)的简单可压缩系统,只需两个独立的参数 (如p、v;p、T 或v、T)便可确定它的平衡状态。
温度相等
热平衡
Fundamentals of thermal engineering
热
工基Βιβλιοθήκη 础1-2 平衡状态和状态参数
② 热力学温标(绝对温标) 英国物理学家开尔文(Kelvin)在热力学第二定 律基础上建立,也称开尔文温标。用符号 T 表示, 单位为 K(开)。
热力学温标取水的三相点为基准点,并定义其 温度为273.16 K。温差1K相当于水的三相点温度的 1/273.16.。
规定:系统对外界作功“+”,外界对系统作功“-”
膨胀:dv > 0 , w > 0
Fundamentals of thermal engineering
热工复习重点(1)
核反应堆热工分析复习大纲第一章:1. 各堆型基本特征;2. 热工分析的任务;第二章:1. 裂变能在元件、慢化剂和结构材料内的分布以及大致的百分比。
2. 堆内轴向和径向功率分布的特点。
3. 影响功率分布的因素?4. 反应堆停堆后为什么还要继续冷却?停堆后的热源由那几部分组成?各自特点和规律如何?第三章:1. 写出Fourier 热传导公式,并且说明各符号含义。
2. 区分q ,l q 和v q 的含义和关系。
3. 推导圆柱形燃料芯块及包壳的温度场计算公式。
4. 写出Nu ,Re 数的表达式,说明Pr 数、Gr 数的含义。
说明强迫对流换热与自然对流换热的区别,他们的传热关系式各与那些准则有关?5. 推导不同形状燃料元件子通道的当量直径。
6. 大容积沸腾和管内沸腾的特点。
7. 说明在控制壁面温度时大容器沸腾()w s q t t --图,并说明DNB q 的意义。
8. 画出低热流密度和高热流密度下,圆管内沸腾的过程图,标出各阶段的流型,指出并解释DNB q 点和CHF 点。
9. 何谓沸腾临界?沸腾临界的分类?10. 说出燃料元件的设计要求。
11. 比较金属铀和2UO 燃料的优缺点。
12. 辐照对2UO 芯块有什么影响?13. 为什么提出积分热导率概念?如何使用?掌握其推导过程。
14. 间隙导热的模型分类第四章1. 流体的压降由那几部分组成?2. 写出单相Darcy 公式,说明各符号的含义。
3. 公式nw no iso f f f μμ⎛⎫= ⎪ ⎪⎝⎭中各符号的含义。
4. 单相液体加速压降的出现条件,写出其积分表达式?5. 写出形阻压降的一般表达式。
6. 汽液两相流有那四种流型?基本两相参数的定义。
写出x ,s x 和e x 定义表达式。
推导出α,S 和x 之间的关系式。
7. 导出汽液两相流一维稳态动量守恒方程,并说明各项含义。
8.说明什么是自然循环,它对于反应堆安全的含义,如何提高自然循环能力,如何确定自然循环的流量。
反应堆热工水力
第一章核反应堆是一个能维持和控制核裂变链式反应,从而实现核能到热能转换的装置。
传热机理—热传导、热对流、热辐射世界上第一座反应堆是1942 年美国芝加哥大学建成的。
核反应堆按照冷却剂类型分为轻水堆、重水堆、气冷堆、钠冷堆按照用途分为实验堆、生产堆、动力堆按中子能量分类:热中子堆、中能中子堆、快中子堆以压水堆为热源的核电站称为压水堆核电站主要有核岛和常规岛核岛的四大部件为蒸汽发生器、稳压器、主泵、堆芯五种重要堆型压水堆沸水堆重水堆高温气冷堆钠冷快中子增值堆水作为冷却剂慢化剂的优缺点:轻水作为冷却剂缺点是沸点低,优点具有优良热传输性能,且价格便宜。
描述反应堆性能的参数反应堆热功率[MWh]:反应堆堆芯内生产的总热量电厂功率输出[MWe]:电厂生产的净电功率电厂净效率[%]:电厂电功率输出/反应堆热功率容量因子[%]:某时间间隔内生产的总能量/[(电厂额定功率)×该时间间隔]功率密度[MW/m3]:单位体积堆芯所产生的热功率线功率密度[kW/m]:单位长度燃料元件内产生的热功率比功率[kW/kg]:反应堆热功率/可裂变物质初始总装量燃料总装量[kg]:堆芯内燃料总质量燃料富集度[%]:易裂变物质总质量/易裂变物质和可转换物质总质量比燃耗[MWd/t]:堆芯工作期间生产的总能量/可裂变物质总质量本章主要内容1.压水堆的主要特征2 沸水堆和重水堆的主要特征3 热工水力学分析的目的与任务(这个可以忽略)第二章(本章可以覆盖部分计算题)热力学第一定律:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中总能量保持不变。
热力学第二定律(永动机不可能制成):不可能将热从低温物体传至高温物体而不引起其它变化;不可能从单一热源取热,并使之完全转变为有用功而不产生其它影响;不可逆热力过程中的熵的微增量总是大于零。
最基本的状态参数:压力(压强Pa,atm,bar,at)比体积(m3/kg)温度内能:系统内部一切微观粒子的一切运动形式所具有的能量总和,U焓:热力学中表示物质系统一个状态参数–H,数值上等于系统内能加上压强与体积的乘积。
反应堆热工重点
第一章 工程热力学基本知识内能:内能是热力系统本身具有的能量,他包括分子运动的动能和因为分子间相互吸引和排斥所产生的位能焓:物理意义是工质的内能和推动功之和 定义式为pv u h +=熵:熵是描述热力过程可逆性的物理量,熵的变化表示工质与外界有换热发生不平衡过程一定是不可逆的热力学第一定律:流入系统的能量—流出系统的能量=系统能量的增加量vdph q pdv u q -=+= 饱和温度(压力):当液体表面汽化和液化达到动态平衡时,汽液两相温度相同,此时温度为饱和温度,压力为饱和压力汽化潜热:单位质量的饱和水从汽化开始到完全汽化为干饱和蒸汽所吸收的热量为汽化潜热热力学第二定律:克劳修斯表述:热不能自发的不付代价的从低温物体传递给高温物体开尔文-普朗克说法:任何发动机都不能只从单一热源吸热并把它连续不断的转化为功电厂使用朗肯循环而不适用卡诺循环的原因:1.卡诺循环工作在湿蒸汽区,对汽轮机的工作不利2.卡诺循环需要压缩汽液两相工质这样会产生气蚀现象3.卡诺循环单位工质做工能力差相同功率水平下需要更多工质第二章 流体层流:流体运动时各质点作分层运动,流体质点在流层之间不发生混杂。
呈规则的层状流动紊流:流体各质点呈紊乱流动形态,流体各质点不保持在固定流层内运动有相互的交混层流和紊流的判断标准:2300Re Re =<下为层流10000Re Re =>上为紊流第三章传热学基本知识传热方法:热传导,热辐射,热对流热传导:温度较高的粒子与温度较低的粒子碰撞将能量传递给低温粒子,在宏观上的表现就为热传导 热辐射:不是依靠物体的接触而是通过电磁波的辐射传递热量的方式热对流:流体中温度不同导致密度不同,密度的差异将导致工质微团的运动将热量传递出去传热公式: 固体中的热传导公式:δT KFQ ∆= 圆通传热公式:)/ln(212r r T KL Q ∆∏= 平板传热公式:T hF Q ∆=对流换热的影响因素:1.流动产生的原因(自由流动还是受迫流动)2.流动形式(层流还是紊流)3.是否有相变产生4.流体的自身物理性质5.传热面的几何因素第四章反应堆的热源机分布反应堆的热源来源及大体分布:影响功率分布的因素:(稍微的解释一下)1.燃料装载对功率分布的影响使功率被展平2.控制棒的分布对功率的影响3.结构材料对功率的扰动4.水系和空泡对功率的影响反应堆热量的输出过程:强迫对流放热公式(D-B公式)注意使用条件沸腾临界:由于沸腾机理的变化使得传热系数陡降,导致逼问骤升分为DNB型和蒸干型DNB型临界沸腾(又叫做快速烧毁):在沸腾曲线临界工况之后由于受热面上产生的气泡太多而使得液相的补充受到阻碍,传热恶化导致壁温骤升这一现象成为沸腾临界,从沸腾曲线上看由泡核沸腾进入到过度沸腾区,因此也叫做偏离泡核沸腾(DNB)这时对应的热流密度为临界热流密度高含气量下的临界沸腾:在流体环状流动时,由于沸腾使得液体层被破坏从而导致沸腾临界。
核反应堆课后题
核反应堆课后题第一章思考题1.为什么压水堆在高压下运行?2.水在压水堆中起什么作用?3.压水堆和沸水堆的主要区别是什么?4.压水堆主冷却剂系统都包括哪些设备?5.与分散式压水堆相比,一体化压水堆的优点和缺点是什么?6.重水堆使用的核燃料富集度为什么可以比压水堆的低?7.在相同的反应堆功率下,为什么重水反应堆的堆芯比压水反应堆的堆芯大?8.气冷堆与压水堆相比有什么优缺点?9.白沫在石墨气冷堆中的作用是什么?10.快中子堆与热中子堆相比有哪些优缺点?11.快中子反应堆在核能利用中扮演什么角色?12.回路式制冷堆与池式饷冷堆的主要区别是什么?13.使用铀作为反应堆冷却剂时应注意什么?14.快中子堆内使用的燃料富集度为什么要比热中子反应堆的高?第二章思考问题1.简述热中子反应堆内中子的循环过程。
2.为什么热中子反应堆通常使用轻水作为慢化剂ij?3.解释扩散长度、中子年龄的物理意义。
4.反射器对反应堆的影响。
5.简述反应性负温度系数对反应堆运行安全的作用。
6.解释“冲坑”的形成过程。
7.什么是反应堆的燃耗深度和堆芯寿期?8.大型压水反应堆的反应性通常采用什么方法控制?9.简述缓发中子对反应堆的作用。
10.简要描述反应堆中子密度在小阶跃反应性变化下的响应。
第三章思考题1.可用于压水堆的裂变同位素是什么?它们是如何产生的?2.为什么在压水堆内不直接用金属铀而要用陶瓷u02作燃料?3.简要描述u02的熔点和导热系数随温度和辐照程度的变化。
4.简述u02芯块中裂变气体的产生及释放情况。
5.燃料元件包壳的功能是什么?6.对燃料包壳材料有哪些基本要求?目前常用什么材料?7.当错误的合金用作包层时,为什么要将其使用温度限制在350℃以下?8.何谓错合金的氢脆效应,引起氢脆效应的氢来源何处?9.错误的合金镀层氢脆效应的危害是什么?如何减少这种不利影响?10.什么是u02燃料芯块的肿胀现象,应采取什么防范措施?11.控制棒直径较小有什么好处?12.定位格架采用什么材料制戚,为什么?13.定位网格的功能是什么?14.对用作控制棒的材料有什么基本要求?15.控制棒通常使用哪些元件和材料?16.简单说明ag-in-cd控制材料的核特性。
热工基础第一章
温度的测量
温度计
物质 (水银,铂电阻) 特性 (体积膨胀,阻值)
基准点 刻度
温标
绝对K
373.15
273.16 273.15
常用温标
摄氏℃
华氏F
100 水沸点
212
37.8
发烧 100
00.01水冰三熔相点点
32
-17.8 盐水熔点 0
0 -273.15
-459.67
温标的换算
T[K] t[OC] 273.15 t[OC] 5 (t[F] 32)
§1-3 基本状态参数
压力 p、温度 T、比容 v (容易测量)
1、压力 p
物理中压强,单位: Pa , N/m2 常用单位:
1 bar = 105 Pa 1 MPa = 106 Pa 1 atm = 760 mmHg = 1.013105 Pa 1 mmHg =133.3 Pa 1 at=735.6 mmHg = 9.80665104 Pa 1 psi=0.006895MPa
内燃机装置
空气、油
废气
吸气
点火
膨胀
排气
内燃机装置
基本特点: 1、热源,冷源 2、工质(燃气) 3、膨胀做功 4、循环
(加压、加热、 膨胀做功、放热)
制冷空调装置
基本特点: 1、热源,冷源 2、工质(制冷剂) 3、得到容积变化功 4、循环
(加压、放热、 膨胀、吸热)
动力装置
共同基本特点: 1、热源,冷源 2、工质 3、容积变化功 4、循环
见习题1-4 大气压随时间、地点变化。
物理大气压 1atm=760mmHg = 1.013105 Pa
其它压力测量方法
高精度测量:活塞式压力计 工业或一般科研测量:压力传感器
反应堆热工水力第一章
计算中一般取95%理论密度下的值:
3)热导率
在燃料元件的传热计算中具有特别重要的意义。 导热性能的好坏将直接影响二氧化铀芯块的温度分布,而 温度则是决定二氧化铀的物理性能、机械性能的主要参数, 也是支配二氧化铀中裂变气体的释放、晶粒长大等动力学 过程的主要参数。 研究结果表明,除温度外,燃耗以及氧铀比等对热导率也 都有明显的影响。
上式的适用范围是:温度从0到2450℃,燃耗从0到 104MWd/tU。
其它密度下的热导率可以用马克斯韦尔-尤肯(MaxwellEuken) 关系式计算:
ε是燃料孔隙率(体积份额),β是由试验确定,对于 大于和等于90%理论密度的UO2,β=0.5,其它密度下, β=0.7。这样可以得到:
燃料孔隙率 燃料孔隙率是指燃料中空隙体积占芯块体积的份额; 所谓燃料的理论密度,是指孔隙率为零时燃料的密度; 二氧化铀密度的降低主要由于燃料存在孔隙。孔隙的存在, 不但减少了固体横截面的导热面积,而且由于边界面积的增 大而增加了散射作用。这两个效应均使热导率变小。 孔隙在燃料中总是存在的,因为燃料芯块在烧结过程中一定 会产生孔隙的。而且,为了容纳所产生的裂变产物,减少芯 块肿胀,也需要保留一定的孔隙。
2)密度
二氧化铀的理论密度是10.98g/cm3,但实际制造出来的二 氧化铀,由于存在孔隙,还达不到这个数值;
加工方法不同,所得到的二氧化铀制品的密度也就不一样。 例如,振动密实的二氧化铀粉末,其密度可达理论密度的 82%~91%;烧结的二氧化铀燃料块的密度要高一些,可达理 论密度的88%~98%。
使用性能 一般工程材 料常用性能 堆 工艺性能
力学性能(强度、塑性、稳定性等) 物理性能(热、电、磁等) 化学性能(氧化、腐蚀等) 生物性能(相容性、自恢复性等) 加工性能(切削、锻造等) 铸造性能(适合锻造与否) 焊接性能(容易焊接与否) 热处理性能(可热处理强化) 辐照生长 辐照肿胀
热工基础-01第一章_能源概论
第二节 热工基础的主要内容及研究方法
热工基础与应用是研究热能利用的基本原理和规律,以提 高热能利用经济性为主要目的的一门学科。 一、研究内容
1、基本概念与基本定律。 2、常用工质的热力性质。 3、热力过程和循环的分析研究及计算。 4、热量传递的三种基本方式及换热器。
二、研究方法 热力学研究方法 1、宏观的研究方法 (宏观方法研究的热力学叫做宏观热力学,也叫做 经典热力学)
教学环节:
主讲、习题、作业、答疑、考试。
山东大学(威海)机械系
山东大学(威海)机械系
热工基础与应用 是讲授热能和机械能相 互转换基本理论和热量传递规律、以提高热能 利用完善程度的一门技术基础课。
希望通过同学们和老师的共同努力,圆满 完成本学期的教学和学习任务。
山东大学(威海)机械系
第一章 能源概论
二次能源 煤气、焦炭、汽油、柴油、液 化气、电力、蒸汽等
沼气、氢能等
山东大学(威海)机械系
• 中国能源结构
山东大学(威海)机械系
• 中国原油需求预测
山东大学(威海)机械系
• 能源储备的比较
中国、美国与世界能源储备的比较(1994)
国家 中国 美国 世界合计 中国人均 美国人均 世界人均
原煤/t 1.145×1011 2.045×1011 1.0439×1012 95 962 209
Wnet Q1
山东大学(威海)机械系
2、制冷装置 冰箱(REFRIGERATOR)
山东大学(威海)机械系
制冷系数 Coefficient of Performance (COP)
Q2
Wnet
山东大学(威海)机械系
空调 (AIR-CONDITION)
核工程与核技术作业指导书
核工程与核技术作业指导书第1章核工程基础理论 (3)1.1 核反应堆物理 (3)1.1.1 核反应堆的基本工作原理 (3)1.1.2 中子与物质的相互作用 (3)1.1.3 核反应堆临界理论 (4)1.1.4 核反应堆物理设计 (4)1.2 核反应堆热工水力学 (4)1.2.1 热能传递基本原理 (4)1.2.2 流体力学基本原理 (4)1.2.3 核反应堆热力循环 (4)1.2.4 核反应堆热工设计 (4)1.3 核材料科学 (4)1.3.1 核燃料材料 (4)1.3.2 结构材料 (4)1.3.3 控制材料 (5)1.3.4 辐照效应 (5)第2章核电站设计与安全 (5)2.1 核电站设计原理 (5)2.1.1 核反应堆 (5)2.1.2 能量转换 (5)2.1.3 辅助系统 (5)2.1.4 防护与屏蔽 (5)2.2 核电站安全分析 (5)2.2.1 设计基准分析 (5)2.2.2 系统可靠性分析 (6)2.2.3 安全裕度分析 (6)2.2.4 应急计划 (6)2.3 核电站严重预防与缓解 (6)2.3.1 设计安全性 (6)2.3.2 设备可靠性 (6)2.3.3 安全监控系统 (6)2.3.4 严重缓解措施 (6)第3章核反应堆类型及关键技术 (6)3.1 压水堆核电站 (6)3.1.1 基本原理 (6)3.1.2 关键技术 (7)3.2 沸水堆核电站 (7)3.2.1 基本原理 (7)3.2.2 关键技术 (7)3.3 高温气冷堆核电站 (7)3.3.1 基本原理 (7)第4章核燃料循环 (8)4.1 核燃料的提取与制备 (8)4.1.1 提取方法 (8)4.1.2 制备过程 (8)4.2 核燃料的利用与后处理 (8)4.2.1 核燃料利用 (8)4.2.2 核燃料后处理 (8)4.3 核废物处理与处置 (8)4.3.1 核废物处理 (8)4.3.2 核废物处置 (8)第5章核电站运行与维护 (9)5.1 核电站运行原理 (9)5.2 核电站运行监控 (9)5.3 核电站设备维护 (9)第6章核电站辐射防护 (10)6.1 辐射防护基础 (10)6.1.1 辐射类型及危害 (10)6.1.2 辐射防护原则 (10)6.1.3 辐射防护标准 (10)6.2 辐射防护措施 (10)6.2.1 设计阶段的辐射防护 (10)6.2.2 运行阶段的辐射防护 (10)6.2.3 维修与退役阶段的辐射防护 (11)6.3 辐射防护监测与评价 (11)6.3.1 辐射监测 (11)6.3.2 辐射评价 (11)6.3.3 辐射防护管理体系 (11)第7章核电站质量保证与安全管理 (11)7.1 核电站质量保证体系 (11)7.1.1 质量保证体系概述 (11)7.1.2 质量保证体系构建 (11)7.1.3 质量保证体系实施 (12)7.2 核电站安全管理 (12)7.2.1 安全管理概述 (12)7.2.2 安全管理体系构建 (12)7.2.3 安全管理体系实施 (12)7.3 核电站应急预案与应急响应 (12)7.3.1 应急预案概述 (13)7.3.2 应急预案编制 (13)7.3.3 应急响应实施 (13)第8章核电站经济性分析 (13)8.1 核电站投资与成本分析 (13)8.1.1 投资构成 (13)8.2 核电站电价与市场分析 (13)8.2.1 电价制定原则 (13)8.2.2 市场分析 (14)8.3 核电站经济性评价 (14)8.3.1 评价指标 (14)8.3.2 评价方法 (14)8.3.3 影响因素 (14)第9章核能发展现状与前景 (14)9.1 我国核能发展现状 (14)9.2 国际核能发展动态 (15)9.3 核能发展前景与挑战 (15)第10章核工程技术创新与发展 (15)10.1 核工程新技术 (15)10.1.1 先进反应堆技术 (15)10.1.2 核燃料循环技术 (16)10.1.3 核安全与防护技术 (16)10.2 核工程技术创新趋势 (16)10.2.1 数字化与智能化 (16)10.2.2 资源整合与协同创新 (16)10.2.3 绿色环保与可持续发展 (16)10.3 核工程可持续发展策略与实践 (16)10.3.1 政策法规与标准体系 (16)10.3.2 科技创新与人才培养 (16)10.3.3 社会责任与公众参与 (16)10.3.4 国际合作与交流 (17)第1章核工程基础理论1.1 核反应堆物理核反应堆物理是研究核反应堆中中子与物质的相互作用及其控制的基础科学。
《热工基础》第一章 基本概念(北京科技大学)
AB
北京科技大学能源与环境工程学院
14
热力学第零定律 (Zeroth law of thermodynamics)
热力学第零定律 (R.W. Fouler in 1939) :
12
压力测量
U形管压力表
弹簧管式压力表
绝对压力p、大气压力pb、表压力pe、真空度pv
p pb pe
p pb pv
➢ 压力计的外界压力不一定是大气压 力(习题1-3)
➢ 只有绝对压力p才是状态参数
北京科技大学能源与环境工程学院
13
基本状态参数——温度
➢ 温度的物理意义:温度是反映物体冷热程度的 物理量,温度的高低反映物体内部微观粒子热 运动的强弱
恢复平衡所需时间
(外部作用时间) >>
(驰豫时间)
一般的工程过程都可认为是准平衡过程, 但具体工程问题需具体分析。
北京科技大学能源与环境工程学院
24
1-4 准平衡过程和可逆过程
例如: 如果系统完成了某一过程 之后可以沿原路逆行恢复 到原来的状态,并且不给 外界留下任何变化,这样 的过程为可逆过程。
北京科技大学能源与环境工程学院
33
讨论与思考1
平衡状态与稳定状态的区别? -稳定(steady)是参数不随时间变化 -平衡(Equilibrium)是不存在不平衡势差
T1
T2
稳定但存在不平衡势差
稳定不一定平衡 平衡一定稳定
北京科技大学能源与环境工程学院
34
讨论与思考2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反应堆厂房
建设中的反应堆厂房
第 2节
反应堆的分类
(1)按用途分 实验堆:用于实验研究 生产堆:专门用来生产易裂变物质或 聚变物质 动力堆:用作动力源 ?嬗变堆:利用中子核反应处理高放废物
(2)按引起堆内大部分裂变的中子能量分 热中子堆:En< 1eV 中能中子堆:1eV <En< 1keV 快中子堆: En> 1keV
核燃料必须有较高的富集度(当量富集度达15%~ 35%),而且初装量也很大。在快中子反应堆大规 模商业推广前,必须建造一定数量的先进转换堆或 热中子堆以便为快堆积累工业钚。 堆芯内没有慢化剂,体积小,功率密度高。因此要 求采用传热性能好而慢化性能差的冷却剂,气冷却 在技术上较复杂,还需进行大量研究试验。 燃料元件加工及乏燃料后处理要求高。由于快中子 辐照注量率也比热中子堆大几十倍,因此对材料的 要求也较苛刻。 快中子堆内的中子平均寿命比热中子堆的短,所以 快中子堆的控制比较困难。
第3节 压水堆
(Pressurized Water Reactor)
系统压力:15~16 Mpa 冷却剂入口温度:300℃,出口温度:330℃
冷却剂流量:62000 t/h
燃料装量:90 t (电功率1000MWe)
最大燃料温度:1780 ℃
UO2燃料富集度:2.0~4.0% 转化比:0.5
第7节 快中子增殖堆
(Fast Breeder Reactor)
系统压力:1.4 Mpa 冷却剂入口温度:380℃,出口温度:550℃
冷却剂流量:50000 t/h
燃料装量:19 t (电功率1000MWe)
最大燃料温度:2000 ℃
UO2燃料富集度:10~15% 转化比:1.3
限制快中子堆发展的问题:
压力容器
压力容器
堆内构件
压紧部件
燃料组件
燃料元件(燃料棒)
二氧化铀燃料芯块
定位格架
控制棒组件
可燃毒物组件
阻力塞组件
控制棒驱动机构
控制棒组件
可燃毒物组件
阻力塞组件
蒸汽发生器 结构图
稳压器结构图
主冷却剂泵
结构图
汽轮机
发电机
西屋电气公司 (Westinghouse Electric Corporation) AP1000
浙江三门 山东海阳
法国阿海珐核能集团 (Areva)
EPR
广东台山
第4节 沸水堆
(Boiling Water Reactor)
系统压力:7 Mpa 冷却剂入口温度:260~270℃,出口温度:280℃
冷却剂流量:47000 t/h
燃料装量:140 t (电功率1000MWe)
最大燃料温度:1830 ℃
核反应堆热工基础
教师:刘晓辉
成都理工大学 核技术与自动化工程学院
欧洲某核电厂
日本某核电厂
秦山核电站
第一章 核能发电原理及反应堆概述
第1节 核电厂工作基本原理
火电厂
火电厂
火力发电厂工作原理
核电厂
核电厂工作原理
核电厂结构
核电厂布置
核电厂照片
1. 核反应堆 2. 热交换器 3. 蒸气涡轮机 4. 发电机 5. 冷凝器
(3)按核燃料状态分 固体燃料堆 液体燃料堆
(4)按慢化剂和冷却剂种类分 压水堆 轻水堆(H2O) 沸水堆 重水堆( D2O ) 石墨气冷堆 钠冷快中子堆 .......
动力核反应堆组成及功能 (1)堆芯——实现链式裂变反应堆区域。 包括:核燃料元件、慢化剂、冷却剂、 控制元件、中子源等。 (2)反应堆控制系统——保证反应堆能安全 地实现启动、停堆、功率调节。 包括:控制棒及其驱动系统等 (3)一回路冷却系统——提供足够的冷却剂 流量以带走堆芯的裂变释热,并传递热动 力产生系统。 包括压力容器、主泵等。
本章结束
UO2燃料富集度:2.0~3.0% 转化比:0.5
沸水堆核电站工作原理图
沸水堆核电站
沸水堆燃料组件
控制棒
喷射泵循环系统
沸水堆核电厂的特点(与压水堆相比):
比功率密度较低,燃料装载量较大,总投资略大; 压力容器厚度减少、尺寸变大,制造成本相当; 采用直接循环,系统比较简单,回路设备少,易于 加工制造; 采用喷射泵循环系统,功率调节方便,且使压力容 器开孔直径减小,降低了失水事故可能性及严重性; 放射性物质直接接触汽轮机、冷凝器等设备,对发 电机组要求高,污染范围较大,设计、运行和维修 不便。
通用电气-日立公司 (GE-Hitachi ) ESBWR (经济简化沸水堆 )
第5节 重水堆
( Heavy Water Reactor)
系统压力:10 Mpa 冷却剂入口温度:260℃,出口温度:300℃
冷却剂流量:24000 t/h
燃料装量:80 t(电功率500MWe)
最大燃Байду номын сангаас温度:1500 ℃
UO2燃料富集度:0.7%(天然铀) 转化比:0.8
重水堆核电厂的特点(与压水堆相比):
可利用天然铀作核燃料,不需要建造投资巨大的铀 同位素分离工厂; 燃料经济性好,转换比较高,可充分利用天然铀; 堆体积大,且需要大量重水,投资较高,发电成本 比轻水堆电站高; 为减少重水泄漏损失,反应堆及重水回路的设备密 封要求高,制造较复杂; 卸料燃耗较浅,卸料量是同功率压水堆的3倍,结构 材料消耗量和后处理工作量大; 可实现不停堆换料,容量因子较高; 由于燃料富集度低,出现严重事故的后果比其它堆 型轻。
(4)屏蔽——吸收、减弱来自堆芯的辐射,保 护周围人员和部件。 (5)动力产生系统——将一回路的热能转变为 动力。 如汽轮机。 (6)辅助系统——保证冷却剂系统及动力系统 的正常运行。 包括:余热导出系统、冷却剂净化系统、 放射性废液处理系统、废气净化系统等。 (7)安全设施——保证事故情况下提供必要的冷 却、密闭放射性物质,避免环境污染。 如安全壳。
ACR-1000
第6节 石墨气冷堆
(Graphite Gas-cooled Reactor)
系统压力:4~5 Mpa 冷却剂入口温度:330℃,出口温度:750℃
冷却剂流量:5000 t/h
燃料装量:39 t (电功率1000MWe)
最大燃料温度:1400 ℃
UO2燃料富集度:10~90% 转化比:0.7~0.8
高温气冷堆核电厂的特点(与压水堆相比):
石墨既作慢化剂,又作燃料元件的结构材料,堆芯 金属结构材料少,中子俘获少,转换比较高; 使用氦气作冷却剂,不会产生次生辐射; 冷却剂出口温度高,电站热效率高; 使用球形燃料,可实现不停堆换料,容量因子较高; 对一回路材料耐热性要求高,技术比较复杂。