微地震人工裂缝监测技术0651

合集下载

水力压裂裂缝微地震监测测试技术与应用

水力压裂裂缝微地震监测测试技术与应用

特点
地面微地震 Y Y N Y
费用低、操作简单, 精度差 ,
N Y Y N N 易受地面 设备 造成的 微地 震影响
井下微地震 Y Y
Y
N
Y
YN
N
费 用昂 贵, 对 监测 井 要求 高, 条件较苛刻
地面微破裂 影像
Y
Y
Y
N Y Y N N 解释过程复杂, 需 3~ 4 d
阵列式地面 微地震
Y
Y
Y
N Y N N 费用昂贵, 精度较高
1 微地震裂缝监测技术
1. 1 地面微地震裂缝监测技术 根据摩尔- 库仑准则, 水力压裂裂缝扩展时, 必
将沿裂缝面形成一系列微震。记录这些微地震, 并 进行微地震震源定位, 由微地震震源的空间分布可 以描写人工裂缝的轮廓。微地震震源的空间分布在 柱坐标系的三个坐标面上的投影, 可以给出裂缝的 三视图, 分别描述裂缝的长度、方位、产状及参考性 高度( 见图 1) 。
本文收稿日期 : 2011- 12- 28 编辑: 王 军
( 1) 简易地面微地震与微破裂影像相比, 由于布 点少、干扰大, 再加上裂缝本身的复杂性, 检测精度 较低, 本次施工只解释出 6 段。解释结果与微破裂 影像解释结果差异较大, 有三段解释方向基本一致。
2012 年 6 月
油 气 井 测试
关键词 地面微地震 井下微地震 微破裂影像 阵列式微地震 压裂
0引言
微地震压裂监测技术原理起源于天然地震的监 测, 水力压裂井中, 由于压力的变化, 地层被强制压 开一条较大裂缝, 沿着这条主裂缝, 能量不断的向地 层中辐射, 形成主裂缝周围地层的张裂或错动, 这些 张裂和错动可以向外辐射弹性波地震能量, 包括纵 波和横波, 类似于地震勘探中的震源, 压裂裂缝微地 震监测技术就是通过收集这些弹性波信号, 结合模 型来解释地下裂缝的情况[ 1] 。

微地震监测数据综合解释技术——以胜利油田水力压裂地面微地震监测数据为例

微地震监测数据综合解释技术——以胜利油田水力压裂地面微地震监测数据为例

中国石油大学胜利学院学报Journal of Shengli College China University of Petroleum2021年3月第35卷第1期Mar. 2021Vol. 35 No. 1doi : 10* 3969/j ・ issn. 1673-5935.2021.01而刑微地震监测数据综合解释技术以胜利油田水力压裂地面微地震监测数据为例陈红(中国石化胜利油田分公司东辛采油厂,山东东营257000)[摘要]微地震监测技术是监测油气藏压裂改造等生产活动的重要手段,目前对其监测结果的解释不够系统,未充分发挥其对下步钻井设计、压裂设计、油气藏开发等活动的指导作用。

系统阐释一种微地震监测数据综合解释技术,该技术应用微地震监测事件点、测录井、常规三维地震、压裂施工过程参数等各种资料,对微地震监测事件点空间分布特征、改造效果进行分析,同时系统分析人工裂缝带空间分布特征与压裂施工过程参数、沉积相 带、岩性及岩性组合、天然裂缝分布之间的关系,解释该压裂结果产生的地质和工程原因。

利用该解释技术既可以综合评估压裂改造的效果,也可以通过对产生该结果的地质与工程原因的分析,指导下一步的开发井网部署、注水调参、该类储层钻井及压裂设计等生产工作。

[关键词]微地震;非常规;压裂;综合解释[中图分类号JTE 122 [文献标识码]A [文章编号]1673-5935(2021)01-0040-05微地震监测技术是通过观测生产活动过程中岩 石破裂、震动等发生的微小地震事件来分析生产活动 对岩石、地基、地下油藏改造情况的一种地球物理技 术E 0近年来随着致密油、页岩油等非常规油气资源的规模勘探开发,作为监测井下水力压裂效果的关键技术,微地震监测技术发展迅速,尤其是对于油田其 他生产活动影响较小、采集较方便的地面微地震监测 技术更是取得了长足进步,但是对于微地震监测结果的解释,仍然主要是从微地震事件点的空间分布出 发,解释压裂产生的裂缝带长度、高度、倾角、方 位加],然后直接运用其结果分析人工裂缝分布,进而根据人工裂缝分布开展产能方案部署、注水效果分析 等生产工作,对于微地震监测数据的解释不够系统, 没有充分发挥其对下一步生产活动的指导作用。

人工压裂裂缝的检测

人工压裂裂缝的检测

人工压裂裂缝的检测人工压裂直接关系到压裂效果。

压后产量及其稳产效果等都决定于人工裂缝的几何尺寸和裂缝方位,而裂缝方位有直接关系到井区的井网布置和开发政策。

压裂后对所产生裂缝的几何形态的检测是压裂施工的一项重要工作。

对目前国内外广泛采用几种不同的检测方法来综合分析。

裂缝高度的检测目前对水力压裂裂缝高度的检测技术中,效果比较好的有油井温度测量法和放射性同位素示踪法。

油井温度测量法是在压裂前先测出地层基准温度剖面,然后在压裂时将冷或热的压裂液压入裂缝中,在压裂结束后测的井温曲线在裂缝段会发生温度异常,根据井温曲线上的温度异常范围来确定裂缝的高度。

放射形同位素示踪法又分为两种方法,一是在支撑剂中加入示踪剂,压裂结束后用伽玛射线测井法测量裂缝中的放射形示踪剂确定裂缝的高度。

二是在施工的最后,在压裂液中加入示踪剂,再进行伽玛射线测井。

裂缝方位和几何尺寸的检测目前检测裂缝的方位和几何尺寸的主要方法是在裸眼井中用下井下电视测量、微地震测量、无线电脉冲测量等方法对裂缝进行探测,通过传送系统在地面进行实时显示,根据图象观察和分析裂缝的方位和几何形态。

地层人工裂缝监测方法有诸多,其中以微地震方法最为及时、直接、可靠。

当压裂井实施压裂形成人工裂缝时,沿裂缝面必然出现微震,微震震源的分布反映了人工裂缝的轮廓。

根据监测结果可以汇出裂缝的形态、方位、高度、产状,从而弄清油田地应力方向。

井温测井可用来评估水力裂缝高度,通常可根据压裂作业后很短时间进行的关井测井曲线上的高温异常或低温异常来确定。

挤入的压裂液一般比被压裂地层的的温度低,在压裂过程中,低温压裂液被挤入裂缝,而井周未被压裂的地层散热从而降温。

关井后,对应着未压开地层的井眼部位,通过非稳态的辐射热传导方式,温度逐渐转回至地热温度;在被压开地层段,主要以热传导方式升温。

由于辐射热交换比热传导交换的速度快,因此被压开地层的升温相对慢,所以在相应的井温曲线上呈现低温异常。

利用动态资料识别裂缝油藏注水后,注入水很容易沿裂缝窜进,使沿裂缝方向上的采油井见水快,油藏含水上升快,可能在很短的时间内就进入高含水阶段,而位于裂缝两侧的油井见效慢,压力恢复慢。

压裂裂缝监测技术

压裂裂缝监测技术
压裂监测——IntelliFrac技术集成了世界领先的压裂增产技术和微震 监测技术,可以使作业公司在实施增产措施的过程中监测裂缝面积,实时 对压裂作业进行控制。
压裂定位控制——Frac-Hook多分支套管压裂技术,可以更好地定位 压裂位置,更精确地控制分支井筒,提供有选择性的高压压裂能力。
多级压裂能力——FracPoint EX技术,使用投球或滑套一次起下封隔 完井,在Williston油田成功完成24级裸眼封隔压裂。
IntelliFrac技术
This new service combines advanced microseismic services from Baker Hughes with pumping services from fracturing technology leader BJ Services.
导流 缝长 缝高 缝宽 方位 倾角 体积
能力 ◆◆◆○○◆◆ ◆○◆○○○◆ ◆○◆○○○◆ ○◆◆◆◆○○ ○◆○○○○○ ○○○◆◆○○ ○◆○○○○○ ○○○◆○○○ ★◆○★◆○○ ★★◆◆◆◆○ ◆◆○★★★○ ◆★★○○○○
★—可信 ◆—比裂缝监测技术
压裂裂缝监测技术
水力压裂技术是目前世界上老油田增产和非常规油气田 开发所应用最为广泛且最为有效的技术措施。油气储层裂缝 分布规律的研究分析是贯穿油田勘探开发各阶段的基础工作。
压裂裂缝监测技术
压裂监测的 主要目的是通过 采集压裂施工过 程中的一些参数 资料来分析地下 压裂的施工进展 情况和所压开裂 缝的几何参数。
要求:放射性同位素应不 发生自然扩散。
近井地带监测技术
放射性示踪剂技术
操作可参照“中华人民共和国石油天然气行业标准 SY/T 5327-2008”----《放射性核素载体法示踪测井技术规 范》执行。

微地震压裂裂缝监测方法及应用

微地震压裂裂缝监测方法及应用

this paper,at first,microseismic fracture monitor basic principles are
introduced,including acoustic emission(AE), Mohr-Coulomb theory,fracture
mechanics rules. Secondly,making a comparison between conventional fracture
monitor(dip compass, well temperature test, radioactive measurement, potential
method, etc.) and microseismic fracture monitor, showing microseismic fracture
1.1 选题依据及意义................................................................................................................1 1.2 国内外研究现状................................................................................................................2 1.3 研究思路及内容................................................................................................................4 1.4 创新点及研究成果............................................................................................................5 第 2 章微地震压裂监测原理...........................................................................................................6 2.1 微地震压裂监测技术的基本原理....................................................................................6

微地震裂缝监测技术及其进展

微地震裂缝监测技术及其进展

微地震裂缝监测技术及其进展陈芷若;江山;刘亚昊;陈春燕;刘恩豪;胡力文;陈鹏【摘要】水力压裂技术作为非常规油气藏开发的主要技术手段已在油气生产中广泛应用,微地震监测技术是水力压裂过程中压裂缝评价的一种有效手段.介绍了微地震监测技术的原理及该技术在国内外的发展历程,叙述了微震事件的定位方法;评述了2种非常规油气层压裂微地震监测方法,即井中监测技术和地面监测技术,并对其原理、特点和发展进行了阐述和对比,最后论述了微地震监测技术的发展方向.【期刊名称】《中州煤炭》【年(卷),期】2019(041)002【总页数】5页(P73-76,81)【关键词】地球物理学;微地震监测;震源定位;井中监测;地面监测【作者】陈芷若;江山;刘亚昊;陈春燕;刘恩豪;胡力文;陈鹏【作者单位】长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100;长江大学地球科学学院,湖北武汉 430100【正文语种】中文【中图分类】TE357.10 引言微地震监测技术是一种通过观测微地震事件来监测生产活动的地球物理技术[1]。

该技术分析计算裂缝网络的几何特征,即方位、长度、高度等信息,实时评判压裂效果,了解压裂增产过程中人工造缝情况,以指导优化下一步压裂方案,达到提高采收率的目的[2]。

该技术的理论基础是声发射学、摩尔—库仑理论和断裂力学准则[3]。

微地震监测技术与常规的地震勘探技术相比,其不同点在于要求解震源的位置、时刻和震级[2,4]。

微地震监测技术起源于20世纪40年代,1976年桑地亚国家实验室确立了井下微地震观测方法,20世纪80年代,该技术主要集中于裂缝成像反演方法,到了90年代,出现多级检波器且得到广泛的应用[5]。

水力压裂微地震裂缝监测技术及其应用

水力压裂微地震裂缝监测技术及其应用

水力压裂微地震裂缝监测技术及其应用发布时间:2022-07-20T06:00:18.770Z 来源:《科学与技术》2022年30卷第5期第3月作者:杨慧慧[导读] 微震监测技术是一种通过观测微震事件来监测生产活动的地球物理技术。

该技术通过分析计算裂缝网络杨慧慧宁夏回族自治区地震局宁夏银川市 750001摘要:微震监测技术是一种通过观测微震事件来监测生产活动的地球物理技术。

该技术通过分析计算裂缝网络的几何特征,即方位、长度、高度等信息,实时评价压裂效果,了解压裂增产过程中的人工压裂情况,从而指导下一步压裂方案的优化,达到提高采收率的目的。

该技术的理论基础是声发射、莫尔-库仑理论和断裂力学准则。

与常规地震勘探技术相比,微地震监测技术的不同之处在于它要求震源的位置、时间和震级。

关键词:水力压裂;渗透率;裂缝监测:微地震;低渗透油藏;一、原理及数据处理1.原理。

水力压裂是向储层注入高黏度的高压流体.并配以适当比例的砂子和化学物质,使储层岩石形成裂缝,从而顺利开采储层中的油气。

水力压裂时.大量高黏度、高压流体被注入储层,使孔隙流体压力迅速提高。

高孔隙压力以剪切破裂和张性破裂2种方式引起岩石破坏:当高孔隙流体压入储层时,高孔隙流体压力使有效围应力降低,导致剪切裂缝产生;当孔隙流体压力超过最小围应力和整个岩石抗张强度之和时.岩石会形成张性裂缝。

水力压裂形成裂缝可看成是声发射事件。

岩石破裂会发出地震波.储存在岩石中的能量以波的形式释放出来,即诱发微地震。

根据摩尔.库仑准则,水力压裂或高压注水时,由于地层压力升高,沿着进水边缘会发生微地震。

这种地震波能量包括纵波和横波,类似于地震勘探中的震源,但其频率相当高,在100~2 000 Hz范围内变化,能量相当于一2~_5级地震。

其波形特征与储层、地层剖面有关,也与注水和压裂的过程及参数有关。

绝大多数微地震发生在注水过程中.当地层受到的压力大于历史上承受的最高压力时.微震开始明显发生;注水压力越高,微震发生率越高,注入流体量越大,微震发震次数就越多。

微地震裂缝监测技术在油水井压裂和注岁评价中的应用

微地震裂缝监测技术在油水井压裂和注岁评价中的应用

的信号通过前放 、无线发射机 ,将采集的信号发射 出去 ,在通过接收机将信号拾取 ,送入水力压裂 ( 高压注水 )裂缝监测仪 进行滤波 、放 大、鉴别 、 事件形成及时差处理 , 再经主机与计算机的串行通 讯 ,实 时显示 监测 结果 。 设 距 水 力 压 裂 ( 压 注 水 ) 最 近 的监 测 井 为 高 井
0 Ⅱ
波 ,并且衰减的幅度非常小 ,是理想 的波导管 ,所 以安置在待水力压裂 ( 高压注水 )井 的邻井井 口处 的传感器便能直接接收从被压裂井压开地层发出的 破裂信号 。油 田施工现 场 ,在水力压裂 ( 高压 注 水 )施工井附近 的 3 口井的井 口下部套管上 ,布上
0 h


罐 \Z C 9


5 。



图 6 C 04井 以前 动 态 分 析 结 果 及 第 一 次 监 测 结 果 24
压 力 为 9 M a时 , 流 向 四 周 扩 散 , 量 为 . P 8 水 排 7 — 3 m/, 力 为 98 1. a , 流 主要 向北 一 0 10 压 d . 3 — 1 MP 时 水
南 方 向扩 散 ; 当排 量 增 加 到 10 10 S 时 , 力 为 3 —9 m/ d 压






。孵
1. 1. P , 1 — 1 M a水流聚集在注水井周 围, 3 9 并在注水井
鬃 ;
附近 张 开 了两 条 裂缝 , 一条 为北 一 南走 向 的裂缝 , 一 条 为 西 北 一 南 走 向 的 裂 缝 ; 排 量 增 加 到 东 当
s( 2
+毛2
t 一 一 * 一 一一一 …

微地震监测新技术及新方法

微地震监测新技术及新方法
第八页,共23页。
微地震事件识别技术
5.微地震反演模型的建立 波动正演的特点是能够在不同的介质条件下,对波场传播过程中的 相位、振幅、频率等变化规律进行准确的模拟,真实的反映波的动 力学特征。一般情况下,基于波动方程的正演方法能够适应各种复 杂模型,本书中采用迭代法射线追踪的方法建立模型。
第九页,共23页。
• 缺点:适用于反演的模型参数比较少的情况,否则当模型参数的 数目比较多时,相应要搜索的模型点的数目也会急剧增加;此外, 进行分层次的网格搜索可以减少搜索的总数,并使搜索达到较高 的精度,但是当初始搜索的网格过于稀疏时,有可能将搜索导向 错误的点附近,而且当失配函数出现多个极小值时,上述的错误 引导的可能性会大大增加。
不涉及导数等其它辅助信息的计算,经过不断的选择、交叉、变异操作,既能使优 秀的个体得到最大限度的继承选择,又能通过不断的交叉使个体更加的趋于优秀; 同时,变异又能产生新的个体,丰富了解搜索的范围,对于实际微地震反演个体来 说,反演结果准确,方法适应性好,但是其对算法中的一些参数的设定的依赖性较 强,需要结合实际进行不断实验,才能得到最优的反演结果。因此结合网格搜索法 和遗传算法的优势,对于搜索法的反演结果从解的概率分布角度进行分析,得出真 解的分布区间。据此,设定遗传算法的参数,对于微地震事件进行反演,大大提高 了计算的速度和精度,对于准确的定位微地震事件具有重要的意义。
微地震事件识别技术
• 迭代法射线追踪 • 通过计算透射波、反射波、折射波时差规律及振幅特征,可以对
微地震记录中有效事件的识别、处理、反演进行指导。在给定的 速度结构下,通过模拟对应微地震事件的走时特征,识别有效事 件,对干扰进行处理,既能为有效事件的自动识别提供依据,又 可以保证反演计算的精度,因此,对于精确的微地震定位技术的 发展具有非常重要的意义。

微地震法在煤层气井人工裂缝监测中的应用

微地震法在煤层气井人工裂缝监测中的应用
地层 产 生裂缝 的方 位及 长度 ,为井 网布局 、方案设 计提 供 了可靠依 据 。
层气开发 中的作用越来越重要 ,人工裂缝方向与井 排方向错开的角度较小 ,会造成气井早期水淹、水 窜 ,严重影响气井开发效果 ,因此裂缝不仅决定了 抽 水效果 ,而且控 制 了层系 的划分 和井 网布 置 ,从 而直接决定 了气井开发效果 的好坏。因此 ,掌握人 工裂缝 方 向 及 大 小 对 煤 层 气 的开 发 起 着 关 键 的作
形 成 的裂缝宽 度非 常小 ,很 难通 过普 通 的地球物 理
方 法进 行有效 的监 测 。近年 来 ,我 国一些 部 门进 行 了相关 的试 验工 作 ,已创立 了一 些 测试技 术 ,主要
包括利用地面微地震 、大地电位及井温等方法进行 人工裂缝监测。我们在煤层气开发 中利用地面微地 震法 进行 裂缝监 测 ,通过 现场 监测 给 出该井压 裂 时
接收 震动 信号 的换 能器 ( 波器 ) 检 ,可 以完 成 弹性
波 的接收 。
探 头

/f 监
第3 第 3 卷 期 20 06年 7 月
中国煤层气
C 卸 A C AUj O 皿 MEn¨ E N
Vo 3 No. 1. 3
Jl 2 0 uy 0 6
微地 震法在 煤层 气井 人工裂 缝 监测 中的应 用
白建 平
( 山西省晋城煤业集团煤层气公司 ,山西晋城 08 0 ) 406
Ke wo ds S ra emir - im; c ab d meh ne fa tr ntrn y r : uf co s s c e o l e ta ; rc u e mo oi g i
1 概 述
在 煤 层气 开发工 程方 面 ,地 应 力场作 用 占重要 地位 ,随 着煤 层气 产业 的发展 ,人 们发现 裂缝 在煤

微地震裂缝监测技术研究.PPT幻灯片课件

微地震裂缝监测技术研究.PPT幻灯片课件

引言
微地震采集-裂缝监测的结果
Plan View 平面图 Well
Well 压裂井
Passive Monitor Well
观测井
原来的,绝对确定的 在采用了主波组,相对成
震源位置
像技术后得到的震源位置
由美国Los Alamos国家实验 室和联合太平洋资源公司在 美国COTTON 山谷所作的压裂 裂缝检测试验
引言
微震观测设备的关键部分是井下观测仪器。由于 诱生微震能量非常弱,频率很高(约为 100∽1500Hz),传播方向复杂,以及井下高温、高 压、高腐蚀性的恶劣环境,要求微震监测用井中检波 器是高灵敏度、高频、体积小的三分量检波器,其本 身及有关连接件、信号传输线等应具有耐高温、高压 和耐腐蚀的性能。
引言
C – SeisPTTM微地震监测解释软件 声发事件的探测 声发事件的分析 微地震的定位 压裂裂缝绘制
左图:模拟无裂缝的均匀介质中P波和S波的传播.(图中小圆圈为接收点,星号为震 源-小裂缝) 右图:模拟有裂缝时的波传播情况( a. 40毫秒时 b. 75毫秒时. P波和S波的速度从 外部岩石向裂缝内部明显下降)
引言
高压泵
压裂作业井
监测井 十二级接收器
岩石破裂
微地震事件
微地震监测主要包括数据采集、数据处理、精细反演等 几个关键技术。
引言
C8b C11 C16
压裂事件空间计算图
引言
1965年:美国滨州岩石力学实验室开始声发射和微震研 究,称为AE/MS技术。
1973年:首次开始现场试验工作,这次现场试验研究是 AMOCO公司等在美国科罗拉多州的Wattenberg油田进行的。 目的层为含气致密砂岩,深约2440m。当时人们沿袭传统的 地震勘探数据采集方法,采用布置在地面的检波器排列来监 测水力压裂裂缝的发展。由于地面噪音太高而诱发微震的水 平很低,加之那时的记录仪器及数据处理方法水平都不高, 无法从这种低信噪比的记录中识别出微震信号来。试验没有 成功。

微地震监测技术介绍

微地震监测技术介绍



一.概 述
二.微地震监测的应用
三.微地震监测主要方法
1,井中监测 2,地面监测 3,浅井监测 4,方法对比 5,微地震监测的工作经验
四.结束语
30
2022年3月23日4时8分
三.微地震监测主要方法
井中监测
地面监测
浅井长期埋置
12~30 级 3-C 检波器 监测距离: 100~800m 准备时间: 2-3 天
28
2022年3月23日4时8分
位置、数量、相对时间和强度
二.微地震监测的应用
8、综合分析
微地震事件与反映储层特性的脆性、泊松比相结合,能够更好的解释微地震分布特征。
脆性
泊松比
数量较多、震级相对较大的微地震事件位于脆性梯度大、泊松比梯度大的地方
29
2022年3月23日4时8分
位置、数量、相对时间和强度
微地震信号很容易受其周围噪声的影响或遮蔽;另 一方面在传播当中由于岩石介质吸收以及不同的地质环 境,也会使能量受到影响。
9
2022年3月23日4时8分
微地震的特性


一.概 述
微地震事件发生的1,位置、
二.微地震监测的应用
2,数量、
3,时间和
4,强度
三.微地震监测主要方法
四.结束语
10
2022年3月23日4时8分
5
2022年3月23日4时8分
微地震压裂监测的发展历程
一.概述
微地震监测:利用水力压裂、油气采出,或常规注水、注气以及热 驱等石油工程作业时引起地下应力场变化,导致岩层裂缝或错断所 产生地震波,进行水力压裂裂缝成像,或对储层流体运动进行监测 的方法.
微地震监测技术是一门新的地球物理技术,它通过监测微震事 件产生的地震波,确定微震坐标、发震时刻及烈度的技术。

微地震检测技术简介

微地震检测技术简介

微地震监测技术及应用随着非常规致密砂岩气、页岩气藏的开采开发,压裂技术在储层改造中起着举足轻重的作用,而微地震监测技术是评价压裂施工效果的关键且即时的技术之一。

根据微地震监测处理高精度地反演微震位置,从而预测压裂裂缝的发展趋势及区域,对压裂施工效果进行跟踪及评判,同时也为后期油气藏的开采和开发提供技术指导。

第一节微地震监测技术原理与发展微地震监测技术是通过观测、分析生产活动中所产生的微小地震事件来监测生产活动的影响、效果及地下状态的地球物理技术,其基础是声发射学和地震学。

与地震勘探相反,微地震监测中震源的位置、发震时刻、震源强度都是未知的,确定这些因素恰恰是微地震监测的首要任务。

微地震是一种小型的地震(mine tremor or microseismic)。

在地下矿井深部开采过程中发生岩石破裂和地震活动,常常是不可避免的现象。

由开采诱发的地震活动,通常定义为,在开采坑道附近的岩体内因应力场变化导致岩石破坏而引起的那些地震事件。

开采坑道周围的总的应力状态。

是开采引起的附加应力和岩体内的环境应力的总和。

一、技术背景岩爆是岩石猛烈的破裂,造成开采坑道的破坏,只有那些能够引起矿区附近的地区都受到破坏的地震事件才叫做冲击地压或煤爆、“岩爆”。

对地下开采诱发的地震活动性的研究表明,矿震不一定全都发生在开采的地点,且不同地区的最大震级也不相同,但矿震深度一般对应于开采挖掘的深度。

每年在一些矿区的地震台网能记录到几千个地震事件,只有几个是岩爆。

在由开采引起的地震事件的大的系列里,岩爆只是其中很小的一个分支。

对矿山地震、微地震及冲击地压的观测具有一致性,但应用到实际生产中必须区别对待。

二、微地震技术的发展基于微震监测的裂缝评价技术正发展成为油层压裂生产过程中直观而又可靠的技术。

近几年来,国内众多油气田纷纷投入人力、物力和资金,积极开展该技术的应用与研究工作,广泛用于油气勘探开发工作。

2011年,东方物探公司投入专项资金,积极开展压裂微地震监测技术研究,压裂微地震监测技术水平得到快速提升。

煤层气水平井微地震成像裂缝监测应用研究

煤层气水平井微地震成像裂缝监测应用研究

煤层气水平井微地震成像裂缝监测应用研究张永成;郝海金;李兵;刘亮亮;徐云【摘要】为有效地指导煤层气水平井压裂工程,评价压裂施工效果,提出将微地震成像裂缝监测技术应用于煤层气水平井压裂施工中.利用微地震成像监测煤层气水平井裂缝延伸的方位、缝长及缝高,分析裂缝双翼不对称发育原因.以沁水盆地寺河区块为例,将水平井和同规模、同层位垂直井的裂缝监测结果进行对比分析,结果显示,因布井方位及施工工艺影响,水平井压裂液滤失量大、易产生多裂缝,且裂缝延伸距离相对较短.指出后续水平井布井应考虑水平段轴线与最小主应力方向平行,增大压裂设计规模和压裂级数,以保证煤层气水平井高效开发.【期刊名称】《煤田地质与勘探》【年(卷),期】2018(046)004【总页数】5页(P67-71)【关键词】煤层气;水平井;微地震;成像;裂缝监测【作者】张永成;郝海金;李兵;刘亮亮;徐云【作者单位】煤与煤层共采国家重点实验室,山西晋城 048000;易安蓝焰煤与煤层气共采技术有限责任公司,山西晋城 048000;煤与煤层共采国家重点实验室,山西晋城 048000;易安蓝焰煤与煤层气共采技术有限责任公司,山西晋城 048000;煤与煤层共采国家重点实验室,山西晋城 048000;易安蓝焰煤与煤层气共采技术有限责任公司,山西晋城 048000;煤与煤层共采国家重点实验室,山西晋城 048000;易安蓝焰煤与煤层气共采技术有限责任公司,山西晋城 048000;煤与煤层共采国家重点实验室,山西晋城 048000;易安蓝焰煤与煤层气共采技术有限责任公司,山西晋城048000【正文语种】中文【中图分类】TD712+.624;TE357.1+3微地震监测是目前水力压裂中最精确、最及时、信息最丰富的监测手段,可以及时指导压裂工程,客观评价压裂工程的效果,对下一步的生产开发提供有效的指导,降低开发成本[1]。

随着油气勘探难度的增加,微地震成像技术得到了迅速的发展,并且成为高精度地震勘探数据处理的关键技术。

微地震方法的裂缝监测与储层评价

微地震方法的裂缝监测与储层评价

微地震方法的裂缝监测与储层评价李政;常旭;姚振兴;王一博【摘要】在油田水力压裂微地震事件定位结果的基础上,结合有效微地震事件的时空分布、震级大小、地震矩、震源半径、应力降和b值等地震学参数进行综合研究,并结合研究区域的地质背景和测井资料对水力压裂诱发的裂缝网络进行几何形态分析和应力解释.本文提出的微地震综合分析解释方法可对压裂后储层物性进行综合评价,有利于对储层改造效果进行预测,对油田的水力压裂施工具有指导意义.【期刊名称】《地球物理学报》【年(卷),期】2019(062)002【总页数】13页(P707-719)【关键词】微地震;震源参数;b值;裂缝解释;储层评价【作者】李政;常旭;姚振兴;王一博【作者单位】中国科学院地质与地球物理研究所,北京 100029;中国科学院地球科学研究院 ,北京 100029;中国科学院大学,北京 100049;中国科学院地质与地球物理研究所,北京 100029;中国科学院地球科学研究院 ,北京 100029;中国科学院地质与地球物理研究所,北京 100029;中国科学院地球科学研究院 ,北京 100029;中国科学院地质与地球物理研究所,北京 100029;中国科学院地球科学研究院 ,北京 100029【正文语种】中文【中图分类】P6310 引言页岩油气资源开发的核心技术是水平井以及水压致裂技术,其中采用微地震监测手段识别水力压裂裂缝的分布和发育尤为重要.然而,在实际生产中,微地震技术的应用并不完善,利用微地震所能获取的各种信息对压裂裂缝的识别以及对压裂后的储层评价也一直是一个需要研究的问题.20世纪80年代,Thill(1972)研究了脆性岩石微破裂诱发的地震信号,Schuster(1978)将水力压裂微地震监测技术引入了石油领域,随即被迅速应用于非常规油气的压裂效果监测中(Maxwell and Urbancic, 2001; Shapiro et al., 2002).近年来,微地震监测的理论方法研究得到了快速发展,在众多的方法研究中,与压裂裂缝解释密切相关的是震源定位和震源机制反演.在震源定位方法的研究中,地震波的干涉原理和衰减特性得到了利用(王璐琛等, 2016; 常旭等, 2018),另一方面,通过微地震和地面观测数据的联合反演也提高了震源定位的精度(刁瑞等, 2017),震源定位精度的提高直接影响储层压裂裂缝的解释.目前在微地震反演的实际应用研究中,震源位置数据得到普遍的应用(Eisner et al., 2010;Maxwell,2010),而对震源机制以及与震源机制相关的地震学数据的应用尚不充分.事实上,微地震的震源机制与储层介质的特性、裂缝发育的产状、地层应力的方向有直接关系(翟鸿宇等, 2016;李晗和姚振兴, 2018, Chen et al.,2018),利用微地震反演获得的地震学参数对压裂效果进行评价和解释至关重要.传统的反射地震资料解释主要根据地震波的传播规律和地质特征,把各种地震波信息转变为构造、地层岩性等信息,将地震剖面转变为地质剖面进行解释.对于非常规油气的勘探开发,需要实施储层压裂改造后的裂缝解释与评价,压裂施工中的微地震监测资料提供了不同于反射地震资料的储层评价信息.微地震数据利用地震学的研究方法得到震源的时间空间位置、震源机制等信息,利用这些信息同样可以对储层的物理性质进行分析和解释.因此,本文研究了微地震资料的储层解释方法,以某油田实际资料为基础,提出了微地震数据的分析方法和流程,在压裂区微地震事件定位的基础上,对有效微地震事件的时空分布、震级、地震矩、震源半径、应力降和地震b值等地震学参数进行综合研究,并结合研究区域的地质背景、测井等资料,对压裂区的水力压裂裂缝进行了分析,对研究区的储层性质与水力压裂效果进行了评价.1 研究区域的地质背景及微地震监测数据本文的研究区域位于鄂尔多斯盆地南部,按地层的分布形态划分为:北部伊盟隆起、南部渭北隆起、西部西缘断褶带和天环坳陷(天环向斜)、东部晋西挠褶带以及中部的陕北斜坡(西倾单斜构造)等五个一级构造单元.盆地内致密油层的主要特征为:(1)致密油藏源储互层共生,平面上主要分布在湖盆中部有利砂体中.主力层段受多级坡折带影响,重力流发育,指示了储层的非均一性特征;(2)储层孔喉结构复杂,实验室可见孔隙含量低,以微(纳米)孔隙类型为主,指示了储层的致密特征;(3)储层致密砂岩天然微裂缝发育(每10 m发育天然裂缝约2~3条),水平两向应力差4~7MPa,有利于在水力压裂作用下形成复杂裂缝网络(杨华等, 2015).研究区内压裂井与监测井井位如图1所示.该井有效储层纵、横向变化较大,非均质性强,埋藏深度为1640 m,平均油层厚度为11.9 m,平均孔隙度为9.7%,填隙物含量为14.7%,是典型的致密储层.通过对岩心裂缝的测量统计和测井资料的构造裂缝发育的研究可知,水平压裂井所在地区裂缝密度较大(牛小兵等, 2014).图1 压裂井和监测井井位(a)俯视图; (b) 侧视图.Fig.1 Horizontal well and monitoring well location(a) Plan view; (b) Side view.施工单位在本文研究区域内展开了“水力喷砂分段多簇混合水力压裂”储层改造实验.实验中,压裂井垂深1588 m,水平段长度为1205 m,改造段数为14段,每段各有两个射孔.施工排量为6 m3·min-1(油套同注),平均套管迫压为20.7 MPa,单级入地液量为800 m3,施工入地总液量为11200 m3,支撑剂总砂量为600 m3,单级砂量为43 m3,其中喷射用20/40目石英砂为3 m3,压裂用100目粉陶为1.5 m3,40/70目覆膜砂为30 m3,20/40目覆膜砂为12 m3,最高砂比28%,平均砂比7.2%.微地震监测井共设置12个三分量检波器,对水力压裂过程中形成的微地震事件进行记录.技术人员对采集到的14段压裂中的微地震事件进行了识别和预处理,提供了5832个具有企业标准的微地震事件的信息.图2 采用的微震事件数量与震级Fig.2 The number of Micro-seismic events and its magnitude2 微地震数据对压裂裂缝的几何解释2.1 微震事件的时空分布与裂缝的关系对这些微地震数据的各项参数进行了再分析,对水力压裂储层改造的效果进行了评价.图2为微地震事件按照震级大小统计的全压裂井段微地震事件柱状图.由图2可知,绝大多数的微地震事件震级集中在-2.8级至-2级之间.图3是用不同颜色表示的14个压裂段微震事件的空间位置在水平面的投影,图中由蓝色到红色的每一种颜色代表一个压裂段.本文对14段中已完成定位的5832个微地震事件进行了综合分析,根据微地震事件的时空信息、震级大小、震源半径、地震矩、应力降、b值等地震学参数进行了研究,并结合研究区的地质资料对研究区压裂裂缝的分布和发育进行了半定量分析与定性解释.微地震事件的空间分布可以提供裂缝的空间位置.由图3可知,各压裂段监测到的微地震事件沿水平井两侧分布,且分布半径约400 m,预示压裂形成的裂缝分布在以水平井为轴线,半径约400 m的椭圆柱形空间范围内.根据色标可知,深蓝色为第1段压裂段,深红色为第14段压裂段.由图3可知,每一段压裂的微震事件可能出现在相邻段内,这表明在对储层进行压裂改造的过程中可能激活了相邻未压裂段的原生裂缝,使得在相邻压裂段中产生了微地震事件,因此,根据微地震事件的时空分布可以定性分析压裂裂缝的变化.图3表现出的微地震事件时空分布说明该井的压裂对储层产生复杂联通的裂缝网络有利.在全部压裂段中,第六压裂段微地震事件分布表现出明显的异常.本文看到除了主裂缝(图3中蓝线所示)以外,还产生了一条与主裂缝相交的次生裂缝(图3中红线所示).在对压裂事件生长过程的研究中,本文发现第五段压裂过程中,尚未实施压裂的第六段区域在沿着不同于主裂缝的方向上产生了数个震级较大的微地震事件(例如图3子图中红色箭头所示).在第五段压裂结束后,第六段压裂首先沿着之前产生过大微震事件的方向(图4)开始破裂,然后再沿主裂缝方向上产生大量微地震事件.图4是第5段压裂微地震事件按照时间顺序排列的分布图,色标右侧为压裂时间,色标左侧为产生的微地震事件个数.由图4可以看出,第六段压裂共产生微地震事件694个,其中有近300个微地震事件在22 min左右产生且分布位置基本沿着次生裂缝的方向,剩下近400个微地震事件在约3 h之内产生且基本沿着主裂缝方向分布.第六段微震事件的时空分布特征说明了第六段区域存在着与主裂缝走向不一致的原生裂缝,此裂缝极有可能在第五段的压裂过程中被提前激活,从而产生了交叉的裂缝网络.2.2 微震事件震级大小与裂缝的关系为了分析微地震事件与水力压裂缝之间的关系,本文将所有微地震事件按照震级的大小进行排列.图5是全压裂段微地震事件震级大小及空间位置分布,从蓝色到红色分别表示了微地震震级从小到大的趋势.根据图5可知,微地震事件的震级从-3.2至-1.2之间不等,大部分微震事件的震级集中在-2.8至-2之间.从微地震事件的整体分布上可以看出,压裂区域中部震级相对较小且分布非常集中,两侧压裂段的微震事件震级相对中部较大且分布相对分散.根据研究区储层具有较强非均匀性的特点,可定性解释为压裂区储层中部岩性泥质含量较高,脆性较差,不易破裂,而两侧储层岩性泥质含量较低,脆性较好,较易破裂.图3 各压裂段微震事件时间空间分布Fig.3 Spatial and temporal distribution of micro-seismic events in fracturing segments图4 第六段压裂事件时间空间分布图(按微震事件发生顺序排列)Fig.4 Spatial and temporal distribution belonging to the sixth section micro-seismic events (in order of micro-seismic events)2.3 裂缝走向及破裂面产状根据各压裂段微地震事件的空间位置,对每个压裂段的微地震事件进行了三维空间直线拟合与裂缝走向分析,同时根据主裂缝的长度和方位角拟合出每个压裂段的破裂面(图6).表1为各段裂缝的长度、方位、角度、破裂面的面积以及方位、角度.由此,本文可以得到,除了第六段,其余压裂段的破裂面近似为铅锤面,而第六段的破裂面近似为水平面.根据破裂面产状的差异以及该区域储层裂缝发育的特点可以推测,第六段的破裂面与其他各段破裂面的形成机制不同,其他各段的破裂主要由压裂形成,而第六段的破裂可能与原生构造相关,如果第六段所在的储层存在原生裂缝,则可能在实施第五段压裂时被激活.这一推测与图3的微地震发震时间的分布吻合,即尚未实施第六段压裂时,第六段上的储层岩石已经发生破裂并产生了大震级的微地震事件.图5 全压裂段微震事件的震级与空间位置分布Fig.5 Magnitude and spatial distribution of micro-seismic events in full fracturing图6 各压裂段裂缝主破裂面Fig.6 Main fracture surface of fracturing sections 所以图6可以解释为第五段的压裂过程提前激活了第六段的原生裂缝,进而导致两个相邻压裂段的裂缝形成了新的交错网络,两段裂缝主破裂面连通后形成了一个近乎水平的破裂面.2.4 压裂体积估算所谓压裂体积又称改造体积,是指在水力压裂过程中,脆性岩石产生剪切滑移诱使天然裂缝不断扩张,继而形成裂缝网络,增加改造体积,提高产量和最终采收率.对每个压裂段的微地震事件,将其点集所构成的三维凸包作为该压裂段的改造体,将三维凸包的体积作为压裂体积;将三维点集用最小二乘法拟合得到的平面作为主破裂面,主破裂面与三维凸包的截面作为主破裂面面积;将三维点集用最小二乘拟合得到的直线作为主破裂线,主破裂线被主破裂面截断的长度作为主裂缝的破裂长度.对每段压裂的有效微地震三维数据体构建了多面体包络面,从而得到了压裂井每段的压裂体积(图7),具体数值见表1.表1 各压裂段裂缝参数裂统计Table 1 Statistics of fracturing results in 14 fracturing sections压裂段改造体积(106m3)破裂面积(105m2)破裂面走向(°)破裂面倾角(°)主裂缝长度(m)主裂缝走向(°)主裂缝倾角(°)18.20051.976283.072472.7558753.8282.91790.648026.57661.556981.399 381.528813.6581.71993.152936.37421.934179.631984.4782844.3579.67771 .161445.47271.506878.997577.5754788.0779.16300.512655.86641.599778. 23285.5345927.6478.38720.37863.49591.212884.19246.6331939.4978.5228 0.75926-10.36800.289784.19246.6331385.85103.20460.715473.63061.305878.69818 1.6197879.7678.37020.321484.11121.206477.810975.6734738.02101.46962 .867993.59691.114679.416770.7342718.2678.95071.3916104.96021.566874 .710578.5051765.33105.12011.0948112.3920.876073.660988.7193689.1073 .83711.3046123.92791.213174.485973.8945759.5775.26922.5781132.02310 .878777.492088.1805659.3777.46200.3995143.96901.228076.660282.49647 73.7276.83360.6338图7 各压裂段压裂体积分布Fig.7 Fracturing volume distribution of 14fracturing sections3 微地震裂缝的应力解释微地震裂缝的应力解释指在完成研究区域水平压裂段微地震事件定位工作的基础上,利用微地震事件的地震矩、应力降、震源半径、b值等地震学参数进行综合研究,对储层的力学性质进行解释.3.1 地震矩、应力降与震源半径及其应力解释地震矩(M0)是地震释放能量大小的直接度量(Kanamori,1977),其由震源位错理论给出定义:其中μ为剪切模量,s为断裂面积,为平均位错量.由虎克定律给出应力降(Δσ)与应变(Δe)之间的关系:其次,利用布龙(Brune)圆盘形位错模式,震源等效圆位错半径(r)和拐角频率(f0)的关系为β是S波波速(Brune, 1970; Svanes, 1971).将研究区的全部微地震事件的地震矩,即三维空间分布的能量点集,进行了三次样条插值处理,然后沿水平井所在的水平面做三维数据体的截面,得到该区地震矩的分布图(图8).假设在本次压裂实验中,地下储层空间得到了充分的水力压裂,则图8所示的结果即表示该研究区可能释放能量的整体分布情况.由此可以发现储层空间中部释放能量较少,而其周围释放能量较多.与微地震震级分布(图5)、压裂缝长度和破裂面面积(图6)的分析结果比较,地震矩的三维空间分析(图8)能更好地评价储层空间的三维连续性变化.与表示地震释放能量的参数地震矩相比,地震应力降评价的则是地震断层机制和地下块体释放能量的行为.微地震事件中的应力降应特指岩石受到应力急剧变化时破裂所造成的应力降低的行为,水力压裂过程中发生的微地震事件的应力降则多在2000~10000 Pa之间.在常温高压下,岩石破裂应力降越大,岩石破裂强度也越高(臧绍先, 1984) .本文对研究区内14个压裂段的微地震应力降数据同样进行了三维空间的数据插值处理,得到了水平井所在水平面上的三维数据体横截面(图9).结果显示,研究区中部应力降较小,而其周围的应力降反而较大.这与图8中显示的地震矩分布图情况类似,然而应力降中心的低值区域更为集中.其是否能对破裂区的范围有更好的指示意义还需进一步研究.本文同时也对震源半径进行了和地震矩、应力降两个参数相同的插值处理,图10是震源半径所得到的结果.与图8和图9相同,图10中间除了极个别大震级的微地震事件是高值以外,研究区域整体中间为低值,两侧为高值区.3.2 b值及其应力解释1941年Gutenberg和Richter通过对大量地震资料研究发现:地震震级M与大于等于震级M的地震数目N之间存在如下公式所示的幂律分布关系(Gutenberg and Richter, 1942),即G-R关系:logN=a-bM式中,a,b为常数,是描述地震带内地震震级频度分布特征的重要参数,可以根据地震资料通过公式计算获得.其中,a反映平均地震活动水平;b反映大小地震的比例关系.在地震预报领域中,研究发现:大震前震源及附近区域经常会出现某些震级档内的地震增多或减小,导致出现大小地震比例失调,b值减小的异常现象,此外,区域应力积累水平升高是大地震发生的必要条件,因此认为,b值反映了地应力状态,二者呈反比关系,且b值的高低与岩石介质的特性有关,比如岩石的脆性、弹性、塑性、破裂程度等(韩骏和姚令侃, 2015).岩石学实验中,声发射活动与地震活动的机制最为接近,在统计参数上与地震活动性的可对比性也最强.Scholz通过岩石破裂实验发现,岩石随着应力的增加,b值出现明显下降(Scholz, 1968).通过对5种岩石测量记录曲线和数据进行分析处理,得到与Scholz实验类似的结果,在岩石达到破裂应力之前b值下降较快.Wyss等(2000)研究矿山岩石的破裂行为发现:岩体内构造应力的大小与b值图8 研究区地震矩Fig.8 Seismic moment in study area图9 研究区应力降Fig.9 Stress drop in study area图10 研究区微地震事件震源半径Fig.10 Source radius of the micro-seismic events in study area成反比,低b值区往往具有更高的应力积累.本文对研究区域的14个水平压裂段进行了b值的计算.首先将每段的水平压裂的微地震事件个数按照震级大小进行分段统计.根据最小二乘法,分别算出每段的b 值.图11为14个压裂段分别统计的b值.其中,位于整个压裂段中部的第7、8、9段的b值分别为2.59、2.36、2.56,明显大于两侧压裂段的b值(两侧b值平均值为1.95).根据岩石构造与b值的关系,本文推测,整个压裂段中部b值较高的区域对应的应力较小,这一推测与研究区中心部位微震事件的震级小于周边区域的现象可相互印证.图12为全压裂段微地震事件的b值,为2.44,相对两侧压裂段b 值较大.图11 各压裂段b值(1-8段)Fig.11 b-value of 1-8 fracturing sections图11 (续) 各压裂段b值(9-14段)Fig.11 (continued) b-value of 9-14 fracturing sections图12 全部微地震事件b值Fig.12 b-value from all micro-seismic events研究区划分为20 m×20 m的网格点,对每个网格点四周50 m×70 m的区域内的微震事件进行统计并计算b值,计算结果作为该格点处的地震b值,然后对所有格点的b值进行插值处理.为保证统计计算中有足够的样本量使计算结果稳定且可靠,每个单元格内的微地震数量最少为15个.由此,本文得到了研究区域的b 值分布图(图13).根据b值分布图以及图11各段b值分析,本文认为b值小于2.3的区域应力降较大,属于潜在破裂区.由图13可知,通过b值扫描,本文将分散的微震事件的分布转换成了储层连续受力情况的分布,这对储层裂缝的区域连通性有非常好的指示意义并对压裂施工有着重要的指导意义.图13 研究区b值分布Fig.13 b-value in study area图14 研究区水力压裂与测井资料联合解释(a) 测井解释,油田提供; (b) 微地震监测.Fig.14 Joint interpretation of hydraulic fracturing and logging data in the research area(a) Logging data interpretation, provided by oil field; (b) Micro-seismic monitoring interpretation.4 微地震与测井资料的综合解释将微地震裂缝的定性与定量分析图件和测井解释图件结合(图14),本文可以对储层的岩性与裂缝分布有更好的约束和指示.压裂区域中部微地震事件震级相对较小且分布紧凑,两侧压裂段震级偏大且分布相对分散.根据声波(AC)以及自然伽马(GR)测井曲线可以得出压裂井段中部储层岩石泥质含量高,脆性较差,孔隙度较小,通过含烃曲线可以看出该部分含油气少,储层较差,而压裂井段两侧岩石泥质含量低,脆性较好,孔隙度较大,油气含量大,储层性质较好.5 结论本文提出了利用微地震事件的地震学信息进行储层评价与解释的方法:(1)微地震事件的时间-空间分布可以定性分析压裂裂缝的时间-空间分布,还可以定量计算压裂裂缝的长度、方位角、破裂面的面积和储层的改造的体积.对事件时空分布的异常点进行重点研究,可以进一步推测储层中原生裂缝与压裂裂缝的关系;(2)微地震事件的震级、震级大小的分布可以指示储层岩性的非均一性,对储层岩性和脆性作出定性分析;(3)微地震的地震矩、应力降、震源半径的研究可以分析储层压裂后岩石破裂程度以及能量传播的方向;(4)微地震b值可以对地应力状态进行研究,b值扫描可以对储层潜在的破裂区进行预测,可以将分散的微震事件的分布转换成储层连续受力情况的分布,这对储层裂缝的连通性以及水力压裂方案的设计有重要的指导意义.本文提出的研究方法用于水力压裂微地震监测实际资料的解释,得出的结果不仅与测井资料给出的岩性信息吻合,而且给出了储层裂缝发育和应力分布的新的认识,获得了储层裂缝的几何形态、原生裂缝与压裂裂缝的关系、储层改造体积、应力状态的分布以及潜在的破裂区域.致谢感谢长庆油田对本文的研究提供的帮助和支持.References【相关文献】Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research: Atmospheres, 75(26): 4997-5009.Chang X, Li Z, Wang P, et al. 2018. Micro-seismic location based on frequency attenuation compensation. Chinese Journal of Geophysics (in Chinese), 61(1): 250-257, doi:10.6038/cjg2018L0396.Chen H C,Meng X B, Niu F L, et al. 2018. Microseismic monitoring of stimulating shale gas reservoir in SW China: 2. spatial clustering controlled by the preexisting faults and fractures. Journal of Geophysical Research: Solid Earth, 123(2): 1659-1672.Diao R, Wu G C, Shang X M, et al. 2017. Joint correction method based on 3D seismic and surface microseismic data. Chinese Journal of Geophysics (in Chinese), 60(1): 283-292, doi: 10.6038/cjg20170123.Eisner L, Williams-Stroud S, Hill A, et al. 2010. Beyond the dots in the box: Microseismicity-constrained fracture models for reservoir simulation. The Leading Edge,29(3): 326-333.Gutenberg B, Richter C F. 1942. Earthquake magnitude, intensity, energy, and acceleration. Bulletin of the Seismological Society of America, 32(3): 163-191.Han J, Yao L K. 2015. Crustal stress evaluation method based on seismic activity parameter b-value. Railway Standard Design (in Chinese), 59(7): 36-39, 127.Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20): 2981-2987.Li H, Yao Z X. 2018. Microseismic focal mechanism inversion in frequency domain based on general dislocation point model. Chinese Journal of Geophysics (in Chinese), 61(3): 905-916, doi: 10.6038/cjg2018L0237.Maxwell S C,Urbancic T I. 2001. The role of passive microseismic monitoring in the instrumented oil field. The Leading Edge, 20(6): 636-639.Maxwell S C, Rutledge J, Jones R, et al. 2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75(5): 75A129-75A137.Niu X B, Hou G T, Zhang J Z, et al. 2014. Assessment criteria for member 6 and 7 tight sand in Ordos basin and its applications. Geotectonica et Metallogenia (in Chinese), 38(3): 571-579.Scholz C H. 1968. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bulletin of the Seismological Society of America, 58(1): 399-415. Schuster C L. 1978. Detection within the wellbore of seismic signals created by hydraulic fracturing. ∥48th Ann. Internat Mtg., Soc. Expi. Geophys.. Expanded Abstracts.Shapiro S A, Rothert E, Rath V, et al. 2002. Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics, 67(1): 212.Svanes K. 1971. Correction [to “Tectonic stress and the spectra, of seismic shear waves from earthquakes”]. Journal of Geophysical Research, 76(20): 5002-5002.T hill R E. 1972. Acoustic methods for monitoring failure in rock. ∥Proceedings of the 14 U.S. Symposium on Rock Mechanics. New York: American Rock Mechanics Association, 1972.Wang L C, Chang X, Wang Y B. 2016. Locating micro-seismic events based on interferometric traveltime inversion. Chinese Journal of Geophysics (in Chinese), 59(8): 3037-3045, doi: 10.6038/cjg20160826.Wyss M, Schorlemmer D, Wiemer S. 2000. Mapping asperities by minima of local recurrence time: San Jacinto-Elsinore fault zones. Journal of Geophysical Research: Solid Earth, 105(B4): 7829-7844.Yang H, Liu X S, Yan X X. 2015. The relationship between tectonic-sedimentary evolution and tight sandstone gas reservoir since the late Paleozoic in Ordos Basin. Earth Science Frontiers (in Chinese), 22(3): 174-183.Zang S X. 1984. Earthquake stress drop and the stress drops of rock fracture. Acta Seismologica Sinica (in Chinese), 6(2): 182-193.Zhai H Y, Chang X, Wang Y B, et al. 2016. Inversion for microseismic focal mechanisms inattenuated strata and its resolution. Chinese Journal of Geophysics (in Chinese), 59(8): 3025-3036, doi: 10.6038/cjg20160825.附中文参考文献常旭, 李政, 王鹏等. 2018. 基于频率衰减补偿的微地震定位方法.地球物理学报, 61(1): 250-257, doi: 10.6038/cjg2018L0396.刁瑞, 吴国忱, 尚新民等. 2017. 三维地震与地面微地震联合校正方法. 地球物理学报, 60(1): 283-292, doi: 10.6038/cjg20170123.韩骏, 姚令侃. 2015. 基于地震活动性参数b值的地应力评估方法研究. 铁道标准设计, 59(7): 36-39, 127.李晗, 姚振兴. 2018. 基于“剪切+张裂”一般位错模型频率域求解微震震源机制. 地球物理学报, 61(3): 905-916, doi: 10.6038/cjg2018L0237.牛小兵, 侯贵廷, 张居增等. 2014. 鄂尔多斯盆地长6-长7段致密砂岩岩心裂缝评价标准及应用. 大地构造与成矿学, 38(3): 571-579.王璐琛,常旭, 王一博. 2016. 干涉走时微地震震源定位方法. 地球物理学报, 59(8): 3037-3045, doi: 10.6038/cjg20160826.杨华, 刘新社, 闫小雄. 2015. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏. 地学前缘, 22(3): 174-183.臧绍先. 1984. 地震应力降与岩石破裂应力降. 地震学报, 6(2): 182-193.翟鸿宇,常旭, 王一博等. 2016. 含衰减地层微地震震源机制反演及其反演分辨率. 地球物理学报,59(8): 3025-3036, doi: 10.6038/cjg20160825.。

水平井压裂裂缝监测的井下微地震技术

水平井压裂裂缝监测的井下微地震技术

水平井压裂裂缝监测的井下微地震技术引言自从1947 年在美国首次实施第一口井压裂以来,水力压裂作为油气增产的一项主要措施已被广泛应用于现代石油工业。

随着勘探开发的重心向“三低”油气藏转移,该项技术仍是不可缺少的增产手段,而经济有效的水力压裂应尽可能地让裂缝在储层中延伸,防止裂缝穿透水层和低压渗透层。

水力压裂过程中,压裂裂缝的实际空间展布是油藏工程师们急切关注的问题,同时也是压后效果评估重要的参考因素之一,因而准确的裂缝监测技术显得至关重要。

现场作业表明,水力压裂的效果往往不十分明显,有时由于穿透隔层而导致失败,造成油层压力体系破坏,影响油田的开发效果。

因此,研究裂缝扩展规律并采取有效措施控制裂缝的扩展形态,是提高压裂处理效果的基础。

从油田实践看,由于受监测手段的限制,对裂缝扩展规律的认识还十分有限。

井下微地震监测技术作为监测水力压裂裂缝扩展的最佳方法之一,被应用于油田现场服务,其结果的准确性被国内外广大油田工作者所认同。

1 井下微地震裂缝监测技术1.1 基本原理微地震压裂监测技术的主要依据是在水力压裂过程中,裂缝周围的薄弱层面的稳定性受到影响,发生剪切滑动,产生了类似于沿断层发生的“微地震”,微地震辐射出弹性波的频率相当高,一般处在声波的频率范围内。

这些弹性波信号可以用精密的传感器在施工井和邻井探测,并通过数据处理分析出有关震源的信息。

目前在施工井中接收信息的技术尚在进一步发展之中,而邻井监测技术已经发展成熟。

在压裂过程中,随着微地震在时间和空间上的产生,裂缝测试结果连续不断地更新,形成了一个裂缝延伸的“动态演示图”,该图得到裂缝方位和长度的平面视图,可直接得到裂缝的顶部和底部深度、裂缝两翼的长度以及裂缝的扩展方位。

施工井和观测井位于同一井区(图1),距离在有效监测距离之内。

压裂井压裂施工过程中,微地震信号通过地层传播,接收器接收微地震信号并传到地面监控处理设备。

在使用微地震裂缝监测技术过程中,施工井与观察井的距离在不同岩层各不相同(表1)。

微地震监测技术及应用

微地震监测技术及应用

2017年06月微地震监测技术及应用张方(中国石油新疆油田分公司勘探开发研究院,新疆克拉玛依834000)摘要:近年来水力压裂微地震监测技术发展迅速,并在钻井现场拥有很好的应用前景,笔者从微地震监测技术的原理出发,并指出目前现场施工作业时难点并提出相应的技术对策。

为了较好地评估区块内水力压裂过程中的破裂发生和发展状况,更好的评估压裂效果,进一步优化工艺参数和缝网系统,为井距论证和整体开发井网部署提供依据,建议在井区内优选几口井进行水平井压裂微地震监测。

关键词:微地震监测;水力压裂;裂缝系统1微地震监测水力压裂技术原理近年来水力压裂微地震监测技术发展迅速,并在钻井现场拥有很好的应用前景。

微地震监测技术是建立在地震学和声发射原理的基础上,以在压裂过程中形成的小地震事件为目标,通过展示裂缝空间立体形态达到裂缝监测的目的。

在水力压裂过程中,地层原有应力受到压裂作业干扰,使得射孔位置处出现应力集中现象,导致应变能量升高,井筒压力迅速升高,当压力大于岩石的抗压强度时会导致岩石破裂变形,进而形成裂缝扩展,在应力释放过程中一部分能量会以地震波的形式向四周传播,进而形成微地震。

微地震一般发生在裂缝之类的断面上,通常裂缝范围在1-10m 之间,频率范围一般在200-1500Hz ,持续时间较短通常小于15s 。

微地震在地震记录上具有以下特点地震能量越弱其地震频率越高,持续时间越短破裂长度也越短。

微地震监测水力压裂通过监测站收集被检测井在水力压裂过程中产生的微地震波,并对收集到的微波信号进行处理解释,根据直达波的时间确定震源具体位置。

目前微地震解释主要用于以下几个方面:(1)分析微震事件出现的空间展布,计算裂缝网络方位、长度、宽度、高度;(2)随着压裂施工的进行,破裂事件不断发生,破裂事件出现的速率与压裂施工曲线的对应关系;(3)根据微震事件出现的空间位置,结合地震剖、测井资料,解释裂缝扩展与地层岩性、构造相互关系;(4)评估压裂产生的SRV ;2微地震监测水力压裂技术难点与技术对策2.1难点分析(1)在实时监测,一般需要检验速度模型的合理性,但是,现场实时监测中调整速度模型的难度较大;(2)在监测过程中,对于信噪比低的事件,自动识别程序难以自动识别;(3)在监测过程中,可能有个别事件明显偏离它的真实位置,以及个别事件P 波和S 波初至时间的自动拾取结果不合理,对现场实时处理带来一定的影响。

非常规油气层压裂微地震监测技术及应用

非常规油气层压裂微地震监测技术及应用

非常规油气层压裂微地震监测技术及应用刘博;梁雪莉;容娇君;郭晓中;衡峰【摘要】介绍了微地震监测技术的原理和处理流程,分析了微地震监测技术在非常规油气储层压裂改造过程中的具体作用,实例应用表明,微地震监测技术在大型水平井多级压裂过程中发挥了非常重要的指导作用.【期刊名称】《石油地质与工程》【年(卷),期】2016(030)001【总页数】4页(P142-145)【关键词】微地震监测;非常规储层改造;压裂评价【作者】刘博;梁雪莉;容娇君;郭晓中;衡峰【作者单位】中国石油集团东方地球物理勘探有限责任公司新兴物探开发处,河北涿州072750;中国石油集团东方地球物理勘探有限责任公司新兴物探开发处,河北涿州072750;中国石油集团东方地球物理勘探有限责任公司新兴物探开发处,河北涿州072750;中国石油集团东方地球物理勘探有限责任公司新兴物探开发处,河北涿州072750;中国石油集团东方地球物理勘探有限责任公司新兴物探开发处,河北涿州072750【正文语种】中文【中图分类】TE348国内外非常规油气勘探开发实践证明,大规模、大容量的水力压裂是实现非常规储层有效开采的核心技术手段。

与国外的海相致密油气勘探开发相似,我国的几个重点陆相致密油勘探开发示范区多采用水平井钻探、多级大容量水力压裂方法改造致密油储层,以求获得较高的商业性致密油产能[1]。

目前,一口陆相致密油水平探井或开发井的大规模水力压裂改造,其成本占全井的50%左右,但如此昂贵的储层改造依然存在改造效果不佳乃至无效的经济风险。

因此,有效监测和评估非常规储层压裂改造效果非常重要。

微地震监测是近几年发展起来的压裂监测的关键技术,它可以实时从井中(或地面)监测非常规储层油气压裂改造过程,评估压裂效果,为优化压裂参数和改善压裂效果提供重要信息。

非常规储层压裂改造过程,既是致密储层(围岩)裂缝和裂缝网络的形成发展过程,也是由于致密储层破裂而产生的一系列人为微地震事件的过程,而且这一系列微地震事件具有能量微小、以体波为主、地震信号主频较高等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调、堵、压
• 该井监测深度2285.9米,于2005年5月17 日监测,监测了调、堵、压全过程,包括 调剖前、调剖过程、调剖后压裂。调剖 后压裂、监测二次。四次监测采用同一 监测台站坐标(表2)
表2. CHAO61-Y127井监测台站坐标
图4. CHAO61-Y127井调、堵、压监测结果
调、堵、压
表3.朝61-杨127井四次监测的成果表
2.4变压注水监测
• • 我们在江苏油田陈3-45井进行了变压注 水监测,该次监测持续2小时44分,划分 为三个不同的压力时段。不同压力时段 的微地震分布及反映的裂缝走向也明显 不同。
图5.陈3-45井不同压力时段注水前缘监测结果
图6. 低压(9.3Mpa)时段监测出的微地震分布及 裂缝走向(重启动)
变压注水
• 从图5、图6可以看出,压力变化幅度较大的情 况下,随着压力降低,裂缝变得简单,低压力下, 仅有北东东向一条裂缝出现;高压力下,有二 条裂缝,不同于低压下的裂缝走向的另一条裂 缝对应着较高的注水压力。图5中,从左至右 分别是高压(13.2 Mpa)、中压(10.8Mpa)、低 压(9.3Mpa)时段监测出的微地震分布及裂缝走 向。图6中是再启动重新在低压(9.3Mpa)下的测 试结果。我们把测试结果汇总在表4中:
2.典型应用及实例
• 我们在油田多个生产领域中,应用该技 术,取得令人满意的结果。
• 2.1地震监测技术在井网布置与调整中的应用 2.2微地震监测技术在油田压裂转向中的应用 • 2.3微地震监测技术在油田调、堵、压中的应用 • 2.4变压注水监测
2.1地震监测技术在井网布置与调整中的应用
• 2003年3月9日,在吐哈油田,监测了S3-231 井的人工压裂过程,监测给出人工裂缝方向(图 1)。图1中,红色井位为油井,蓝色井位为水井。 该井 压 裂层 位 :Q1 (3+4 ) , 深度 2911.002935.20m,压裂前日产液5m3 ,含水80%。根 据原始地应力资料,该区域最大主应力方向为 北西38-50度,因此压裂该井,希望裂缝延伸到 理想的方向来改善井网注采。压裂以后,S3231井水淹,含水高达99%。根据人工裂缝监测 成果,判断水来自S4-24井。在对S4-24井进行 水控以后,S3-231井日产液28m3 ,含水降为 75%,日增油6 m3。
朝46-126井
• 从图3可以看出,二次压裂,人工裂缝方位 有近20度的变化,为北东49.0度和北东 71.3度;仔细观测图3,可以看出,第二次 压裂,东翼近井人工裂缝近东西向,东西 向裂缝长度近50米,然后左旋转向第一 次压裂裂缝的方向,出现明显的典型裂缝 转向过程。
朝46-126井
• 从图3还可以看出,把二次观测的微地震点迭合 在一起, 第二次检测结果相对第一次观测结果, 不仅东翼初裂缝不重合,转向后的裂缝也不重 合,后者有明显的裂缝转向过程,转向后的裂 缝与第一次压裂形成的裂缝走向大体一致。二 者的裂缝高度差近2米。该机制表明,压裂形成 同一因素控制下的新裂缝,如果与原来的裂缝 夹角较大,裂缝在延伸过程中将转回原来的延 伸方向,但并不一定和原来的裂缝重合,这可 能是转向压裂可以增产的原因。
朝46-126井
• 图3是朝46-126井的压裂转向观测结果。 图3中,左侧的图是第一次压裂的微地震 监测结果;中间的图是第二次压裂的微地 震监测结果; 右侧的图是两次压裂的迭 加图,第一次压裂获得的微地震点用红色 表示,第二次压裂获得的微地震点用兰色 表示。
图3.朝46-126井第一层两次压裂裂缝走向迭加图
新裂缝延伸机制分析
• 延伸必然受到原地应力场的影响与控制,其控 制强度可以写为[4]: • sin(ψ )≤(σ 1-σ 2)sin(2φ )/PU (4) • 式(4)中,PU、σ 1、σ 2分别是裂缝中的有效 压裂压力、裂缝面上的最大、最小有效水平主 应力;ψ 是开裂角,是开裂方向与裂缝面的夹 角, φ 是裂缝面与最大水平主应力方向的夹角。 可以看出,差异应力越大,应力对裂缝延伸过 程的控制力越强。 φ 角小,则开裂角也小。


• 在吐哈油田,S3-231井压裂后出现暴性水淹, 含水由压前的80%升至99%,依据监测结果,判 断该井人工裂缝方位与以往应力场研究预计的 裂缝方位不同,指向邻近水井S4-24。对S4-24 井采取控水措施后,含水降至75%,日增油6m3 。 • 在大庆油田采油十厂监测了3口井、5层的压裂 转向,依据监测结果,判断有2口井、4层转向 明显,1口井、1层转向不明显。判断转向不明 显的井恰好是油田加堵剂偏少,效益偏差的井。 监测结果是可信的。
• 图4中,朝61-杨127-1是调、堵措施前监测结果, 朝61-杨127-2是调、堵过程中的监测结果,朝 61-杨127-3是调、堵后压裂的结果,朝61-杨 127-4是调、堵后再压裂的结果。可以看出, 朝61-杨127井措施前,监测得到的优势液流方 向为北东、北西向, 北东向显著程度稍强。调、 堵时,调、堵液的的流动方向与措施前监测得 到的一个液流方向大体相同,优势方向沿北西 向。调、堵后压裂,人工裂缝方向不沿调、堵 液的优势流动方向,而是沿北东向,调、堵措 施见到成效。
调、堵、压
• 由图4可以清楚的看到四次监测结果的差 别及调、堵效果。调、堵后二次压裂的 人工裂缝方向均为北东东向,彼此之间相 差仅1度。表3列出了四次监测的成果表。 • 监测表明:本次调、堵是成功的,人工裂 缝方向与调、堵液的流向不沿一个方向, 调、堵是起作用的。
调、堵、压
• 从监测中,我们发现:如果调、堵成功, 人工 裂缝方向与调、堵液的流向应该不沿一个方向; 调、堵液的流向不一定沿最大水平主应力方向; 调、堵后再压裂,人工裂缝方向也不一定沿最 大水平主应力方向; 人工裂缝方向与调、堵 液的流向间差别越显著, 调、堵、压效果越好; 用微地震方法监测调、堵、压过程是可行的, 可以提供一个更科学的检查调、堵、压效果的 手段。
理论依据
• (1)式左侧不小于右侧时发生微地震。式 中,τ是作用在裂缝面上的剪切应力;τ0 是岩 石的固有无法向应力抗剪断强度,数值由几兆 帕到几十兆帕,沿已有裂缝面错断,数值为零; S1,S2 分别是最大,最小主应力;P0是地层压 力;φ是最大主应力与裂缝面法向的夹角。由 式(1)可以看出,微震易于沿已有裂缝面发 生。 这时τ0为零,左侧易于不小于右侧。P0增 大,右侧减小,也会使右侧小于左侧。这为我 们观测注水,压裂裂缝提供了依据。
1.2监测技术
• 监测使用自行研制的微地震实时监 测系统,该系统地面6分站,无线传输,主站 记录,实时分析、显示。监测依据微地震 震源特征,地震波传播理论和微地震信号 识别理论,用监测得到的微地震点的空 间分布及其三视图描述人工裂缝轮廓, 实时给出人工裂缝监测结果。
1.3信号识别
• 信号识别是本项技术可行的关键,我们采 用了13个判别标准:幅度谱,频率谱,信号段 的频谱分布,包络前递增及后递减特征,包络 的拐点特征, 导波的上述特征及各路信号的互 相关特征等13个特征,编制了计算机自学习软 件,根据上述13个标准,依据以往近千口井的 监测数据,训练得出信号识别判据。近5年的野 外监测经验表明,这些判据是可信的,监测有 很好的重复性,且在很多可验证的监测中,监 测结果得到验证。
图2. 朝75-105井第二层两次压裂裂缝走向迭加图
朝75-105井

从图2可以看出,把二次观测的微地震点迭 合在一起,第二次检测结果相对第一次观测结 果有可以看出的左旋趋势。仔细观测图2,二者 在细节上有很多相似之处,是同一控制条件下 的裂缝转向;这表明,该层的二次压裂出现了可 以观测得到的人工裂缝转向,由于转向角度很 小,约束转回原来的方向的力也很小,新裂缝保 持直线延伸。该层第一次压裂的的井口峰值压 力是26兆帕,排量2方/分;第二次压裂的的井口 峰值压力是39兆帕,排量2.5方/分。
微地震监测技术 在低渗透油田生产开发中的最新应用
石油勘探开发科学研究院 中原油田采油工程技术研究院
目录
• • • • 摘 要 1.理论与技术 2.典型应用及实例 3.技术可靠性检验 参考文献
• 4.微地震监测技术在人工裂缝监测中的应用前 景及展望


• 微地震监测技术是计算机及信号识别技术高度 发展的产物。国内外很多科研机构、生产服务 单位应用这一技术服务于油田生产,并取得重 要成就。我们发展、并应用该技术于国内油田 的生产、开发,仅在近3年,就监测了近500口 井。在油田井网调整,压裂裂缝转向,油田调、 堵、压施工中发挥了不可替代的作用,提高了 施工的科学性,为油田增产、增效作出贡献。
图1.S3-231井人工裂缝方向及邻井
2.2微地震监测技术在油田压裂转向中的应用
2.2.1压裂转向监测实例 2.2.2 新裂缝延伸机制分析
朝75-105井
• 图2是大庆油田朝75-105井的压裂转向观测结 果。 • 二次压裂,人工裂缝方位发生了近2度的变化, 为北西87.8度和北西89.7度;裂缝的高度差别 也很大,近6米。图2中,左侧的图是第一次压 裂的微地震监测结果;中间的图是第二次压裂 的微地震监测结果; 右侧的图是两次压裂的迭 加图,第一次压裂获得的微地震点用红色表示, 第二次压裂获得的微地震点用兰色表示。
新裂缝延伸机制分析
• 这里: T是井壁形成新裂缝处的岩石抗张强 度;T , 是最大水平主应力方向处的岩石抗张强 度。由(3)式可以看出,新裂缝偏离最大水 平主应力方向的最大角度Δ φ 与测点的差异应 力负相关,差异应力越大,(3)式右侧第二式 的值越小,(3)式右侧的值越接近1,偏差角度也 小。如果差异应力很小,新老裂缝的夹角就可 能很大。大庆油田油层相对较浅,水平差异应 力较小,有利于压裂转向技术的应用。
朝46-126井
• 该层第一次压裂的的井口峰值压力是22 兆帕,排量2.0方/分;第二次压裂的的井 口峰值压力是32兆帕,排量2.8方/分,压 力升高10兆帕。
2.2.2 新裂缝延伸机制分析
相关文档
最新文档