轴结构设计.

合集下载

轴的结构设计

轴的结构设计

a)截面尺寸变化处 的应力集中
b)过盈配合处的应力集中
c)小孔处的应力集中
减小应力集中的措施: 1)用圆角过渡; 2)尽量避免在轴上开横孔、切口或凹槽; 3)重要结构可增加卸载槽B、过渡肩环、凹切圆角、
增大圆角半径。也可以减小过盈配合处的局部应力。
B d/4 B
30˚ r
d
卸载槽
过渡肩环
凹切圆角
4)避免相邻轴径相差太大;
① ② ③
⑧ ⑩ ⑥ ⑤ ③ ⑦
⑧ ⑩



① 轴承端盖与箱体间无调整垫片;② 键顶部与键槽顶部接触;③ 两键槽不在 轴的同一母线上;④ 端盖孔与轴径间无间隙; ⑤ 多键槽;⑥ 轴的长度等于 轮毂长度;⑦ 无定位轴肩;⑧ 轴承未相对安装;⑨ 轴颈长度与端盖相接触; ⑩ 无挡油环。
三、轴的强度计算
轴上零件的定位和固定 加工和装配的工艺性 提高轴强度的结构措施
轴的结构设计
轴的强度计算 轴的刚度计算
有特殊要求时
轴的稳定性计算
二、轴的结构设计
1. 轴的结构设计原则
(1) 满足强度、刚度、防振的要求,并通过 结构设计提高这些方面的性能 (2) 保证轴上零件定位且固定可靠 (3) 便于轴上零件装拆和调整 (4) 轴的加工工艺性好
尽量统一。
二)轴上零件装配工艺性要求 1.轴的配合直径应圆整为标准值。 2.轴端应有cX45º的倒角。 3.与零件过盈配合的轴端应加工出导向锥面。
°
°
a)倒角
b)导向锥面
4.装配段不宜过长。
六、提高轴强度和刚度的措施 1.减小应力集中 合金钢对应力集中比较敏感,应加以注意。 a)截面尺寸变化处的应力集中 轴的应力集中 b)过盈配合处的应力集中 发生的位置 c)小孔处的应力集中

轴的结构设计要点

轴的结构设计要点

轴的结构设计要点学习轴的结构设计这么久,今天来说说关键要点。

首先呢,我理解轴的结构设计要考虑它承受的载荷类型。

就像是咱们盖房子,如果是盖那种小平房,可能屋顶的重量对于墙的压力就比较小,比较好设计;但要是盖高楼大厦,就要考虑承受很重的重量、风力等等。

对于轴来说,如果是只受扭矩的轴,像汽车里光负责传递动力的那部分轴,设计就相对简单些。

可要是个既受弯矩又受扭矩的轴,比如车床的主轴,那就复杂多啦。

轴的材料选择很重要。

我总结了一下,要综合考虑强度、韧性和成本这些因素。

你比如说,45号钢比较常用,强度还行,价格也比较亲民;要是要求特别高的强度又不差钱,那就可以选择合金钢。

我之前就很困惑,为啥不能都用便宜的材料呢?后来才明白,不同的使用环境对轴的要求不一样。

要是在一些高负荷、高精度的设备里头,便宜材料可能满足不了要求,容易出问题呀。

还有啊,轴的直径设计是个要点。

这可不能瞎定,得根据它承担的力量来算。

对了,计算这个力的时候一定要准确,我以前就忽略了一些小部分的力,结果算出来的直径就不对,还好后来发现了。

这就好比咱们估算买东西的钱,还差个零头没算进去,咋算都对不上账。

确定轴的直径,有很多公式可以用,这个在机械设计手册上都能查到,那可是个好东西,里面有很多详细的例子。

轴上键槽的设计也不能小看。

键槽是用来连接其他零件的,它的尺寸、位置能影响到整个轴系的传动性能。

我理解键槽要是开得不合适,就像鞋不合脚,跑起来肯定不舒服。

比如说,键槽开太深了,可能会削弱轴的强度;要是位置偏了,和配合的零件就难以正确装配。

再说轴颈的设计吧,这部分跟轴承配合。

它的表面粗糙度、尺寸公差都得考虑好。

我就想啊,这就跟找对象一样讲究配对,要是轴颈的尺寸公差、表面质量不符合轴承的要求,那可就没法好好配合工作了。

在轴的结构设计里,还得考虑会不会发生共振。

要是轴转起来像个发疯的振动器一样全场都抖,那设备肯定要废了。

为了避免这个,就要计算轴的临界转速,不能让工作转速太接近临界转速。

轴的结构设计

轴的结构设计

机械设计基础
Machine Design Foundation
轴的结构设计
4 轴的结构工艺性 轴的结构工艺性是指所轴的结构形式应便于加工和
装配轴上的零件,并且生产率高,成本低。为了使轴的 工艺性好,轴的结构设计应注意以下几个问题。
(1) 为便于零件的装拆,轴端应有45°的倒角,零件装 拆时所经过的各段轴径都要小于零件的孔径;
(2) 轴肩或轴环定位时,其高度必须小于轴承内圈端 部的厚度; (3) 用套筒、圆螺母、轴端挡圈作轴向定位时,一般 装配零件的轴头长度应比零件的轮毂长度短2~3mm, 以确保套筒、螺母或轴端挡圈能靠紧零件端面;
机械设计基础
Machine Design Foundation
轴的结构设计
(4) 轴上的圆角、倒角和退刀槽应尽可能取相同尺寸, 以减少刀具数量和换刀时间。为了减少轴的装夹次数, 轴上有两个以上键槽时,应尽可能布置在同一条母线上; (5) 轴上磨削的轴段和车制螺纹的轴段,应分别留有螺 纹退刀槽和砂轮越程槽;且后轴段的直径小于轴颈处的 直径,来减少应力集中,提高疲劳强度; (6) 装配段不宜太长。
机械设计基础
Machine Design Foundation
轴的结构设计
2) 轴段长度的确定 (1) 在安装齿轮时为了使齿轮固定可靠,应使齿轮轮毂 宽度大于与之相配合的轴段长度,一般两者的差取2~ 3 mm。 (2) 装滚动轴承处的轴长,查手册按轴承宽度来确定。 (3) 轴上回转零件与其他零件之间的轴向距离推荐:两 回转件间的距离取10~20 mm;回转件与内壁之距离取 10~20 mm;轴承端面至箱体内壁之距离为当减速器齿轮 圆周速度v>2 m/s时,轴承采用油液飞溅润滑,取5~ 10 mm;当减速器齿轮圆周速度v<2 m/s时,轴承采用油 脂润滑,还需加挡油环,防止油脂被稀释,取10~15mm; 外伸件距箱体轴承盖的距离,考虑应留有螺钉装拆及扳 手空间位置,取20~35mm。

轴的结构设计

轴的结构设计
图1-9 阶梯轴结构示例
轴的结构设计
• 1.2 轴的结构设计
轴的结构设计就是确定轴的外型和全部结构尺寸。影响轴结构的因 素很多,设计时应对不同情况进行具体分析。对一般轴结构设计的基 本要求是:
1.便于轴上零件的装配
2.保证轴上零件的准确定位和可靠固定 3. 轴的加工和装配工艺性好 4.减少应力集中,改善轴的受力情况
轴的结构设计
• 1.2 轴的结构设计
1.便于轴上零件的装配 为便于轴上零件的装拆,将轴做成阶梯轴。对于剖分式箱体,轴的
直径由中间向两端逐渐变小。如图1-9所示,首先将平键装在轴上,再 从左端依次装入齿轮、套筒、左端轴承,从右端装入右端轴承,然后 将轴置于箱体的轴承孔内,装上左、右轴承端盖,再从左端装入平键、 带轮。
采用定位套筒代替圆螺母和弹性挡圈使零件轴向固定,可避免在轴上 制出螺纹、环形槽等,能有效地提高轴的疲劳强度。
轴的表面质量对轴的疲劳强度影响很大。因轴工作时,最大应力发生 在轴的表面处,另一方面,由于加工等原因,轴表面易产生微小裂纹, 引起应力集中,因此轴的破坏常从表面开始。减小轴的表面粗糙度,或 采用渗碳,高频淬火等方式进行表面强化处理,均可以显著提高轴的疲 劳强度。
②套筒和圆螺母 当轴上零件距离较近时用套筒作相对固定,可简化轴 的结构,减少轴径的变化,减少轴的应力集中,如图1-9所示。
当套筒太长时,可采用圆螺母作轴向固定。此时须在轴上加工螺纹, 将会引起较大的应力集中,轴段横截面面积减小,影响轴的疲劳寿命, 如图1-11所示。
轴的结构设计
图1-10 轴肩
图1-11 圆螺母定位
d=(0.8~1.2)D; 各级低速轴段直径可按同级齿轮的中心距a估算,
d=(0.3~0.4)a。

轴的结构设计课件

轴的结构设计课件

球墨铸铁容易获得复杂的形状,而且吸振性好,对应 力集中敏感性低,适用于制造外形复杂的轴,如曲轴和凸 轮轴等。
轴的结构设计
27
五、轴的设计
类比法
根据轴的工作条件,选择与其相似的轴进行类比及结 构设计,画出轴的零件图。
设计计算法
开始设计轴时,通常还不知道轴上零件的位置及支点情 况,无法确定轴的受力情况,只有待轴的结构设计基本完 成后,才能对轴进行受力分析及强度计算。因此,一般在 进行轴的结构设计前先按纯扭转受力情况对轴的直径进行 估算。然后进行轴的结构设计后,再按弯扭合成的理论进 行轴危险截面的强度校核。
强度不够,则必须重新修改轴的结构。 (5)绘制轴的零件工作图
轴的结构设计
29
六、轴毂联接
轴毂联接主要是用来实现轴和轮毂之间的周向固定并 用来传递运动和扭矩,有些可承受少量轴向力。
轴毂连接
键连接 花键连接
松键连接 紧键连接
过盈配合连接
销连接
平键连接 半圆键连接
楔键连接 切向键连接
轴的结构设计
30
(一)键联接
1.轴上零件的轴向定位与固定 常用的轴向固定方法有:轴肩(轴环)、圆螺母(止
动片)、套筒、弹性挡圈、紧定螺钉、轴端挡圈定位等。
轴的结构设计
12
轴肩(轴环)
特点:结构简单,定位可靠 ,可承受较大的轴向力 应用:齿轮、带轮、联轴器、 轴承等的轴向定位
轴的结构设计
13
圆螺母
特点:定位可靠,装拆方便,可承受较大的轴向力 由于切制螺纹使轴的疲劳强度下降
轴的结构设计
17
2.轴上零件的周向固定
为了传递运动和转矩,防止轴上零件与轴作相对转动, 轴和轴上零件必须可靠地沿周向固定(连接)。常用的周 向固定方法有:销、键、花键、过盈配合和成形联接等, 其中以键和花键联接应用最广。

举例说明轴结构设计的要点

举例说明轴结构设计的要点

举例说明轴结构设计的要点一、介绍轴结构设计的背景和意义轴是机械传动中的重要部件,其结构设计直接影响到机械性能和使用寿命。

因此,轴结构设计是机械设计中非常重要的一个环节。

合理的轴结构设计可以提高机械设备的工作效率和使用寿命,降低维修成本和故障率。

二、轴结构设计的要点1. 轴的材料选择轴的材料应该具有良好的力学性能、耐磨性和耐腐蚀性。

常用的轴材料有碳素钢、合金钢、不锈钢等。

在选择材料时,还需要考虑到生产成本和可靠性等因素。

2. 轴径和长度确定轴径和长度是根据承载力、转速、工作条件等因素来确定的。

一般来说,轴径越大,承载能力越强,但也会增加制造成本;而轴长度则需要根据具体情况进行合理设置。

3. 轴承选型与布局在进行轴结构设计时,需要根据承载能力及转速等因素来选择合适的轴承类型,并进行合理布局。

同时还需要注意保证轴承的润滑和散热条件。

4. 轴的表面处理轴的表面处理对于其使用寿命和性能有着重要的影响。

常用的表面处理方法包括镀铬、氮化、热处理等。

选择合适的表面处理方法可以提高轴的耐磨性和耐腐蚀性。

5. 轴尺寸公差控制在进行轴结构设计时,需要根据实际情况合理设置轴尺寸公差,以保证轴件之间的配合精度。

过大或过小的公差都会影响到机械设备的工作效率和使用寿命。

6. 轴与其他部件配合设计在进行轴结构设计时,还需要考虑到与其他部件之间的配合关系。

例如,轴与齿轮之间需要保证精准配合,以确保传动效率和稳定性。

三、举例说明以汽车发动机曲轴为例,其结构设计要点包括:1. 材料选择:一般采用高强度铸钢或锻造钢材料。

2. 轴径和长度确定:根据发动机功率、转速等因素来确定曲轴直径和长度。

3. 轴承选型与布局:曲轴采用滚动轴承,需要合理布局以保证润滑和散热条件。

4. 轴的表面处理:曲轴表面经过淬火、磨削等处理,以提高其耐磨性和耐腐蚀性。

5. 轴尺寸公差控制:曲轴尺寸公差需要控制在合理范围内,以确保与其他部件的精准配合。

6. 轴与其他部件配合设计:曲轴与连杆、齿轮等部件之间需要进行精准配合设计,以确保发动机传动效率和稳定性。

轴的结构设计

轴的结构设计

轴的结构设计
轴的结构设计是指在机械设备中使用的轴的形状、尺寸、材料、加工工艺等方面的设计。

轴是一种常见的机械零件,用于传递旋转运动和承受力矩。

在轴的结构设计中,需要考虑以下几个方面:
1. 轴的形状和尺寸:根据传递的力矩和转速要求,确定轴的直径、长度、几何形状等。

轴的形状可以是圆柱形、圆锥形、轮廓复杂的曲线形等。

2. 轴的材料:选择合适的材料,以满足轴的强度、刚度和耐磨性等要求。

常用的轴材料有结构钢、合金钢、不锈钢等。

3. 轴的加工工艺:确定轴的加工工艺,包括车削、磨削、冷挤压等。

根据轴的尺寸和形状,选择合适的加工方法,以保证轴的精度和表面质量。

4. 轴的键槽和轴承座设计:考虑轴与其他部件的连接方式和承载情况,设计合适的键槽形状和尺寸,以及轴承座的布局和结构。

5. 轴的表面处理:根据使用环境和要求,对轴进行表面处理,如镀铬、钝化、渗碳等,以提高轴的耐磨性和防腐蚀性。

总之,轴的结构设计需要兼顾轴的强度、刚度、耐磨性、轴与
其他部件的连接方式等方面的要求,以保证轴在工作过程中的可靠性和寿命。

机械设计-轴的结构设计

机械设计-轴的结构设计
b
D h
d D
h C d
r为过渡圆角 R为圆角
C 零件倒角
应使: r < R < h 或 r <C < h
要求轴肩零件的定位与固定
1、轴向定位和固定
2)套筒
(简单可靠、常用于近距离,且承受轴向力大) 多用于转速不高的场合。
轴的结构设计
3 轴上零件的定位与固定
轴的结构设计
1 基本要求 2 轴的结构和轴上零部件 3 轴上零件的定位与固定 4 轴的直径和长度确定 5 轴的结构工艺性 6 提高轴强度的措施
CONTENTS
目 录
轴的结构设计
1 基本要求 ①轴和轴上零件要有准确、牢固的工作位置; ②轴上零件装拆、调整方便; ③轴应具有良好的制造工艺性等; ④尽量避免应力集中。
1、各轴段直径确定 1) 按应力估算轴段直径d min 。 2) 按轴上零件安装、定位要求确定各段轴径,经验值 3~5 1~2
d1 d2 d3 d4 d5 d6 d
7
轴的结构设计
4 轴的直径和长度的确定
2、各轴段长度
①各轴段与其上相配合零件宽度相对应; ②转动零件与静止零件之间必须有一定的间隙。
轴的结构设计
轴的结构应便于加工、装配、拆卸、测量和维修等。 5)同一轴上键槽位于圆柱同一母线上,尺寸尽量相同。
轴的结构设计
6 提高轴强度的措施
1、合理布置轴上零件以减少轴的载荷
MB
MC
MA
MD
MB
MC
B
C
A
T
700N.mm
D
B
C
T
B
C
A
Dx B
C
MD
MA

轴的结构设计

轴的结构设计

轴的设计1.轴的功用1)支撑回转零件2)传递运动和转矩。

2.轴设计时要解决的问题1)结构问题,确定轴的形状和尺寸;2)强度问题,防止轴发生疲劳断裂;3)刚度问题,防止轴发生过大的弹性变形;4)振动稳定性问题,防止轴发生共振。

3.轴结构应满足的要求1)加工工艺性好;2)便于轴上零件装拆;3)轴上零件要有准确的定位;4)轴上零件要有可靠的固定。

4.轴上零件的轴向定位和固定1)轴肩或轴环定位轴肩:h=(0.07~0.1)d>R或C;非定位轴肩:h=1~2 mm,作用是便于轴上零件的装拆;轴环宽度一般取:b =1.4 h;滚动轴承的定位轴肩或轴环高度-查标准;2)套筒对轴上零件起固定作用,常用于近距离的两个零件间的固定。

3)圆螺母用于轴上两零件距离较远时,或轴端。

需切制螺纹,削弱了轴的强度。

4)弹性挡圈需切环槽,削弱了轴的强度。

承受不大的轴向力。

5)轴端挡圈用于固定轴端零件,能承受较大的轴向力。

常配合锥面使用。

5.轴上零件的周向固定防止轴上零件与轴发生相对转动,以传递转矩。

常用的周向固定方法:平键、花键、紧定螺钉。

6.轴的强度计算1)按扭转强度计算式中,系数C 与轴的材料和承载情况有关,查表。

弯矩相对转矩较小或只受转矩时,C 取小值;弯矩较大时,C 取大值;扭转强度公式一般用来初算轴的直径,计算出的d 作为受扭段的最小直径d min;若该轴段有一个键槽,d 值增大5% ,有两个键槽,增大10%。

2)按弯扭合成强度计算由于σb 与τ的循环特征可能不同,需引进校正系数α将τ折合成对称循环变应力。

式中,M e为当量弯矩。

7.轴的设计步骤1)根据功率P 和转速n ,用扭转强度公式初算受扭段的最小直径d min;2)根据初算轴径,进行轴的结构设计;3)按弯扭合成强度校核轴的危险截面(N则返回步骤2);4)将d min 圆整成标准直径。

轴系的结构设计

轴系的结构设计

四、轴上零件的周向定位
运转时,为了传递转矩或避免与轴发生相对转动, 零件在轴上必须周向固定。
轴上零件的周向定位方法主要有键联接(平键、 半圆键、楔键等)、花键联接、弹性环联接、过 盈配合联接、销联接、成型联接等等。
a)平键
制造简单、装拆方便。用 于传递转矩较大,对中性 要求一般的场合
b)花键
锥顶重合于轴承回转 轴线
七、轴的结构工艺性
1、关于轴的形状:阶梯轴
• 由于阶梯轴接近于等强度,而且便于加工和轴 上零件的定位和拆装,所以实际上的轴多为阶 梯形.
2、关于轴的有关尺寸
➢ 为了能选用合适的圆钢和减少切削用量,阶梯轴 各轴段的直径不宜相差过大,一般取为5~10MM。
➢ 为了便于切削加工,一根轴上的圆角应尽可能取 相同的半径;
轴系结构的设计
第一节 轴 一、轴的功用和分类
1、功用:支承其他回转件,承受转矩与弯矩, 并传递运动和动力。
2.轴的分类
1)按所受载荷特点分三种: 心轴: 只承受弯矩;如 传动轴:只承受转矩;如 转轴:同时承受弯矩和转矩;如
2)按轴的结构形状分:
直轴,曲轴; 光轴,阶梯轴; 空心轴,实心轴; 刚性轴,挠性轴。
3、用带螺纹的端盖调整;
4、用圆螺母调整轴承内圈调整游隙。
预紧的定义:
对某些可调游隙的轴承,为提高旋转精度和 刚度,常在安装时施加一定的轴向作用力(预紧 力)消除轴承游隙,并使内、外圈和滚动体接触 处产生微小弹性变形。
预紧的方法有:
一般采用移动轴承套圈的方法;对一些支承 的轴承组合,还可用金属垫片或磨窄外圈等方法 获得预紧。
内圈滚道、滚子和外圈滚道这三个圆锥面的锥顶必须重合于轴承回 转轴线上——说着玩的!

《轴的结构设计》课件

《轴的结构设计》课件
轴承润滑:根据轴的工作环境、温度、载荷等因素选择合适的轴承润滑方式,如油润滑、脂 润滑、固体润滑等。
根据轴的用途和受力情况,确定轴的直径和长度 考虑轴的强度、刚度和耐磨性等因素,选择合适的材料和热处理工艺 计算轴的临界转速,避免共振现象 设计轴的键槽、螺纹等结构,保证轴的装配和拆卸方便
轴肩固定:轴肩与轴承外圈配合,轴肩与轴承内圈配合 轴套固定:轴套与轴承外圈配合,轴套与轴承内圈配合 轴肩轴套固定:轴肩与轴承外圈配合,轴套与轴承内圈配合 轴肩轴套轴端固定:轴肩与轴承外圈配合,轴套与轴承内圈配合,轴端与轴承外圈配合
,
汇报人:
01
02
03
04
05
06
轴头:轴的端部,用于安装轴承或 其他零件
轴肩:轴颈与轴头之间的过渡部分, 用于固定轴承
添加标题
添加标题
添加标题
添加标题
轴颈:轴的圆柱形部分,用于支撑 和传递扭矩
轴端:轴的末端,用于安装其他零 件或连接其他部件
轴身是轴的主要组 成部分,通常由钢、 铝或其他金属材料 制成
汇报人:
确定轴承的类型: 球轴承、滚子轴承、 滑动轴承等
确定轴承的尺寸: 根据轴的直径和长 度选择合适的轴承 尺寸
确定轴承的数量: 根据轴的载荷和转 速选择合适的轴承 数量
确定轴承的安装方 式:轴向固定、径 向固定、轴向和径 向固定等
固定端:轴的一 端固定在支撑件 上,提供轴的稳
定性和刚度
游动端:轴的另 一端可以自由移 动,提供轴的灵
材料特性:高强 度、高硬度、耐 磨损、耐腐蚀
应用领域:广泛应 用于机械、汽车、 航空、航天等领域
热处理:淬火、 回火、正火等热 处理工艺
合金元素:铬、镍、 钼、钒等元素,提 高材料的性能和稳 定性

轴结构设计的基本要求

轴结构设计的基本要求

轴结构设计的基本要求
轴结构设计是指在机械设备中,对于轴的使用和设计方法的总称。

对于轴的结构设计,有以下几个基本要求。

1.强度要求:轴的强度是设计的一个重要方面,需要考虑到承受
的载荷和力矩等因素,才能确定合适的材料和尺寸。

2.刚度要求:轴的刚度直接影响到机械设备的工作性能,刚度越大,失配的可能性就越小,精度也越高。

3.稳定性要求:轴的稳定性就是指轴能够承受震动、突然负载等
外界因素的影响,不会发生任何的变形或破裂现象。

4.平衡要求:轴在使用过程中,如果出现了不平衡现象,就会使
得机械设备的工作出现问题。

因此,设计时需要考虑轴的平衡性。

5.装配配合要求:轴与相邻零件的配合是设计的重要方面,使得
机械设备能够保持稳定和精确的运行。

6.可靠性要求:轴结构设计需要考虑到耐久性、使用寿命、维护
保养等诸多方面,以最大程度地保证设备的可靠性和持久性。

综上所述,轴结构设计的基本要求是强度、刚度、稳定性、平衡、装配配合和可靠性。

只有在满足这些基本要求的基础上,才能有效地
提高机械设备的工作性能。

轴结构设计的基本要求

轴结构设计的基本要求

轴结构设计的基本要求一、概述轴结构设计是工程设计中的一个重要环节,涉及到建筑、机械、航空等领域。

良好的轴结构设计可以提高工程的稳定性、安全性和可靠性,对于工程的整体性能有着至关重要的影响。

本文将从基本要求、设计流程、典型问题以及优化方法等方面,对轴结构设计进行全面、详细、完整且深入地探讨。

二、基本要求轴结构设计的基本要求主要包括以下几个方面:1.强度与刚度轴结构需要具备足够的强度和刚度,以承受外部荷载和自重,同时保证结构的变形在允许范围内。

在设计过程中,需要根据具体的工况和要求,合理选取材料、截面形状和尺寸,并进行强度和刚度的计算和验证。

2.稳定性轴结构设计要考虑结构的稳定性,即在受到外部荷载作用时,能够保持结构的平衡和稳定。

对于长、细比较大的轴结构,常常需要进行稳定性分析,避免产生屈曲失稳。

3.耐久性轴结构设计还要考虑结构的耐久性,包括抗氧化、抗腐蚀、抗疲劳等方面。

对于暴露在恶劣环境中的轴结构,要选择具有良好耐久性的材料,并进行相应的表面处理和防护措施。

4.可维护性轴结构的设计要考虑到结构的可维护性,即方便对结构进行检修和维护。

在设计过程中,要合理安排构件和连接方式,尽可能减少维护工作的难度和成本。

5.经济性轴结构设计要追求经济性,即在满足上述基本要求的前提下,尽可能减少材料消耗和工程造价。

要综合考虑各种因素,选择合适的设计方案,进行经济性评估和比较。

三、设计流程轴结构设计的一般流程包括以下几个步骤:1.确定设计任务和约束条件在设计之前,需要明确设计的任务和约束条件,包括结构类型、荷载要求、使用环境等。

这些信息将对后续的设计决策和计算分析起到重要的指导作用。

2.选取合适的材料根据设计任务和约束条件,选取合适的材料,考虑材料的强度、刚度、耐久性等指标,并结合实际情况进行选择。

3.确定截面形状和尺寸根据选取的材料和设计要求,计算出轴结构的截面形状和尺寸。

在进行计算时,要考虑强度、刚度、稳定性等多个因素,并进行综合比较和优化。

举例说明轴结构设计的要点

举例说明轴结构设计的要点

轴结构设计要点1. 什么是轴结构设计轴结构设计是指在建筑设计中,针对建筑物或结构的轴线进行规划和设计,以确定其中的主轴线、次轴线、平行轴线、对称轴线等。

轴结构设计不仅仅是对建筑形式进行布局,还包括对建筑物功能、空间布局和流线等方面的考虑。

2. 轴结构设计的重要性轴线是建筑设计的基础,它决定了整个建筑物的形式和内部布局。

合理的轴线设计可以使建筑物更加美观、功能布局合理,并且增强建筑的整体性和统一性。

同时,轴线还是建筑物内部空间流线的引导者,可以使人在建筑内部产生直观、连贯的空间感。

3. 轴结构设计的要点3.1 主轴线的确定主轴线是建筑物整体形式和布局的基础,一般沿建筑物的最主要的线性方向进行布置。

确定主轴线时,需要考虑建筑物的用途、功能需求、场地条件等因素,并且要与周围环境和背景相协调。

3.2 次轴线和平行轴线的确定除了主轴线外,还可以通过次轴线和平行轴线来丰富建筑的形式和空间布局。

次轴线可以是相对主轴线垂直或与之成角的线,平行轴线可以沿主轴线的方向延伸。

次轴线和平行轴线的设置要考虑建筑物的功能和空间需求,以及视觉效果的追求。

3.3 轴线的对称性轴线的对称性是轴结构设计中的重要要点之一。

对称轴线可以增强建筑物的整体性和稳定感,使建筑物更加协调。

对称轴线不仅可以体现在建筑物的平面布局上,还可以体现在立面和空间布局中。

3.4 空间流线的引导轴结构设计还要考虑建筑物内部的空间流线,即人在建筑物内部的移动路径。

合理的空间流线设计可以提高建筑物的使用效率和功能性,使人在其中感到舒适和便捷。

空间流线的引导可以通过轴线的设置和空间布局来实现。

4. 轴结构设计的案例举例4.1 欧洲古典建筑的轴线设计欧洲古典建筑中经典的轴线设计可以通过拿破仑的凯旋门来说明。

凯旋门的主轴线延伸至远处的卢浮宫,在主轴线上还设置了平行轴线和次轴线。

整个轴线系统通过对称和空间流线的引导,形成了庄严、壮观的建筑形式和布局。

4.2 现代建筑的轴线设计现代建筑中的轴线设计注重独特性和个性化。

轴的结构设计及计算

轴的结构设计及计算

轴的结构设计及计算一、轴的结构设计1.轴的外形尺寸设计轴的外形尺寸设计包括轴的直径、长度、轴颈长度、轴草图等方面。

具体设计参数受以下因素影响:(1)载荷:轴的外形尺寸应根据设计负载来确定。

载荷分为轴向负载和弯矩负载两部分。

轴向负载通过轴承来传递,而弯矩负载作用在轴的中部。

(2)材料:轴的外形尺寸受轴材料的强度和刚度限制。

根据材料的特性,考虑到轴的强度、韧性和硬度。

(3)工作条件:轴工作环境的温度、湿度、油脂润滑、振动等因素对外形尺寸的设计有影响。

例如,在高温情况下,轴的线膨胀要考虑,以保证工作正常。

2.轴的内部结构设计轴的内部结构设计包括轴承座设计、防滑设计和轴孔尺寸设计。

(1)轴承座设计:根据所选定的轴承类型和尺寸,设计轴承座结构,以确保轴与轴承之间的协调度。

轴承座结构应具有足够的强度和刚度,能够传递载荷,并保证轴与轴承之间的空隙要求。

(2)防滑设计:轴与零件之间需要使用紧固件进行连接,以避免轴在工作时滑动和脱离。

必须根据设计载荷和接口尺寸来计算紧固件的数量和规格。

(3)轴孔尺寸设计:根据零件的要求和装配要求,设计轴孔尺寸,使得轴能够与其他零件有效连接,并保证装配的质量。

二、轴的计算1.轴的强度计算轴的强度计算一般涉及以下几个方面:(1)轴的弯曲强度计算:根据所受弯矩以及轴的几何形状、材料等参数,计算轴在弯曲工况下的承载能力。

考虑轴的弯矩分布、扭转矩、振动疲劳影响等因素,进行强度计算。

(2)轴的切削强度计算:当轴上存在切削力或切削载荷时,计算轴在切削区域内的切削强度,以确保轴能够承受切削载荷,并避免刀具和轴的损坏。

(3)轴的挤压强度计算:当轴上存在压力或挤压载荷时,计算轴在压力区域内的挤压强度,以确保轴能够承受挤压载荷,并避免轴的变形或破裂。

2.轴的刚度计算轴的刚度计算是为了评估轴的变形情况,以确保设计轴的刚度足够,以满足使用要求。

在刚度计算中,可以应用刚度矩阵法和有限元法计算轴的刚度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

潘存云教授研制
潘存云教授研制
潘存云教授研制
键槽应设计成 同一加工直线
新疆大学专用 作者: 潘存云教授
三、各轴段直径和长度的确定 轴段直径大小取决于作用在轴上的载荷大小; 确定轴段直径大小的基本原则: 1. 按轴所受的扭矩估算轴径,作为轴的最小轴径dmin。 2. 有配合要求的轴段,应尽量采用标准直径。 3. 安装标准件的轴径,应满足装配尺寸要求。 4. 有配合要求的零件要便于装拆。
潘存云教授研制
新疆大学专用
作者: 潘存云教授
§15-1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 直轴 光轴 阶梯轴 按轴的形状分有: 曲轴
潘存云教授研制 潘存云教授研制
发动机
传动轴
后桥
潘存云教授研制
新疆大学专用
作者: 潘存云教授
§15-1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 按轴的形状分有:
车厢重力
潘存云教授研制
优先数----表中任意一个数值。 大于10的优先数,可将表数值分别乘以10、100、1000 。
新疆大学专用 作者: 潘存云教授
常用的与轴相配的标准件有滚动轴承、联轴器等。 配合轴段的直径 应由标准件和配合性质确定。
1) 装配轴承 与滚动轴承配合段轴径一般为5的倍数;(υ 20~385 mm) 与滑动轴承配合段轴径应采用标准直径系列轴套: … 32、35、38、40、45、48、50、55、60、65、70 ….. 2) 装配联轴器 配合段直径应符合联轴器的尺寸系列: 联轴器的孔径与长度系列
≤100 ~187
149
520
……





用。
作者: 潘存云教授

表15-1
材料牌号 热处理 毛坯直径 mm
轴的常用材料及其主要力学性能
硬度 HBS 屈服强 弯曲疲 度极限 劳极限 σ-1 σs MPa 400~420 225 170 375~390 215 590 295 255 570 285 245 640 355 275 735 540 355 685 490 335 900 735 430 785 570 370 735 590 365 685 540 345 930 785 440 835 685 410 785 590 375 抗拉强 度极限 σb 640 835 530 490 600 800 390 635 195 370 480 305 395 190 180 215 290 剪切疲 许用弯 劳极限 曲应力 [σ-1] σ-1 备 注
孔径d 30 32 35 38 40 42 45 48 50 55 65 82 60 112 84 60 63 65… 142 107
作者: 潘存云教授
长度 长系列 L 短系列
新疆大学专用
便于零件的装配,减少配合表面的擦伤的措施: 1) 在配合段轴段前应采用较小的直径; 2) 配合段前端制成锥度; 3) 配合段前后采用不同的尺寸公差。 为了便于轴上零件的拆卸,轴肩 高度不能过大。
作者: 潘存云教授
表15-2 常用材料的[τT]值和A0值
轴的材料 Q235-A3, 20
Q275, 35 1Cr18Ni9Ti
45
40Cr, 35SiMn 38SiMnMo, 3Cr13
[τT](N/mm )
15~25
20~35
25~45
35~55
A0
R5 R10 1.00
149~126
1.60 2.50
170~217 162~217 217~255 241~286 270~300 240~270 229~286 217~269 293~321 277~302 241~277 渗碳 56~62 HRC ≥ 241 ≤ 192 190~270 245~335
75
60
75
45
设计任务:使轴的各部分具有合理的形状和尺寸。 设计要求: 1.轴应便于制造,轴上零件要易于装拆;(制造安装) 2.轴和轴上零件要有准确的工作位置;(定位) 3.各零件要牢固而可靠地相对固定;(固定) 4.改善应力状况,减小应力集中。
135~112
4.00
126~103
6.30 10.00
112~97
标准直径应按优先数系选取:
1.00 1.25 1.60 2.00 2.50 3.15 4.00 5.00 6.30 8.00 10.00
R20 1.00 1.12 1.25 1.40 1.60 1.80 2.00 2.24 2.50 2.80 3.15 3.55 4.00 4.50 5.00 5.60 6.30 7.10 8.00 9.00 10.00 1.00 R40 1.90 3.55 6.70 1.06 2.00 3.75 7.10 1.12 2.12 4.00 7.50 1.18 2.24 4.25 8.00 1.25 2.36 4.50 8.50 1.32 2.50 4.75 9.00 1.40 2.65 5.00 9.50 1.50 1.60 1.70 1.80 2.80 3.00 3.15 3.35 5.30 5.60 6.00 6.30 10.00
潘存云教授研制
双向固定
新疆大学专用 作者: 潘存云教授
无法采用套筒或套筒太长时,可采用双圆螺母加以固定。 装在轴端上的零件往往采用轴端挡圈圆锥面定位。
双圆螺母
潘存云教授研制 潘存云教授研制 潘存云教授研制
轴肩的尺寸要求: r <C1 或 r < R
r h C C11 潘存云教授研制 D
轴端挡圈
b h
新疆大学专用
作者: 潘存云教授
§15-1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 本章只研究直轴 型 直轴 光轴 阶梯轴 按轴的形状分有: 曲轴
挠性钢丝轴
分类: 转轴---传递扭矩又承受弯矩。 按承受载荷分有: 类 型 按轴的形状分有:
带式运 输机
潘存云教授研制
电动机
减速器
转轴
新疆大学专用 作者: 潘存云教授
§15-1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩。 按承受载荷分有: 传动轴---只传递扭矩 类 型 按轴的形状分有:
第15章

概 述
带传动和链传动都是通过中间挠性件传递运 动和动力的,适用于两轴中心距较大的场合。 与齿轮传动相比,它们具有结构简单,成本 低廉等优点。
§15-1 §15-2 §15-3 §15-4
轴的结构设计 轴的计算 轴的设计实例
新疆大学专用
作者: 潘存云教授
一、轴的用途及分类
§15-1


功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。
轴的设计过程:
轴的承载能力验算 验算合格? Y 结束 N
新疆大学专用
作者: 潘存云教授
三、 轴的材料 种 类 碳素钢:35、45、50、Q235
为了改善力学性能
正火或调质处理。
合金钢: 20Cr、20CrMnTi、40CrNi、38CrMoAlA等
用途:碳素结构钢因具有较好的综合力学性能,应用较 多,尤其是45钢应用最广。合金钢具有较高的力学性能, 但价格较贵,多用于有特殊要求的轴。 轴的毛坯:一般用圆钢或锻件,有时也用铸钢或球墨铸铁。
图示减速器输出轴就有两种装配方案。
s
潘存云教授研制
B c L a a 潘存云教授研制
圆锥圆柱齿轮 二级减速器
新疆大学专用
作者: 潘存云教授
方案二需要一个用于轴向定位的长套筒,多了一 个零件,加工工艺复杂,且质量较大,故不如方案一 合理 。 方案一
方案二
新疆大学专用
作者: 潘存云教授
二、轴上零件的定位 定位方法:轴肩、套筒、圆螺母、挡圈、轴承端盖。 轴肩----阶梯轴上截面变化之处。起轴向定位作用。 套筒
105
140 135 155 200 185 260 210 210 195 280 270 220 160 230 115 110 185 250
40
55 60 70 75 70
用于不太重要及受 载荷不大的轴 应用最为广泛 用于载荷较大,而无 大的冲击的重要轴 用于很重要的轴 用于重要轴,性能 近于40CrNi 用于要求高耐磨性, 高强度且热处理变 形很小的轴 用于要求强度及韧 性均较高的轴 用于腐蚀条件下的轴 用于高、低温及腐 蚀条件下的轴 用于制造复杂外形 的轴 作者: 潘存云教授
如用球墨铸铁制造曲轴和凸轮轴,具有成本低廉、吸振性较好、对应力集中的敏感较低、强度较好等优点。
表15-1
材料及热处理
轴的常用材料及其主要力学性能
应用说明
毛坯直径 硬度 强度极限σb 屈服极限σs 弯曲疲劳极限σ-1 mm HBS MPa
Q235 35 正火
新疆大学专用
440
240 270
200 250
潘存云教授研制
新疆大学专用
作者: 潘存云教授
二、轴设计的主要内容 设计任务:选材、结构设计、工作能力计算。 轴的结构设计: 根据轴上零件的安装、定位以及轴的制造工艺等 方面的要求,合理地确定轴的结构形式和尺寸。 工作能力计算: 选择材料 轴的承载能力验算指的 是轴的强度、刚度和振动稳 结构设计 定性等方面的验算。
相关文档
最新文档