第3章 理想气体的性质与热力过程
热工基础 第三章.理想气体的性质与热力过程
i 1 i 1
29
k
i 1 k
i 1 k
3-4 理想气体的热力过程
1.热力过程的研究目的与方法
(1)目的: 了解外部条件对热能与机械 能之间相互转换的影响,以便合理地安排 热力过程,提高热能和机械能转换效率。
V V1 V2 Vk Vi
i 1
k
25
3. 理想混合气体的成分 成分:各组元在混合气体中所占的数量份额。 (1) 成分的分类 1)质量分数 :某组元的质量与混合气体总质量
的比值称为该组元的质量分数。
k k mi wi , m mi wi 1 m i 1 i 1 2)摩尔分数 : 某组元物质的量与混合气体总物
22
3-3
理想混合气体
1. 理想混合气体的定义 由相互不发生化学反应的理想气体组成混合 气体,其中每一组元的性质如同它们单独存在一 样,因此整个混合气体也具有理想气体的性质。 混合气体的性质取决于各组元的性质与份额。 2. 理想混合气体的基本定律 (1)分压力与道尔顿定律 分压力: 某组元i单独占有混合气体体积V并处于 混合气体温度T 时的压力称为该组元的 分压力。用 pi 表示。
10
由比定容热容定义式可得
qV u cV dT T V
(4)比定压热容
cp
q p dT
据热力学第一定律,对微元可逆过程,
q dh vdp
11
焓也是状态参数, h h(T ,
p)
h h dh dT dp T p p T 对定压过程,dp 0 ,由上两式可得 h q p dT T p
第三章__理想气体热力性质及过程
容积成分: i
Vi V
, i
1
摩尔成分: xi
ni n
, xi
1
换算关系:
i xi
i
xi M i xi M i
xi M i M eq
xi Rg,eq Rg ,i
,
xi
i Rg,i
Rg ,e q
分压力的确定:
由
piV=ni RT PVi=ni RT
ppi V Vi i ,
2
u 1 cVdT
如果取定值比热或平均比热,又可简化为
二、焓
ucVT
也可由热Ⅰ导得 d h(cVRg)dT cpdT
同理,有
2
h 1 cpdT
hcpT
结论:理想气体的u、h 均是温度的单值函数。
三、 熵变的计算
由可逆过程
ds du pd
T
ds du
cp
Rg 1
三、 真实比热容、平均比热容和定值比热容
1. 真实比热容(精确,但计算繁琐)
cpa0a 1 Ta2T2a3 T3
c V (a 0 R g) a 1 T a 2 T 2 a 3 T 3
qp
2 1
cpdt
2
q 1 cdt
2. 平均比热容(精确、简便)
cV
ln
T2 T1
Rg
ln
2 1
s
c
p
ln
T2 T1
Rg
ln
p2 p1
s
c
p
ln
2 1
cV
ln
p2 p1
第三章理想气体的性质与热力过程
3-1 理想气体及其状态方程
一、实际气体与理想气体 1. 理想气体: 是一种假象的气体模型,气体分子是
一些弹性的、不占体积的质点,分子之间没有 相互作用力。
2. 实际气体: 实际气体是真实气体,在工程使用范
围内离液态较近,分子间作用力及分子本身体 积不可忽略,热力性质复杂,工程计算主要靠 图表。如:电厂中的水蒸气、制冷机中的氟里 昂蒸汽、氨蒸汽等。
k cp cv
定容加热与定压加热
15
K为比热容比( 绝热指数)
对于同一物质,比热容是常数?
T 1K
(1)定容比热容
c
(2)定压比热容
q
dT
s
16
三、利用比热容计算热量的方法
实验和理论证明,不同气体的比热容要随温度的变化 而变化,一般情况下,气体的比热容随温度的升高而 升高,表达为多项式形式:
第三章 理想气体的性质
1
本章基本要求
1.掌握理想气体的概念及理想气体状态方程的各种 表达形式,并能熟练运用; 2.理解理想气体比热容的概念及影响因素,掌握理 想气体比热容的分类;能够熟练利用平均比热容 表或定值比热容进行热量的计算; 3.掌握理想气体的热力学能及焓的特点,能够进行 理想气体的热力学能、焓及熵变化量的计算; 4.掌握理想气体的四个基本热力过程(即定容、定 压、定温及绝热过程)的状态参数和能量交换特 点及基本计算,以及上述过程在p-v 图和T-s图上 的表示;
R 8314 Rg 或 R MRg M M
Rm=8314[J/kmol.K],与气体种类和状态无关, 而Rg与气体种类有关,与状态无关。
M 为气体的摩尔质量,单位为(kg/kmol)
例:空气的气体常数为
理想气体
∆h = ∫ c p dT
T1
T2
平均比热容 平均比热容( 平均比热容(表) 定值比热容 热力性质表
∆u = cV ∆u = cV
t2
t1
⋅ (t 2 − t 1 ) ⋅ t 2 − cV
t1
∆h = c p
∆h = c p
t2 t1
⋅ (t 2 − t1 )
⋅ t2 − c p
t1 0° C
t2
0° C
热力学能 焓和熵
T p ∆s = c p ln 2 − Rg ln 2 T1 p1
∆h = c p ∆T = c p ∆t
ct =
t2
1
c 02°C ⋅t2 −c 01°C ⋅t1
t t
t2 −t1
定值比热容表
单原子气体
cV (C ,m) V
c p (Cp,m)
3 3 Rg ( R ) 2 2
双原子气体
0° C
⋅ t1
t2 0° C
⋅ t1
∆u = cV ∆T = cV ∆t
∆u = u 2 (T2 ) − u1 (T1 )
∆h = c p ∆T = c p ∆t
∆h = h2 (T2 ) − h1 (T1 )
西安交通大学热流中心
热工基础与应用 第三章
2、 理想气体的熵
ds =
δqre
T
=
du + pdv cV dT + pdv dT dv p / T = Rg / v = ds = cV + Rg → T T T v
混合气体 组成气体
1、分压力定律 : 分压力 :各组元在混合物温度
下单独占据混合物所占体积时 所产生的压力。
第三章理想气体的性质与热力过程
第三章理想⽓体的性质与热⼒过程第三章理想⽓体的性质和理想⽓体的热⼒过程英⽂习题1. Mass of air in a roomDetermine the mass of the air in a room whose dimensions are 4 m×5 m×6 m at 100 kPa and 25℃2. State equation of an ideal gasA cylinder with a capacity of 2.0 m 3contained oxygen gas at a pressure of 500 kPa and 25℃ initially. Then a leak developed and was not discovered until the pressure dropped to 300 kPa while the temperature stayed the same. Assuming ideal-gas behavior, determine how much oxygen had leaked out of the cylinder by the time the leak was discovered.3. Two tanks are connected by a valve. One tank contains 2 kg of carbon monoxide gas at 77oC and0.7 bar. The other tank holds 8 kg of the same gas at 27oC and 1.2 bar. The valve is opened and the gases are allowed to mix while receiving energy by heat transfer from the surrounding. The final ideal gas equilibrium temperature is 42℃ Using the model, determine (a) the final equilibrium pressure, in bar, and (b) the heat transfer for the process,in kJ.4. Electric heating of air in a houseThe electric heating systems used in many houses c o nsist of a simple duct with resistance wires. Air is heated as it flows over resistance wires. Consider a 15-kW electric system. Air enters the heating section at 100 kPa and 17oC with a volume flow rate of 150 m 3/min. If heat is lost from the air in the duct to the surroundings at a rate of 200 W, determine the exit temperature of air.C P =1.005 kJ/(kg. K).5. Evaluation of the Δu of an ideal gasAir at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change in internal energy of air per unit mass, using (a) data from the air table, (b) the functional form of the specific heat, and (c) the average specific heat value.6. Properties of an ideal gasA gas has a density of 1.875 kg/m 3at a pressure of 1 bar and with a temperature of 15oC. A mass of 0.9 kg of the gas requires a heat transfer of 175 kJ to raise its temperature from 15oC to 250oC while the pressure of the gas remains constant. Determine (1) the characteristic gas constant of the gas, (2) the specific heat capacity of the gas at constant pressure, (3) the specific heat capacity of the gas at constant volume, (4) the change of internal energy, (5) the work transfer.7. Freezing of chicken in a boxCarbon2kg, 77oCarbon 8kg, 27oMonoxide C 0.7bar Monoxide C 1.2bar valve Tank 1Tank 2FIGURE 3-1FIGURE 3-2FIGURE 3-3A supply of 50 kg of chicken at 6℃ contained in a box is to be frozen to -18℃ in a freezer. Determine the amount of heat that needs to be removed. The latent heat of the chicken is 247 kJ/kg, and its specific heat is 3.32 kJ/kg.℃ above freezing and 1.77 kJ/kg.℃ below freezing. The container box is 1.5 kg, and the specific heat of the box material is 1.4 kJ/kg.℃. Also, the freezing temperature of chicken is -2.8℃.8. Closed- system energy balanceA rigid tank which acts as a perfect heat insulator and which has a negligible heat capacity is divided into two unequal partsA andB by a partition. Different amounts of the same ideal gas are contained in the two parts of the tank. The initial conditions of temperature T, pressure p, and total volume V are known for both parts of the tank. Find expressions for the equilibrium temperature T and pressure P reached after removal of the partition. Calculate the entropy change for A and B and the totalentropy change of the tank. Assume that Cv,m is constant,9. Thermal processes of an ideal gasAn air receiver has a capacity of 0.85 m 3and contains air at a temperature of 15℃ and a pressure of 275 kN/m 3. An additional mass of 1.7 kg is pumped into the receiver. It is then left until the temperature becomes 15℃ once again. Determine (1) the new pressure of the air in the receiver, (2) the specific enthalpy of the air at 15℃ if it is assumed that the specific enthalpy of the air is zero at 0℃. Take cp=1.005 kJ/kg.K, cc=0.715 kJ/kg.K.10. Air is compressed steadily by a reversible compressor from an inlet state of 100KPa and 300K toan exit pressure of 900 kPa. Determine the compressor work per unit mass for isentropic compression with k=1.4, (1) isentropic compression with k=1.4, (2) polytropic compression with n=1.3, (3) isothermal compression, and (4) ideal two-stage compression with intercooling with a polytropic exponent of 1.3.11. A rigid cylinder contains a “floating” piston, free to mo ve within the cylinder without friction. Initially,it divided the cylinder in half, and on each side of the piston the cylinder holds 1 kg of the same ideal gas at 20oC, and 0.2 MPa . An electrical resistance heater is installed on side A of the cylinder, and it is energized slowly to P A2=P B2=0.4 MPa. If the tank and the piston are perfect heat insulators and are of negligible heat capacity, cv=0.72 kJ/(kg·K). Calculate (1)the final temperatures, volumes of A,B sides, (2)the amount of heat added to the system by the resistor. (3)the entropy changes of A,B sides, (4)the total entropy change of the cylinder.⼯程热⼒学与传热学第三章理想⽓体的性质和热⼒过程习题1 理想⽓体的c p 和c V 之差及c p 和c V 之⽐是否在任何温度下都等于⼀个常数?习题0.20.1MPa 300K 0.01m 3AMPa 300K 0.01m 3BFIGURE 3-42如果⽐热容是温度t 的单调增函数,当t 2 >t 1时平均⽐热容2121,,00t t t t c c c 中哪⼀个最⼤?哪⼀个最⼩? 3如果某种⼯质的状态⽅程式遵循T R pv g ,这种物质的⽐热容⼀定是常数吗?这种物质的⽐热容仅是温度的函数吗? 4在p-v 图上画出定⽐热容理想⽓体的可逆定容加热过程,可逆定压加热过程,可逆定温加热过程和可逆绝热膨胀过程。
工程热力学第三章理想气体的性质
Model of ideal-gas (理想气体模型 )
1. No interactive force among Molecules
分子之间没有作用力
2. The Volumes of the Molecules can be neglected. 分子本身不占容积
No real gases exist in practice 现实中没有理想气体
四种形式的克拉贝龙方程:
1 km ol : pVm RmT
状态 n k m o l : p V n R T m 方程 (E.O.S) 1 k g : p v R T
Notes:
摩尔容积Vm Rm 与R
统一单位
m kg : pV m RT
计算时注意事项实例 ATTENTIONS:
V=1m3的容器有N2,温度为20 ℃ ,压力表读数 1000mmHg,pb=1atm,求N2质量。
分子运动论
C v,m
dU m i Rm dT 2
i 运动自由度 U m RmT 2 dH m d (U m R m T ) i 2 C p,m Rm dT dT 2
当温度变化不大时,可认为比热容为常数,与温度无 关,此时γ也是常数。 When the change in temperature is not so large, the influence of temperature on specific heat is negligible.
2. Three kinds of Specific heats based on different
quantity units
基于不同物量单位的三种比热
(1) Specific heat based on mass(质量比热容)
热力学理想气体
25
2. 理想气体的典型可逆过程 一、定容过程
1.过程方程: v 常数,dv 0, p R 常数。 T v
p T 状态参数:2 2 p1 T1
2.过程功:
膨胀功
技术功
dw pdv 0
wt vdp v( p1 p2 )
1 2
2014-9-12
26
定容过程
S12 m s12
J / K
3-3 理想气体的混合物
理想气体的混合物是指相互之间无化学反应、稳定的混合物,仍 可视为理想气体。
一、分压力:混合气体中的某一组分在具有混合气体的温度和容 积而单独存在时的压力,称为该种气体的分压力,pi,由于:
p1V n1 RmT
i i
p2V n2 RmT
R为气体常数(gas constant),不同气体的R不同,同种气 体的R为常数 An ideal gas is defined as a hypothetical substance that obeys the ideal gas equation of state.
3.通用气体常数
为简便计,可以取cv为定值比热或T1~T2之间的平均比热,则:
s12 cv ln
2. 已知T、p:
s12 ds
1
T2 v R ln 2 T1 v1
J / kg.K
2
2
1
dq T
2
1
c p dT vdp T T
2
1
dp dT R cp p T
cp
i2 R 2
热工基础-3-(1)-第三章 理想气体
∆T
若比热容取定值或平均值,有: ∆ h = c p ∆ T
∆h = c p
T2 T1
∆T
3. 理想气体熵变化量的计算:
δ q du + pdv cv dT p ds = = = + dv T T T T cv dT p v cv dT dv = + dv = + Rg T T v T v
同理:
δ q dh − vdp c p dT v ds = = = − dp T T T T c p dT p v c p dT dp = − dp = − Rg T T p T p
Rg ,eq = ∑ wi Rg ,i
i
作业:P103-104
3-10 3-15
思考题: P102
10
五. 理想气体的基本热力过程 热力过程被关注的对象:
1) 参数 ( p, T, v, u, h, s ) 变化 2) 能量转换关系, q , w, wt 。
思路:
1) 抽象分类:
p
v T
s
n
基本过程 2) 简化为可逆过程 (不可逆再修正)
R = 8.314 J/(mol ⋅ K)
R 是一个与气体的种类
无关,与气体的状态也 无关的常数,称为通用 (摩尔)气体常数。
R = M ⋅ Rg
例题3.1: 已知体积为0.03m3的钢瓶内装有氧气,初 始压力p1=7×105Pa,温度t1=20℃。因泄漏,后 压力降至p2=4.9×105Pa ,温度未变。问漏去多少 氧气? 解:取钢瓶的容积为系统(控制容积),泄漏过 程看成是一个缓慢的过程。初终态均已知。假定 瓶内氧气为理想气体。根据状态方程:
V
0 m
= 22 . 414 m
中国石油大学热工基础典型问题第三章 理想气体的性质与热力过程
工程热力学与传热学第三章 理想气体的性质与热力过程 典型问题分析一. 基本概念分析1 c p ,c v ,c p -c v ,c p /c v 与物质的种类是否有关,与状态是否有关。
2 分析此式各步的适用条件:3将满足下列要求的理想气体多变过程表示在p-v 图和T-s 图上。
(1) 工质又膨胀,又升温,又吸热的过程。
(2) 工质又膨胀,又降温,又放热的过程。
4 试分析多变指数在 1<n<k 范围内的膨胀过程特点。
二. 计算题分析理想气体状态方程式的应用 1某蒸汽锅炉燃煤需要的标准状况下,空气量为 q V =66000m 3/h ,若鼓风炉送入的热空气温度为t 1=250°C ,表压力 p g1=20.0kPa 。
当时当地的大气压力 p b =101.325kPa 。
求实际的送风量为多少?理想气体的比热容 2在燃气轮机动力装置的回热器中,将空气从150ºC 定压加热到350ºC ,试按下列比热容值计算对每公斤空气所加入的热量。
01 按真实比热容计算;02 按平均比热容表计算(附表2,3); 03 按定值比热容计算;04 按空气的热力性质表计算(附表4); 3已知某理想气体的比定容热容c v =a+bt , 其中a ,b 为常数,试导出其热力学能,焓和熵变的计算式。
理想气体的热力过程 4一容积为 0.15m 3 的储气罐,内装氧气,其初始压力 p 1=0.55MPa ,温度 t 1=38ºC 。
若对氧气加热,其温度,压力都升高。
储气罐上装有压力控制阀,当压力超过 0.7MPa 时,阀门便自动打开,dTm c dHpV U d pV d dU pdV dU WdU Q P ==+=+=+=+=)()(δδ典 型 问 题放走部分氧气,即储气罐中维持的最大压力为 0.7MPa 。
问当罐中氧气温度为 285ºC 时,对罐中氧气共加入了多少热量?设氧气的比热容为定值。
工程热力学与传热学(中文) 第3章 理想气体的性质与热力过程
对定容过程: 对定容过程:
du + pdv ∂u cV = ( )V = ( )V = ( )V dT dT ∂T
说明
δq
cv意义: 意义: 在体积不变时,比热力学能对温度的偏导数, 在体积不变时,比热力学能对温度的偏导数, 其数值等于在体积不变时, 其数值等于在体积不变时,物质温度变化1K 时比热力学能的变化量。 时比热力学能的变化量。
分析:同温度下,任意气体的 分析:同温度下,任意气体的cp > cv ?
气体定容加热时,不对外膨胀作功, 气体定容加热时,不对外膨胀作功,所加入的热量全 部用于增加气体本身的热力学能,使温度升高。 部用于增加气体本身的热力学能,使温度升高。而定压过 程中,所加入的热量,一部分用于气体温度升高, 程中,所加入的热量,一部分用于气体温度升高,另一部 分要克服外力对外膨胀作功,因此, 分要克服外力对外膨胀作功,因此,相同质量的气体在定 压过程中温度升高1K要比定容过程中需要更多的热量 要比定容过程中需要更多的热量。 压过程中温度升高 要比定容过程中需要更多的热量。
t1
cdt
3-2-3 利用理想气体的比热容计算热量
对理想气体: 对理想气体: u = f (T ), h = f (T ), cV = f (T ), c p = f (T ) 1. 真实比热容(The real specific heat capacity) ) 当温度变化趋于零的极限时的比热容。 当温度变化趋于零的极限时的比热容。 它表示某瞬间温度的比热容。 它表示某瞬间温度的比热容。
C,c,Cm,CV之间的关系: , , 之间的关系:
CV =
Cm 22 .4
kJ /( m 3 ⋅ K )
C = mc = nC m = V0CV
理想气体的热力性质和热力过程
况,进而找出影响转化的主要因素。 2、一般方法
(1)、对实际热力过程进行分析,将各种过程近似地概括为 几种典型过程,即定容、定压、定温和绝热过程。为使问题 简化,暂不考虑实际过程中的不可逆的耗损而作为可逆过程。
(2)、用简单的热力学方法对四种基本热力过程进行分析计算。
c t2 p,0℃
t2
-
c t1 p,0℃
t1
c t2 p,t1
c
t2 p,0℃
t2
-ct1 p,0℃来自t1t2 t1
p267附录A-4a给出了一些常用气体的平均比热容表
c c R t2
t2
v,t1
p,t1
g
(3)、平均比热容直线关系
qp
2 1
cp
(t)dt
2 1
(a
bt)dt
[a
b 2
所以MRg与物质的种类无关。(也与状态无关)令R= MRg , R 称为摩尔气体常数。取标准状态参数得
R MRg
p0Vm0 T0
101325Pa 0.02241325m3/mol 273.15K
8.3143 J/(mol.K)
对于各种气体的气体常数的
Rg
R M
(3 5)
理想气体状态方程可有以下四种形式:
(t1
t2
)](t2
t1 )
c t2 p,t1
a
b 2
(t1
t2
)
(3 19)
上式称为比热容的线
性关系。附录A-5p268给 出了一些常用气体的平
均比热容直线关系式。
(4)、定值比热容
cp a
由分子运动论也可导出1mol理想气体的热力学能
第三章(4)理想气体的基本热力过程
一、上节回顾
1)理想气体
理想气体:定义是理想气体的分子是弹性的、不占体积的 质点,分子之间没有相互作用力。(不符合这两个条件的气体 则是实际气体)
2)理想气体状态方程式
1kg理想气体,在任何平衡状态下,三个基本状态参数p、
v、T之间的数学关系式: pv=RT
p:气体的绝对压力,Pa; R:气体常数,J/(kg·K); v:气体的比体积,m3/kg; T:气体的热力学温度,K。
气体常数R和通用气体常数RM之间的关系式: R= RM/M(M为摩尔 质量)。 3)理想气体的比热容 比热容:单位物量的物体温度升高(或降低)1K所吸收(或放 出)的热量,称为该物体的比热容,用符号c表示,即: c=δ q/dT; 影响比热容的因素:气体的性质、气体的加热过程和气体的 温度;
利用比热容计算热量:当气体的种类和加热过程确定后,比
二、分析理想气体热力过程的目的和方法
1):基本概念
理想气体:定义是理想气体的分子是弹性的、不占体积的 质点,分子之间没有相互作用力。 平衡状态:一个热力系在没有外界影响的情况下,系统内 工质各点相同的状态参数均匀一致的状态。 热力过程:处于平衡状态的热力系,若与外界发生功和热
的相互作用,则平衡将遭到破坏,状态将发生变化。通常将工
三、四个基本热力过程和多变过程
1)定容过程
v=常数; p2/p1= T2/T1; 膨胀功w=0; 技术功wt=-v△ p q= △ u
2) 定压过程
p=常数; v2/v1= T2/T1; 膨胀功w= p△v; 技术功wt=0 q= cp△ T
3):四个基本热力过程和多变过程
3)定温过程
T=常数; v1p1= v2p2; 膨胀功w=0; 4) 定熵过程
工程热力学习题解答-3
第三章 气体的热力性质和热力过程思 考 题1. 理想气体的热力学能和焓只和温度有关,而和压力及比体积无关。
但是根据给定的压力和比体积又可以确定热力学能和焓。
其间有无矛盾?如何解释?答:其间没有矛盾,因为对理想气体来说,由其状态方程PV=RT 可知,如果给定了压力和比容也就给定了温度,因此就可以确定热力学能和焓了。
2. 迈耶公式对变比热容理想气体是否适用?对实际气体是否适用?答:迈耶公式p0v0c c R -=是在理想气体基础上推导出来的,因此不管比热是否变化,只要是理想气体就适用,而对实际气体则是不适用的。
3. 在压容图中,不同定温线的相对位置如何?在温熵图中,不同定容线和不同定压线的相对位置如何?答:对理想气体来说,其状态方程为:PV=RT ,所以,T 愈高,PV 值愈大,定温线离P-V 图的原点愈远。
如图a 中所示,T 2>T 1。
实际气体定温线的相对位置也大致是这样由定比热理想气体温度与熵的关系式2ln expp S R P C T c ++=可知,当S 一定时(C 2、R 、C p0都是常数)压力愈高,T 也愈高,所以在T-S 图中高压的定压线位于低压的定压线上,如图b 所示,P 2>P 1实际气体的定压线也类似的相对位置。
由定比热理想气体温度与熵的关系式1ln expv S R V C T c -+=可知,当S 一定时(C 1、R 、C v0都是常数)比容愈大,温度愈低,所以在T-S 图中大比容的定容线位于小比容的定容线下方,如图c 所示,v 2<v 1实际气体的定容线bT a P c T也有类似的位置关系。
4. 在温熵图中,如何将理想气体在任意两状态间热力学能的变化和焓的变化表示出来?答:对理想气体,任意两状态间内能变化21201v v u C dT q -∆==⎰,所以在温熵图中可用同样温度变化范围内定容过程所吸收的热量表示出来。
如同d ,定容线12’下的面积1342’1即表示1、2在状态间的热力学能变化12u -∆ 对理想气体来说,任意状态间的焓的变化21201p p h C dT q -∆==⎰,所以可用同样温度变化范围内定压过程所吸收的热量来表示。
热工基础 第3章 理想气体的性质及热力过程
qv h wt cp (T2 T1) v ( p1 p 2 ) cv (T2 T1)
3.3 §4-理1 理想想气气体体的的热基力本过热程力 过 程
(4)在p-v、T-s图上表示
垂直于 v坐标 的直线
由
ds cV
dT T
( T s
)v
T cV
定容线为一 条斜率为正 的指数曲线
3.1 气 体 的 比 热 容
1、按定比热计算理想气体比热容
分子运动论
运动自由度
Cv,m[kJ/kmol.K] Cp,m [kJ/kmol.K]
γ
单原子
3 2 Rm 5 2 Rm
1.67
双原子
5 2 Rm 7 2 Rm
1.4
多原子
7 2 Rm 9 2 Rm
1.29
3.1 气 体 的 比 热 容
2、按真实比热计算理想气体比热容 理想气体
p1 p2
v2 T2 v1 T1
s
cp
ln
T2 T1
Rg ln
p2 p1
cp
ln
T2 T1
s
cp
ln
v2 v1
cv ln
p2 p1
cp
ln
v2 v1
3.3 理 想 气 体 的 基 本 热 力 过 程 (3)膨胀功、技术功和热量
第3章 理想气体的性质及热力过程
课程介绍
气体的比热容
气体的比热容
计算热力学能, 焓, 热量都要用到比热容 定义: 比热容
单位物量的物质升高1K或1℃所需的热量
3.1 气 体 的 比 热 容
比热容
c : 质量比热容 Cm: 摩尔比热容 C’: 容积比热容
3热工ch3 理想气体的性质及热力过程4
实际气体 理想气体 状态方程
ห้องสมุดไป่ตู้
§3–2
一、定义和分类
理想气体的比热容
c与过程有关 c是温度的函数
—specific heat; specific heat capacity
q 定义: c lim T
T 0
K) 分类: 质量热容(比热容)c J/(kg· (specific heat capacity per unit of mass) 体积热容 c‘ J/(Nm3· K) 按 (volumetric specific heat capacity) 物 摩尔热容 Cm J/(mol· K) 量 C m Mc (mole specific heat capacity)
技术功
wt= -∫vdp = v(p1-p2)
dT v2 s cv Rg ln T v1 1
0
2
熵变: ds=cvdT/T
p
2
T
2
1
1
v
s
例1:空气从T1=720k, p1=0.2MPa先定容冷却,压力下降 到p2=0.1MPa,然后定压加热,使比体积增加3倍(v3=4v2 ). 求过程1-2和过程2-3中的热量及2-3的膨胀功并求T3、v3、 s3-s1 p
一、多变过程及基本热力过程
大部分热力过程中气 体基本状态参数满足:
pv
n
=常数
汽车气缸内气体示功图
pv
n
=常数
可逆多变过程
n —多变指数(常数)
n =0、1、 k 、∞时分别表示气体工质的定压、定 温、绝热(可逆绝热过程即为定熵过程)和定容过 程,称为基本热力过程
(fundamental thermodynamic process)
工程热力学第三章理想气体的性质讲解
2. Three kinds of Specific heats based on different quantity units
基于不同物量单位的三种比热
(1) Specific heat based on mass(质量比热容)
1kg物体温度1K升高1K所吸收的热量,记作c, 单位为 J/kg•K
理想气体内能的计算
q = du + pdv
对理想气体的定容过程
q = du + pdv 又
du cvdT
理想气体 u f (T )
du cvdT
理想气体,任何过程
Enthalpy of Ideal-gas 理想气体的焓
q = du + pdv +vdp-vdp
=dh-vdp
对理想气体的定压过程
RmT
8.31431000 293.15
m PV 100120 140.3kg RT 0.287 298/15
§3.2 Specific Heats and Heat Capacity (比热和热容)
1. Definition of Specific heat 比热容(比热)的定义
Chapter 3. Properties and Processes of Ideal Gas
第3章 理想气体的性质和过程
3.1 Equation of State for Ideal Gas 理想气体的状态方程
3.2 Specific Heat of Ideal Gas 理想气体的比热
3.3 Internal energy, enthalpy and entropy of Ideal Gas
What kind of gas can be treated as Ideal Gas? 哪些气体可当作理想气体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--- Chapter 3
The Properties of Ideal-Gas and Ideal-Gas Processes ---
Chapter 3 The Properties of Ideal-Gas and Ideal-Gas Processes
Contents
Specific heat at constant volume cv
cV a0 a1T a2T 2 a3T 3
Heat transferred in a constant pressure process
q p c p dT
T1
T2
Heat transferred in a constant volume process
说明
标准状态下, 0 101325 , T0 273.15K p Pa
简单求解过程:
解:按理想气体状态方程式, p1V1 p0V0
T1 T0
可得:
P0T1 V1 V0 P1T0
其中: 1 p
pb pg1 101325 20000 121325 Pa
故实际的送风量:
For ideal gas, the specific heats cv, cp depend on temperature only.
cV f (T ) c p f (T )
4. Specific-Heat Relations of Ideal Gases (理想气体的 cv 和 cp 的关系) (1)迈耶公式:
For ideal gas
u f (T , v) f (T ) h u pv u RgT f (T )
u du cV ( )V T dT h dh cp ( ) p T dT
notes
Condition
Any process for ideal-gas Constant volume process for real gas Constant pressure process for real gas
notes
(1)The behavior of real gas: high temperature, low pressure, low density (high specific volume), far from a state of condensation ------ treated as an ideal gas.
qV cV dT
T1
T2
2. The average specific heats(平均比热容)
= the change in internal energy with temperature at constant volume
h cp ( ) p T
= the change in enthalpy with temperature at constant pressure
3. Specific Heats cv, cp of Ideal-Gases(理想气体的cv, cp )
3-1-2 Ideal-Gas Equation of State (理想气体状态方程式) 1. Ideal-Gas Equation of State
For Ideal-Gas 1kg: pv = RgT For Ideal-Gas mkg: pV = mRgT
notes
(1)Clapeyron’s equation (In 1834) (2)At any equilibrium state: the p-v-T behavior of ideal-gas (3)Where: p—absolute pressure T— Kelvin temperature Rg—The gas constant
R 8.314 J /(m ol K ) R Rg J /(kg K ) M
例
题
理想气体状态方程式的应用 某蒸汽锅炉燃煤需要的标准状况下,空气量 为 qV=66000m3/h,若鼓风炉送入的热空气温度为 t1=250°C,表压力 pg1=20.0kpa。当时当地的大气 压力 pb=101.325kpa。求实际的送风量为多少?
C mc nCm V0CV
3. Influence Factors
(1)Substances (2)Thermal processes (3)Temperature
3-2-2 The Specific Heat at Constant Volume and at Constant Pressure(比定容热容 cdT cdt
q cdT cdt
T1 t1 T2 t2
思考 题
cp cV
cV Rg cV
1
Rg cV
cp,cv,cp-cv,cp/cv与物质的种类是否有关? 与气体的状态是否有关? 解: cp,cv:与物质的种类和状态都有关系;
cp- cv= Rg :与物质的种类有关,与状态无关; cp/cv =γ:与物质的种类和状态都有关系。
cV (
q
dT
)V (
du pdv u )( )V dT T
For constant pressure
dh vdp h cp ( )p ( )( )p dT dT T
q
Condition
Reversible Processes Any Substance
u cV ( )V T
cV
qV
dT
(
q
dT
)V c p
qp
dT
(
q
dT
)p
2. Specific Heats cv, cp in Reversible Processes q du p dv
q dh v dp
How to express du, dh?
For constant volume
The Ideal-Gas Equation of State c,cv,cp,u,h,s of Ideal-Gas Ideal-Gas Processes (Four Basic Processes, Polytropic Processes)
3-1 The Ideal-Gas Equation of State
c a0 a1T a2T 2 a3T 3
Heat
q cdT (a0 a1T a2T 2 a3T 3 )dT
T1 T1
T2
T2
So Specific heat at constant pressure cp
c p a0 a1T a2T 2 a3T 3
Steam power plants---water vapor Refrigerator--- ammonia, freon
(3)Water Vapor an Ideal Gas? • Water vapor exists in the air • Working substance in the steam power plant
2. Alternative Forms of the Ideal-Gas Equation of State (不同物量的理想气体状态方程式)
• 1kg: p v = Rg T • mkg: pV = m Rg T • 1mol: P Vm = R T • nmol: p V = n R T
notes Rg-- gas constant 气体常数 R-- universal gas constant 通用气体常数
41.8kJ
2. C, c, Cm, CV
(1)Specific heat(比热容) (2)Molar heat(摩尔热容)
c
q
dT
kJ /(kg K )
Cm Mc kJ /(mol K )
22.4
(3)Volume Heat(体积热容) CV Cm kJ /(m3 K )
Relationship among C,c,Cm,CV
思考 题
Specific heats cp, cv, cp-cv, cp/cv depend on substance or state?
How to determine heat transferred by virtue of specific heats? (利用比热容,如何求解热量?)
c
1. Specific heat at constant volume cv: The energy required
to raise the temperature of the unit mass of a substance by one degree as the volume is maintained constant.
利用比热容,如何求解热量?
c
q
dT
q
dt
q cdT cdt
q
T2
T1
cdT
t2
t1
cdt
3-2-3 The calculation of Heat
(利用理想气体的比热容计算热量)
1. The real specific heat capacity(真实比热容)
The specific heat in the state of instantaneous temperature.
c p cV Rg C p ,m CV ,m R
Analysi s
How to obtain ? Why cp > cv at the same temperature?