二次函数基础课时练习题(含答案)

合集下载

二次函数练习题(含答案)

二次函数练习题(含答案)

二次函数练习题(含答案)形,如图所示。

将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。

解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。

由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。

由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。

将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。

将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。

1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。

2.对于每段话进行小幅度的改写,使其更加简洁明了。

1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。

根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。

答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。

求菱形OBAC的面积。

5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。

设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。

部编数学九年级上册22.2二次函数(基础篇)(人教版)含答案

部编数学九年级上册22.2二次函数(基础篇)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!专题22.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列各式中,y 是x 的二次函数的是( )A .21y x =B .211y x x=++C .221y x =-D .y =2.线段5AB =.动点以每秒1个单位长度的速度从点出发,沿线段AB 运动至点B ,以线段AP 为边作正方形APCD ,线段PB 长为半径作圆.设点的运动时间为t ,正方形APCD 周长为y ,B e 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .正比例函数关系,二次函数关系D .反比例函数关系,二次函数关系3.某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系4.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m知识点二、二次函数的参数5.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或36.已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .07.设A(−2,y 1),B(1,y 2),C(2,y 3)是抛物线y=−x 2-2x+2上的三点,则y 1,y 2,y 3的大小关系为( )A .1y >2y >3yB . 1y >3y >2yC . 3y >2y >1yD . 3y >1y >2y 8.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .8知识点三、二次函数的解析式9.某城市居民2018年人均收入30000元,2020年人均收入达到y 元.设2018年到2020年该城市居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是( )A .y =30000(1+2x )B .y =30000+2xC .y =30000(1+x 2)D .y =30000(1+x )210.在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x=+B .24y x =-C .24y x =-D .42y x=-11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x p p=-+B .24y x p =-C .2(2)y x p =-D .2(4)y x =-+12.如图,在ABC V 中,90C Ð=°,5AC =,10BC =.动点M ,N 分别从A ,C 两点同时出发,点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动,点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t ,点M ,C 之间的距离为y ,MCN △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,正比例函数关系D .一次函数关系,二次函数关系二、填空题知识点一、二次函数的判断13.给出下列函数:①y =②()21y x x x =-+;③21y x x=+;④()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.14.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式_____________,它______(填“是”或“不是”)二次函数.15.下列函数①;②;③;④;⑤.其中是二次函数的是____________.16.把函数()()236y x x =--化成2y ax bx c =++的形式为________.知识点二、二次函数的参数17.已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.18.已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.19.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.20.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.知识点三、二次函数的解析式21.如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.22.若正方体的棱长为x ,表面积为y ,则y 与x 的关系式为________.23.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x =3时,y =18,那么当成本为72元时,边长为_______厘米.24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.26.一个二次函数234(1)21k k y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?27.已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.28.已知,如图①,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,点P 从点A 沿AB 以每秒2cm 的速度向点B 运动,点Q 从点C 以每秒1cm 的速度向点A 运动,设点P 、Q 分别从点A 、C 同时出发,运动时间为t (秒)(0<t <6),回答下列问题:(1)直接写出线段AP 、AQ 的长(含t 的代数式表示):AP =______,AQ =______;(2)设△APQ 的面积为S ,写出S 与t 的函数关系式;(3)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP C ¢,那么是否存在某一时间t ,使四边形PQP C ¢为菱形?若存在,求出此时t 的值;若不存在,说明理由.参考答案1.C【分析】根据二次函数的定义依次判断.解:A 、21y x =不是二次函数,不符合题意;B 、211y x x=++,不是二次函数,不符合题意;C 、221y x =-,是二次函数,符合题意;D 、y =故选:C .【点拨】此题考查二次函数的定义:形如2(0)y ax bx c a =++¹的函数是二次函数,解题的关键是正确掌握二次函数的构成特点.2.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可.解:依题意:AP=t ,BP =5-t ,故y =4t ,S =(5-t )2故选择:C【点拨】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键.3.D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.解:设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点拨】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.4.D【分析】根据题意,列出关系式,即可判断是否是二次函数.解:A.由题得:3y x =,不是二次函数,故此选项不符合题意;B.由题得:108y x =,不是二次函数,故此选项不符合题意;C.由题得:86y x=,不是二次函数,故此选项不符合题意;D.由题得:214y x p =,是二次函数,故此选项符合题意.故选:D .【点拨】本题考查二次函数的定义,形如2(0)y ax bx c a =++¹的形式为二次函数,掌握二次函数的定义是解题的关键.5.C【分析】根据二次函数的定义列方程计算即可;解:∵258(3)23m m y m x x -+=-+-是关于x 的二次函数,∴2582m m -+=且30m -¹,∴12m =,23m =且3m ¹,∴2m =;故选C .【点拨】本题主要考查了二次函数的定义、一元二次方程的求解,准确计算是解题的关键.6.B【分析】根据二次函数的未知数最高次数是2,最高次项系数不为零列式计算即可;解:∵|1|(1)2m y m x m -=++是y 关于x 的二次函数,∴1210m m ì-=í+¹î,解得:3m =;故选B .【点拨】本题主要考查了二次函数的定义,准确分析计算是解题的关键.7.A【分析】把点的坐标分别代入可求得123y y y ,,的值,之后比较大小便可解:因为()12,A y -,()()2312,B y C y ,,是抛物线222y x x =--+上的三点;所以:()()212222y =---×-+=2;2212121y =--×+=-;2322226y =--×+=-所以123y y y >>故答案为A 选项【点拨】本题主要考查抛物线上点坐标之间的x 或y 对应的值的大小比较,把具体的x 或y 代入求值比大小即可8.B【分析】将A 点坐标代入抛物线解析式y =x 2-x -2即可求得a 的值解:将A 点坐标x =3代入抛物线解析式y =x 2-x -2,得:a =32-3-2=4.故选B .【点拨】本题考查了给出函数解析式求点的坐标的方法,代入已知量即可求得未知量,理解二次函数的定义是解题关键.9.D【分析】2020年人均收入y = 2018年人均收入×(1+年人均收入平均增长率为x ) 2,把相关数值代入即可.解:设2018年到2020年该城市居民年人均收入平均增长率为x ,可列方程为:y =30000(1+x )2故选: D .【点拨】本题主要考查由实际问题抽象出二次函数的知识点,解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)2 =增长后的量.10.C【分析】根据剩下部分的面积=大正方形的面积-小正方形的面积得出y 与x 的函数关系式即可.解:设剩下部分的面积为y ,则:y =-x 2+4(0<x <2),故选:C .【点拨】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积得出是解题关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.解:圆的面积公式是2S r p =,原来的圆的面积=2416p p ×=,挖去的圆的面积=2x p ,∴圆环面积216y x p p =-.故选:A .【点拨】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.D【分析】先根据题意求出AM t =,2CN t =,则5CM AC AM t =-=-,即5y t =-,再由直角三角形的面积公式即可得到25S t t =-+,再根据一次函数与二次函数的定义即可判断.解:由题意得:AM t =,2CN t =,∴5CM AC AM t =-=-,即5y t=-∵∠C =90°,∴()211=25522MCN S CM CN t t t t ×=×-=-+△,即25S t t =-+,∴y 与t ,S 与t 满足的函数关系分别是一次函数和二次函数关系,故选D .【点拨】本题主要考查了一次函数和二次函数的定义,解题的关键在于能够准确根据题意求出y 与t ,S 与t 满足的函数关系式.13. ④ 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++¹逐一进行判断即可.①②③都不满足二次函数的形式,④是二次函数解:①不满足二次函数的形式,所以不是二次函数;②()21y x x x x =-+=-,是一次函数,也不满足要求;③不满足二次函数的形式,所以不是二次函数;④()21y x x x x =-=-+是二次函数所以二次函数只有④其中1,1,0a b c =-==故答案为 ④ 1- 1 0【点拨】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.14. y =12x 2-12 是解:设有x 人参加聚会,每个人需要和另外的(x -1)个人握手,所以共握手12x (x −1) 次,所以y =12x (x −1)=12x 2-12,是二次函数.故答案为y =12x 2-12,是.【点拨】本题考查了根据实际问题列二次函数关系式,解题的关键是了解握手问题中两人之间相互握手一次.15.②④解:根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.解:①y=5x-5为一次函数;②y=3x 2-1为二次函数;③y=4x 3-3x 2自变量次数为3,不是二次函数;④y=2x 2-2x+1为二次函数;⑤y=21x 函数式为分式,不是二次函数.故答案为②④.16.232012y x x =-+【分析】把函数()()236y x x =--右边相乘展开合并成2y ax bx c =++形式即可.解:()()22236=12218+332012y x x x x x x x =----=-+,则232012y x x =-+.【点拨】本题是对二次函数基础的考查,熟练把二次函数其他形式化成一般式是解决本题的关键.17.2019【分析】先将点(m ,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m ,0)代入函数解析式得,m 2-m -1=0,∴m 2-m =1,∴-3m 2+3m +2022=-3(m 2-m )+2022=-3+2022=2019.故答案为:2019.【点拨】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m ,0)代入函数解析式得到有关m 的代数式的值.18.-1【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;解:由题意得:21012m m -¹ìí+=î,解得:m =-1,故答案为:-1.【点拨】本题考查了二次函数的定义,理解二次函数的定义是解题关键.19. 4,-2 4【分析】根据二次函数的定义可得当2280m m --¹时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当2280m m --=且20m +¹时,这个函数是一次函数.解:由函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数,得m 2﹣2m ﹣8≠0.解得m ≠4,m ≠﹣2,由y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是一次函数,得228020m m m ì--=í+¹î,解得m =4,故答案为:4,﹣2;4.【点拨】本题考查了二次函数的定义求参数,熟知相关定义是解本题的关键.20.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,∵30m +¹,∴3m ¹-,∴3m =.故答案为:3.【点拨】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.21.y =-212x +48【分析】先求出212AMN S x =V ,进而即可得到答案.解:由题意得:21122AMN S AM AN x =×=V ,∴阴影部分的面积=6×8-212x ,即:y =-212x +48.故答案是:y =-212x +48.【点拨】本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.22.26y x =【分析】正方体有6个面,每一个面都是边长为x 的正方形,这6个正方形的面积和就是该正方体的表面积.解:∵正方体有6个面,每一个面都是边长为x 的正方形,∴表面积26y x =.故答案为:26y x =.【点拨】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键.23.6【分析】设y 与x 之间的函数关系式为y=kx 2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解:设y 与x 之间的函数关系式为y=kx 2,由题意,得18=9k ,解得:k=2,∴y=2x 2,当y=72时,72=2x 2,∴x=6,故答案为:6.【点拨】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.24.y =(60+2x )(40+2x )解:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).【点拨】本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.2132y x =-+和215s t t =++是二次函数【分析】根据二次函数的定义逐一判断即可.解:2132y x =-+是y 关于x 的二次函数;231252y x x =-+不是二次函数;222y x =+是一次函数,不是二次函数;215s t t =++是s 关于t 的二次函数,故2132y x =-+和215s t t =++是二次函数.【点拨】本题主要考查二次函数的定义,解题的关键是掌握其定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ¹的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.2(y ax bx c a ==++、b 、c 是常数,0)a ¹也叫做二次函数的一般形式.26.(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可.解:(1)依题意有234210k k k ì-+=í-¹î,解得:k =2,∴k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∴y 的值为14.【点拨】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.27.(1)1m =;(2)1m ¹±【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;解:(1)由题意得,1010m m ì-=í+¹î解得1m =;(2)由题意得,||10m -¹,解得1m ¹且1m ¹-.【点拨】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.28.(1)2t ,6t -;(2)2S =+;(3)存在,t =4时,四边形PQP C ¢是菱形.【分析】(1)根据∠A =60°,AB =12cm ,得出AC 的长,进而得出AP =2t ,6AQ t =-.(2)过点P 作PH ⊥AC 于H .由AP =2t ,AH =t ,得出PH ,从而求得S 与t 的函数关系式;(3)过点P 作PM ⊥AC 于M ,根据菱形的性质得PQ =PC ,则可得出,CM MQ AQ ==求得t 即可.解:(1)∵在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,∴AC =6,∴由题意知:AP =2t ,6,AQ t =-故答案为:2,6.t t -(2)如图①过点P 作PH ⊥AC 于H .∵∠C =90°,∠A =60°,AB =12cm ,∴∠B =30°,∴∠HPA =30°,∵AP =2t ,AH =t ,∴,PH ===∴()2116,22S AQ PH t ==-=+g g (3)当t =4时,四边形PQP′C 是菱形,理由如下:证明:如图②过点P 作PM ⊥AC 于M ,∵CQ =t ,由(2)可知,AM =12AP =t ,∴QC =AM ,,CM AQ \=Q 由对折可得:,,PC P C PQ P Q ¢¢==\ 当PC =PQ 时,四边形PQP C ¢是菱形,,CM MQ \=\ CM =MQ =AQ =13AC =2,4,CQ \=4.t \= 当t =4时,四边形PQP C ¢是菱形.【点拨】本题考查的是含30°的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键.。

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A .y =2x 2+x +2 B .y =x 2+3x +2 C .y =x 2-2x +3 D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1C .y =(x -2)2-1D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-34.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )x 6.17 6.18 6.19 6.20y =ax 2+bx +c-0.03-0.010.020.04A.6<x <6.17 B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1三、解答题(共11分) 5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的关系式;(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).图J22-2-2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分) 3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2基础知识反馈卡·22.1.11.C 2.D 3.3 4.k >-1 5.解:图略.(1)函数y =2x 2的图象开口向上,对称轴为y 轴,顶点坐标为(0,0).函数y =-12x 2的图象开口向下,对称轴为y 轴,顶点坐标为(0,0).(2)≠0 低(3)≤ =0 大 0 基础知识反馈卡·22.1.2 1.A 2.B3.上 y 轴 4.y =2⎝⎛⎭⎪⎫x +322-32 5.解:(1)将二次函数y =-12x 2+x +4配方,得y =-12(x -1)2+92.所以抛物线的开口向下,顶点坐标为⎝ ⎛⎭⎪⎫1,92,对称轴为x =1. (2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而增大.基础知识反馈卡·*22.1.31.D2.C3.y =-(x +1)2+54.-35.解:由题意可设函数关系式为y =a (x -1)2+5,∵图象过点(0,-3),∴a (0-1)2+5=-3,解得a =-8.∴y =-8(x -1)2+5,即y =-8x 2+16x -3.基础知识反馈卡·22.21.C 2.B 3.2 012 4.-2<x <35.解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m .∴m =-1. 即m 的值为-1.∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2), ∴⎩⎪⎨⎪⎧ 0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴二次函数的关系式为y =x 2-3x +2. (2){x |x <1或x >3}. 基础知识反馈卡·22.3 1.D 2.B 3.4 4.9.1 m5.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.基础知识反馈卡·23.1 1.D 2.A3.∠D∠E DE DC 4.C顺时针90 5.解:(1)旋转中心是点B.(2)旋转了90度.(3)AC与EF垂直且相等.。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。

2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。

3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。

4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。

5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。

6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。

9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。

12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。

14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。

15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。

18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。

二次函数基础测试题附答案

二次函数基础测试题附答案

二次函数基础测试题附答案一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.3.二次函数2(,,y ax bx c a b c =++为常数,且0a ≠)中的x 与y 的部分对应值如表:下列结论错误的是( )A .0ac <B .3是关于x 的方程()210ax b x c +-+=的一个根;C .当1x >时,y 的值随x 值的增大而减小;D .当13x 时,()210.ax b x c +-+>【答案】C【解析】【分析】根据函数中的x 与y 的部分对应值表,可以求得a 、b 、c 的值 然后在根据函数解析式及其图象即可对各个选项做出判断.【详解】解:根据二次函数的x 与y 的部分对应值可知:当1x =-时,1y =-,即1a b c -+=-,当0x =时,3y =,即3c =,当1x =时,5y =,即5a b c ++=,联立以上方程:135a b c c a b c -+=-⎧⎪=⎨⎪++=⎩,解得:133a b c =-⎧⎪=⎨⎪=⎩,∴233y x x =-++;A 、1330=-⨯=-<ac ,故本选项正确;B 、方程()210ax b x c +-+=可化为2230x x -++=, 将3x =代入得:232339630-+⨯+=-++=,∴3是关于x 的方程()210ax b x c +-+=的一个根,故本选项正确; C 、233y x x =-++化为顶点式得:2321()24=--+y x , ∵10a =-<,则抛物线的开口向下, ∴当32x >时,y 的值随x 值的增大而减小;当32x <时,y 的值随x 值的增大而增大;故本选项错误; D 、不等式()210ax b x c +-+>可化为2230x x -++>,令2y x 2x 3=-++, 由二次函数的图象可得:当0y >时,13x,故本选项正确;故选:C .【点睛】 本题考查了待定系数法求二次函数解析式、二次函数的性质、二次函数与不等式的关系,根据表中数据求出二次函数解析式是解题的关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.5.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤【答案】D【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.小明从如图所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①c >0,②abc <0,③a -b +c >0,④2b >4a c ,⑤2a =-2b ,其中正确结论是( ).A .①②④B .②③④C .③④⑤D .①③⑤【答案】C【解析】【分析】 由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由抛物线交y 轴于负半轴,则c<0,故①错误;②由抛物线的开口方向向上可推出a>0;∵对称轴在y 轴右侧,对称轴为x=2b a->0,∴b<0;由抛物线与y 轴的交点在y 轴的负半轴上,∴c<0,故abc>0,故②错误;③结合图象得出x=−1时,对应y 的值在x 轴上方,故y>0,即a−b+c>0,故③正确; ④由抛物线与x 轴有两个交点可以推出b 2−4ac>0,故④正确;⑤由图象可知:对称轴为x=2b a -=12则2a=−2b ,故⑤正确;故正确的有:③④⑤.故选:C【点睛】本题考查了二次函数图象与系数关系,观察图象判断图象开口方向、对称轴所在位置、与x 轴交点个数即可得出二次函数系数满足条件.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

人教版九年级上册数学课后基础练习:二次函数的图像和性质(包含答案)

人教版九年级上册数学课后基础练习:二次函数的图像和性质(包含答案)

二次函数2y ax bx c =++的图像和性质 一、填空题1.二次函数2y x 2x 3=-++的最大值为_________.2.(2019·徐州)已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P 时,所得抛物线的函数表达式为__.3.(2019·广元)如图,抛物线2(0)y ax bx c a =++≠过点(1,0)-,(0,2),且顶点在第一象限,设4 2 M a b c =++,则M 的取值范围是___.4.(2019·天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N ab =﹣.则M 、N 的大小关系为M _____N .(填“>”、“=”或“<”)>5.(2019·河南中考模拟)已知函数y =﹣x 2+2x ﹣2图象上两点A (2,y 1),B (a ,y 2),其中a >2,则y 1与y 2的大小关系是_____.(填“<”,“>”或“=”)6.已知二次函数()22f x x ax b =++,若()()1f a f b =+,其中1a b ≠+,则(1)(2)f f +的值为____ . 7.把二次函数215322y x x =++的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象的顶点是__________.二、单选题8.(2019·重庆)抛物线2362y x x =-++的对称轴是( )A .直线2x =B .直线2x =-C .直线1x =D .直线1x =-9.(2019·泸州)已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<≤D .12a -≤< ~10.(2019·河池)如图,抛物线2y ax bx c =++的对称轴为直线1x =,则下列结论中,错误的是( )A .0ac <B .240b ac ->C .20a b -=D .0a b c -+=11.(2019·娄底)二次函数2y ax bx c =++的图象如图所示,下列结论中正确的是( )①0abc < ②240b ac -< ③2a b > ④22()a c b +<A .1个B .2个C .3个D .4个12.(2019·成都)如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )—A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =13.(2019·福建)若二次函数y =|a |x 2+bx+c 的图象经过A(m ,n )、B(0,y 1)、C(3-m ,n )、2, y 2)、E(2,y 3),则y 1、y 2、y 3的大小关系是( ).A .y 1< y 2< y 3B .y 1 < y 3< y 2C .y 3< y 2< y 1D .y 2< y 3< y 114.(2019·浙江中考模拟)当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( )A .0B .﹣2C .1D .315.(2019·温州)已知二次函数242y x x =-+,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是( )…A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣2 16.(2019·湖北中考模拟)如图为二次函数y =ax 2+bx +c 的图象,给出下列说法:①ab <0;②方程ax 2+bx +c =0的根为x 1=-1,x 2=3;③a +b +c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,x <-1或x >3.其中,正确的说法有( )A .①②④B .①②⑤C .①③⑤D .②④⑤三、解答题 17.关于x 的二次函数2y ax bx c =++的图象与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点()0,3C (1)求二次函数的解析式;~(2)求二次函数的对称轴和顶点坐标.18.二次函数的图象如图所示,求二次函数的解析式.&19.已知二次函数y=ax2+bx﹣3(a≠0),且a+b=3.(1)若其图象经过点(﹣3,0),求此二次函数的表达式.(2)若(m,n)为(1)中二次函数图象在第三象限内的点,请分别求m,n的取值范围.(3)点P(x1,y1),Q(x2,y2)是函数图象上两个点,满足x1+x2=2且x1<x2,试比较y1和y2的大小关系.…;20.(2019·云南中考模拟)如图,二次函数y=﹣14x2+bx+c的图象经过点A(4,0),B(﹣4,﹣4),且与y轴交于点C.(1)求此二次函数的解析式;(2)证明:AO平分∠BAC;(3)在二次函数对称轴上是否存在一点P 使得AP =BP 若存在,请求出点P 的坐标;若不存在,请说明理由.) ; 参考答案 1.42.21(4)2y x =-.3.66M -<<..4.<5.>6.8.7.(-1,1)8.C 9.D 10.C 11.A 12.D 13.D 14.D 15.D 15.B17.解:(1)设抛物线的解析式为y=a (x+1)(x-3),将C (0,3)代入得:3=-3a ,解得a=-1,∴抛物线的解析式为y=-x 2+2x+3.(2)y=-x 2+2x+3=-2x 14-+(). ∴对称轴:直线1x =;顶点坐标为()1,4.%18.解:由图象可知,抛物线对称轴是直线x =1,与y 轴交于(0,3),与x 轴交于(-1,0)设解析式为y =ax 2+bx +c ,1230b a c a b c ⎧-=⎪⎪⎨⎪-+⎪⎩==解得123a b c -⎧⎪⎨⎪⎩===. ∴解析式为:y =-x 2+2x +319.解:(1)由题意得:39330a b a b +=⎧⎨--=⎩, 解得:12a b =⎧⎨=⎩, ∴此二次函数的表达式为:y =x 2+2x ﹣3;(2)如图,∵y =x 2+2x ﹣3=(x +1)2﹣4,且(m ,n )是二次函数图象在第三象限内的点,{∴﹣4≤n <0,当y =0时,x 2+2x ﹣3=0,x =﹣3或1,∴图象过(1,0)和(﹣3,0),∴﹣3<m<0;(3)由条件可得:y1=ax12+(3﹣a)x1﹣3,y2=ax22+(3﹣a)x2﹣3,∴y2﹣y1=(x2﹣x1)[a(x2+x1)+3﹣a],∵x1+x2=2且x1<x2,$∴y2﹣y1=(x2﹣x1)(a+3),①当a>﹣3时,y2>y1,②当a=﹣3时,y2=y1,③当a<﹣3时,y2<y1.20.解(1)∵点A(4,0)与点B(﹣4,4)在二次函数的图象上,∴044444b cb c=-++⎧⎨-=--+⎩,[解得122bc⎧=⎪⎨⎪=⎩,∴二次函数的解析式为y=211242x x-++;(2)设直线AB的解析式为y=ax+n则有4040a na n+=⎧⎨-+=⎩,解得122ab⎧=⎪⎨⎪=-⎩,故直线AB的解析式为y=12x﹣2,设直线AB与y轴的交点为点D,x=0,|则y=﹣2,故点D为(0,﹣2),由(1)可知点C为(0,2),∴OC=OD又∵AO⊥CD,∴AO平分∠BAC;(3)存在.∵y=﹣14x2+12x+2=﹣14(x﹣1)2+14+2,∴二次函数的对称轴为直线x=1,设点P的坐标为(1,m),AP2=(4﹣1)2+m2,BP2=(1+4)2+(m4)2,当AP=BP时,AP2=BP2,则有9+m2=25+m2+16+8m,解得m=﹣4,∴点P的坐标为(1,﹣4);。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 下列哪个函数是二次函数?A. y = x^2 + 3x + 2B. y = 3x + 2C. y = x^3 - 1D. y = 1/x答案:A2. 二次函数 y = ax^2 + bx + c 的顶点坐标是什么?A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2) / 4aD. (-b/2a, 4ac - b^2) / (4a)答案:D3. 如果二次函数 y = ax^2 + bx + c 的 a < 0,那么它的图像开口方向是?A. 向上B. 向下C. 向左D. 向右答案:B二、填空题4. 二次函数 y = 2x^2 - 4x + 3 的顶点坐标是()。

答案:(1, 1)5. 如果二次函数 y = ax^2 + bx + c 与 x 轴有两个交点,那么 a 的取值范围是()。

答案:a ≠ 0 且Δ > 0三、解答题6. 已知二次函数 y = -3x^2 + 6x - 5,求该函数与 x 轴的交点。

答案:解:令 y = 0,得 -3x^2 + 6x - 5 = 0,解得x1 = (3 + √33) / 6,x2 = (3 - √33) / 6,因此,该函数与 x 轴的交点坐标为( (3 + √33) / 6, 0) 和( (3 - √33) / 6, 0)。

7. 某二次函数的图像经过点 (1, 2) 和 (2, 3),且顶点在 x 轴上,求该二次函数的解析式。

答案:解:设二次函数为 y = a(x - h)^2 + k,由于顶点在 x 轴上,所以 k = 0,又因为图像经过点 (1, 2) 和 (2, 3),代入得:a(1 - h)^2 = 2a(2 - h)^2 = 3解得 h = 1.5,a = 2,因此,该二次函数的解析式为 y = 2(x - 1.5)^2。

四、应用题8. 一个矩形的长是宽的两倍,如果面积为 24 平方米,求这个矩形的长和宽。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

21.1二次函数同步基础练习题(含答案)

21.1二次函数同步基础练习题(含答案)

22.1二次函数同步基础练习题(含答案)一、选择题(本大题共9小题)1.下列函数中是二次函数的是()A.y=3x-1B.y=x3-2x-3C.y=(x+1)2-x2D.y=3x2-12.下列各式中,y是x的二次函数的为()A.y=-9+x2B.y=-2x+1C.y=D.y=-(x+1)+33.对于任意实数m,下列函数一定是二次函数的是()A.y=(m-1)2x2B.y=(m+1)2x2C.y=(m2+1)x2D.y=(m2-1)x24.下列函数中,是二次函数的有()①y=1-x2②y=③y=x(1-x)④y=(1-2x)(1+2x)A.1个B.2个C.3个D.4个5.二次函数y=-x2-2x+1的二次项系数是()A.1 B.-1 C.2 D.-26.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.-2 B.2 C.±2 D.07.在下列4个不同的情境中,两个变量所满足的函数关系属于二次函数关系的有()①设正方形的边长为x面积为y,则y与x有函数关系;②x个球队参加比赛,每两个队之间比赛一场,则比赛的场次数y与x之间有函数关系;③设正方体的棱长为x,表面积为y,则y与x有函数关系;④若一辆汽车以120km/h的速度匀速行驶,那么汽车行驶的里程y(km)与行驶时间x(h)有函数关系.A.1个B.2个C.3个D.4个8.已知函数:①y=3x-1;②y=3x2-1;③y=-20x2;④y=x2-6x+5,其中是二次函数的有()A.1个B.2个C.3个D.4个9.下列函数关系中,满足二次函数关系的是()A.圆的周长与圆的半径之间的关系B.在弹性限度内,弹簧的长度与所挂物体质量的关系C.圆柱的高一定时,圆柱的体积与底面半径的关系D.距离一定时,汽车行驶的速度与时间之间的关系二、填空题(本大题共11小题)10.已知函数y=(m-1)x2+2x-m中,y是关于x的二次函数,则写一个符合条件的m的值可能是______ .11.若函数是二次函数,则m的值为______ .12.若y=x m-2是二次函数,则m= ______ .13.已知函数是关于x的二次函数,则m的值为______ .14.已知函数,当m= 时,它是二次函数.15.函数的图象是抛物线,则m= ______ .16.若函数y=(m2+m)是二次函数,则m= ______ .17.如果函数y=(k-3)+kx+1是二次函数,那么k的值一定是______ .18.函数y=(m+1)x|m|+1+4x-5是二次函数,则m= ______ .19.在函数①y=ax2+bx+c,②y=(x-1)2-x2,③y=5x2-,④y=-x2+2中,y关于x的二次函数是______ .(填写序号)20.已知两个变量x,y之间的关系式为y=(a-2)x2+(b+2)x-3.(1)当______ 时,x,y之间是二次函数关系;(2)当______ 时,x,y之间是一次函数关系.三、解答题(本大题共1小题)21.一个二次函数y=(k-1)+2x-1.(1)求k值.(2)求当x=0.5时y的值?【答案】1.D2.A3.C4.C5.B6.B7.C8.C9.C10.011.-312.413.-114.-115.-116.17.018.119.④20.a≠2;a=2且b≠221.解:(1)由题意得:k2-3k+4=2,且k-1≠0,解得:k=2;(2)把k=2代入y=(k-1)+2x-1得:y=x2+2x-1,当x=0.5时,y=.。

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案一、基础练习1.把抛物线y=2x向上平移1个单位,得到抛物线_______,把抛物线y=-2x?向下平移个单位,得到抛物线________..抛物线y=3x-1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x?向_______平移______个单位得到的..把抛物线向左平移1个单位,得到抛物线_________,把抛物线 ?向右平移3个单位,得到抛物线________.24.抛物线y=x-1)的开口向________,对称轴是______,顶点坐标是_________,222222?它是由抛物线x2向______平移______个单位得到的..把抛物线y=-13132向_____平移______个单位,就得到抛物线y=-13x2.6.把抛物线y=42向______平移_______个单位,就得到函数y=42的图象..函数y=-的最大值为________,函数y=-x-22213的最大值为________.8.若抛物线y=a的对称轴为x=-3,且它与抛物线y=-2x2的形状相同,?开口方向相同,则点关于原点的对称点为________..已知抛物线y=a2过点,则该函数y=a2当x=________?的时候,?有最____值______.10.若二次函数y=ax2+b,当x取x1,x2时,函数值相等,则x取x1+x2时,函数的值为________.11.一台机器原价50万元.如果每年的折旧率是x,两年后这台机器的价格为y?万元,则y与x的函数关系式为A.y=50B.y=50C.y=50-x2D.y=5012.下列命题中,错误的是 A.抛物线221212x2-1不与x轴相交;B.抛物线x2-1与121222形状相同,位置不同;12C.抛物线y= D.抛物线y=2的顶点坐标为;12)的对称轴是直线x=13.顶点为且开口方向、形状与函数y=- A.y=-13 1313x的图象相同的抛物线是 D.y=1222B.y=-13x2-5C.y=-13214.已知a x-2的图象上,则A.y1 2在同一坐标系中的图象大致为二、整合练习 1.已知反比例函数y=kx的图象经过点A,若二次函数y=12x2-x?的图象平移后经过该反比例函数图象上的点B,C,求平移后的二次函数图象的顶点坐标.2.如图,在正方形ABCD中,AB=2,E是AD边上一点.BE?的垂直平分线交AB于M,交DC于N.设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;当AE为何值时,四边形ADNM的面积最大?最大值是多少?3.将二次函数y=-2x2+8x-5的图象开口反向,并向上、下平移得一新抛物线,新抛物线与直线y=kx+1有一个交点为.求:这条新抛物线的函数解析式;这条新抛物线和直线y=kx+1的另一个交点.答案: 一、1.y=2x2+1 y=-2x2-2.y轴下 1.x+1)2x-3)2.上直线x=1 右 1.右,6.左.0138..大 0 10.11.A 12.D 13.C 14.C15.B+k过原点,所以0=1+k,k=-1,双曲线y=-1x )二、1.由反比例函数y=kx的图象过点A,所以1k2=4,k=2,?所以反比例函数的解析式为y=2x.又因为点B,C在y=2x的图象上,所以m=2,n=1222=1,设二次函数y=12x-x的图象平移后的解析式为y=2+k,它过点B,C,所以平移后的二次函数图象的顶点为.2.连接ME,设MN交BE交于P,根据题意得MB=ME,MN⊥BE.过N作NG⊥AB于F,在Rt△MBP和Rt△MNE中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,∠MBP=∠MNF,又AB=FN,Rt△EBA≌Rt△MNE,MF=AE=x.在Rt△AME中,由勾股定理得 ME2=AE2+AM2,所以MB2=x2+AM2,即2=x2+AM2,解得AM=1- 所以四边形ADNM的面积S=AM?DN2?AD?12AM?AF214x2.×2=AM+AM+MF=2AM+AE=2+x=-12x2+x+2.即所求关系式为S=-S=-12x2+x+2.52x2+x+2=-12+=-122+52.52当AE=x=1时,四边形ADNM的面积S的值最大,此时最大值是.3.y=-2x2+8x-5=-22+3,将抛物线开口反向,且向上、?下平移后得新抛物线方程为y=22+m.因为它过点,所以4=22+m,m=2,这条新抛物线方程为y=22+2,即y=2x2-8x+10.直线y=kx+1过点,4=3k+1,k=1,求得直线方程为y=x+1.另一个交点坐标为。

21.3二次函数y=ax2+bx+c的图像及性质同步基础练习题(含答案)

21.3二次函数y=ax2+bx+c的图像及性质同步基础练习题(含答案)

21.3⼆次函数y=ax2+bx+c的图像及性质同步基础练习题(含答案)22.3 ⼆次函数的图像及性质在同⼀直⾓坐标系下,做下列函数的图形⼀、的图像及性质(1)(2)性质:三、()的图像及性质(1)(2)四、()的图像及性质:性质:⽅向配⽅:= == ==此时:;;性质:⼀、选择题(本⼤题共22⼩题)1.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()C.y=2(x-3)2+5D.y=2(x+3)2-52.已知⼆次函数y=a(x-1)2+b(a≠0)有最⼤值,则a,b的⼤⼩⽐较为()A.a>bB.a<bC.a=bD.不能确定3.⼆次函数y=x2+4x+a的最⼩值是2,则a的值是()A.4B.5C.6D.74.⼆次函数y=-2(x-3)2+1的图象的对称轴是()A.直线x=-2B.直线x=-3C.直线x=3D.直线x=15.抛物线y=-x2+3的顶点坐标是()A.(-1,3)B.(0,3)C.(1,3)D.(3,0)6.下列表格是⼆次函数y=ax2+bx+c的⾃变量x与函数值y的对应值,判断⽅程ax2+bx+c=0(a≠0,a,b,c为常xA.-2.14<x<2.13B.-2.13<x<-2.12C.-2.12<x<-2.11D.-2.11<x<-2.107.抛物线y=2x2,y=-2x2,y=2x2+1共有的性质是()A.开⼝向上B.对称轴都是y轴C.都有最⾼点A.(2,0)B.(-2,0)C.(0,2)D.(0,-2)9.抛物线y=x2-1的顶点坐标是()A.(0,-1)B.(0,1)C.(-1,0)D.(1,0)10.⼆次函数y=-(x+1)2-2的最⼤值是()A.-2B.-1C.1D.211.不在抛物线y=x2-2x-3上的⼀个点是()A.(-1,0)B.(3,0)C.(0,-3)D.(1,4)12.将函数y=-3x2+1的图象向右平移个单位得到的新图象的函数解析式为()A. B. C.y=-3x2+ D.y=-3x2-13.设A(-2,y1),B(1,y2),C(2,y3)是抛物线y=-(x+1)2+m上的三点,则()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y2>y1>y314.⼆次函数y=-2(x-1)2-3的图象顶点坐标是()A.(-1,3)B.(-1,-3)C.(1,3)D.(1,-3)15.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x-1)2-3B.y=2(x-1)2+316.抛物线y=2(x-3)2-1的顶点坐标为()A.(-3,1)B.(-3,-1)C.(3,1)D.(3,-1)17.⼆次函数的图象的开⼝⽅向、对称轴、顶点坐标分别是()A.向上,直线x=3,(3,4)B.向上,直线x=-3,(-3,4)C.向上,直线x=3,(3,-4)D.向下,直线x=3,(3,4)18.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x+2)2-1B.y=3(x-2)2+1C.y=3(x-2)2-1D.y=3(x+2)2+119.将抛物线=-2x2向右平移⼀个位,再上移个单位后,抛物线的表式()A.y=-2(x-1)2+2B.y=-2(x-1)2-2C.y=-2(x+1)2+2D.y=-2(x+1)2-220.对抛物线y=-x2+2x-3⽽⾔,下列结论正确的是()A.与x轴有两个公共点;B.与y轴的交点坐标是(0,3);C.当x<1时,y随x的增⼤⽽增⼤;当x>1时,y随x的增⼤⽽减⼩;D.开⼝向上.21.下列抛物线中,顶点坐标是(-2,0)的是()A.y=x2+2B.y=x2-2C.y=(x+2)2D.y=(x-2)222.对称轴平⾏于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=-2x2+8x+3B.y=-2x?2-8x+3⼆、填空题(本⼤题共8⼩题)23.将抛物线y=x2+bx+c向右平⾏移动2个单位,再向下平⾏移动1个单位长度得抛物线的解析式为y=(x-1)2+1,则⽐抛物线的解析式为______ .24.⼆次函数y=x2-bx+c的图象上有两点A(3,-8),B(-5,-8),则此抛物线的对称轴是直线x= ______ .25.已知A(1,y1)、B(-,y2)、C(-2,y3)都在y=-2(x+1)2-的图象上,则y1、y2、y3的⼤⼩关系是______ .(请⽤“<”连接)26.已知函数y=3x2-6x+k(k为常数)的图象经过点A(1,y1),B(2,y2),C(-3,y3),则y1,y2,y3从⼩到⼤排列顺序为______ .27.已知,⼆次函数y=ax2+bx+c(a≠0)的图象如图所⽰,当x=2时,y的值为______ .28.若抛物线y=a(x-3)2+2经过点(1,-2),则a= ______ .29.⼆次函数y=-3(x-2)2+5,在对称轴的左侧,y随x的增⼤⽽____________.2①抛物线与x轴的交点坐标是____________和____________;②抛物线经过点(-3,____________);③在对称轴右侧,y随x增⼤⽽____________;(2)试确定抛物线y=ax2+bx+c的解析式.三、解答题(本⼤题共16⼩题)31.已知抛物线y=2x2+2x-3经过点A(-3,a),求a的值.32.已知抛物线y=ax2+x+b上的⼀点为(-1,-7),与y轴交点为(0,-5)(1)求抛物线的解析式.(2)求抛物线的对称轴和顶点坐标.33.⼆次函数的图象经过A(4,0),B(0,-4),C(2,-4)三点:(1)求这个函数的解析式;34.⼰知⼆次函数y=x2-2x-1.(1)写出其顶点坐标为______ ,对称轴为______ ;(2)在右边平⾯直⾓坐标系内画出该函数图象;(3)根据图象写出满⾜y>2的x的取值范围______ .35.抛物线y=-2x2+8x-6.(1)⽤配⽅法求顶点坐标,对称轴;(2)x取何值时,y随x的增⼤⽽减⼩?36.如图,已知抛物线y=x2+bx+c经过A(-1,0)、B(3,0)两点.(1)求抛物线的解析式和顶点坐标;(2)当0<x<3时,求y的取值范围;(3)点P为抛物线上⼀点,若S△PAB=10,求出此时点P的坐标.37.已知⼆次函数图象的顶点是(-1,2),且过点.(1)求⼆次函数的表达式,并在图中画出它的图象;(2)求证:对任意实数m,点M(m,-m2)都不在这个⼆次函数的图象上.38.已知⼆次函数y=x2+bx+c的图象经过点(2,0)和(-3,0),求b、c的值.39.已知⼆次函数y=x2-2mx+m-1(1)当⼆次函数的图象经过坐标原点O(0,0)时,求⼆次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标.2(1)求该函数的表达式;(2)当y<5时,x的取值范围是______ .41.如图,⼆次函数y=(x-2)2+m的图象与y轴交于点C,点A的坐标为(1,0),点B是点C关于该函数图象对称轴对称的点.(1)求⼆次函数的解析式;(2)求点B的坐标.42.⼰知⼆次函数y=--2x+6.(1)求函数图象的顶点坐标和对称轴.(2)⾃变量x在什么范围内时,函数值y>0?y随x的增⼤⽽减⼩?43.已知抛物线y=x2+bx+c经过点(1,-4)和(-1,2),求这个抛物线的顶点坐标.44.⼆次函数y=ax2-2x+3的图象经过点(3,6).(1)求该⼆次函数的关系式;(2)证明:⽆论x取何值,函数值y总不等于1;(3)将该抛物线先向______ (填“左”或“右”)平移______ 个单位,再向______ (填“上”或“下”)平移______ 个单位,使得该抛物线的顶点为原点.45.如图,已知⼆次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5).(1)求该⼆次函数的解析式;(2)求该⼆次函数图象的顶点坐标,并指出x在哪个范围内y随着x的增⼤⽽增⼤.(1)求关于的⼆次函数解析式;(2)求m的值.【答案】3.C4.C5.B6.B7.B8.A9.A 10.A 11.D 12.A 13.A 14.D 15.D 16.D 17.A 18.A 19.A 20.C 21.C 22.C23.y=x2+2x+324.-125.y1<y3<y226.y1<y2<y327.228.-129.增⼤30.(-2,0);(1,0);8;增⼤31.解:∵抛物线y=2x2+2x-3经过点A(-3,a),∴a=2×(-3)2+2×(-3)-3,=2×9-6-3,=9.32.解:(1)将点(-1,-7)、(0,-5)代⼊y=ax2+x+b,,解得:,∴抛物线的解析式为y=-x2+x-5.(2)∵y=-x2+x-5=--,∴抛物线的对称轴为x=,顶点坐标为(,-).33.解:(1)设抛物线的解析式为y=a(x-h)2+k∵B、C的纵坐标都是-4,∴B、C关于抛物线的对称轴对称,∴抛物线的对称轴为:x=1,即h=1,∴y=a(x-1)2+k,将A(4,0)和B(0,-4)代⼊上式,解得:∴抛物线的解析式为:y=(x-1)2-∴抛物线与x轴的交点坐标为:(4,0)或(-2,0)∵抛物线与y轴的交点坐标为:(0,-4)∴抛物线与坐标轴的交点围成的三⾓形的⾯积为:×6×4=1234.(1,-2);x=1;x<-1或x>335.解:(1)∵y=-2x2+8x-6=-2(x2-4x)-6=-2(x2-4x+4)+8-6=-2(x-2)2+2,(2)∵a=-2<0,∴当x≥2时,y随x的增⼤⽽减⼩.36.解:(1)把A(-1,0)、B(3,0)分别代⼊y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2-2x-3.∵y=x2-2x-3=(x-1)2-4,∴顶点坐标为(1,-4).(2)由图可得当0<x<3时,-4≤y<0.(3)∵A(-1,0)、B(3,0),∴AB=4.设P(x,y),则S△PAB=AB?|y|=2|y|=10,∴|y|=5,∴y=±5.①当y=5时,x2-2x-3=5,解得:x1=-2,x2=4,此时P点坐标为(-2,5)或(4,5);②当y=-5时,x2-2x-3=-5,⽅程⽆解;综上所述,P点坐标为(-2,5)或(4,5).37.解:(1)依题意可设此⼆次函数的表达式为y=a(x+1)2+2,⼜点(0,)在它的图象上,所以=a+2,解得,,所求为y=-(x+1)2+2,或y=-x2-x+.令y=0,得x1=1,x2=-3,画出其图象;(2)证明:若点M在此⼆次函数的图象上,则-m2=-(m+1)2+2,得m2-2m+3=0,⽅程的判别式:4-12=-8<0,该⽅程⽆实根,所以,对任意实数m,点M(m,-m2)都不在这个⼆次函数的图象上.38.解:把(2,0)与(-3,0)代⼊得:,解得:b=1,c=-6.39.解:(1)∵⼆次函数的图象经过坐标原点O(0,0),∴代⼊⼆次函数y=x2-2mx+m-1,得出:m-1=0,解得:m=1,∴⼆次函数的解析式为:y=x2-2x;(2)∵m=2,∴⼆次函数y=x2-2mx+m-1得:y=x2-4x+1=(x-4)2-7,∴抛物线的顶点为:D(4,-7),当x=0时,y=1,∴C点坐标为:(0,1),∴C(0,1)、D(4,-7).40.1<x<441.解:(1)把A(1,0)代⼊y=(x-2)2+m得1+m=0,解得m=-1,所以⼆次函数的解析式为y=(x-2)2-1;(2)抛物线的对称轴为直线x=2,当x=0时,y=(x-2)2-1=3,则C(0,3),因为点B是点C关于该函数图象对称轴对称的点,所以B点坐标为(4,3).42.解:(1)∵y=--2x+6=-(x2+4x)+6=-[(x+2)2-4]+6=-(x+2)2+8,∴顶点坐标为(-2,8),对称轴为x=-2.(2)令y=0得到--2x+6=0,解得x=-6或2,∴观察图象可知,-6<x<2时,y>0,当x>-2时,y随x的增⼤⽽减⼩.43.解:(1)把点(1,-4)和(-1,2)代⼊y=x2+bx+c,得,解得,所以抛物线的解析式为y=x2-3x-2.y=x2-3x-2=(x-)2+,所以抛物线的顶点坐标为(,).44.左;1;下;245.解:(1)根据题意,得,解得,∴⼆次函数的表达式为y=x2-4x-5;(2)将⼆次函数的表达式y=x2-4x-5化为顶点式y=(x-2)2-9,∴顶点坐标为(2,-9);对称轴为x=2,∴当x>2时,y随x的增⼤⽽增⼤.46.解:(1)设此⼆次函数解析式为y=ax2+bx+c,由题意列出⽅程组,解得a=1,b=-1,c=-2,所以⼆次函数解析式为y=x2-x-2.(2)将x=4代⼊解析式得m=10.。

二次函数练习题(含答案)

二次函数练习题(含答案)

二次函数练习题 (一)1.抛物线y=x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限D.第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点 B.只有一个交点 C.有两个交点 D.有三个交点3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0(1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( )5.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( )A.6B.4C.3D.16.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是( )A .31≤≤-xB .31<<-xC .31>-<x x 或D .31≥-≤x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax与正比例函数y =(b +c )x 在同一坐标系中的大致图象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x = D. )0(212<=x x y 9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( )xy OxBACy OA.4个B.3个C.2个D.1个10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( )11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________.12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________.13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________.15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________.17.已知抛物线y =ax 2+bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________.18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2– 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______20.当m=_________时,函数y = (m 2-4))3(42-+--m x m mx + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x =______时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________22.抛物线c bx ax y ++=2如右图所示,则它关于y析式是__________.23、(2010年宁波市)如图,已知二次函数bx x y +-=221的图象经过A (2,0)、B (0,-6)两点。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案

n dAl l t h i ng si nt he i rb ei n ga re go od fo二次函数练习题一、选择题:1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D.2. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<06. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___象限( )A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,图象交x 轴于点A(m ,0)和点B ,且m>4,那么AB 的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3andllt hi ng si nt he i rb ei n ga re go od fo rs o 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.B.C. D.二、填空题:11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________.13. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________.14. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax 2+bx+c 的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s 2).若v 0=10m/s ,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x 2+x+b 2经过点,则y 1的值是_________.三、解答题:19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20. 在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点. (1)求抛物线的解析式; (2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.e an dAl l t h i ng si nt he i rb ei n 答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标. 解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k 的形式,顶点坐标即为(h ,k),y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3.考点:二次函数的图象特点,顶点坐标. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x 轴上,答案选C. 4. 考点:数形结合,二次函数y=ax 2+bx+c 的图象为抛物线,其对称轴为. 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B. 5. 考点:二次函数的图象特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,答案选C. 6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,在第四象限,答案选D. 7. 考点:二次函数的图象特征. 解析:因为二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,所以抛物线对an dAl l t h i ng si nt he i rb ei n ga re go od fo rs 称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m ,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C. 8. 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状. 解析:因为一次函数y=ax+b 的图象经过第二、三、四象限,所以二次函数y=ax 2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0)点.答案选C. 9. 考点:一次函数、二次函数概念图象及性质. 解析:因为抛物线的对称轴为直线x=-1,且-1<x 1<x 2,当x>-1时,由图象知,y 随x 的增大而减小,所以y 2<y 1;又因为x 3<-1,此时点P 3(x 3,y 3)在二次函数图象上方,所以y 2<y 1<y 3.答案选D. 10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题 11. 考点:二次函数性质. 解析:二次函数y=x 2-2x+1,所以对称轴所在直线方程.答案x=1. 12. 考点:利用配方法变形二次函数解析式. 解析:y=x 2-2x+3=(x 2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2. 13. 考点:二次函数与一元二次方程关系. 解析:二次函数y=x 2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x 2-x 1|=4.答案为4. 14. 考点:求二次函数解析式. 解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3, 答案为y=x 2-2x-3. 15. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x 2-1. 16. 考点:二次函数的性质,求最大值. 解析:直接代入公式,答案:7.Al l t h i ng si nt he i rb ei n ga re go od fo r 17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:如:y=x 2-4x+3. 18. 考点:二次函数的概念性质,求值. 答案:.三、解答题 19. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)A ′(3,-4) (2)由题设知: ∴y=x 2-3x-4为所求 (3) 20. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根 又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x 2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9). 21. 解: (1)依题意:n dAl lt h i ng si nt he i rb ei n ga re go od fo rs o (2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0) 由,得M(2,9) 作ME ⊥y 轴于点E , 则 可得S △MCB =15. 22. 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式: 总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了. 单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y 元. 利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润. 解:设销售单价为降价x 元.Al l t h i ng si nt he i rb ei n ga re go od fo rs o 顶点坐标为(4.25,9112.5). 即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元。

人教版数学九年级上册《二次函数》基础课时练习题(含答案)

人教版数学九年级上册《二次函数》基础课时练习题(含答案)

二次函数基础分类练习题附答案练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:时间 t (秒)1234距离 s(米)281832写出用 t 表示 s 的函数关系式 .2、下列函数:①y = 3x 2;②y = x2-x (1 + x ) ;③y = x2(x2+x) -4 ;④ y =12 + x ;x⑤ y = x (1 -x ) ,其中是二次函数的是,其中 a =, b =, c =3时,函数y = ( m - 2) x2+ 3x - 5( m 为常数)是关于x 的二次函数、当 m4、当m = _ _ _ _时,函数y =(m2+ m )x m2- 2 m- 1是关于x的二次函数5、当m = _ _ _ _时,函数y = (m -4) x m2 - 5 m+ 6+3x 是关于x的二次函数6、若点 A ( 2, m ) 在函数y x 21的图像上,则 A 点的坐标是____ .7、在圆的面积公式2的关系是()S=πr中, s 与 rA 、一次函数关系B 、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S( cm2)与小正方形边长x( cm)之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求 y 与 x 之间的函数关系式 .② 求当边长增加多少时,面积增加8cm2.10、已知二次函数y ax2c(a 0), 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为 a 米的旧墙及可以围成24 米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形 .( 1)如果设猪舍的宽 AB 为 x 米,则猪舍的总面积S(米2)与 x 有怎样的函数关系?( 2)请你帮富根老伯计算一下,如果猪舍的总面积为32 米2,应该如何安排猪舍的长BC 和宽 AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y ax 2的图象与性质1、填空:( 1)抛物线y1x 2的对称轴是(或),顶点坐标是,当 x时, y2随 x 的增大而增大,当 x时, y 随 x 的增大而减小,当 x=时,该函数有最值是;( 2)抛物线y 1x 2的对称轴是(或),顶点坐标是,当 x时, y 随 x 的2增大而增大,当x时, y 随 x 的增大而减小,当 x=时,该函数有最值是;2、对于函数y2x2下列说法:①当x 取任何实数时, y的值总是正的;②x 的值增大, y 的值也增大;③ y 随 x 的增大而减小;④图象关于y 轴对称 .其中正确的是.2)3、抛物线 y=- x 不具有的性质是(A 、开口向下B 、对称轴是y 轴C、与 y轴不相交D、最高点是原点12t 的函数图像大致是()4、苹果熟了,从树上落下所经过的路程s 与下落时间 t满足 S=2 gt( g=9.8),则 s 与s s s stOO t O t O tA B C D5、函数y ax2与 y ax b的图象可能是()A .B .C. D .6、已知函数y = mx m2- m- 4的图象是开口向下的抛物线,求m 的值.3 x 2,当x1>x2>0时,求y1与y2的大小关系.8、二次函数y29、已知函数y m 2 x m2m 4是关于x的二次函数,求:( 1)满足条件的 m 的值;( 2)m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时, y 随 x 的增大而增大;( 3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时, y 随 x 的增大而减小?10、如果抛物线y = ax 2与直线 y = x - 1 交于点(b, 2),求这条抛物线所对应的二次函数的关系式.练习三函数 y ax 2 c 的图象与性质1、抛物线y2x 2 3 的开口,对称轴是,顶点坐标是,当 x时 , y 随 x 的增大而增大 , 当 x时 , y 随 x 的增大而减小 .2、将抛物线y 1x2向下平移2 个单位得到的抛物线的解析式为,再向上平移3 个单位得到的抛物线的解3析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛物线y x2k ,当k取0, 1 时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线y2x 2 1 向上平移4个单位后,所得的抛物线是,当 x=时,该抛物线有最(填大或小)值,是.5、已知函数y mx 2(m 2m)x 2 的图象关于y轴对称,则m=________;6、二次函数y ax 2c a0 中,若当、 x ( x)时,函数值相等,则当x 取 x1+x 2时,函数值等x 取 x121≠x2于.练习四函数 y a x h 2的图象与性质1、抛物线y1x 3 2,顶点坐标是,当 x时 ,y 随 x 的增大而减小,函数有最值22、试写出抛物线y3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.( 1)右移 2 个单位;( 2)左移2个单位;( 3)先左移 1 个单位,再右移 4 个单位 . 33y x 1 2和y x1具有的共同性质(至少2个).、请你写出函数、二次函数 y a x h 2的图象如图:已知1,,试求该抛物线的解析式.4a OA=OC25、抛物线y 3(x 3) 2与x轴交点为A,与y轴交点为B,求 A 、 B 两点坐标及⊿AOB 的面积 .6、二次函数y a(x 4)2,当自变量x 由 0 增加到 2 时,函数值增加 6.(1)求出此函数关系式 .(2)说明函数值 y 随 x 值的变化情况 .7、已知抛物线y x 2(k 2) x 9 的顶点在坐标轴上,求k 的值 .练习五y a x h 2k 的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________ .2、二次函数y= (x- 1)2+ 2,当 x=____时, y 有最小值 .3、函数 y=1(x- 1)2+3,当 x____时,函数值y 随 x的增大而增大 .21212的图象向平移 3 个单位,再向平移 2个单位得到 .4、函数 y=(x+3) -2 的图象可由函数 y=x225、已知抛物线的顶点坐标为( 2,1) ,且抛物线过点 (3,0) ,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P( 1,3),则函数 y 随自变量 x 的增大而减小的x 的取值范围是()A 、 x>3B、 x<3C、 x>1D、 x<17、已知函数y 3 x 2 29.( 1)确定下列抛物线的开口方向、对称轴和顶点坐标;( 2)当 x=时,抛物线有最值,是.( 3)当 x时, y 随 x 的增大而增大;当 x时, y 随 x 的增大而减小 .(4)求出该抛物线与 x 轴的交点坐标及两交点间距离;(5)求出该抛物线与 y 轴的交点坐标;(6)该函数图象可由y3x2的图象经过怎样的平移得到的?8、已知函数yx 1 2 4 .( 1)指出函数图象的开口方向、对称轴和顶点坐标;( 2)若图象与 x 轴的交点为 A 、 B 和与 y 轴的交点 C,求△ ABC 的面积;( 3)指出该函数的最值和增减性;( 4)若将该抛物线先向右平移 2 个单位,在向上平移 4 个单位,求得到的抛物线的解析式;( 5)该抛物线经过怎样的平移能经过原点.( 6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当 x 取何值时,函数值小于 0.练习六y ax 2bx c 的图象和性质1、抛物线y x2 4 x 9的对称轴是.2、抛物线y2x212 x25 的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2 ,且与 y 轴的交点坐标为(0,3)的抛物线的解析式.4、将 y= x2-2x+ 3化成y= a (x- h)2+k的形式,则y=____ .5、把二次函数y =- 1 x2- 3x - 5的图象向上平移 3 个单位,再向右平移 4 个单位,则两次平移后的函数图象22的关系式是6、抛物线y x 2 6 x 16 与x轴交点的坐标为_________;7、函数y 2 x2x 有最____值,最值为_______;8、二次函数y x 2bx c 的图象沿 x 轴向左平移2个单位,再沿 y 轴向上平移 3 个单位,得到的图象的函数解析式为 y x 22x 1,则 b 与 c 分别等于()A、6,4B、- 8,14C、- 6,6D、- 8,- 149y x22x1的图象在x 轴上截得的线段长为()、二次函数A、2 2B、3 2C、2 3D、3 310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:( 1)y 1 x22x1;( 2)y3x 28x 2 ;(3)y 1 x2x 4 2411、把抛物线y2x 24x 1沿坐标轴先向左平移 2 个单位,再向上平移 3 个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数y x2x 6 的图象与x轴和y轴的交点坐标13、已知一次函数的图象过抛物线y = x 2 + 2x + 3 的顶点和坐标原点1)求一次函数的关系式;2)判断点(- 2, 5)是否在这个一次函数的图象上14、某商场以每台2500 元进口一批彩电.如每台售价定为2700 元,可卖出 400 台,以每 100 元为一个价格单位,若将每台提高一个单位价格,则会少卖出50 台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七y ax 2bx c 的性质1、函数y = x2+ px + q的图象是以(3,2)为顶点的一条抛物线,这个二次函数的表达式为2、二次函数y = mx 2 + 2x + m -4m 2的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线y = ax 2 + bx + c 与y轴交于点A (0,2),它的对称轴是x = - 1,那么ac=b4、抛物线y x 2bx c与x轴的正半轴交于点A、B两点,与y轴交于点C,且线段AB的长为1,△ABC的面积为 1,则 b 的值为 ______.5、已知二次函数y ax 2bx c 的图象如图所示,则a___0,b___0,c___0,b24ac ____0;6、二次函数y ax2bx c 的图象如图,则直线 y ax bc 的图象不经过第象限.7、已知二次函数y = ax 2 + bx + c (a0 )的图象如图所示,则下列结论:1)a,b同号;2)当x = 1和x = 3时,函数值相同; 3)4a + b = 0;4)当y = - 2时, x 的值只能为0;其中正确的是8、已知二次函数y4x 22mx m2与反比例函数 y2m 4的图象在第二象限内x的一个交点的横坐标是-2,则 m=9、二次函数y = x2+ ax + b中,若a + b = 0,则它的图象必经过点()A (- 1,-)B()C()D(- 1,1) 11,- 11,110、函数y ax b 与 y ax 2bx c 的图象如图所示,则下列选项中正确的是()A 、ab0, c0B、ab0, c0C、ab0, c0D、ab0, c011、已知函数y ax2bx c 的图象如图所示,则函数y ax b的图象是()12、二次函数y ax 2bx c 的图象如图,那么abc、 2a+b、 a+b+c、a-b+c 这四个代数式中,值为正数的有()A.4 个B.3个C.2 个D.1 个13、抛物线的图角如图,则下列结论:①> 0;②;③>;④< 1.其中正确的结论是().( A )①②(B)②③(C)②④(D)③④14、二次函数y = ax2+ bx + c的最大值是- 3a,且它的图象经过(- 1,- 2) , (1, 6) 两点,求a、 b 、c15、试求抛物线y = ax 2 + bx + c 与 x 轴两个交点间的距离(b2 - 4ac > 0练习八二次函数解析式1、抛物线y=ax2+bx+c 经过 A(-1,0), B(3,0), C(0,1) 三点,则a=, b=, c=2、把抛物线y=x 2+2x-3 向左平移 3 个单位,然后向下平移 2 个单位,则所得的抛物线的解析式为.3、二次函数有最小值为- 1 ,当 x = 0 时,y = 1,它的图象的对称轴为x = 1 ,则函数的关系式为4、根据条件求二次函数的解析式( 1)抛物线过(-1, -6)、( 1, -2)和( 2, 3)三点( 2)抛物线的顶点坐标为(-1, -1),且与 y 轴交点的纵坐标为-3( 3)抛物线过(-1, 0),(3, 0),(1,- 5)三点;( 4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,- 2);5、已知二次函数的图象经过(- 1,1) 、 (2,1) 两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线2与点 (3,2),顶点在直线y=3x-3 上, a<0,求此二次函数的解析式 . y=ax +bx+c 过点 (0,-1)7、已知二次函数的图象与x 轴交于 A ( -2, 0)、B ( 3, 0)两点,且函数有最大值是2.( 1)求二次函数的图象的解析式;( 2)设次二次函数的顶点为P,求△ABP 的面积 .8、以 x 为自变量的函数y x 2(2m 1)x ( m24m 3) 中,m为不小于零的整数,它的图象与x 轴交于点 A 和 B,点 A 在原点左边,点 B 在原点右边 .(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点 A ,与这个二次函数的图象交于点C,且S ABC =10,求这个一次函数的解析式.练习九二次函数与方程和不等式1、已知二次函数y kx 27x7 与x轴有交点,则k 的取值范围是.2、关于 x 的一元二次方程x 2x n0 没有实数根,则抛物线y x2x n的顶点在第 _____象限;3y x22kx2与x 轴交点的个数为()、抛物线A 、 0B 、1C、 2 D 、以上都不对4、二次函数y ax 2bx c 对于x的任何值都恒为负值的条件是()A 、a 0,0B、a0,0C、a0,0 D、 a 0,05、y x2kx1 与 y x2x k 的图象相交,若有一个交点在x 轴上,则 k 为()A 、 0B 、-1C、 21 D、46、若方程ax2bx c0 的两个根是-3和1,那么二次函数y ax 2bx c 的图象的对称轴是直线()A 、x=- 3B、x=- 2C、x=- 1D、x= 17y =x2+ px + q的图象与 x 轴只有一个公共点,坐标为(- 1,0),求p,q的值、已知二次函数8 、画出二次函数y x 22x 3 的图象,并利用图象求方程x 2 2 x 3 0 的解,说明x 在什么范围时x22x 30.9、如图:( 1)求该抛物线的解析式;( 2)根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数y ax2bx c 的图象过A(-3,0),B(1,0),C(0,3),点D在函数图象上,点C、D是二次函数图象上的一对对称点,一次函数图象过点B、D ,求( 1)一次函数和二次函数的解析式,( 2)写出使一次函数值大于二次函数值的 x 的取值范围 .11、已知抛物线y = x 2 - mx + m - 2 .( 1)求证此抛物线与x 轴有两个不同的交点;( 2)若m是整数,抛物线y = x 2 - mx + m - 2 与 x 轴交于整数点,求m 的值;( 3)在( 2)的条件下,设抛物线顶点为 A ,抛物线与x轴的两个交点中右侧交点为 B.若 M 为坐标轴上一点,且MA=MB ,求点 M 的坐标 .练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100 万元引进一条农产品生产线,预计投产后每年可创收33 万元,设生产线投产后,从第一年到第x 年维修、保养费累计为y(万元),且y= ax2+ bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元 ...求: y 的解析式 .3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m) 与水平距离x (m) 之间的函数关系式为y=-121x2+23 x+53,求小明这次试掷的成绩及铅球的出手时的高度.千克销售价 (元)3.50.5027月份4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出20 件,每件盈利40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件 .①设每件降价x 元,每天盈利y 元,列出y 与 x 之间的函数关系式;②若商场每天要盈利1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中 .①求这条抛物线所对应的函数关系式.②如图,在对称轴右边1m 处,桥洞离水面的高是多少?7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.( 1)在如图所示的直角坐标系中,求出该抛物线的解析式.( 2)在正常水位的基础上,当水位上升h(m) 时,桥下水面的宽度为d(m) ,试求出用 d 表示 h 的函数关系式;( 3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有 0.5m,若行车道总宽度AB 为 6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m) .练习一二次函数参考答案1: 1、 s2t 2 ; 2、⑤, -1 , 1, 0 ; 3 、 ≠2, 3 , 1 ; 6 、( 2 , 3 ); 7 、 D ; 8 、S 4x 2225(0 x15), 189;9、y x 2 7x ,1;10、y x 22 ;11、S 4x 224 x,2当 a<8 时,无解, 8a 16 时, AB=4,BC=8 ,当 a 16 时, AB=4,BC=8 或 AB=2,BC=16.练习二函数 yax 2 的图象与性质参考答案 2:1、(1)x=0,y 轴,( 0,0),>0 ,,<0, 0,小, 0; (2)x=0,y 轴,( 0,0), <,>, 0,大, 0;2、④; 3、 C ; 4、 A ; 5、 B ; 6、 -2; 7、3 ; 8、 y 1 y 2 0 ; 9、(1)2 或 -3,(2) m=2、 y=0、 x>0 ,( 3) m=-3, y=0 ,x>0 ; 10、 y2 x 29练习三函数 yax 2c 的图象与性质参考答案3:1、下, x=0,( 0, -3),<0, >0; 2、1 221 2yx , yx 1 0 -2),33,( ,(0, 1); 3、①②③; 4、 y 2x23, 0,小, 3; 5、 1; 6、 c.练习四函数 ya xh 2 的图象与性质参考答案 4:1、( 3,0),>3,大, y=0;2 、 y3(x 2)2, y3( x2) 2 , y 3( x 3) 2 ;3、3略; 4、 y1(x 2)2; 5、( 3, 0),( 0, 27), 40.5; 6、 y1(x 4)2 ,当 x<4 时, y22随 x 的增大而增大,当 x>4 时, y 随 x 的增大而减小; 7、-8, -2, 4.练习五y a xh 2k 的图象与性质参考答案 5: 1、略; 2、 1; 3、>1; 4、左、下; 5、 y x 24x 3 ;6、 C ; 7、( 1)下,x=2,(2,9),( 2) 2、大、 9,( 3) <2、>2,(4)( 23 ,0)、 ( 2 3 ,0)、 2 3 ,( 5)( 0,-3);( 6)向右平移 2 个单位,再向上平移9 个单位; 8、( 1)上、 x=-1 、( -1,-4);( 2)( -3,0)、( 1, 0)、( 0, -3)、6,( 3) -4,当 x>-1 时, y 随 x 的增大而增大;当x<-1 时, y 随 x的增大而减小 ,(4) y(x 1) 2 ;( 5)向右平移 1 个单位,再向上平移4 个单位或向上平移3 个单位或向左平移1 个单位;( 6) x>1 或 x<-3 、 -3<x<1练习六yax 2 bx c 的图象和性质参考答案6: 1、 x=-2; 2、上、(3,7);3、略; 4、 ( x 1)22 ;5、 y1 ( x 1)2 5 ;1;8、 C ;9、A ;10、( 1) y1(x26、( -2, 0)( 8,0);7、大、2) 2 1 、上、 x=2、( 2,82-1),( 2) y3( x 4 ) 2 103 3、下、 x4 、( 4 , 10 ),( 3) y1( x 2)2 3 、下、 x=2 、( 2, -3); 11、有、 y=6 ;3 3 3412、( 2,0)( -3,0)(0,6);13、y=-2x 、否; 14、定价为 3000 元时,可获最大利润 125000 元练习七yax 2 bxc 的性质参考答案 7: 1、 yx 26x 11; 2、( -4, -4); 3、 1; 4、 -3; 5、 >、 <、>、 >; 6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、y 2x 24x4 ;15、 b 24aca练习八二次函数解析式参考答案 8:1、1 2、1;2、28 x 10 ;3、y 2x24x 1 ;4(、 1)y x 2 2 x 53 35 x 25 x15、( 4 ) y 1 x 25;5、、( 2 ) y2x 24x 3 、( 3 ) y3x4 2 422y 4 x 24 x 1; 6、 yx24x 1; 7、( 1 ) y8 x 2 8 x 48、5;8、9 9 9252525yx 22x 3、 y=-x-1 或 y=5x+5练习九二次函数与方程和不等式参考答案 9: 1 、 k 7 0 ; 2、一; 3、C ;4、D ;5、C ;6、 C ;7、2,1; 8、且 k4x 1 1, x 2 3, 1 x3 ; 9 、( 1 ) yx 22x 、 x<0或 x>2 ; 10、 y=-x+1 ,yx 22x 3,x<-2 或 x>1;11 、( 1)略 ,(2)m=2,(3)(1 , 0)或( 0, 1)练习十二次函数解决实际问题参考答案 10: 1、① 2 月份每千克 3.5 元② 7 月份每千克 0.5 克③ 7 月份的售价最低④2~ 7 月份售价下跌; 2、y= x2+ x;3、成绩 10 米,出手高度5米;4、S3(x 1)23,3322当 x= 1 时,透光面积最大为m2; 5、(1) y= (40- x) (20+ 2x) =- 2x2+ 60x+ 800,( 2)21200=- 2x2+ 60x+ 800, x1= 20, x2= 10 ∵要扩大销售∴ x 取 20 元,( 3)y=- 2 (x 2-30x) + 800=- 2 (x- 15)2+ 1250∴当每件降价 15 元时,盈利最大为1250 元; 6、( 1)设 y= a (x- 5)2+ 4, 0= a (- 5)2+ 4, a=-4,∴ y=-42525(x- 5)2+ 4,( 2)当 x= 6 时,y=-4+ 4=3.4(m) ;7、( 1)y1x 2,(2)d10 4h ,(3)当水深超过 2.76m 2525时;8、126( 46) ,9,,,44货车限高为 3.2m.21。

二次函数试题及答案

二次函数试题及答案

二次函数试题及答案一、选择题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且与x轴有两个交点,则a、b、c之间的关系是()。

A. b^2-4ac>0B. b^2-4ac=0C. b^2-4ac<0D. b^2-4ac≤0答案:A2. 若二次函数y=ax^2+bx+c的图象与y轴的交点为(0,3),则c的值为()。

A. 3B. -3C. 0D. 1答案:A二、填空题1. 若二次函数y=ax^2+bx+c的图象的顶点坐标为(2,-1),则b=______。

答案:-4a-42. 已知抛物线y=ax^2+bx+c与x轴的交点为(-1,0)和(3,0),则b=______。

答案:-2a三、解答题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象经过点(1,2)和(-1,0),求该二次函数的解析式。

答案:将点(1,2)和(-1,0)代入二次函数的解析式,得到方程组:\begin{cases}a+b+c=2 \\9a-3b+c=0\end{cases}解得a=1,b=-2,c=1,所以二次函数的解析式为y=x^2-2x+1。

2. 已知抛物线y=ax^2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过点(0,3),求抛物线的解析式。

答案:由对称轴为直线x=1,可知-b/2a=1,即b=-2a。

又抛物线经过点(0,3),代入解析式得c=3。

设a=1,则b=-2,c=3,所以抛物线的解析式为y=x^2-2x+3。

四、综合题1. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴的交点为(2,0)和(-3,0),且抛物线的顶点坐标为(-1,-4),求该二次函数的解析式。

答案:由抛物线与x轴的交点可知,2和-3是方程ax^2+bx+c=0的两个根,所以有:\begin{cases}4a+2b+c=0 \\9a-3b+c=0\end{cases}又因为顶点坐标为(-1,-4),所以有:\begin{cases}-\frac{b}{2a}=-1 \\\frac{4ac-b^2}{4a}=-4\end{cases}解得a=1,b=4,c=-6,所以二次函数的解析式为y=x^2+4x-6。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案
26.如图,抛物线 (a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.
如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y= x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.
27.求OA所在直线的解析式
二次函数练习题及答案
一、选择题
1.将抛物线 先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )
A. B.
C. D.
2.将抛物线 向右平移1个单位后所得抛物线的解析式是………………( )
A. ;B. ;
C. ;D. .
3.将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )
考点:二次函数的性质
17.m≥1.二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数的自变量的取值范围.
二、填空题
8.二次函数y=-2(x-5)2+3的顶点坐标是.
9.已知二次函数 中函数 与自变量 之间的部分对应值如下表所示,点 、 在函数图象上,当 时,则 (填“ ”或“ ”).
0
1

九年级上《21.2.2二次函数的图象与性质》课时练习含答案

九年级上《21.2.2二次函数的图象与性质》课时练习含答案

九年级上学期数学课时练习题21.2二次函数y=ax2的图象和性质一、精心选一选1﹒抛物线y=2x2,y=-2x2,y=12x2共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小2﹒函数y=-a(x+a)与y=-ax2(a≠0)在同一坐标上的图象大致是()A. B.C.D.3﹒抛物线y=ax2(a<0)的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限4﹒抛物线y=12x2,y=-3x2,y=x2的图象开口最大的是()A.y=12x2B.y=-3x2C.y=x2D.无法确定5﹒二次函数y=13x2的图象的开口方向是()A.向上B.向下C.向左D.向右6﹒下列函数:①y=-x;②y=-x2(x<0);③y=2x+1;④y=x2(x<0),y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个7﹒苹果熟了,从树上落下所经过的路程s与下落时间t满足s=gt2(g=9.8),则s与t的函数图象大致是()A.B.C.D.8﹒关于函数y=3x2的性质的叙述,错误的是()A .对称轴是y 轴B .顶点是坐标原点C .当x >0时,y 随x 的增大而增大D .y 有最大值 9﹒已知点A (-3,y 1),B (-1,y 2),C (2,y 3)在抛物线y =23x 2上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1>y 2>y 3C .y 1<y 3<y 2D .y 2<y 3<y 110.如图,平行于x 轴的直线AC 分别交抛物线y 1=x 2(x ≥0)与y 2=24x(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交y 1于点D ,直线DE ∥AC ,交y 2于点E ,则DEAB=( ) A .2 B .2 C .5 D .3 二、细心填一填11.已知关于x 的二次函数y =a 226a a x--,当a =_____时,其图象开口向上;当a =_____时,其图象开口向下.12.已知坐标原点是抛物线y =(m +1)x 2的最高点,则m 的取值范围是___________________. 13.已知二次函数y =12x 2的图象如图所示,线段AB ∥x 轴,交抛物线 于A 、B 两点,且点A 的横坐标为2,则AB 的长度为__________. 14.对于二次函数y =ax 2,已知当x 由1增加到2时,函数值减少4, 则常数a 的值是___________. 15.写出抛物线y =12x 2与抛物线y =-12x 2的一条共同特征 是_________________________.16.若二次函数y =ax 2的图象经过点P (-2,4),则当x =2时,y =______.17.抛物线y =-3x 2的对称轴是_______________,当x ____________时,抛物线上的点都在x 轴的下方.18.下列函数中,具有过原点,且当x >0时,y 随x 的增大而减小,这两个特征的函数有_______________.(只填序号)①y =-ax 2(a >0);②y =(a -1)x 2(a <1);③y =-2x +a 2(a ≠0);④y =32x -a .三、解答题(本题共8小题,第19题8分;第20、21每小题各10分;第22、 23每小题各12分;第24题14分共66分) 19.已知函数y =(m +3)232m m x +-是关于x 的二次函数.(1)求m 的值;(2)当m 为何值时,该函数图象的开口向下? (3)当m 为何值时,该函数有最小值? (4)试说明函数的增减性.20.已知,二次函数y =x 2与一次函数y =2x +3的图象交于A 、B 两点.(1)请根据上述要求在下面的平面直角坐标系中画出图象; (2)求△AOB 的面积.21.如图,已知直线l 过A (4,0),B (0,4)两点,它与二次函数y =ax 2的图象在第一象限内相交于点P .若△AOP 的面积为4.5,求a 的值.22.如图,直线AB过x轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).(1)求直线AB的解析式及抛物线y=ax2的解析式;(2)求点C的坐标;(3)求△COB的面积.23.甲是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:x/m 5 10 20 30 40 50y/m0.125 0.5 2 4.5 8 12.5甲乙(1)请你以上表中的各对数据(x,y)作为点的坐标,尝试在图乙所给的直角坐标系中画出y 关于x的函数图象;(2)猜想出用x表示y的二次函数的关系式;(3)当水面宽度为36m时,一般吃水深度(船底部到水面的距离)为1.8m的货船能否在这个河段安全通过?为什么?21.2二次函数y=ax2的图象和性质课时练习题参考答案一、精心选一选题号 1 2 3 4 5 6 7 8 9 10答案 B A B A A A C D D A1﹒抛物线y=2x2,y=-2x2,y=12x2共有的性质是()A.开口向下B.对称轴是y轴C.都有最低点D.y随x的增大而减小解答:∵a=2>0,∴抛物线y=-2x2开口向下,以y轴为对称轴,有最高点,当x>0时,y随x的增大而增大,当x <0时,y随x的增大而减小;∵a=-2<0,∴抛物线y=2x2开口向上,以y轴为对称轴,有最低点,当x>0时,y随x的增大而减小,当x<0时,y随x的增大而增大;∵a=12>0,∴抛物线y=12x2开口向下,以y轴为对称轴,有最高点,当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小;综合上述,这三条抛物线均以y轴为对称轴,故选:B.2﹒函数y=-a(x+a)与y=-ax2(a≠0)在同一坐标上的图象大致是()A. B.C.D.解答:由y=-a(x+a)得y=-ax+a2,当a>0时,直线y=-ax+a2经过一、二、四象象,抛物线y=-ax2开口向下;当a<0时,直线y=-ax+a2经过一、二、三象象,抛物线y=-ax2开口向上;符合上述要求的只有A选项,故选:A.3﹒抛物线y=ax2(a<0)的图象一定经过()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限解答:∵a<0,∴抛物线y=ax2经过三、四象限,故选:B.4﹒抛物线y=12x2,y=-3x2,y=x2的图象开口最大的是()A.y=12x2B.y=-3x2C.y=x2D.无法确定解答:∵12<1<3,∴抛物线y=12x2的图象开口最大,故选:A.5﹒二次函数y=13x2的图象的开口方向是()A.向上B.向下C.向左D.向右解答:∵a=13>0,∴二次函数y=x2的图象的开口向上,故选:A.6﹒下列函数:①y=-x;②y=-x2(x<0);③y=2x+1;④y=x2(x<0),y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个解答:①y=-x,要分两种情况判断其增减性,故不符合题意;②y=-x2(x<0),y随x的增大而增大,故不符合题意;③y=2x+1,y随x的增大而增大,故不符合题意;④y=x2(x<0),y随x的增大而减小,故符合题意,综上,可知只有④符合题意,故选:A.7﹒苹果熟了,从树上落下所经过的路程s与下落时间t满足s=gt2(g=9.8),则s与t的函数图象大致是()A.B.C.D.解答:由s=gt2(g=9.8)可知此函数为二次函数,且g>0,自变量t的取值范围为t>0,所以只有C符合题意,故选:C.8﹒关于函数y=3x2的性质的叙述,错误的是()A.对称轴是y轴B.顶点是坐标原点C.当x>0时,y随x的增大而增大D.y有最大值解答:对于二次函数y=3x2有下列性质:开口向上;以y轴为对称轴;顶点是坐标原点;当x>0时,y随x的增大而增大,当x<0时,y随x的增大而减小;y有最小值,故选:D.9﹒已知点A(-3,y1),B(-1,y2),C(2,y3)在抛物线y=23x2上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1>y2>y3C.y1<y3<y2D.y2<y3<y1解答:当x=-3时,y1=6;当x=-1时,y2=23;当x=2时,y3=83,而23<83<6,∴y2<y3<y1,故选:D.10.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=24x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=()A.2B.2C.5D.3 解答:设A点坐标为(0,a),(a>0),则x2=a,解得:x=a,∴B(a,a),当24x =a 时,x =a∴C (a a ), ∵CD ∥y 轴,∴点D 的横坐标与点C 的横坐标相同,为a ∴y 1=a 2=4a ,∴点D 的坐标为(a ,4a ), ∵DE ∥AC ,∴点E 的纵坐标为4a ,∴24x =4a ,解得:x =a ,∴点E 的坐标为(a 4a ), ∴DE =a a =a ,∴DE AB 2aa=2, 故选:A . 二、细心填一填11. 4,-2; 12. m <-1; 13. 4; 14. -43; 15. 以y 轴为对称轴; 16. 4; 17. y 轴,≠0; 18. ①②.11.已知关于x 的二次函数y =a 226a a x --,当a =_____时,其图象开口向上;当a =_____时,其图象开口向下. 解答:∵y =a 226a a x--是二次函数,∴a 2-2a -6=2,解得:a 1=-2,a 2=4,∴当a =4时,其图象开口向上;当a =-2时,其图象开口向下,故答案为:4,-2.12.已知坐标原点是抛物线y =(m +1)x 2的最高点,则m 的取值范围是___________________.解答:∵坐标原点是抛物线y=(m+1)x2的最高点,∴该抛物线的开口向下,则m+1<0,解得:m<-1,故答案为:m<-1.13.已知二次函数y=12x2的图象如图所示,线段AB∥x轴,交抛物线于A、B两点,且点A的横坐标为2,则AB的长度为__________. 解答:当y=2时,x=±2,则A、B两点横坐标分别为-2,2,∵AB∥x轴,∴AB=22--=4,故答案为:4.14.对于二次函数y=ax2,已知当x由1增加到2时,函数值减少4,则常数a的值是___________.解答:当x=1时,y=ax2=a,当x=2时,y=ax2=4a,由a-4a=4得:a=-43,故答案为:-4 3 .15.写出抛物线y=12x2与抛物线y=-12x2的一条共同特征是_________________________.解答:均以y轴为对称轴,故答案为:以y轴为对称轴.16.若二次函数y=ax2的图象经过点P(-2,4),则当x=2时,y=______.解答:将P(-2,4)代入y=ax2得:(-2)2a=4,解得:a=1,∴y=x2,∴当x=2时,y=4,故答案为:4.17.抛物线y=-3x2的对称轴是_______________,当x____________时,抛物线上的点都在x轴的下方.解答:抛物线y=-3x2的对称轴是y轴,当x≠0时,抛物线上的点都在x轴的下方,故答案为:y轴,≠0.18.下列函数中,具有过原点,且当x >0时,y 随x 的增大而减小,这两个特征的函数有 _______________.(只填序号)①y =-ax 2(a >0);②y =(a -1)x 2(a <1);③y =-2x +a 2(a ≠0);④y =32x -a . 解答:具有过原点,且当x >0时,y 随x 的增大而减小,这两个特征的函数有:①y =-ax 2(a >0);②y =(a -1)x 2(a <1),故答案为:①②.三、解答题19.已知函数y =(m +3)232m m x +-是关于x 的二次函数.(1)求m 的值;(2)当m 为何值时,该函数图象的开口向下?(3)当m 为何值时,该函数有最小值?(4)试说明函数的增减性.解:∵函数y =(m +3)232m m x +-是关于x 的二次函数,∴232230m m m ⎧+-=⎨+≠⎩,解得:124,13m m m =-=⎧⎨≠-⎩, ∴当m =-4或m =1时,原函数为二次函数;(2)∵函数图象的开口向下,∴m +3<0,∴m <-3,∴当m =-4时,该函数图象的开口向下;(3)∵该函数有最小值,∴m +3>0,∴m >-3,∴当m =1时,该函数有最小值;(4)①当m =-4时,此函数为y =-x 2,当x >0时,y 随x 的增大而减小,当x <0时,y 随x 的增大而增大;②当m =1时,此函数为y =4x 2,当x >0时,y 随x 的增大而增大,当x <0时,y 随x 的增大而减小.20.已知,二次函数y =x 2与一次函数y =2x +3的图象交于A 、B 两点.(1)请根据上述要求在下面的平面直角坐标系中画出图象;(2)求△AOB的面积.解:(1)画函数图象如下:(2)由图象可知:A(-1,1),B(3,9),设直线y=2x+3与y轴交点为C,则点C(0,3),∴S△AOB=S△AOC+S△BOC=12×3×1+12×3×3=32+92=6.21.如图,已知直线l过A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内相交于点P.若△AOP的面积为4.5,求a的值.解:设点P的坐标为(x,y),直线AB的解析式为y=kx+b,将A(4,0),B(0,4)分别代入y=kx+b,得k=-1,b=4,故y=-x+4,∵△AOP的面积为4.5=12×4×y,∴y=94,再把y=94代入y=-x+4,得x=74,∴P(74,94),把P(74,94)代入到y=ax2得:a=3649.22.如图,直线AB过x轴上一点A(2,0),且与抛物线y=ax2相交于B、C两点,B点坐标为(1,1).(1)求直线AB的解析式及抛物线y=ax2的解析式;(2)求点C的坐标;(3)求△COB的面积.解:(1)设直线的函数表达式为y=kx+b,∵A(2,0),B(1,1)都在直线y=kx+b上,∴201k bk b+=⎧⎨+=⎩,解得:12kb=-⎧⎨=⎩,∴直线AB的解析式为y=-x+2;∵点B(1,1)在y=ax2的图象上,∴a=1,∴二次函数的解析式为y=x2;(3)由22y x y x=-+⎧⎨=⎩得:24x y =-⎧⎨=⎩或11x y =⎧⎨=⎩, ∵点C 在第二象限,∴点C 的坐标为(-2,4),∴S △COB =S △AOC -S △OAB =12×2×4-12×2×1=3, 即△COB 的面积为3.23.甲是某段河床横断面的示意图.查阅该河段的水文资料,得到下表中的数据:x /m5 10 20 30 40 50 y /m 0.125 0.5 2 4.5 8 12.5甲 乙 (1)请你以上表中的各对数据(x ,y )作为点的坐标,尝试在图乙所给的直角坐标系中画出y 关于x 的函数图象;(2)猜想出用x 表示y 的二次函数的关系式;(3)当水面宽度为36m 时,一般吃水深度(船底部到水面的距离)为1.8m 的货船能否在这个河段安全通过?为什么?解:(1)画出y 关于x 的函数图象如下:(2)猜想:y=1200x2;(3)当水面宽度为36m时,相应的x=18,则y=1200x2=1200×182=1.62,即此时河段的最大水深为1.62m,∵货船吃水深为1.8m,而1.62m<1.8m,∴当水面宽度为36m时,该货船不能通过这个河段.。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案二次函数是高中数学中的重要内容,也是学生们常常遇到的难点之一。

为了帮助学生更好地理解和掌握二次函数,下面将给大家提供一些二次函数的练习题及答案。

1. 求解下列二次方程:(1) x^2 - 5x + 6 = 0(2) 2x^2 + 3x - 2 = 0解答:(1) 将方程因式分解得:(x - 2)(x - 3) = 0因此,x = 2 或 x = 3(2) 使用求根公式得:x = (-b ± √(b^2 - 4ac)) / (2a)将方程中的系数代入公式计算得:x = (-3 ± √(3^2 - 4*2*(-2))) / (2*2)化简得:x = (-3 ± √(9 + 16)) / 4= (-3 ± √25) / 4因此,x = (-3 + 5) / 4 = 1/2 或 x = (-3 - 5) / 4 = -22. 求解下列二次不等式:(1) x^2 - 4x > 3(2) 2x^2 + 5x < 3x + 2解答:(1) 将不等式移项得:x^2 - 4x - 3 > 0将不等式左边进行因式分解得:(x - 3)(x + 1) > 0因此,x > 3 或 x < -1(2) 将不等式移项得:2x^2 + 5x - 3x - 2 < 0化简得:2x^2 + 2x - 2 < 0将不等式左边进行因式分解得:2(x - 1)(x + 1) < 0因此,-1 < x < 13. 求解下列二次函数的顶点坐标和对称轴方程:(1) y = x^2 - 4x + 3(2) y = -2x^2 + 4x - 1解答:(1) 将二次函数转化为顶点形式:y = (x - 2)^2 - 1顶点坐标为 (2, -1)对称轴方程为 x = 2(2) 将二次函数转化为顶点形式:y = -2(x - 1)^2 + 3顶点坐标为 (1, 3)对称轴方程为 x = 1通过以上的练习题,我们可以更好地理解和掌握二次函数的相关概念和解题方法。

二次函数练习题及答案解析

二次函数练习题及答案解析

二次函数练习题及答案解析二次函数练习题及答案解析(初三数学)学好数学要多做练习、上课认真听讲、不会的题要问老师、做作业要当做考试来看待、不要在心理上抵触数学、平时多抽出一些时间来练习数学,下面是我为大家整理的二次函数练习题及答案解析,希望对您有所帮助!二次函数练习题及答案解析一、选择题:1 下列关系式中,属于二次函数的是(x为自变量)( )2 函数y=x2-2x+3的图象的顶点坐标是( )A (1,-4) B(-1,2) C (1,2) D(0,3)23 抛物线y=2(x-3)的顶点在( )A 第一象限B 第二象限C x轴上D y轴上4 抛物线的对称轴是( )A x=-2 Bx=2 C x=-4 D x=45 已知二次函数y=ax2+bx+c的图象如图所示,则下列结论中,正确的是( )A ab0,c0B ab0,c0C ab0,c0D ab0,c06 二次函数y=ax2+bx+c的图象如图所示,则点在第___象限( )A 一B 二C 三D 四7 如图所示,已知二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,图象交 x 轴于点A(m,0) 和点B ,且m4,那么AB 的长是( )A 4+mB mC 2m-8D 8-2m8 若一次函数y=ax+b的图象经过第二、三、四象限,则二次函数y=ax2+bx的图象只可能是( )9 已知抛物线和直线在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x1,y 1) ,P 2(x2,y 2) 是抛物线上的点,P 3(x3,y 3) 是直线上的点,且-1A y110 把抛物线物线的函数关系式是( ) AC 的图象向左平移2个单位,再向上平移3个单位,所得的抛 B D二、填空题:11 二次函数y=x2-2x+1的对称轴方程是______________12 若将二次函数y=x2-2x+3配方为y=(x-h)2+k的形式,则y=________13 若抛物线y=x2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________14 抛物线y=x2+bx+c,经过A(-1,0) ,B(3,0) 两点,则这条抛物线的解析式为_____________15 已知二次函数y=ax2+bx+c的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________16 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s2) 若v 0=10m/s,则该物体在运动过程中最高点距地面_________m17 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3) 的抛物线的解析式为______________18 已知抛物线y=x2+x+b2经过点,则y 1的值是_________三、解答题:19 若二次函数的图象的对称轴方程是,并且图象过A(0,-4) 和B(4,0) ,(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20 在直角坐标平面内,点O 为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交 x 轴于点A(x1,0) 、B(x2,0) ,且(x1+1)(x2+1)=-8 (1)求二次函数解析式;(2)将上述二次函数图象沿x 轴向右平移2个单位,设平移后的图象与y 轴的交点为C ,顶点为P ,求△POC 的面积21 已知:如图,二次函数y=ax2+bx+c的图象与x 轴交于A 、B 两点,其中A 点坐标为(-1,0) ,点C(0,5) ,另抛物线经过点(1,8) ,M 为它的顶点(1)求抛物线的解析式; (2)求△MCB 的面积S △MCB22 某商店销售一种商品,每件的进价为250元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是1350元时,销售量为500件,而单价每降低1元,就可以多售出200件请你分析,销售单价多少时,可以获利最大答案与解析:一、选择题1 考点:二次函数概念选A2 考点:求二次函数的顶点坐标解析:法一,直接用二次函数顶点坐标公式求法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k的形式,顶点坐标即为(h,k) ,y=x2-2x+3=(x-1)2+2,所以顶点坐标为(1,2) ,答案选C3 考点:二次函数的图象特点,顶点坐标解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0) ,所以顶点在x 轴上,答案选C4 考点:数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为解析:抛物线,直接利用公式,其对称轴所在直线为答案选B5 考点:二次函数的`图象特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,答案选C 6 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征解析:由图象,抛物线开口方向向下,抛物线对称轴在y 轴右侧,抛物线与y 轴交点坐标为(0,c) 点,由图知,该点在x 轴上方,在第四象限,答案选D7 考点:二次函数的图象特征解析:因为二次函数y=ax2+bx+c(a≠0) 的图象的顶点P 的横坐标是4,所以抛物线对称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m,0) ,且m4,所以AB=2AD=2(m-4)=2m-8,答案选C8 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状解析:因为一次函数y=ax+b的图象经过第二、三、四象限,所以二次函数y=ax2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0) 点答案选C9 考点:一次函数、二次函数概念图象及性质解析:因为抛物线的对称轴为直线x=-1,且-1-1时,由图象知,y 随x 的增大而减小,所以y 210 考点:二次函数图象的变化抛物线平移2个单位得到,再向上平移3个单位得到的图象向左答案选C二、填空题11 考点:二次函数性质解析:二次函数y=x2-2x+1,所以对称轴所在直线方程答案x=112 考点:利用配方法变形二次函数解析式解析:y=x2-2x+3=(x2-2x+1)+2=(x-1)2+2答案y=(x-1)2+213 考点:二次函数与一元二次方程关系解析:二次函数y=x2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x2-x 1|=4答案为414 考点:求二次函数解析式解析:因为抛物线经过A(-1,0) ,B(3,0) 两点,解得b=-2,c=-3,答案为y=x2-2x-315 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x2-116 考点:二次函数的性质,求最大值解析:直接代入公式,答案:717 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一解析:如:y=x2-4x+318 考点:二次函数的概念性质,求值三、解答题19 考点:二次函数的概念、性质、图象,求解析式解析:(1)A′(3,-4)(2)由题设知:∴y=x2-3x-4为所求(3)20 考点:二次函数的概念、性质、图象,求解析式解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根又∵(x1+1)(x2+1)=-8 ∴x 1x 2+(x1+x2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5) ,P(2,-9)21 解: (1)依题意:(2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0)由,得M(2,9)作ME ⊥y 轴于点E ,则可得S △MCB =1522 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式:总利润=单个商品的利润×销售量要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(135-x)元了单个的商品的利润是(135-x-25)这时商品的销售量是(500+200x)总利润可设为y 元利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润解:设销售单价为降价x 元顶点坐标为(425,91125)即当每件商品降价425元,即售价为135-425=925时,可取得最大利润91125元九年级数学二次函数练习题一、填空题:(每空2分,共40分)1、一般地,如果,那么y叫做x的二次函数,它的图象是一条。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案
23.已知点M,N的坐标分别为(0,1),(0,-1),点P是抛物线y= x2上的一个动点.
(1)求证:以点P为圆心,PM为半径的圆与直线y=-1的相切;
(2)设直线PM与抛物线y= x2的另一个交点为点Q,连接NP,NQ,求证:∠PNM=∠QNM.
24.研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y= x2+5x+90,
12.已知(-2,y1),(-1,y2),(2,y3)是二次函数y=x2-4x+m上的点,
则y1,y2,y3从小到大用 “<”排列是__________.
13.(2011•攀枝花)在同一平面内下列4个函数;①y=2(x+1)2﹣1;②y=2x2+3;③y=﹣2x2﹣1;④ 的图象不可能由函数y=2x2+1的图象通过平移变换得到
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
19.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.
(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围)
(2)当x为何值时,S有最大值?并求出最大值.
20.如图,矩形ABCD中,AB=16cm,AD=4cm,点P、Q分别从A、B同时出发,点P在边AB上沿AB方向以2cm/s的速度匀速运动,点Q在边BC上沿BC方向以1cm/s的速度匀速运动,当其中一点到达终点时,另一点也随之停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数基础分类练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式. 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )s t OstOstOs tOA .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 10、如果抛物线2yax 与直线1yx 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6. (1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么acb4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c15、试求抛物线2yax bxc 与x 轴两个交点间的距离(240b ac练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2); 5、已知二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1 7、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0. (3)10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围. 11、已知抛物线22yx mx m .(1)求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22yx mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十 二次函数解决实际问题2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第 x 年维修、保养费累计..为 y (万元),且 y =ax 2+bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度 y (m) 与水平距离 x (m) 之间的函数关系式为 y =-112x 2+23x +53,求小明这次试掷的成绩及铅球的出手时的高度. 4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m ,跨度为 10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?0 2 7月份千克销售价(元)百度文库- 让每个人平等地提升自我7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到).练习一 二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二 函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =练习三 函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四 函数()2h x a y -=的图象与性质参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五 ()k h x a y +-=2的图象与性质参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4) 2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六 c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七 c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aacb 42-练习八 二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y 、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九 二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十 二次函数解决实际问题参考答案10:1、①2月份每千克元 ②7月份每千克克 ③7月份的售价最低 ④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254(x -5)2+4,(2)当x =6时,y =-254+4=(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为.。

相关文档
最新文档