陷波器在导引头伺服系统中的应用

陷波器在导引头伺服系统中的应用
陷波器在导引头伺服系统中的应用

50Hz陷波器设计(matlab)

源代码: %陷波器的设计 %陷波器的传输函数为 % B(1/z) (z-exp(j*2*pi*f0))*(z-exp(-j*2*pi*f0)) %H(z) = -------- = -------------------------------------------- % A(1/z) (z-a*exp(j*2*pi*f0))*(z-a*exp(-j*2*pi*f0)) %其中f0为陷波器要滤除信号的频率,a为与陷波器深度相关的参数,a越大,深度越深。% %已知信号中50Hz工频干扰,信号为x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts); %要求通过陷波器滤除50Hz干扰信号 %参数设置:采样率Ts=0.001s,采样长度:512点 clf;clear; %设置初值 f0=50; Ts=0.001; fs=1/Ts; NLen=512; n=0:NLen-1; %陷波器的设计 apha=-2*cos(2*pi*f0*Ts); beta=0.96; b=[1 apha 1]; a=[1 apha*beta beta^2]; figure(1); freqz(b,a,NLen,fs);%陷波器特性显示 x=sin(2*pi*50*n*Ts)+sin(2*pi*125*n*Ts);%原信号 y=dlsim(b,a,x);%陷波器滤波处理 %对信号进行频域变换。 xfft=fft(x,NLen); xfft=xfft.*conj(xfft)/NLen; y1=fft(y,NLen); y2=y1.*conj(y1)/NLen; figure(2);%滤除前后的信号对比。 subplot(2,2,1);plot(n,x);grid; xlabel('Time (s)');ylabel('Amplitude');title('Input signal'); subplot(2,2,3);plot(n,y);grid; xlabel('Time (s)');ylabel('Amplitude');title('Filter output'); subplot(2,2,2);plot(n*fs/NLen,xfft);axis([0 fs/2 min(xfft) max(xfft)]);grid; xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Input signal'); subplot(2,2,4);plot(n*fs/NLen,y2);axis([0 fs/2 min(y2) max(y2)]);grid; xlabel('Frequency (Hz)');ylabel('Magnitude (dB)');title('Filter output');

50HZ自适应陷波器

一 课题意义的及要求 陷波器也叫带阻滤波器,能保证在其他频率信号不损失的情况下,有效地抑制输入信号中某一频率的干扰。由于我国采用的是50Hz 的交流电,所以在平时需要对信号进行采集处理和分析时,经常会存在50Hz 工频干扰,对于信号的处理造成很大的干扰,于是,很有必要设计50Hz 的陷波器。采用自适应滤波组成的陷波器,与一般硬件组成的固定网络的陷波器比较,它既能自适应地准确跟踪干扰频率又容易控制带宽。 在本次设计中,应用自适应滤波器滤除输入随机信号中的50Hz 工频干扰,并分析比较了不同算法在此设计中的优缺点,及在何种参数下效果最优和那一种机构更适合此设计。 二 自适应陷波器原理 自适应陷波器原理图 其原始输入为任意信号s(t)与t 0cos ω单频干扰的叠加,经采样后送入k d 端, k d =k d +)cos(0kt ω。参考输入分两路,其中一路经?90向移,两路都经过采样后加到1x 及2x 端,它门分别是 )c o s (0,1φω+=kt c x k )sin(0,2φω+=kt c x k 所以,采用两个权可以使组合后的正弦波的振幅和相位都能加以调整,而两个权也意味着有两个自由度待调整。经过k k x w ,1,1与k k x w ,2,2相加得到k y ,其相位和振

幅得到相应调整后可与原输入中的干扰分量相一致,使输出k e 中的0 频率的干扰得以抵消,达到陷波的目的。 三 结构及方法的选择 自适应滤波器的结构有横向滤波器和格型结构,用自适应横向滤波器实现陷波,比较简单且易于实现,而格型滤波器的计算复杂,不易于实际运用。故本设计中选择横向滤波器结构。 在算法选择方面,分别对LMS 算法,RLS 算法, 进行了仿真实验。比较了其优劣。 四 LMS 算法不同参数的实验结果分析 3.1带有50Hz 工频干扰的随机信号及其功率谱图

陷波器设计

陷波器设计 陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示: ∑∑==---=M i N i i i i n y b i n x a n y 01)()()( (1) 式中: x(n)和y(n)分别为输人和输出信号序列;i a 和i b 为滤波器系数。 对式(1)两边进行z 变换,得到数字滤波器的传递函数为: ∏∏∑∑===-=---==N i i M i i N i i i M i i i p z z z z b z a z H 1100)()()( (2) 式中:i z 和i p 分别为传递函数的零点和极点。 由传递函数的零点和极点可以大致绘出频率响应图。在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。考虑一种特殊情况,若零点i z 在第1象限单位圆上,极点i p 在单位圆内靠近零点的径向上。为了防止滤波器系数出现复数,必须在z 平面第4象限对称位置配置相应的共轭零点*i z 、共轭极点*i p 。 这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo 处出现凹陷。而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为: ) )1()()1(())(()(2121z z z z z z z z z H μμ------= (3) 式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。 当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。 一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。50Hz 是一个干扰信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz 。 4/400/5021ππω=?= 因此z 平面上的零极点可设置为 4/14 /1999.0ππj j e p e z ±±== 展开式为 7063 7064)707.0707.0(999.0)4 sin 4(cos 999.0999.0707.0707.02 2224sin 4cos 4/14/1j j j e p j j j e z j j ±=±=±=±=±=±=±±π ππ π ππ== 它的传递函数为

红外成像导引头的结构设计

第8章红外成像导引头的结构设计 8.1红外成像导引头对结构的要求及结构设计内容与原则 1.红外成像导引头对结构的要求 好的总体方案要靠好的结构设计来实现,特别是对于小体积红外成像导引头来说,结构设计至关重要,结构设计方面的一小步突破可能就会为优良的红外成像导引头总体方案提供技术基础。 红外成像导引头对结构有如下要求: (1)严格限制体积和重量。红外成像导引头一般装在导弹的前端,必须严格限制体积和质量。为了增加有效载荷,一般都要求红外成像头质量轻,把有效的载荷让给战斗部,但在某些场合为了增加导弹的静稳定度反而希望红外成像导引头有比较大的质量,小质量固然不容易实现,在体积受限的条件下实现大质量也十分困难。另外保证红外成像导引头的质心满足要求也是十分必要的。 结构设计时必须选择紧凑的组装方式,电子舱结构设计时尽可能提高装填密度,随动平台设计时尽量避免笨重的实体结构。 (2)环境适应能力强、可靠性高。红外成像导引头要承受导弹飞行过程中的冲击、振动、过载等各种恶劣力学环境条件,特别是需要具备高加速能力的导弹,红外成像导引头要承受大过载。同时,红外成像导引头的成像探测器抗冲击、抗振动能力极其有限,需要采取特殊措施,如减振设计等。除了要承受飞行时的恶劣环境外,还需要承受运输过程中的振动和冲击、高低温工作环境、盐雾和霉菌等。所有这些都要求红外成像导引头的结构必须具备很强的环境适应能力。 结构设计时要保证红外成像导引头在承受各种静、动、热载条件下有足够的强度、刚度和稳定性,并满足各项动力学性能要求。 (3)高精度。成像系统安装在随动平台上,成像系统的安装精度直接影响红外成像导引头的测量精度;陀螺安装时要保证测量轴与导弹各轴保持平行;红外光学整流罩安装在红外成像导引头壳体上,光学系统是活动的,红外光学整流罩与光学系统必须紧密配合才能可靠成像,因而对红外光学整流罩的安装精度要求较严;印制电路板与总线板之间也要求足够的连接精度,否则不能保证有效的电气连接。所有哲学都对结构设计提出了高精度的要求。 (4)气动性能要求。红外成像导引头是导弹的一个舱段,除了搜索跟踪目标外还必须维持导弹气动外形的完整性。导引头接受设计时应尽量保持与理论外形的一致性,减少设计外形与理论外形的误差并提高表面品质,尽量不出现凸起、缝隙等影响气动性能的外形结构。 2.红外成像导引头结构设计内容与原则 红外成像导引头结构总体设计的任务是按照导弹总体对红外成像导引头性能参数的要求和红外成像导引头自身的使用环境条件,将电子部件、电气元器件和机械部件合理布局并组装成完整的红外成像导引头,使其在规定的条件下实现规定的功能。结构总体设计包括机械设计和物理设计。机械设计包括整机组装结构设计,如结构单元的划分、总体布局方式的选择等;随动执行机构设计,如执行机构形式选择、平衡设计等;抗振缓冲设计,如结构件强度和刚度计算、稳定性分析、隔振和缓冲措施选择等。物理设计包括热设计(如散热和隔热设计);电磁兼容设计(如屏蔽设计、接插件选择以及合理布线等)及三防设计等。 红外成像导引头结构设计一般遵循以下原则: (1)模块化原则。根据导引头系统要求和各分机的功能、几何特征,在结构上进行模块化设计,同时尽可能提高单元模块的安装密度。 (2)简单化原则。尽可能使结构简单、质量轻,减少零部件的品种、数量,提高产品通用化、系列化、组合化水平。 (3)加工和装配方便原则。考虑具有成熟工艺的结构设计形式以及导引头系统结构的

船舶稳定平台解决方案

船舶稳定平台解决方案 陀螺稳定平台(gyroscope-stabilized platform)利用陀螺仪特性保持平台台体方位稳定的装置。简称陀螺平台、惯性平台。用来测量运动载体姿态,并为测量载体线加速度建立参考坐标系,或用于稳定载体上的某些设备。它是导弹、航天器、飞机和舰船等的惯性制导系统和惯性导航系统的主要装置。 稳定平台作为一种安放在运动物体上的设备,具有隔离运动物体扰动的功能。稳定平台在航空航天、工业控制、军用及商用船舶中都有比较广泛的用途,例如航拍、舰载导弹发射台、船载卫星接收天线等。船舶上工作面或者平台姿态检测,船载天线稳定平台系统,会应用倾角传感器定时(较长时间)读取数值,通过计算后,对稳定平台进行校正。平台的实际运动由单片机控制外部机械装置以达到对稳定水平平台进行修正,以保证其始终处于水平状态。某些倾角传感器作为船体液压调平系统中的反馈元件,提供高精度的倾角信号。既可用于水下钻进也可用于水下开采等。 在国外,陀螺稳定跟踪装置被广泛应用于地基、车载、舰载、机载、弹载以及各种航天设备中。20世纪40年代末,为了减少车体振动对行进间射击的影响,在坦克上开始安装火炮稳定器,从50年代起,双稳定器在坦克中得到了广泛的应用。在英、美等国的先进武器系统中,基于微惯性传感器的稳定跟踪平台得到了广泛的应用,如美国的M1坦克、英国“挑战者”坦克、俄罗斯T-82坦克、英国“标枪”导弹海上发射平台和“海枭”船用红外跟踪稳定平台等,都采用了不同类型的稳定跟踪平台。美国海军采用BEI电子公司生产的QRS-10型石英音叉陀螺,研制出WSC-6型卫星通讯系统的舰载天线稳定系统,工作12万小时尚未出现故障;Honeywell公司以红外传感器平台稳定为应用背景,研制的以GG1320环形激光陀螺为基础的惯性姿态控制装置,很好的满足了稳瞄跟踪系统的要求。美军配装的Honeywell公司采用激光陀螺技术研制的自行榴弹炮组件式方位位置惯性系统(MAPS6000) ,在工作时可连续提供高精度的方位基准、高程、纵摇、横摇、角速率、经度和纬度输出,性能大大高于美军MAPS系统规范的要求。在导弹制导方面,俄罗斯的X-29T、美国的“幼畜”AGM-65、以色列的“突眼”等成像制导导引头中,都采用了陀螺稳定跟踪平台。在机载设备中,陀螺稳定平台在机载光-电火控系统和机载光电侦察平台中也得到极其广泛的应用,美国、以色列、加拿大、南非、法国、英国、俄罗斯等国家都已研制出多种型号产品装备部队。如以色列的ESP-600C型无人机载光电侦察平台采用两轴平台,其方位转动范围360o×N、俯仰+10o----10o、最大角速度50o/s、最大角加速度60o/s2,其稳定精度达到15μrad,所达精度代表了国际先进水平。 国内对陀螺稳定平台的研究起步较晚,20世纪80年代开始研制瞄准具稳定平台,而90 年代初才开始陀螺稳定平台的研制。虽有不少单位,如北京电子3所、长春光机所、中科院成都光电所、西安应用光学研究所、华中光电技术研究所和清华大学等都在开展该应用领域的研究工作,但在稳定跟踪平台技术的研究上与国外相比仍有较大差距,由于惯性元件的技术不过关,成本较高,致使该项技术的研究始终没有取得突破性的进展。 一、船用红外/可见光陀螺稳定平台 近年来,随着精密机械、电子技术、数字信号处理技术和模式识别技术的飞速发展,陀螺伺服稳定跟踪系统的性能也有了很大的提高。陀螺伺服稳定跟踪系统,其主要任务是完成

Hz工频信陷波器设计

H z工频信陷波器设计 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

第1章摘要本文介绍一种基于运算放大器的工频信号陷波器的设计与制作,用以消除叠加在频率为1kHz以上的测试信号中所包含的50Hz工频信号。叙述内容包括工频信号陷波器的工作原理与设计思路,介绍了陷波器的参数计算及其选择,通过multisim仿真,记录和分析了该陷波器的工作特性与陷波性能,论证了 该陷波器的可行性。 此次设计的陷波器优点是:陷波性能良好,带宽较小,品质因数Q可调,即滤波性能便于调整,电路线路简单,具有实际应用价值。缺点是:对于元器件的参数要求高,需要仔细调节。 第2章设计原理概述及设计要求 陷波器的基本原理及作用 陷波器也称带阻滤波器(窄带阻滤波器),它能在保证其他频率的信号不损失的情况下,有效的抑制输入信号中某一频率信息。所以当电路中需要滤除存在的某一特定频率的干扰信号时,就经常用到陷波器。 在我国采用的是50hz频率的交流电,所以在平时需要对信号进行采集处 理和分析时,常会存在50hz的工频干扰,对我们的信号处理造成很大干扰, 因此50Hz陷波器在日常成产生活中被广泛应用,其技术已基本成熟。 工频陷波器不仅在通信领域里被大量应用,还在自动控制、雷达、声纳、人造卫星、仪器仪表测量及计算机技术等领域有着广泛的应用。 设计要求 1:完成题目的理论设计模型; 2:完成电路的multisim仿真;

3:完成一份设计说明书(其中包括理论设计的相关参数以及仿真结果); 4:提交一份电路原理图 第3章 基于运算放大器的工频信号陷波器设计 理论分析 0f 和抑制带宽BW 之间的关系为: 陷波器的实现方法有很多,本次设计采用的是电路比较简单,易于实现的双T 型陷波器。双T 型带阻滤波器的主体包括三部分内容:选频部分、放大器部分、反馈部分。此陷波器具有良好的选频特性和比较高的Q 值。 图双T 型陷波器电路 图中,2A 用作放大器,其输出端作为整个电路的输出。1A 接成电压跟随器的形式。因为双T 网络只有在离中心频率较远时才能达到较好的衰减特性,因此滤波器的Q 值不高。加入电压跟随器是为了提高Q 值,此电路中,Q 值可以提高到50以上,调节1R 、2R 两个电阻的阻值,来控制陷波器的滤波特性,包括带阻滤波的频带宽度和Q 值的高低。 在图2中,O C U U =, 1C Z sC = , 2212O O R U U R R =+,令212R K R R =+,1 n R = 对节点A 列KCL 方程,得: ()()()2i A O A A O U U sC U U sC n U KU -+-=- (1) 同样,对节点B 列KCL 方程,得: ()()()2i B O B B O U U n U U n sC U KU -+-=- (2) 同样,对节点C 列KCL 方程,得: ()()A O O B U U sC U U n -=- (3) 由式(1)、(2)、(3)可得到电路的传递函数为:

数字信号处理课程设计任务书doc

齐鲁工业大学 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目树形结构滤波器组设计 主要内容、基本要求、主要参考资料等: 主要内容: 滤波器组在语音、图像的子带编码和压缩中都有着广泛的应用,非均匀滤波器组还构成了Mallat多分辨分析的算法基础,在小波变换中占有重要的地位。本设计主要内容是研究树形滤波器组的原理,并设计一个树形滤波器组,实现语音信号的分解与重构。基本要求: (1)滤波器组的基本原理;(2)树形结构滤波器组的原理及设计方法;(3)设计一个8通道的树形结构滤波器组:均匀滤波器组和非均匀滤波器组;给出设计思路及结果;(4)用设计的滤波器组对某信号进行多通道分解,验证滤波器组的性能,对结果进行分析;(5)提交课程设计报告。 主要参考资料: 1. 胡广书. 现代信号处理教程,数字信号处理. 清华大学出版社. 2005.06 2. 高西全. 数字信号处理. 西安电子科技大学出版社. 2009.01 3. matlab信号处理相关书籍,多采样率信号处理的书籍、资料。 4. 相关网络资源 完成期限:自 2013 年 6 月 18 日至 2013 年 7 月 5 日

指导教师:张凯丽教研室主任: 齐鲁工业大学 课程设计任务书 学院电子信息与控制工程学院专业通信工程 姓名班级学号 题目平行结构滤波器组设计 主要内容、基本要求、主要参考资料等: 主要内容: 滤波器组在语音、图像的子带编码和压缩中都有着广泛的应用,非均匀滤波器组还构成了Mallat多分辨分析的算法基础,在小波变换中占有重要的地位。本设计主要内容是研究平行滤波器组的原理,并设计一个平行滤波器组。 基本要求: (1)滤波器组的基本原理;(2)平行结构滤波器组的原理及设计方法;(3)设计一个8通道的平行结构滤波器组:均匀滤波器组和非均匀滤波器组;给出设计思路及结果;(4)用设计的滤波器组对某信号进行多通道分解,验证滤波器组的性能,对结果进行分析;(5)提交课程设计报告。 主要参考资料: 1. 胡广书. 现代信号处理教程,数字信号处理. 清华大学出版社. 2005.06 2. 高西全. 数字信号处理. 西安电子科技大学出版社. 2009.01 3. matlab信号处理相关书籍,多采样率信号处理的书籍、资料。 4. 相关网络资源

频域自适应陷波器抑制罗兰C中窄带干扰技术_孟庆萍

总第164期2008年第2期 舰船电子工程S h i pE l e c t r o n i c E n g i n e e r i n g V o l .28N o .2 52  频域自适应陷波器抑制罗兰C 中窄带干扰技术 * 孟庆萍1)  周新力2)  刘华芹 1) (海军航空工程学院研究生管理大队1) 烟台 264001)(海军航空工程学院电子信息工程系2) 烟台 264001)摘 要 目前罗兰C 接收机采用固定频率点的模拟陷波器抑制窄带干扰,针对固定频率点的模拟陷波器在抑制窄带干扰方面的缺陷,提出将频域自适应陷波器应用于罗兰C 窄带干扰的抑制,克服了时域自适应陷波器收敛慢等缺点。通过仿真,此陷波器具有较好的抑制窄带干扰的能力。 关键词 罗兰C ;窄带干扰;频域陷波器中图分类号 T N 914 1 引言 窄带干扰(N a r r o w-B a n dI n t e r f e r e n c e N B I )是通信和数字信号处理系统中普遍存在的一种干扰,由于其电平相对于有用信号电平特别大,经常将有用信号淹没,从而影响了系统的正常运行。同时由于N B I 的频谱相对于有用信号的频谱占用的带宽非常窄,故称其为窄带干扰。从宽带信号中消除N B I 的能力是现代通信和数字信号处理系统设计中的重要问题。 2 罗兰C 系统 [1] 2.1 罗兰C 信号形式 图1 罗兰C 脉冲形状与频谱 罗兰C 系统是一种精密的远程无线电导航系统,它在全世界范围内获得了广泛的应用。罗兰C 台都发射具有标准脉冲前沿特性的信号。每一脉 冲的载频都是100k H z ,理论上罗兰C 脉冲定义为: p (t )= t <τ A (t -τ)2 e x p -2(t -τ) 65 s i n (0.2π+p c )τ≤t ≤65(1) 式中:A 是与峰值天线电流(安培)有关的标准化常数;t 是时间,单位u s ;τ是包周差(E C D ),单位u s ,定义为标准采样点前后包络时间位置的有效漂移; p c 是相位编码参数,单位r a d 。 脉冲的形状和频谱如图1所示。2.2 影响罗兰C 信号的N B I 分类 根据罗兰C 接收机的最低性能标准(M P S M i n i m u mP e r f o r m a n c e S t a n d a r d s ),在罗兰C 接收机中接收到的信号中,N B I 主要分为3类。 (1)同步干扰:其干扰频率可表示为: f i n t = N×1 2G R I  N=1,2,3,……;(2) (2)近同步干扰:其干扰频率可表示为: f i n t =(N+q )×12G R I N=1,2,3,……, (3) 设f b 为接收机的跟踪带 宽,则有0

自适应谱线增强器和陷波器的设计

自适应谱线增强器和陷波器的设计 1 引言 自适应谱线增强器最早是Widrow 等人与1975年在研究自适应噪声相消时提出来的,目的是将正弦波与宽带噪声分离出来,并提取正弦波信号。相反,如果正弦波信号是希望抑制的噪声或干扰,实现这一任务的的自适应滤波器称为陷波器。现在,自适应谱线增强器和陷波器已广泛的应用于瞬时频率估计,谱分析,窄带检测,语音编码,窄带干扰抑制,干扰检测,数字式数据接收机的自适应载体恢复的领域。 自适应陷波器是用来恢复淹没在背景噪声中的未知频率的正弦信号以及估计正弦信号的频率。在自适应陷波器的设计中,我们总是希望得到足够的尖截止特性,为了达到这个目的,自适应FIR 滤波器通常需要很高的阶数,从而导致计算量很大,但是自适应IIR 滤波器只用二阶就能得到最佳的近似。一个IIR 陷波器是指在单位圆上,它的幅度响应在某一个特定值处为零,此值我们称为陷波频率,而它的幅度在单位圆上的其他点时几乎是连续不变的。我们利用陷波器的输入减去输出,便可以得到具有尖截至特性的带通滤波器,从而在有效减小背景干扰噪声的同时,恢复输入信号中的正弦信号。 考虑下面的观测信号 )()sin()()()(1n v n w A n v n s n x i p i i i +Θ+=+=∑= (1) 式中Ai ,wi ,oi 分别是第i 个正弦波信号的幅值,频率和初始相位:v(n)为加性的宽带噪声,可以是有色的。 希望设计的滤波器,让含噪声的信号x(n)通过该滤波器后,输出中只含有P 个正弦波信号s(n),而没有其他任何信号或噪声。由于P 个正弦波信号的功率谱为P 条离散的谱线,所以这种只抽取正弦波信号的滤波器称为谱线增强器。令H(w)是谱线增强器的传递函数,为了抽取P 个正弦波,并拒绝所有其他信号和噪声,传递函数H(w)必须满足以下条件:

陷波器设计

数字信号处理 课程设计报告书题目陷波器设计

课程设计任务书

课题题目 摘要 随着数字技术的发展,数字滤波器在许多领域得到广泛的应用。它是通信、语言、图像、自动控制、雷达、航空航天、生物医学信号处理等领域中的一种基本处理部件,具有稳定性好、精度高、灵活性大等突出优点。 在信号采集时,往往受到50Hz电源频率干扰,尤其是在供电系统不稳定、外界环境适应性差时严重影响要采集信号的正确判断。本设计研究一种在MATLAB语言环境下分别用IIR和FIR滤波器设计方法设计实现一个数字陷波器,并将设计的滤波器应用到混合的正弦信号,通过仿真测试,用两种方法设计的滤波器可以很好的消除50Hz的工频干扰,并分析比较了各种方法所设计的陷波器性能。 在设计IIR数字陷波器过程中,是用椭圆数字陷波滤波器的设计方法,而FIR数字陷波器的设计主要用窗函数法、频率采样法及等波纹逼近法。FIR滤波器可以得到严格的线性相位,但它的传递函数的极点固定在原点,只能通过改变零点位置来改变性能,为了达到高的选择性,必须用较高的阶数,对于同样的滤波器设计指标,FIR滤波器要求的阶数可能比IIR 滤波器高5~10倍。IIR滤波器的设计可以利用模拟滤波器的许多现成的设计公式、数据和表格,计算的工作量较小。 关键词数字陷波器;50Hz工频干扰;IIR和FIR滤波器

目录 课程设计任务书...................................................................................................................... I 摘要.................................................................................................................................... II 1设计概述 .. (1) 1.1设计背景 (1) 1.2设计目的 (1) 1.3设计内容及要求 (1) 2设计方案及实现 (2) 2.1总体方案设计 (2) 2.2设计原理 (2) 2.2.1数字陷波器原理 (2) 2.2.2IIR数字陷波器原理 (3) 2.2.3FIR数字陷波器原理 (3) 3设计结果分析 (8) 3.1IIR数字陷波器设计 (8) 3.2FIR数字陷波器设计 (10) 3.2.1用窗函数法设计陷波器 (10) 3.2.2频率采样法设计陷波器 (12) 3.2.3基于切比雪夫等波纹逼近法 (13) 4总结 (16)

稳定平台关键技术综述

稳定平台关键技术综述 0引言 从科索沃战争、伊拉克战争到最近的利比亚战争,局部战争成为主要的作战模式。与以往的区域攻击不同,现代局部战争的主要特点是快速反应、精确打击。为应对未来局部战争,做到敢打必胜,改进与研制武器装备,提高部队作战能力成为首要任务。 在我军车载陆战装备中,战术导弹、坦克、火炮等武器系统近些年来有了很大发展,射击范围和精度都有了很大提高。但与外军先进装备相比,行进间射击精度尚有较大差距,甚至大多装配的武器系统还无法实现行进间射击。行进间射击作为提高部队作战效率,增强武器装备自我防护能力的重要指标,已成为未来陆战装备的主要发展方向,同时这也使得对武器系统的改进与研制迫在眉睫。 瞄准线稳定技术是实现行进间射击、提高行进间射击精度的主要环节。它采用稳定平台对车体的航向、纵摇和横滚运动进行有效的隔离,使瞄准线在惯性坐标系下保持稳定。为提高陆战装备快速反应与精确打击能力,急需提高稳定瞄准的快速性、精确性、自适应性,因此本课题的研究具有重要意义。 1稳定平台国内外研究现状 在光电稳定平台中,陀螺稳定平台迄今得到了广泛的应用,它是采用一个环架系统作为光电传感器的光学平台,在平台上放置陀螺来测量平台的运动,陀螺敏感姿态角的变化经过放大以后驱动环架的力矩电机,通过力矩电机驱动平台使光电传感器保持稳定。在国外起初应用于手持式望远镜和瞄准具中,并在八十年代装备部队,现已广泛应用于地基、车载、舰载、机载、弹载、天基等各种观测、摄像系统中。1996年,美国的航空红外制造商前视红外系统公司以电子新闻采集市场为目标推出了一种双传感器系统,它包括一个用于低照度的高分辨率红外摄像机和用于白天的标准广播摄像机,这两台摄像机一起被安装在一个紧凑的三轴陀螺稳定的万向架中,能够提供50rad μ的图像稳定精度,意大利的Caselle-Torinese 公司生产的11072Caselle-Torinese 光轴稳定平台的旋转范围可以做到高低方位均为??360~0,最大旋转速度为?60/s ,稳定精度为0.4mrad 。英国的Ferranti Electro-optics 公司生产的FIN1155用于坦克的陆地导弹/稳定平台,其瞄准线的稳定精度达到了0.1mrad 。法国的SAGEM 公司研制的舰载对空红外全景监视系统可以在?+?-30~30的摇摆,?+?-10~10的纵摇时的稳定精度达到0.5mrad 。1994年法国生产的“唯吉-105”型周视光电火控红外系统,在方位为??360~0,俯仰角为??-65~25范围内稳定精度为0.1mrad 。以色列研制的ESP-1H 采用两轴陀螺稳定平台,在方位角为??360~0,俯仰角在?+?-110~10的范围内,最大旋转速度为?50/s 的稳定精度高达50rad μ,而ESO-600C 的稳定精度高达15rad μ。 国内上世纪80年代开始研制瞄准具稳定平台,90年代逐渐展开了陀螺稳定平台的研制。北京618所90年代初期研制了机载陀螺稳定平台,其稳定精度可达到0.1mrad ,中科院成都光电所承担的863子课题——快速反射镜成像跟踪系统,采用了二级稳定技术,并于1994年通过评审。华中光电技术研究所研制的舰载红外稳定平台的稳定精度为1mrad ,清华大学精密机械与机械学系惯性导航研究室于1997年研制出机载瞄准线稳定跟踪系统,并交付部队使用。 车载稳定平台的研究开始于80年代后期,最初用于坦克炮长镜上以稳定瞄准线,其原理是在框架陀螺的转子上安装导光棱镜,以达到稳定瞄准线的目的,其稳定精度可达到0.2mrad ,但瞄准范围仅仅是方位?±4、俯仰?+?-20~10,加之人机工程差,使用受到了

陷波器设计

陷波器设计 由传递函数的零点和极点可以大致绘出频率响应图。 在零点处,频率响应出 现极小值;在极点处,频率响应出现极大值。因此可以根据所需频率响应配置零 点和极点,然后反向设计带陷数字滤波器。考虑一种特殊情况,若零点 Z |在第1 象限单位圆上,极点P i 在单位圆内靠近零点的径向上。为了防止滤波器系数出 现复数,必须在z 平面第4象限对称位置配置相应的共轭零点Z j 、共轭极点p i < 这样零点、极点配置的滤波器称为单一频率陷波器, 在频率①o 处出现凹陷 而把极点设置在零的的径向上距圆点的距离为1-卩处,陷波器的传递函数为: (Z Z 1)(Z Z 2) (z (1 )zj(z (1 )Z 2) 式⑶ 中卩越小,极点越靠近单位圆,贝擞率响应曲线凹陷越深,凹陷的宽 度也越窄。当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除 窄带干扰的理想数字滤波器。 当要对几个频率同时进行带陷滤波时,可以按 (2)式把几个单独频率的带陷 滤波器(3)式串接在一起。 一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。50Hz 是一个干扰 信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz= 1 2 50/400 /4 因此z 平面上的零极点可设置为 /4 P 1 0.999e j /4 =0.999(COS : j sin :) 0.999(0.707 j0.707) 7064 j7063 它的传递函数为 陷波器是无限冲击响应 差分方程表示: M y(n) aX n 式中:x(n)和y(n)分别为输人和输出信号序列;a :和b 为滤波器系数。 对式(1)两边进行z 变换,得到数字滤波器的传递函数为: M a i z 1 H(z) + b i z 1 I 0 式中:Z |和P i 分别为传递函数的零点和极点。 i) (IIR)数字滤波器,该滤波器可以用以下常系数线性 by( n I) (1) I 1 M (z Z |) ■N ---------- ⑵ (z P i ) I 1 H(z) P 1 展开式为 乙 0.999e /4 e j /4= cos_ 4 2 2 j sin 4 0.707 j0.707

Filter Solutions滤波器设计教程

精心整理 一、FilterSolutions 滤波器设计软件中的英文注解 Lowpassnotchfilters:低通陷波滤波器 Order:阶 filtercircuits:滤波电路 frequencyresponse :幅频响应 Passband:通频带、传输带宽 repeatedlycycle :重复周期 maximumsignaltonoiseratio :最大信噪circuitboard:(实验用)电路板 activefilters:有源滤波器 supplycurrents:源电流 powersupplies:电源 bypassingcapacitors:旁路电容 optimal:最佳的;最理想的 GainBandwidth:带宽增益 passivecomponent:无源元件 斯;Chebyshev1切比雪夫1;Chebyshev2切比雪夫2;Hourglass :对三角滤波器、Elliptic :椭圆滤波器、Custom :自定义滤波器、RaisedCos :升余弦滤波器、Matche :匹配滤波器、Delay :延迟滤波器); 2、在filterclass 中选择滤波器的种类(低通、高通、带通、带阻); 3、在filterAttributes 中设置滤波器的阶数(Order )、通频带频率(Passband frequency ); 4、在Implementation 中选择有源滤波器(active )、无源滤波器(passive )和数字滤波器(Digital );

5、在FreqScale中选择Hertz和Log,如果选择了Rad/Sec,则要注意Rad/Sec =6.28*Hertz; 6、在GraphLimits中设置好图像的最大频率和最小频率,最大频率要大于通频带的截止频率;在PassiveDesign/IdealFilterResponse中观察传输函数(TransferFunction)、时域响应(TimeResponse)、零极点图(PoleZeroPlots)、频域响应(FrequencyResponse)的图像; 7、在CircuitParmaters中设置源电阻(SourceRes)和负载电阻(LoadRes);最后点击Circuits观察滤波器电路图; 70M/77.31M=1.104;当选择Freq(频率)时,StopBandAtten(阻带衰减)应该选择77.31M. 6、在GraphLimits中设置好图像的最大频率和最小频率,最大频率要大于通频带的截止频率我们设置为100M;在PassiveDesign/IdealFilterResponse中观察传输函数(TransferFunction)、时域响应(TimeResponse)、零极点图(PoleZeroPlots)、频域响应(FrequencyResponse)的图像; 7、在CircuitParmaters中设置源电阻(SourceRes)我们设为200欧和负载电阻(LoadRes)我们同样设为200欧;最后点击Circuits观察滤波器电路图;

陷波器设计

陷波器设计 陷波器是无限冲击响应(IIR)数字滤波器,该滤波器可以用以下常系数线性差分方程表示: ∑∑==---=M i N i i i i n y b i n x a n y 01)()()( (1) 式中: x(n)和y(n)分别为输人和输出信号序列;i a 和i b 为滤波器系数。 对式(1)两边进行z 变换,得到数字滤波器的传递函数为: ∏∏∑∑===-=---==N i i M i i N i i i M i i i p z z z z b z a z H 1100)()()( (2) 式中:i z 和i p 分别为传递函数的零点和极点。 由传递函数的零点和极点可以大致绘出频率响应图。在零点处,频率响应出现极小值;在极点处,频率响应出现极大值。因此可以根据所需频率响应配置零点和极点,然后反向设计带陷数字滤波器。考虑一种特殊情况,若零点i z 在第1象限单位圆上,极点i p 在单位圆内靠近零点的径向上。为了防止滤波器系数出现复数,必须在z 平面第4象限对称位置配置相应的共轭零点*i z 、共轭极点*i p 。 这样零点、极点配置的滤波器称为单一频率陷波器,在频率ωo 处出现凹陷。而把极点设置在零的的径向上距圆点的距离为l-μ处,陷波器的传递函数为: ) )1()()1(())(()(2121z z z z z z z z z H μμ------= (3) 式(3)中μ越小,极点越靠近单位圆,则频率响应曲线凹陷越深,凹陷的宽度也越窄。当需要消除窄带干扰而不能对其他频率有衰减时,陷波器是一种去除窄带干扰的理想数字滤波器。 当要对几个频率同时进行带陷滤波时,可以按(2)式把几个单独频率的带陷滤波器(3)式串接在一起。 一个例子:设有一个输入,它由50Hz 信号和100Hz 信号组成。50Hz 是一个干扰信号,要设计一个50 Hz 的带陷滤波器,采样频率为400Hz 。 4/400/5021ππω=?= 因此z 平面上的零极点可设置为 4/14 /1999.0ππj j e p e z ±±== 展开式为 7063 7064)707.0707.0(999.0)4sin 4(cos 999.0999.0707.0707.02 2224sin 4cos 4/14/1j j j e p j j j e z j j ±=±=±=±=±=±=±±π ππ π ππ== 它的传递函数为

IIR数字陷波器的设计及FPGA实现

1.前言 常用的数字滤波器有FIR(有限 冲激响应)数字滤波器和IIR(无限 冲激响应)数字滤波器。IIR滤波器 在达到某种性能属性方面更有优势, 对于相同的设计指标,IIR滤波器所要 求的阶数远低于FIR滤波器,信号的 延迟小。而且IIR滤波器可以利用模拟 滤波器的设计成果,设计工作量相对 较小,而采用FPGA来实现IIR数字 滤波器是最具效率的方式。 模拟滤波器从功能上分有低通、 高通、带通及带阻四种,从类型上分 主要有巴特沃斯(Butterworth)滤 波器、切比雪夫(Chebyshev)(I 型、II型)滤波器、椭圆(Elliptic) 滤波器及贝塞尔(Bessel)滤波器 等。当一个带阻滤波器的带阻宽度为 单个频率时,就称为陷波器。 2.IIR滤波器设计 本例设计一个数字陷波器,其技 术指标为:抽样频率F s =1000Hz,噪 声干扰频率100Hz,3dB带边频率为 95Hz和105Hz,阻带衰减不小于 30dB,采用巴特沃斯滤波器实现。滤 波器的各个系数可以由Matlab软件计 算得出。Matlab的信号处理工具箱中 IIR数字陷波器的 设计及FPGA实现 陈晓勇1.2 1.东南大学集成电路学院 210096 2.南通大学计算机科学与技术学院 226007 包含很多设计数字滤波器的M文件, 熟练利用这些M文件可以完成各种常 用的数字滤波器的设计工作。 这里没有给出阻带频率的上下限, 为设计方便,令阻带上下边频率分别 为99Hz和101Hz。首先计算出归一 化截止角频率:w1=f1*2*pi/Fs=0.19 π,wsl=fsl*2*pi/Fs=0.198π, wsh=fsh*2*pi/Fs=0.202π, w2=f2*2*pi/Fs =0.21π,进而可计算 得到模拟高通滤波器的截止角频率: wa1=tan(w1/2),wasl=tan(wsl/2), wash=tan(wsh/2),wa2=tan(w2/ 2)。这里一般的设计步骤为首先把所 要设计的数字滤波器的技术指标转化为 低通模拟滤波器的技术指标,先设计 出相应的低通模拟滤波器,然后进行 转化。但MATLAB的工具箱简化了 相关计算步骤,使得整个设计过程较 简洁。MATLAB命令如下: >>fs=[99 101];fp=[95 105]; rp=3; rs=30; Fs=1000; >>wp=fp*2*pi/Fs;ws=fs*2*pi/Fs; >>[n,wn]=buttord(wp/pi,ws/pi, rp,rs); >>[B,A]=butter(n,wn,'stop') 最后的命令计算得到滤波器的各项

基于运算放大器的工频信号陷波器设计

目录 第1章摘要 (3) 第2章引言 (4) 第3章基于运算放大器的工频信号陷波器构建 (5) 3.1理论分析 (5) 3.2 参数计算 (8) 3.3 电路组成 (9) 第4章基于运算放大器的工频信号陷波器性能测试 (11) 4.1 multisim 各频率信号源仿真 (11) 4.2 pspice仿真 (19) 第5章结论 (20) 心得体会 (20) 参考文献 (20)

第1章摘要 本文介绍一种基于运算放大器的工频信号陷波器的设计与制作,简要地介绍了工频信号陷波器的工作原理与设计方案,并详细地介绍了该陷波器的参数设计和制作过程,通过multisim和pispice的仿真与测试,记录和分析了该陷波器的工作特性与陷波性能,论证了该陷波器的可行性。 该陷波器陷波性能良好,带宽较小,电路线路简单,易于实现,滤波性能方便调整,具有很大的实际应用价值。 第2章引言 工频陷波器是阻带宽度较小的带阻滤波器,它的作用是阻止或滤掉信号中有害分量,达到减少对电路的影响。 工频为一频率单一且固定的某一信号,工频通常和二次谐波及高次谐波同时出现。而有时工频是不需要的,甚至会给其他信号造成很大的干扰。工频陷波器就是为了很大程度地抑制或阻止该种所不需要工频信号,同时对其他频率的信号没有较大的抑制作用。本文所采用基于运算放大器的工频信号陷波器的一种设计方法是DABP带阻滤波器的方法。 高性能的工频陷波器,它应能完全滤除工频和其高次谐波而不衰减其他谐波。要获得这样高的性能,需要Q值很高的滤波器,而且调谐必须非常准确,而DABP带阻滤波器的Q值达到150,适合一般低频窄带滤波器设计。 获得高性能的工频陷波器,采用DABP带阻滤波器来实现陷波可大大提高其性能指标。其实现陷波思路有:先利用DABP带阻滤波器设计每个所要求中心频率的陷波器,然后把各个滤波器串联形成类似于梳状陷波器的带阻滤波器。

相关文档
最新文档