lte物理层介绍-中文版

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、介绍

正当人们惊讶于WiMAX技术的迅猛崛起时,3GPP也开始了UMTS技术的长期演进(Long Term Evolution,LTE)技术的研究。这项受人瞩目的技术被称为“演进型3G”(Evolved 3G,E3G)。但只要对这项技术稍作了解,就会发现,这种以OFDM为核心的技术,与其说是3G技术的“演进”(evolution),不如说是“革命”(revolution),它和3GPP2 AIE(空中接口演进)、WiMAX以及最新出现的IEEE 802.20 MBFDD/MBTDD等技术,由于已经具有某些“4G”特征,甚至可以被看作“准4G”技术。

自2004年11月启动LTE项目以来,3GPP以频繁的会议全力推进LTE的研究工作,仅半年就完成了需求的制定。2006年6年,3GPP RAN(无线接入网)TSG已经开始了LTE 工作阶段(WI),但由于研究阶段(SI)上有个别遗留问题还没有解决,SI将延长到9月结束。按目前的计划,将于2007年9月完成LTE标准的制定(测试规范2008年3月完成),预计2010年左右可以商用。虽然工作进度略滞后于原计划,但经过艰苦的讨论和融合,终于确定了大部分基本技术框架,一个初步的LTE系统已经逐渐展示在我们眼前。

二、LTE的需求指标

LTE项目首先从定义需求开始。主要需求指标包括:

●支持1.25MHz-20MHz带宽;

●峰值数据率:上行50Mbps,下行100Mbps。频谱效率达到3GPP R6的2-4倍;

●提高小区边缘的比特率;

●用户面延迟(单向)小于5ms,控制面延迟小于1OOms;

●支持与现有3GPP和非3GPP系统的互操作;

●支持增强型的广播多播业务;

●降低建网成本,实现从R6的低成本演进;

●实现合理的终端复杂度、成本和耗电;

●支持增强的IMS(IP多媒体子系统)和核心网;

●追求后向兼容,但应该仔细考虑性能改进和向后兼容之间的平衡;

●取消CS(电路交换)域,CS域业务在PS(包交换)域实现,如采用VoIP;

●对低速移动优化系统,同时支持高速移动;

●以尽可能相似的技术同时支持成对(paired)和非成对(unpaired)频段;

●尽可能支持简单的临频共存。

3GPP毫不讳言LTE项目的启动是为了应对“其他无线通信标准”的竞争。针对WiMAX“低移动性宽带IP接入”的定位,LTE提出了相对应的需求,如相似的带宽、数据率和频谱效率指标、对低移动性进行优化、只支持PS域,强调广播多播业务等。同时,出于对VoIP和在线游戏的重视,LTE对用户面延迟的要求近乎苛刻。关于向后兼容的要求似乎模棱两可,从目前的情况看,由于选择了大量的新技术,至少在物理层已难以保持从UMTS 的平滑过渡。

最近,运营商又提出加强广播业务的要求,建议增加在单独的下行载波部署移动电视(Mobile TV)系统的需求。

三、LTE物理层标准化进展

LTE的研究工作主要集中在物理层、空中接口协议和网络架构几个方面,其中网络架构方面的工作和3GPP系统架构演进(SAE)项目密切相关。本文将对LTE物理层方面的系统设计和研究进展做一简单的介绍。

3.1双工方式和帧结构

目前的LTE物理层技术研究主要针对频分双工(FDD)和时分双工(TDD)两种双工方式。依据TR 25.913中对FDD/TDD共性的需求,TR 25.814中的内容基本都假设对FDD 和TDD均适用。少数对TDD进行的区别考虑的地方,都进行了特别注明。

在TDD模式下,每个子帧要么作为上行子帧,要么作为下行子帧。上行或下行子帧可以空出若干个OFDM符号作为空闲(Idle)符号,以留出必要的保护间隔。子帧的结构可能不断变化,因此可能需要通过信令通知系统当前的子帧结构。

另外,由于TR 25.913对系统的临频同址共存提出了需求,使TDD EUTRA系统面临和TDD UTRA系统之间的干扰问题。为了解决这个问题,目前TR 25.814考虑了两种TDD

EUTRA帧结构:固定(Fixed)帧结构和通用(Generic)帧结构。

3.1.1固定帧结构

这种方法就是分别针对低码片速率(LCR)-TDD UTRA和高码片速率(HCR)-TDD UTRA系统采用与UTRA系统相似的帧结构。也就是说,为了和LCR-TDD UTRA系统兼容,需要采用和LCR-TDD UTRA几乎相同的帧结构,即一个10ms无线帧分为2个5ms的无线子帧,每个无线子帧分为7个时隙(TSO~TS6),每个时隙(对应于FDD模式下的一个子帧)长度为0.675ms。同步和保护周期插在TSO和TS1之间,包括DwPTS、GP和UpPTS。每个时隙包含一个小的空闲周期,可用作上下行切换的保护周期。

可以看到,这个帧结构基本和原有的LCR-TDD帧结构相同,只是在每个时隙中加入了空闲周期。这个改动主要是为了能够在一个无线子帧内实现多次的上下行切换,以满足LTE 对传输时延的严格要求。这个帧结构已经经过RAN全会通过,写入了RAN的LTE研究报告TR 25.912。

RAN1工作组的研究报告TR 25.814中也包含了针对HCR-TDD的固定帧结构,由于篇幅所限,此处略去对这种帧结构的介绍。可以看到,固定帧结构的最大特点是采用了和FDD LTE不同的子帧(时隙)长度,由此导致了LTE的FDD和TDD模式在系统参数设计上有所不同。

3.1.2通用帧结构

这种方法是在尽量保持和FDD LTE设计参数一致的基础上满足和TDD UTRA系统的临频同址共存。这种设计的最大特点是采用了和FDD LTE相同的子帧长度0.5ms。但由于0.5ms与LCR-TDD UTRA(O.675ms)和HCR-TDD UTRA(0.667)的子帧长度都不相同,要避免和TDD UTRA系统之间的干扰,相对比较困难。通常整数个O.5ms子帧的长度和与整数个0.675ms(或0.667ms)子帧的长度和都不相等,因此为了使TDD EUTRA系统和TDD UTRA系统的上下行切换点相互对齐,就需要留出额外的空闲(Idle)间隙,这样会损失一些频谱效率。同时,由于TDD UTRA系统的上下行切换点的位置可能变化,相对应的TDD EUTRA帧结构也需要随之变化。也就是说,对不同的上下行比例,通用帧结构中的每个子帧的起止位置都可能不同,这也增加了系统的复杂度。

因此,通用帧结构比较适合那些同时部署了FDD LTE系统、但没有部署TDD UTRA

系统的运营商,因为这种设计可以获得更高的与FDD LTE系统的共同性,从而获得较低的系统复杂度。但对于那些已经部署了TDD UTRA系统的运营商,固定帧结构是更好的选择,因为这种结构可以更容易的避免TDD UTRA和TDD EUTRA系统间的干扰。

相关文档
最新文档