结构模态分析概要
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械结构实验模态分析
特征向量之间的正交性
由前面推导可知: AX 2 X
2 [ K ] r 第r阶: r r [ M ]
左乘
T k T 得 k T [K ]r 2 [M ] r r k
(a)
机械结构实验模态分析
方程解耦
定义: 设法使用一组本来耦合的方程变为一组无耦合方程 采用方法: 坐标变换 对于多自由度系统响应可由特征向量线性组合: 即: x q1 1 q1 1 qn n q
则运动学方程变为:
T K q 0 T M q
机械结构实验模态分析
频率响应函数
定义:
在j点作用单位力时,在i点所引起的响应;
H ij () X i / Fj
等同于系统机械导纳,也称为频域的传递函数。 由于线性系统的互易性,应有 Hij H ji
机械结构实验模态分析
频率响应函数
F2 Fn 若 根据线性叠加原理,应有:
频响函数与模态参数
对于具有比例阻尼的多自由振动系统强迫振动的响应:
故:
k
T
0, k r [ M ] r mr , k r 0, k r [ K ] r kr , k r
k 同理:
T
机械结构实验模态分析
特征向量之间的正交性
集合成矩阵形式得: T M M r T K K r K M 1 2 r r
结构局部损伤检测
结构的局部损伤将导致整个系统模态参数的变换 通过检测模态参数实现对结构健康度的实时监控。
机械结构实验模态分析
模态分析基本理论
问题描述
两个集中质量分别为:m1,m2 集中质量间连接弹簧刚度分别为: k1,k2 集中质量相对平衡位置的位移分 别为:X1,X2
式中: M r diagm1
Fra Baidu bibliotek
m2 mn K r diagk1 k2 mn 2 2 2 2 diag r 1 2 n 1 2 3
分别称为广义质量矩阵、广义刚度矩阵、特征值矩阵,均为 对角阵
机械结构实验模态分析
方程解耦
由前面推导的特征向量的正交性,上式变为:
[ K r ]q 0 [M r ]q
由于都是对角阵,因此上述方程得到解耦合。 上述解耦过程中,采用固有振型矩阵作为坐标变换矩阵, 该矩阵又称作固有振动模态振型矩阵,或简称模态振型矩 阵。 采用固有振型作为变换矩阵,使动力学方程组完全解耦, 每个方程可单独求解。
简写为:
Ax x
其中:
A M K
1
机械结构实验模态分析
模态分析基本理论
运动方程求解
x1 X 1 sin t 假定其解的形式为: x 2 X 2
运动方程改写为:
AX 2X
T
F F1
X i [Hi1 Hi 2
Hin ]F1
F2
T Fn
因此频率响应函数矩阵为:
H 11 H H 21 H n1 H 12 H 22 H n2 H1n H 2n H nn
机械结构实验模态分析
2 E 0 det A 上述方程有解,则必须满足:
2 2 ( )0 r 展开为: r 1 2
上式的根为系统固有频率的平方值。
机械结构实验模态分析
模态分析基本理论
小结
多自由度系统特性参数可表示为刚度矩阵[K]和质量矩 阵[M],他们一般都是对称矩阵,另外定义系统矩阵 [A]=[M]-1[K],一般是非对称矩阵; 系统矩阵的第r阶特征值,就是系统第r阶自由振动的固 有频率的平方值,说明系统固有频率等于系统的自由度; 对于每个特征值,相应的有一列特征向量,称为特征振 型,或称为固有振型,也可以成为固有模态振型;
机械结构实验模态分析
重庆大学机械学院汽车系 王 攀
实验任务
掌握实验模态分析的基本原理 熟悉掌握实验模态分析的一般步骤 熟悉实验模态分析仪器 撰写实验报告
机械结构实验模态分析
模态分析概述
定义:
承认实际结构可以运用所谓“模态模型”来描述其动态响 应的前提条件下,通过特定的方法寻求其“模态参数” 模态分析属于参数识别的范畴
k k [M ]k 第k阶: [ K ]
2
r 转置右乘
得
T k T [K ]r 2 [M ] r k k
(b)
机械结构实验模态分析
特征向量之间的正交性
T 2 (a)-(b)得:(2 ) r 0 r k k [ M ]
k1 m1 k2 m2 x1 x2
机械结构实验模态分析
模态分析基本理论
运动学微分方程:
1 k1 k 2 k 2 x1 0 x m1 0 0 m2 2 k 2 k 2 x2 0 x
模态参数
固有频率 模态质量 模态刚度 模态阻尼 模态矢量(振型)
机械结构实验模态分析
模态分析应用
建立结构动态响应的预测模型
已知输入,通过模态参数可以得到结构的响应 为结构的动强度设计及疲劳寿命的估计服务
对比虚拟样机模型的动态特性
样机模态参数与试验获得的模态参数对比 保证所建立的虚拟样机模型的准确性