二次函数表达式的确定方法
确定二次的函数的表达式
确定二次的函数的表达式知识点1 用一般式确定二次函数表达式1.已知抛物线上的三点坐标,可以设函数解析式为)0(2≠++=a c bx ax y ,代入后得到一个三元一次方程,解之即可得到c b a ,,的值,从而求出函数解析式,这种解析式叫一般式.2.用待定系数法确定二次函数表达式的一般步骤:步骤一:设含有待定系数的二次函数表达式y =ax 2+bx +c (a ≠0);步骤二:将题设中满足二次函数图象的点代入所设表达式,得到关于待定系数a 、b 、c 的方程组;步骤三:解这个方程组,得到待定系数a 、b 、c 的值; 步骤四:将待定系数的值代入表达式,得到所求函数表达式.例1.已知二次函数的图象经过点(0,3),(−3,0),(2,−5),且与x 轴交于A 、B 两点。
(1)试确定此二次函数的解析式; (2)求出抛物线的顶点C 的坐标;(3)判断点P (−2,3)是否在这个二次函数的图象上?如果在,请求出△P AB 的面积;如果不在,试说明理由。
例2.抛物线y =ax 2+bx +c 过(0,0),(12,0),(6,3)三点,则此抛物线的表达式是 .知识点2 用顶点式确定二次函数表达式已知二次函数的顶点坐标为(h ,k )的话,可以设成顶点式:y =a (x -h )2+k (a 、h 、k 为常数且a ≠0)然后再找一点带入二次函数的顶点式,即可求得a 的值,最后回代到顶点式即可(提示:最后一般要把二次函数的解析式化成一般式)。
例1.已知抛物线y =ax 2+bx +c 的图象顶点为(−2,3),且过(−1,5),则抛物线的表达式为______. 例2.已知抛物线y =ax 2+bx +c ,当x =2时,y 有最大值4,且过(1,2)点,此抛物线的表达式为 .例3.有一个二次函数,当x <-1时,y 随x 的增大而增大;当x >-1时,y 随x 的增大而减小;且当x =-1时,y =3,它的图象经过点(2,0),请用顶点式求这个二次函数的表达式.例4.由表格中的信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数表达式正确的( )A . y =x 2-x +4B . y =x 2-x +6 C . y =x 2+x +4 D . y =x 2+x +6例5. 已知函数抛物线的顶点坐标为(-3,-2),且过点(1,6),求此抛物线的解析式。
求二次函数解析式的四种方法详解
求二次函数解析式的四种方法详解二次函数是一种常见的函数形式,其解析式可以通过四种方法求得。
下面将详细介绍这四种方法。
方法一:配方法求解二次函数解析式配方法是一种常用的求解二次函数解析式的方法。
对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以通过配方法将其转化为$(px+q)^2$形式,然后利用完全平方公式求解。
1. 将二次项与常数项系数乘以2,即将原函数表示为$f(x) = a(x^2 + \frac{b}{a}x) + c$;2. 将中间项$\frac{b}{a}x$除以2,并在括号外面加上一个平方项和一个负号,即表示为$f(x) = a(x^2 + \frac{b}{a}x +(\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;3. 将括号内部的三项利用完全平方公式进行转化,即表示为$f(x) = a((x+\frac{b}{2a})^2 - (\frac{b}{2a})^2) + c$;4. 化简后得到$f(x) = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$。
其中,$(x+\frac{b}{2a})^2$是一个完全平方项,可以展开得到$x^2 + bx + \frac{b^2}{4a^2}$。
所以上述表达式可以进一步简化为:$f(x) = ax^2 + bx + c = a(x+\frac{b}{2a})^2 - \frac{b^2}{4a} + c$这就是二次函数的配方法解析式。
方法二:因式分解法求解二次函数解析式对于形如$f(x) = ax^2 + bx + c$的二次函数,我们可以使用因式分解法对其解析式进行求解。
1.如果二次函数可以因式分解为$(x-x_1)(x-x_2)$的形式,其中$x_1$和$x_2$是函数的根,则此二次函数的解析式形式为$f(x)=a(x-x_1)(x-x_2)$;2.将一般形式的二次函数进行因式分解,即将二次项系数a与常数项c进行合适的分解,得到$(x-x_1)(x-x_2)$的形式。
2.3 确定二次函数的表达式(1)
0),B(3,0)两点,; (2) 若直线 AM′ 与此抛物线的另一个交点为 C , 求△ CAB 的面积;
(2)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点Q,
使得四边形 APBQ 为正方形?若存在 , 求出此抛物线的表达式; 若不存在,请说明理由.
第2章 二次函数
2.3 确定二次函数的表达式
第1课时 已知图象上的两点求表达式
二次函数表达式有哪几种表达方式? 一般式:y=ax2+bx+c 顶点式:y=a(x-h)2+k 交点式:y=a(x-x1)(x-x2) 如何求二次函数的表达式? 已知二次函数图象上三个点的坐标,可用待定系数法 求其表达式.
2 . 已知抛物线y = ax2+ bx + c 的图象如图所示 , 则该抛物线的 y=2(x-1)2 . 表达式为:______________
3 .如图 , 已知二次函数 y = x2 + bx + c 的图象经过点(-1,0),(1,-2),当y随
x的增大而增大时,x的取值范围是 1 x> _________ . 2
• 3.已知二次函数图象的对称轴为直线x =1,最低点到x轴的距离为2,且其图象 经过点(0,3),求此函数的关系式.
例2、已知二次函数y=ax2+c的图象经过 (2,3)和(-1,-3),求这个二次函 数的表达式。
1 .抛物线 y = 2x2 + bx + c 与 x 轴交于 ( - 1 , 0) ,
例1、一名学生推铅球时,铅球行进 的高度y与水平距离x之间的关系如图所示, 其中(4,3)为图象的顶点,你能求出y 与x之间的关系吗?
1、已知某二次函数的图象如图所示, 则这个二次函数的表达式为
2 . 已知二次函数的图象经过点 ( - 1 , 3) , 且它的顶点是原点,那么这个二次函数的
5.3 用待定系数法确定二次函数表达式 课件
解:由二次函数y=ax²
+bx+c的图像经过点(-3,6)、(-2,-1)和(0,-3),
得
= (-)² − + ,
൞− = (-)² − + ,
− = ,
= .
解得 ቐ = .
= −.
所求这个二次函数的表达式为y=2x2+3x-3.
抛物线的顶点式
y=a(x+h)2+k(a≠0)
归纳总结
你能总结出用顶点式确定二次函数表达式的一般步骤吗?
步骤:
1.设:
(表达式)
2.代:
(坐标代入)
3.解:
方程(组)
4.还原:
(写表达式)
①设函数表达式为y=a(x+h)2+k(a≠0);
②先代入顶点坐标,得到关于a的一元一次方程;
③将另一点的坐标代入原方程求出a值;
5.如图,平面直角坐标系中,函数图像的表达式应是_______.
y
5
4
3
2
1
O
-4 -3 -2 -13-1
1 2 x
当堂检测
6.已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x
…
0
1
2
3
4
5
…
y
…
3
0
-1
0
m
8
…
(1)可求得m的值为_____;
3
y=x2-4x+3
(2)这个二次函数的表达式为______________.
解:把x=2,y=8代入y=ax²,得
8=2²×a
解得a=2.
所求这个二次函数的表达式为y=2x2.
北师大版数学九年级下册2.3.2《确定二次函数的表达式》课件 (共18张PPT)
3、已知抛物线顶点在坐标原点,且图像经过(2,8), 求二次函数的表达式.
议一议:
已知抛物线经过三点A(0,1),B(1,2), C(2,1),求二次函数的解析式,你有几种 方法?与同伴进行交流.
知识盘点
1、 求二次函数的解析式的一般步骤:
y=a(x-x1)(x-x2)(a≠0) 交点式
例题精讲
例1:已知一个二次函数的图象过点(-1,10)、
(1,4)、(2,7)三点,求这个函数的解析式?
解: 设所求的二次函数为 y=ax2+bx+c
a-b+c=10
y
由条件得: a+b+c=4 4a+2b+c=7
解方程组得: a=2,
ox
b=-3,
2.3.2确定二次函数的表达式
学习目标 1、会用待定系数法求二次 函数解析式. 2、能根据不同的条件选择 恰当的解析式求函数解析式。
• 如果要确定二次函数的关系式,需要几个条件呢?
y=ax2 (a≠0)
• 二次函数关系: y=ax2+k (a≠0) y=a(x-h)2 (a≠0)
顶点式
y=a(x-h)2+k (a≠0) y=ax 2+bx+c (a≠0) 一般式
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/102021/9/102021/9/102021/9/109/10/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月10日星期五2021/9/102021/9/102021/9/10 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/102021/9/102021/9/109/10/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/102021/9/10September 10, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/102021/9/102021/9/102021/9/10
2.3 二次函数表达式的三种形式 课件(共21张PPT)
轴(交其点中的x1横, 坐x2标是)抛,物选线交与点x式轴:交y 点 (的x 横x坐1)(标x )x2 )
但不论何种形式,最后都化为一般形x1 式。
2.抛物线y=ax²+bx+c的顶点为(2,4),且过(1,2)点, 求抛物线的解析式.
3.二次函数y=ax²+bx+c的图象过点A(-2,5),且当 x=2时,y=-3,求这个二次函数的解析式,并 判断点B(0,3)是否在这个函数的图象上.
4.抛物线y=ax²+bx+c经过(0,0),(12,0)两点,其 顶点的纵坐标是3,求这个抛物线的解x1 析式.(要 求用多种方法)
• 求二次函数表达式的方法有很多,今 天主要学习用待定系数法来求二次函 数的表达式(解析式)
• 2015已知二次函数的图象与y轴的交点为C, 与x轴正半轴的交点为A.且.tan ACO 1
4
• (1)求二次函数的解析式;
课后练习
1.抛物线y=ax²+bx+c过(-3,0),(1,0)两点,与y 轴的交点为(0,4)过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式
• 3.交点式:y a(x x1)(x x2 ) (a 0)
一般式 y ax2 bx c(a )
例题1 (1) 已知二次函数图象经过点A(-1,0), B(4,5),C(0,-3),求该二次函
数的表达式.
(2) (2015牡丹江)抛物线y=x²+bx+c经过 点A(1,-4),B(3,0).求此抛物线的解析式.
二、顶点式 y a(x h)2 k
例题1 (1)(2013绥化)若二次函数图像的顶点坐 标为(-2,3),且过点(-3,5),求此二次 函数的解析式。
二次函数求表达式
二次函数求表达式一、常规的抛物线求解方法二次函数的表达式为y=ax^2+bx+c(a≠0),最常见的也是最容易明白的求解方法,就是题目中告诉抛物线经过三个任意点,这种类型的求解方法是根据抛物线的定义来求解。
把抛物线所经过的三点的横坐标和纵坐标依次带入表达式,组成三个三元一次方程,从而构成三元一次方程组,根据求解方程组的方法求出a,b,c的值。
在中考压轴题中,这种类型比较少,但是对于初步学习二次函数的学生来说,一定要理解这种表达式的求解方法,并且要在计算过程中保证不要算错,因此进行验算非常有必要。
二、根据顶点求解析式每个抛物线都有一个顶点,而且只有一个。
有些题目指出抛物线的顶点,怎么根据顶点来求抛物线表达式?首先要对抛物线基本表达式y=ax^2+bx+c进行分析,这个表达式中,它的顶点坐标是什么?通过化简,可得y=a(x+b/2a)-(b^2-4ac)/4a,通过这个解析式知道它的顶点是[-2a/b,-(b^2-4ac)/4a],在实际解题中,如果知道某个函数的顶点之后,我们把顶点坐标代入到顶点公式中,比较繁琐,因此可以设函数为y=a(x+h)^2+k,这个函数的顶点是(-h,k)这样可以使这个函数的求解变得简单,只要能够求出二次函数的系数,这个函数的解析式就可以求出。
已知某函数的顶点是A(1,2),它又过点(3,5),求它的解析式根据顶点是(1,2)可设y=a(x-1)^2+2,再把x=3,y=5代入可得4a+2=5,a=3/4再把a=3/4代入可以算出y=3/4(x-1)^2+2=3x^2/4-3x/2+11/4备注:当a>0时,函数顶点处是函数的最低点,具有最小值,而当a<0时,顶点处是最高点,具有最大值。
三、根据与坐标轴交点求解析式根据函数图像的性质可知,二次函数与x轴的交点有三种可能,分别是无交点,一个交点和两个交点,而题目中大多数情况下是有两个交点,如果知道两个交点的坐标,再知道另一个交点,就可以求出表达式。
二次函数表达式的确定(原创)
二次函数表达式的确定待定系数法确定二次函数表达式的步骤:(1)设出适当的二次函数表达式,(2)根据已知信息,构建关于常数的方程(组),(3)解方程(组),(4)把求出的常数的值代入所设的表达式一般式:顶点式:,其中(h,k)为顶点,交点式:,其中x1,x2为抛物线与x轴的两个交点的横坐标;.1.已知抛物线过(1,-1),(2,-4)和(0,4)三点,求二次函数表达式2.已知二次函数y=ax2+bx+c,当x=-2时,y=5,当x=1时,y=-4,当x=3时,y=0,求抛物线的函数表达式3.已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的表达式;(2)画出二次函数的图象4.已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标和对称轴;5.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的表达式.6.在平面直角坐标系中,二次函数的图象顶点为,且过点,求与的函数关系式为6.已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的表达式;(2)当PA+PB的值最小时,求点P的坐标.7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),求此抛物线的表达式8.已知抛物线过三点:(-1,0)、(1,0)、(0,3).(1).求这条抛物线所对应的二次函数的关系式;9.如图,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,求抛物线的表达式10.如图,已知二次函数的图象与x轴交于A(-2,0),B(4,0)两点,且函数的最大值为9.11.已知二次函数的图象的顶点为A(2,-2),并且经过B(1,0),C(3,0),求这条抛物线的函数表达式.10.已知二次函数图象上部分点的坐标满足下表:求该二次函数的解析式;用配方法求出该二次函数图象的顶点坐标和对称轴.1. 已知二次函数的图象如图所示求这个二次函数的表达式A. y =x 2-2x +3B. y =x 2-2x -3C. y =x 2+2x -3D. y =x 2+2x +32. 一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标(-1,3),则该抛物线的表达式为( ) A. y =-2(x -1)2+3 B. y =-2(x +1)2+3 C. y =-(2x +1)2+3 D. y =-(2x -1)2+33. 抛物线y =x 2+bx +c 经过A (-1,0),B (3,0)两点,则这条抛物线的解析式为( )A. y =x 2-2x -3B. y =x 2-2x +3C. y =x 2+2x -3D. y =x 2+2x +3 4. 由表格中信息可知,若设y =ax 2+bx +c ,则下列y 与x 之间的函数表达式正确的是( )A. y =x 2-4x +3 5. 如果抛物线经过点A (2,0)和B (-1,0),且与y 轴交于点C ,若OC =2,则这条抛物线的表达式是( ) A. y =x 2-x -2B. y =-x 2-x -2或y =x 2+x +2C. y =-x 2+x +2D. y =x 2-x -2或y =-x 2+x +2 7.已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5),则该函数的表达式为 . 8. 如图,抛物线的表达式为 ,直线BC 的表达式为 ,S △ABC = .9. 如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),那么它对应的函数表达式是 .10. 已知二次函数的图象经过原点及点(-12,-14),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的表达式为 .11. 如图,已知二次函数y=ax2+bx+c的图象经过A(-1,-1),B(0,2),C(1,3).(1)求二次函数的解析式;(2)画出二次函数的图象.12. 已知抛物线y=ax2+bx经过点A(-3,-3)和点P(t,0),且t≠0.(1)若该抛物线的对称轴经过点A,请通过观察图象,指出此y的最小值,并写出t的值;(2)若t=-4,求a,b的值,并指出此时抛物线的开口方向;(3)直接写出使该抛物线开口向下的t的一个值.15. 如图,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB.16. 如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6).写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案1. B2. B3. A4. A5. D6. y =-23(x +2)2+1 7. y =-(x +1)2+48. y =45x 2-165x -4 y =45x -4 12 9. y =-x 2+2x +3 10. y =x 2+x 或y =-13x 2+13x11. 解:(1)∵二次函数y =ax 2+bx +c 的图象经过A (-1,-1),B (0,2),C (1,3).∴2(1)(1)1,2,3,a b c c a b c ìï?+?+=-ïïï=íïï++=ïïî解得⎩⎪⎨⎪⎧a =-1,b =2,c =2,∴y =-x 2+2x +2.(2)画图略.12. 解:(1)y 的最小值为-3,t =-6.(2)分别把(-4,0)和(-3,-3)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧ 0=16a -4b ,-3=9a -3b ,解得⎩⎪⎨⎪⎧a =1,b =4.∴抛物线表达式为y =x 2+4x ,∵a =1>0,∴抛物线开口向上. (3)-1(答案不唯一)13. 解:(1)∵y =x 2+bx +c 过原点,∴c =0.又∵y =x 2+bx 过点A (2,0),∴b =-2,∴y =x 2-2x . (2)y =x 2-2x =(x -1)2-1,∴顶点坐标为(1,-1),对称轴为直线x =1.(3)∵点A 的坐标为(2,0),∴OA =2.∵S △OAB =3,∴12OA ·||y B =3,∴||y B =3.∵抛物线最低点坐标为(1,-1),∴y B =3,∴3=x 2-2x ,即x 2-2x -3=0,(x -3)(x +1)=0,∴x 1=-1,x 2=3.∴点B 坐标(-1,3)或(3,3).14. 解:(1)把A (2,0),B (0,-6)的坐标代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0,c =-6,解得⎩⎪⎨⎪⎧b =4,c =-6.∴这个二次函数的表达式为y =-12x 2+4x -6.(2)∵该抛物线的对称轴为直线x =-412()2?=4,∴点C 的坐标为(4,0).∴AC =OC -OA =4-2=2.∴S △ABC=12·AC ·OB =12×2×6=6. 15. 解:(1)∵抛物线顶点为A (3,1),设抛物线对应的二次函数的表达式为y =a (x -3)2+1,将原点坐标(0,0)代入表达式,得a =-13.∴抛物线对应的二次函数的表达式为y =-13x 2+233x .(2)将y =0代入y =-13x 2+233x 中,解得x =0(舍去)或x =23,∴B 点坐标为(23,0),设直线OA 对应的一次函数的表达式为y =kx ,将A (3,1)代入表达式y =kx 中,得k =33,∴直线OA 对应的一次函数的表达式为y =33x .∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y =33x +b ,将B (23,0)代入y =33x+b 中,解得b =-2,∴直线BD 对应的一次函数的表达式为y =33x -2.由⎩⎨⎧y =33x -2,y =-13x 2+233x ,得交点D的坐标为(-3,-3),将x =0代入y =33x -2中,得C 点的坐标为(0,-2),由勾股定理,得OD =23,又OA =2=OC ,AB =2=CD ,OB =23=OD .在△OAB 与△OCD 中,⎩⎪⎨⎪⎧OA =OC AB =CDOB =OD,∴△OAB ≌△OCD .(2)如图,过点A 作x 轴的垂线,垂足为D (2,0),连接CD ,CB ,过点C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =12OD ·AD =12×2×4=4,S △ACD =12AD ·CE =12×4×(x -2)=2x -4;S △BCD =12BD ·CF =12×4×(-12x 2+3x )=-x 2+6x ,则S =S △OAD +S △ACD +S △BCD =4+2x -4-x 2+6x =-x 2+8x ,∴S 关于x 的函数表达式为S =-x 2+8x (2<x <6),∵S =-x 2+8x =-(x -4)2+16,∴当x =4时,四边形OACB 的面积S 有最大值,最大值为16.。
北师版九年级数学下册_2.3确定二次函数的表达式
抛物线于点 H,则 yH=-530×72+6= 3.06>3.所以其中的一侧行车道能并排
行驶宽 2 m、高 3 m 的三辆卡车.
课堂小结
确定二次函数的 表达式
确定二次函 数的表达式
一般式 顶点式 交点式
关键 已知条件的 呈现方式
知2-练
感悟新知
知2-练
(3)拱桥下地平面是双向行车道(正中间是一条宽2 m 的隔 离带),其中的一侧行车道能否并排行驶宽2 m、高3 m 的三辆卡车(卡车间的间隔忽略不计)?请说说你的理由.
感悟新知
解:能. 理由如下:
知2-练
如图所示,设 DE 是隔离带的宽,EG 是三辆卡车的宽
度和,则点 G 的坐标是(7,0).过点 G 作 HG⊥AB,交
4-1. 一座拱桥的轮廓是抛物线型(如图所示),拱高6 m,跨 度是20 m,相邻两支柱间的距离均为5 m.
感悟新知
知2-练
(1)将抛物线放在直角坐标系中,并根据所给数据求出抛物 线的函数表达式. 解:(答案不唯一)将抛物线放在 如图所示的直角坐标系中,根 据已知条件,知A,B,C三点 的坐标分别是(-10,0),(10, 0),(0,6).
1
标-2∵为x)-分3+517别(.-x722<为+172(01xx,4)2+.-则∴2xxl当=,)=Ax-0D=),+7722D(Cx时12+4+,C-2Bxlx+=有,1(4最--=-大177 值72xx22+(+,x22-x最x ))72大+,)(值+1(x432,-5 .
2
感悟新知
知2-练
得5a=5,解得a=1,
∴y=x(x-4)=x2-4x,
二次函数表达式的确定方法
解:以线段AB的中垂线为y轴,以过点o且 与y轴垂直的直线为x轴,建立直角坐标系
设它的函数表达式为: y=ax²(a≠0)
∵ AB = 6 ∴ CB = AB = 3,OC = 0.9 2
∴ B(3, -0.9)代入y = ax2中, -0.9 = a ? 32 ∴ a = -0.1因此这段抛物线对应的二次
y
3 2 1 0 24
9x
思考探究
确定二次函数的表达式需要几个条件? 与同伴进行交流.
例1 若二次函数图象过A(2,-4),B(0,2), C(-1,2)三点,求此函数的解析式。
例1 若二次函数图象过A(2,-4),B(0,2), C(-1,2)三点求此函数的解析式。 解:设二次函数表达式为y=ax²+bx+c
(1)已知抛物线的顶点在原点,对称轴是y轴,且经 过点 (-2,2),求此抛物线的表达式?
顶点式 y = 1 x2
2
(2)已知抛物线的顶点在y轴上,且经过(-1,-3)和 (2,6),求此抛物线的表达式?
顶点式 y=3x2-6
(3)已知抛物线的顶点在x轴上,对称轴是直线x=1,且 经过(2,3),求此抛物线的表达式?
小结:
已知顶点坐标(h,k)或对称轴方程x=h 时
优先选用顶点式。
例4 已知二次函数图象经过点 (1,4),(-1,0)和(3,0)三点, 求二次函数的表达式。
解:(交点式) ∵二次函数图象经过点 (3,0),(-1,0) ∴设二次函数表达式为 :y=a(x-3)(x+1) ∵ 函数图象过点(1,4) ∴ 4 =a (1-3)(1+1) 得 a= -1 ∴ 函数的表达式为:
∴ 函数的解析式为: y= -(x-1)2+4 =-x2+2x+3
2.3确定二次函数的表达式 2 交点式
∴ 函数的解析式为:y= -x2+2x+3
.
6
巩固练习
1、已知二次函数图像与x轴交点的横坐标为-2和1, 且经过点(0,3),求这个二次函数的表达式。
2、已知抛物线与X轴交于A(-1,0),B(1,0) 并经过点M(0,1),求抛物线的解析式?
解:设所求的解析式为 ∵抛物线与x轴的交点坐标为(-1,0)、(1,0)
∴ ∴ 又∵点(0,1)在图像上, ∴
∴ a = -1
∴
即:
.
4
例2、已知二次函数图象经过点 (1,4),(-1,0)和(3,0) 三点,求二次函数的表达式。
解:(交点式)
∵二次函数图象经过点 (3,0),(-1,0)
∴设二次函数表达式为 :y=a(x-3)(x+1)
4、已知抛物线的对称轴是直线x=-2,且经过点(1,3),(5,6), 设抛物线解析式为________.
5、已知抛物线与x轴交于点A(-1,0)、B(1,0),且经过点 (2,-3),设抛物线解析式为_______.
.
11
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
∵ 函数图象过点(1,4)
∴ 4 =a (1-3)(1+1) 得 a= -1
∴ 函数的表达式为:
y= -(x+1)(x-3)
= -x2+2x+3
知道抛物线与x轴的两个交点的坐
标,选用交点式比较简便
.
5
其它解法:(一般式)
设二次函数解析式为y=ax2+bx+c
专题训练(二)确定二次函数的表达式常见的五种方法.docx
专题训练(二)确定二次函数的表达式常见的五种方法>方法一利用一般式求二次函数表达式1•已知抛物线过点A(2,0),B(—l,0),与y轴交于点C,且OC=2.则这条抛物线的表达式为()A• y = x2—x—2B• y = —X2+X+2C - y=x? —x—2 或y= —x?+x + 2D• y=—x'—x—2 或y=x? + x+22•若二次函数y = x?+bx+c的图象经过点(一4,0),(2,6),则这个二次函数的表达式为 _____________ •3•—个二次函数,当自变量x= —1时,函数值y = 2;当x=0时,y= —1;当x=l时,y=—2.那么这个二次函数的表达式为______________ .4• [2016-安庆外国语学校月考]如图2-ZT-1,在平面直角坐标系中,抛物线y=ax? + bx+c 经过A(-2,-4)> 0(0,0),B(2,0)三点.⑴求抛物线y=ax?+bx+c的表达式;(2)若M是该抛物线对称轴上的一点,求AM + OM的最小值.o V/\图2-ZT-1>方法二利用顶点式求二次函数表达式5•已知二次函数y=ax2+bx+c,当x=l时,有最大值8,其图象的形状、开口方向与抛物线y=—2x?相同,则这个二次函数的表达式是()A• y=—2x2—x+3 B. y=—2x2+4C・y= —2x?+4x + 8 D. y=-2x2+4x+66•已知y是x的二次函数,根据表中的自变量x与函数y的部分对应值,可判断此函数表达式为()A.y = xB. y=—x237.某广场中心有高低不同的各种喷泉,其中一支高度为㊁米的喷水管喷水的最大高度为4米,此时喷水的水平距离为+米,在如图2-ZT-2所示的坐标系屮,这支喷泉喷水轨迹的函数表达式是____________ .图2-ZT-28•已知抛物线y]=ax2+bx+c的顶点坐标是(1,4),它与直线y2=x+l的一个交点的横坐标为2.(1)求抛物线的函数表达式;(2)在如图2-ZT-3所示的平面直角坐标系中画出抛物线yj=ax2+bx+c及直线y2 = x + 1,并根据图象,直接写出使得yi^y2成立的x的取值范闱.图2-ZT-3>方法三利用交点式求二次函数表达式259•若抛物线的最高点的纵坐标是手,且过点(一1,0),(4,0),则该抛物线的表达式为()A• y=—X2+3X+4B. y=—X2—3X+4C • y = x‘一3x—4 D. y=x? —3x+410•抛物线y=ax2+bx+c与x轴的两个交点坐标为(一1,0),(3,0),其形状及开口方向与抛物线y=—2/相同,则抛物线的函数表达式为()A• y=—2x‘一x + 3 B. y=—2x2+4x + 5C - y=—2X2+4X +8D. y = —2X2+4X+611・[2016揪阳实验中学期中]已知抛物线与x 轴交于A (1 ‘ 0),B (-4 ‘ 0)两点‘与y 轴交于点C ,且AB = BC ,求此抛物线对应的函数表达式.>方法四利用平移式求二次函数表达式12 • [2017-绍兴]矩形ABCD 的两条对称轴为坐标轴,点A 的坐标为(2,1). 一张透明 纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A 重合,此时抛物线的函数表达 式为y=x?,再次平移透明纸,使这个点与点C 重合,则该抛物线的函数表达式变为()A - y=x 2 + 8x+ 14 B. y=x 2 —8x+14C • y=x 2+4x + 3 D. y=x 2—4x+313. [2017-盐城]如图2-ZT-4,将函数y =鬆一2)2+1的图象沿y 轴向上平移得到一 条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点Z ,B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图彖的函数表达式是()A • y=*(x —2)2—2 B. y=|(x-2)2 + 7图 2-ZT-414 •如果将抛物线y = 2x 2+bx+c 先向左平移3个单位,再向下平移2个单位,得到了 抛物线 y=2x?—4x+3.⑴试确定b ,c 的值;⑵求出抛物线y=2x?+bx+c 的顶点坐标和对称轴.>方法五 利用对称轴求二次函数表达式15 •如图2-ZT-5 »已知抛物线y = — x?+bx+c 的对称轴为直线x= 1,且与x 轴的一c . y=|(x —2)2—5个交点坐标为(3 ‘ 0),那么它对应的函数表达式是__________y:X=1/f v/ 01图2-ZT-516.如果两个二次函数的图象关于y轴对称,我们就称这两个二次函数互为“关于y轴对称二次函数”,如图2-ZT-6,二次函数y, = x2+2x+2与y2=x2-2x+2是“关于y轴对称二次函数”.(1)直接写出两条“关于y轴对称二次函数”图象所具有的特点.(2)二次函数y=2(x+2)?+l的“关于y轴对称二次函数”表达式为________________ ;二次函数y = a(x—hF+k的“关于y轴对称二次函数”表达式为 _____________ ;(3)平面直角坐标系屮,记“关于y轴对称二次函数”的图彖与y轴的交点为A,它们的两个顶点分别为B,C,且BC=6,顺次连接点A,B,O,C,得到一个面积为24的菱形‘教师详解详析1 •[解析]C 由题意可知点C 的坐标是(0 ' 2)或(0 ‘ 一2).设抛物线的表达式为r4a+2b+c=0 ‘r a= — \+bx+c.由抛物线经过点(2,0),(—1,0),(0,2),得v a-b+c=0, 解得< b=l , .c=2,lc=2,物线的表达式是j=-?+x+2.同理,由抛物线经过点(2,0),(—1,0),(0,— 2)求得该抛物线的表达式为y=x 2-x~2.故这条抛物线的表达式为),=—d+x+2或y=F —x —2.2 •[答案]y=?+3x-4(16一4Z?+c=0, (b=3,[解析]将点(—4、0)、(2 ‘ 6)代入y=,+bx+c 、得] 解得]l4+2b+c=6, lc=—4,・・・这个二次函数的表达式为y=/ + 3兀一4.3 • y=x~2x — 14a —2b+c=—4,4a+2b+c=0, c=0,r 1a=~2 '解这个方程组,得<b=},、c=0,所以抛物线的表达式为 尸~y+x.(2)由 y= —|x 2+x= —|(x —1)2+| »平分线段 OB 、:・OM=BM » :.AM+OM=AM+BM.连接4B 交直线x=\于点则此时AM+OM 的值最小.过点A 作AN 丄x 轴于点N , 在RtAABTV 中,AB=y ]AN 2+BN 2=^/42+42=4 ^2,因此 AM+OM 的最小值为 4 迈.5 • D6 •[解析]D J 函数图象过点(0,为和(2,弓),・・・函数图象的对称轴为直线x=\,故该 函数图彖的顶点坐标为(1,2).设函数表达式为.尸吩一1F+2.把(一1,— 1)代入,得4a+2 =—1,解得d=—扌,・•・此函数表达式为y=— |(x —1)2+2.7 •[答案]J =-10(X -|)2+4I 解析]设喷泉喷水轨迹的函数表达式为y=a (x —护+4.将点(0,为代入,得| +4,解得a=-l0,故喷泉喷水轨迹的函数表达式为y= —10(x —护+4.8・解:(I );•抛物线与直线y 2=x+\的一个交点的横坐标为2,・••交点的纵坐标为2+1{则抛可得抛物线的对称轴为直线x=\,并冃.对称轴垂直=3即此交点的坐标为(2,3). 设抛物线的表达式为yi=tz(x—1)2+4. 把(2 » 3)代入,得3=d(2—1)'+4,解得a= — 1,抛物线的表达式为yi = —(X— l)2+4=—x24-Zr+3.(2)令yi=0,即一d+2兀+3=0,解得%i=3 »x2= —1,二抛物线与兀轴的交点坐标为(3,0)和(一1,0).在平面直角坐标系中画出抛物线与直线,如图所示:根据图象、iij知使得yi$y2成立的x的取值氾圉为一1W X W2.1 39 •[解析]A由抛物线的轴对称性可知该抛物线的对称轴为直线1 +4)=^,故该抛物线的顶点坐标为(号,乎).设该抛物线的表达式为尸心+l)(x—4).将(扌,手)代入,得晋=dg+l)(号一4)解得a= —1,故该抛物线的表达式为y=—(兀+1)(尢一4)=—,+3x+4.注意: 本题也可运用顶点式求抛物线的表达式.10•[解析]D设所求的函数表达式为X!)(x—%2)-因为抛物线y=ax2 + bx+c与兀轴的两个交点坐标为(一1,0),(3,0),所以y=a(x~3)(x+l).又因为其形状及开口方向与抛物线y=—2x1相同» 所以y= — 2(兀一3)(x+l),即y=—2x2+4x+6.11•解:由4(1,0),B(_4,0)可知AB=5,OB=4.又・:BC=AB,・・・BC=5.在RtABCO 中,寸52_42=3,・••点C的坐标为(0,3)或(0,-3).设抛物线对应的函数表达式为y=a(x— 1)(兀+4).将点(0 ' 3)代入‘得3=a(0-1)(0+4) >3将点(0,一3)代入,得一3=a(0-l)(0+4),解得°=才3 3该抛物线对应的函数表达式为y=—^(x—l)(x+4)或),=才(兀一l)(x+4),即y= _討_条+3或『=条2+条_3.12 •[解析]A 根据题意可知点C的坐标为(一2,—1),故一个点由点4平移至点C,向左平移了4个单位,向下平移了2个单位.又・・•该点在点A时,抛物线的函数表达式为丿= x2,・••该点在点C时,抛物线的函数表达式为y=(兀+4)2—2=/+8兀+14.O x13•[解析]D 如图,连接AB »B r,过点4作AC丄交BE的延长线于点C,则AC=3.由于平移前后的抛物线形状相同,根据割补的思想可知阴彫部分的面积等于平行四边形ABBA的面积,:・BB‘・AC=3BB,=9,:・BB‘ =AA f=3 ‘故平移后的抛物线的表达式14•解:(1)・・了=2?一4兀+3 = 2(”一2兀+1 — 1) + 3 = 2(.丫一1)2+1,・・・将其向上平移2个单位,再向右平移3个单位可得原抛物线,即y=2(x-4)2+3,.•・),=2,—16兀+35,.*./?= —16,c=35.(2)由y=2(x~4)2+3得顶点坐标为(4,3),对称轴为直线兀=4.15・[答案]y=-?+2x+3c b[解析「・•抛物线y=—/+加+c的对称轴为直线x=l,•逬=1,解得b=2,又・・•与x轴的一个交点坐标为(3,0),・・・0=—9 + 6+c,解得c=3,故函数表达式为)=一"+2兀+3.16•解:(1)(答案不唯一)顶点关于y轴对称,对称轴关于y轴对称.c °(2)y=2(x—2)~ + 1 y=a(x+/?)~+k(3)若点A在y轴的正半轴上,如图所示:顺次连接点A,B,O,C得到一个而积为24的菱形,由BC=6,得OA = S,则点4的坐标为(0,8),点B的坐标为(一3,4).设一个抛物线的表达式为少=°(兀+3尸+4.4将点A的坐标代入,得9d+4=8,解得a=g.4 4二次函数少=刖兀+3F+4的“关于y轴对称二次函数”的表达式为〉=彳(兀一3)2+4.根据对称性,开口向下的抛物线也符合题意,则“关于),轴对称二次函数”的表达式还4 c 4 o可以为y= _§(兀+3)2_4,y=—^(x—3)^-4.综上所述,“关于y轴对称二次函数”的表达式为)=£(X+3)2+4,),=詁一3尸+4或y4 4 o=一姿+3) —4,>=一尹一3)2—4.。
确定二次函数表达式(已知三个条件)
上时,ON=t,MN= 3t,所以S= 3 t2(0≤t≤2);当点M在AB上时,MN的
2
值不变为 2 3,所以S= 3t(2≤t≤4),故选C.
你学到哪些二次函数表达式的求法? (1)已知图象上三点的坐标或给定x与y的三对对应值, 通常选择一般式. (2)已知图象的顶点坐标,对称轴和最值,通常选择顶点式. (3)已知图象与x轴的交点坐标,通常选择交点式.
【跟踪训练】
(西安·中考)如图,在平面直角坐标系中,抛物线经过
A(-1,0),B(3,0),C(0,-1)三点.
求该抛物线的表达式.
y
【解析】设该抛物线的表达式为y=ax2+bx+c,
根据题意,得
a b c 0, 9a 3b c 0, c 1.
a
1 3
【例题】
【例1】已知一个二次函数的图象过(-1,10),(1, 4),(2,7)三点,求这个函数的表达式.
解析:设所求的二次函数为y=ax2+bx+c,
a-b+c=10,
a=2,
由条件得: a+b+c=4, 解方程组得: b=-3,
4a+2b+c=7,
c=5.
因此,所求二次函数的表达式是
y=2x2-3x+5.
3 确定二次函数的表达式
1.会用待定系数法确定二次函数的表达式. 2.会求简单的实际问题中的二次函数表达式.
二次函数表达式有哪几种表达方式? 一般式:y=ax2+bx+c 顶点式:y=a(x-h)2+k 交点式:y=a(x-x1)(x-x2)
用待定系数法确定二次函数表达式
用待定系数法确定二次函数表达式知识点一、二次函数解析式的三种形式1.一般式:y=ax2+bx+c(a、b、c为常数,且a≠0);2.顶点式:y=a(x-h)2+k(a、h、k为常数,且a≠0);3.交点式:y=a(x-x1)(x-x2)(x1、x2为抛物线与x轴交点的横坐标,a≠0).例:二次函数化为y=(x﹣h)2+k的形式,结果正确的是( )A.B.C.D.【解答】A【解析】故选A.知识点二、待定系数法求二次函数表达式在求含有待定系数的二次函数的表达式时,可以通过题中条件得到方程(组),解出这些待定系数,从而得到函数表达式.1.二次函数一般式y=ax2+bx+c(a≠0)中若有一个待定系数,就需要已知一个条件得到一个方程求解;若有两个待定系数,就需要已知两个条件得到两个方程,联立得到二元一次方程组求解;若有三个待定系数,就需要已知三个条件,组成一个三元一次方程组求解.2.当已知抛物线的顶点坐标(h,k)或对称轴或最值等有关条件时,通常设函数表达式为y=a(x-h)2+k.3.当已知抛物线与x轴交点坐标时,通常设函数表达式为y=a(x-x1)(x-x2),其中x1、x2为抛物线与x轴交点的横坐标.例:若某二次函数图象的形状与抛物线y=3x2相同,且顶点坐标为(0,﹣2),则它的表达式为 .【解答】y=3x2﹣2或y=﹣3x2﹣2.【解析】图象顶点坐标为(0,﹣2),可以设函数解析式是y=ax2﹣2,又∵形状与抛物线y=﹣3x2相同,即二次项系数绝对值相同,∴|a|=3,∴这个函数解析式是:y=3x2﹣2或y=﹣3x2﹣2,故答案为y=3x2﹣2或y=﹣3x2﹣2.巩固练习一.选择题1.二次函数y=ax2﹣2ax+b中,当﹣1≤x≤4时,﹣2≤y≤3,则b﹣a的值为( )A.﹣6B.﹣6或7C.3D.3或﹣2【解答】D【解析】∵抛物线y=ax2﹣2ax+b=a(x﹣1)2+b﹣a,∴顶点(1,b﹣a)当a>0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最小值,∴b﹣a=﹣2,当a<0时,当﹣1≤x≤4时,﹣2≤y≤3,函数有最大值,∴b﹣a=3,故选D.2.设函数y=a(x﹣h)2+k(a,h,k是实数,a≠0),当x=1时,y=1;当x=8时,y=8,( )A.若h=4,则a<0B.若h=5,则a>0C.若h=6,则a<0D.若h=7,则a>0【解答】C【解析】当x=1时,y=1;当x=8时,y=8;代入函数式得:1=a(1―h)2+k 8=a(8―ℎ)2+k,∴a(8﹣h)2﹣a(1﹣h)2=7,整理得:a(9﹣2h)=1,若h=4,则a=1,故A错误;若h=5,则a=﹣1,故B错误;,故C正确;若h=6,则a=―13,故D错误;若h=7,则a=―15故选C.3.将二次函数y=x2+4x﹣1用配方法化成y=(x﹣h)2+k的形式,下列所配方的结果中正确的是( )A.y=(x﹣2)2+5B.y=(x+2)2﹣5C.y=(x﹣4)2﹣1D.y=(x+4)2﹣5【解答】B【解析】y=x2+4x﹣1=y=x2+4x+4﹣4﹣1=(x+2)2﹣5,故选B.4.用配方法将二次函数y=x2﹣6x﹣7化为y=a(x﹣h)2+k的形式为( )A.y=(x﹣3)2+2B.y=(x﹣3)2﹣16C.y=(x+3)2+2D.y=(x+3)2﹣16【解答】B【解析】y=x2﹣6x﹣7=(x﹣3)2﹣16,故选B.5.将二次函数y=2x2﹣4x+1的右边进行配方,正确的结果是( )A.y=2(x﹣1)2+1B.y=2(x+1)2﹣1C.y=2(x﹣1)2﹣1D.y=2(x+1)2+1【解答】C【解析】提出二次项系数得,y=2(x2﹣2x)+1,配方得,y=2(x2﹣2x+1)+1﹣2,即y=2(x﹣1)2﹣1.故选C.6.抛物线的顶点为(1,﹣4),与y轴交于点(0,﹣3),则该抛物线的解析式为( )A.y=x2﹣2x﹣3B.y=x2+2x﹣3C.y=x2﹣2x+3D.y=2x2﹣3x﹣3【解答】A【解析】设抛物线的解析式为y=a(x﹣1)2﹣4,将(0,﹣3)代入y=a(x﹣1)2﹣4,得:﹣3=a(0﹣1)2﹣4,解得:a=1,∴抛物线的解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故选A.7.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是( )A.y=2(x﹣1)2﹣3B.y=2(x﹣2)2﹣3C.y=2(x﹣1)2+3D.y=2(x﹣2)2+3【解答】C【解析】提出二次项系数得,y=2(x2﹣2x)+5,配方得,y=2(x2﹣2x+1)+5﹣2,即y=2(x﹣1)2+3.故选C.8.如图,在正方形ABCD中,E、F分别是AB、CD的中点,EG⊥AF,FH⊥CE,垂足分别为G,H,设AG=x,图中阴影部分面积为y,则y与x之间的函数关系式是( )A.y=2B.y=2C.y=8x2D.y=9x2【解答】C【解析】设正方形的边长为2a,∴BC=2a,BE=a,∵E、F分别是AB、CD的中点,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∴AF∥CE,∵EG⊥AF,FH⊥CE,∴四边形EHFG是矩形,∵∠AEG+∠BEC=∠BCE+∠BEC=90°,∴∠AEG=∠BCE,∴tan∠AEG=tan∠BCE,∴AGEG =BEBC,∴EG=2x,∴由勾股定理可知:AE,∴AB=BC=,∴CE=5x,易证:△AEG≌△CFH,∴AG=CH,∴EH=EC﹣CH=4x,∴y=EG•EH=8x2,故选C.9.如果抛物线经过点A(2,0)和B(﹣1,0),且与y轴交于点C,若OC=2.则这条抛物线的解析式是( )A.y=x2﹣x﹣2B.y=﹣x2﹣x﹣2或y=x2+x+2C.y=﹣x2+x+2D.y=x2﹣x﹣2或y=﹣x2+x+2【解答】D【解析】设抛物线解析式为y=a(x﹣2)(x+1),∵OC=2,∴C点坐标为(0,2)或(0,﹣2),把C(0,2)代入y=a(x﹣2)(x+1)得a•(﹣2)•1=2,解得a=﹣1,此时抛物线解析式为y=﹣(x﹣2)(x+1),即y=﹣x2+x+2;把C(0,﹣2)代入y=a(x﹣2)(x+1)得a•(﹣2)•1=﹣2,解得a=1,此时抛物线解析式为y=(x﹣2)(x+1),即y=x2﹣x﹣2.即抛物线解析式为y=﹣x2+x+2或y=x2﹣x﹣2.故选D.10.将二次函数y=2x2﹣4x+1化为顶点式,正确的是( )A.y=2(x﹣1)2+1B.y=2(x+1)2﹣1C.y=2(x﹣1)2﹣1D.y=2(x+1)2+1【解答】C【解析】y=2x2﹣4x+1=2(x2﹣2x)+1=2(x2﹣2x+1﹣1)+1=2(x﹣1)2﹣2+1=2(x﹣1)2﹣1,故选C.11.将二次函数y=﹣x2+4x﹣5化为y=a(x﹣h)2+k的形式为( )A.y=﹣(x+2)2﹣1B.y=﹣(x+2)2+1C.y=﹣(x﹣2)2+1D.y=﹣(x﹣2)2﹣1【解答】D【解析】y=﹣x2+4x﹣5,=﹣(x2﹣4x+4)﹣1,=﹣(x﹣2)2﹣1.故选D.12.与抛物线y=﹣x2+1的顶点相同、形状相同且开口方向相反的抛物线所对应的函数表达式为( )A.y=﹣x2B.y=x2﹣1C.y=﹣x2﹣1D.y=x2+1【解答】D【解析】与抛物线y=﹣x2+1顶点相同,形状也相同,而开口方向相反的抛物线,即与抛物线y=﹣x2+1只有二次项系数不同.即y=x2+1,故选D.二.填空题13.已知二次函数图象的顶点坐标为(1,﹣3),且过点(2,0),则这个二次函数的解析式 .【解答】y=3x2﹣6x【解析】设此二次函数的解析式为y=a(x﹣1)2﹣3.∵其图象经过点(2,0),∴a(2﹣1)2﹣3=0,∴a=3,∴y=3(x﹣1)2﹣3,即y=3x2﹣6x,故答案为y=3x2﹣6x.14.二次函数图象过A(﹣1,0),B(2,0),C(0,﹣2),则此二次函数的解析式是 .【解答】y=x2﹣x﹣2.【解析】∵二次函数图象经过A(﹣1,0),B(2,0),∴设二次函数解析式为y=a(x+1)(x﹣2),将C(0,﹣2)代入,得:﹣2a=﹣2,解得a=1,则抛物线解析式为y=(x+1)(x﹣2)=x2﹣x﹣2,故答案为y=x2﹣x﹣2.15.若某抛物线的函数解析式为y=ax2+bx+c,已知a,b为正整数,c为整数,b>2a,且当﹣1≤x≤1时,有﹣4≤y≤2成立,则抛物线的函数解析式为 .【解答】y=x2+3x﹣2【解析】抛物线y=ax2+bx+c中,a,b为正整数,c为整数,b>2a,∴抛物线开口向上,对称轴直线x<﹣1,∵当﹣1≤x≤1时,有﹣4≤y≤2成立,∴当x=﹣1时y=﹣4,x=1时y=2,∴a―b+c=―4①a+b+c=2②,②﹣①得2b=6,∴b=3,∵a,b为正整数,b>2a,∴a=1,∴1+3+c=2,解得c=﹣2,∴抛物线的函数解析式为y=x2+3x﹣2,故答案为y=x2+3x﹣2.16.若二次函数y=ax2+bx+c图象的顶点是A(2,1),且经过点B(1,0),则此函数的解析式为 .【解答】y=﹣x2+4x﹣3【解析】设抛物线的解析式为y=a(x﹣2)2+1,将B(1,0)代入y=a(x﹣2)2+1得,0=a+1∴a=﹣1,∴函数解析式为y=﹣(x﹣2)2+1,所以该抛物线的函数解析式为y=﹣x2+4x﹣3,故答案为y=﹣x2+4x﹣3.17.已知抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(﹣1,0)、B(3,0)、C(0,3)三点.则该抛物线的解析式是 .【解答】y=﹣x2+2x+3【解析】根据题意设抛物线解析式为y=a(x+1)(x﹣3),将点C(0,3)代入,得:﹣3a=3,解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3,故答案为y=﹣x2+2x+3.18.把二次函数y=x2+4x﹣1变形为y=a(x+h)2+k的形式为 .【解答】y=(x+2)2﹣5【解析】y=x2+4x﹣1=(x2+4x+4)﹣4﹣1=(x+2)2﹣5,即y=(x+2)2﹣5.故答案是:y=(x+2)2﹣5.19.二次函数y=x2+6x﹣3配方后为y=(x+3)2+ .【解答】(﹣12)【解析】∵y=x2+6x﹣3=(x2+6x)﹣3=(x2+6x+32﹣32)﹣3=(x+3)2﹣9﹣3=(x+3)2﹣12,故答案为(﹣12).20.已知某二次函数,当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,请写出一个符合条件的二次函数解析式 .【解答】答案不唯一【解析】∵当x<1时y随x增大而减小;当x>1时y随x增大而增大,∴对称轴为x=1,开口向上,∴符合条件的二次函数可以为:y=(x﹣1)2,故答案为y =(x ﹣1)2(答案不唯一).21.在平面直角坐标系中,点O (0,0),点A (1,0).已知抛物线y =x 2+mx ﹣2m (m 是常数),顶点为P .无论m 取何值,该抛物线都经过定点H .当∠AHP =45°时,求抛物线的解析式是 .【解答】y =x 2―145x +285或y =x 2―223x +443【解析】当x =2时,y =4+2m ﹣2m =4∴无论m 取何值,该抛物线都经过定点H (2,4)过点A 作AB ⊥PH 于点B ,过点B 作DC ⊥x 轴于点C ,过点H 作HD ⊥CD 于点D ,∴∠ABH =∠ACB =∠BDH =90°∴∠ABC +∠DBH =∠ABC +∠BAC =90°∴∠BAC =∠DBH∵∠AHP =45°∴△ABH 是等腰直角三角形,AB =BH在△ABC 与△BHD 中∠ACB =∠BDH∠BAC =∠HBD AB =BH∴△ABC ≌△BHD (AAS )∴AC =BD ,BC =HD设点B 坐标为(a ,b )①若点P 在AH 左侧,即点B 在AH 左侧,如图1,∴AC =1﹣a ,BC =b ,BD =4﹣b ,DH =2﹣a ∴1―a =4―b b =2―a 解得:a =―12b =52∴点B (―12,52)设直线BH 解析式为y =kx +h ∴―12k +ℎ=522k +ℎ=4解得:k =35ℎ=145∴直线BH :y =35x +145,∵y =x 2+mx ﹣2m ,∴抛物线顶点P 为(―m 2,―m 24―2m ),∵点P (―m 2,―m 24―2m )在直线BH 上∴35(―m 2)+145=―m 24―2m 解得:m 1=―145,m 2=﹣4∵m =﹣4时,P (2,4)与点H 重合,要舍去∴抛物线解析式为y =x 2―145x +285;②若点P 在AH 右侧,即点B 在AH 右侧,如图2,∴AC =a ﹣1,BC =b ,BD =4﹣b ,DH =a ﹣2∴a ―1=4―b b =a ―2 解得:a =72b =32∴点B (72,32)设直线BH 解析式为y =kx +h+ℎ=32+ℎ=4解得:k =―53ℎ=223∴直线BH :y =―53x +223,∵点P (―m 2,―m 24―2m )在直线BH 上∴―53(―m 2)+223=―m 24―2m 解得:m 1=―223,m 2=﹣4(舍去)∴抛物线解析式为y =x 2―223x +443,综上所述,抛物线解析式为y =x 2―145x +285或y =x 2―223x +443,故答案为y =x 2―145x +285或y =x 2―223x +443.22.若抛物线y =ax 2+bx +c 的顶点是A (2,﹣1),且经过点B (1,0),则抛物线的函数关系式为 .【解答】y =x 2﹣4x +3【解析】设抛物线的解析式为y =a (x ﹣2)2﹣1,将B (1,0)代入y =a (x ﹣2)2﹣1得,a =1,函数解析式为y =(x ﹣2)2﹣1,展开得y =x 2﹣4x +3.故答案为y =x 2﹣4x +3.23.请写出一个开口向下,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .【解答】答案不唯一【解析】∵抛物线开口向下,∴a <0,令a =﹣1,设抛物线的关系式为y =﹣(x ﹣h )2+k ,∵对称轴为直线x =2,∴h =2,把(0,3)代入得,3=﹣(0﹣2)2+k ,解得,k =7,∴抛物线的关系式为:y=﹣(x﹣2)2+7,故答案为y=﹣(x﹣2)2+7(答案不唯一).24.已知函数y=﹣x2+2x+c2的部分图象如图所示,则c= ,当x 时,y随x的增大而减小.【解答】c x>1时,y随x的增大而减小【解析】图象过(3,0),将(3,0)代入y=﹣x2+2x+c2,得:c2=3,即c根据图象得:对称轴为x=1,∴当x>1时,y随x的增大而减小.三.解答题25.已知二次函数的图象经过(1,﹣1),(0,1),(﹣1,13)三点,求此二次函数的解析式.【解答】y=5x2﹣7x+1.【解析】设抛物线解析式为y=ax2+bx+c,根据题意得a+b+c=―1c=1a―b+c=13,解得a=5b=―7c=1,所以抛物线解析式为y=5x2﹣7x+1.26.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且S△AOB =12.(1)求抛物线的解析式;(2)若点C是该抛物线上A、B两点之间的一点,求△ABC面积的最大值.【解答】(1)抛物线的解析式为y =﹣(x +1)2;(2)△ABC 面积的最大值是18.【解析】(1)由题意得:A (﹣1,0),B (0,a ),∴OA =1,OB =﹣a ,∵S △AOB =12.∴12×1×(―a)=12,解得,a =﹣1,∴抛物线的解析式为y =﹣(x +1)2;(2)∵A (﹣1,0),B (0,﹣1),∴直线AB 为y =﹣x ﹣1,过C 作CD ⊥x 轴,交直线AB 于点D ,设C (x ,﹣(x +1)2),则D (x ,﹣x ﹣1),∴CD =﹣(x +1)2+x +1,∵S △ABC =S △ACD +S △BCD =12[﹣(x +1)2+x +1]×1,∴S △ABC =―12(x +12)2+18,∵―12<0,∴△ABC 面积的最大值是18.27.如图,抛物线y =ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为m (1<m <4).连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)当△BCD 的面积等于△AOC 的面积的34时,求m 的值.【解答】(1)y =―34x 2+32x +6;(2)m =3.【解析】(1))∵抛物线y =ax 2+bx +6经过点A (﹣2,0),B (4,0)两点,∴4a ―2b +6=016a +4b +6=0,解之,得:a =―34b =32,∴故抛物线的表达式为:y =―34x 2+32x +6;(2)设直线BC 解析式为y =kx +n ,将点B 、C 的坐标代入得:4k +n =0n =6,解得k =―32n =6,∴直线BC 的表达式为:y =―32x +6,如图所示,过点D 作y 轴的平行线交直线BC 于点H ,设点D (m ,―34m 2+32m +6),则点H (m ,―32m +6)∴S △BDC =12HD ×OB =12(―34m 2+32m +6+32m ﹣6)×4=2(―34m 2+3m ),∵34S △ACO =34×12×6×2=92,即:2(―34m 2+3m )=92,解得:m 1=3,m 2=1(舍去),故m =3.28.已知二次函数y =x 2+bx +2b (b 是常数).(1)若函数图象过(1,4),求函数解析式;(2)设函数图象顶点坐标为(m ,n ),当b 的值变化时,求n 关于m 的函数关系式;(3)若函数图象不经过第三象限时,当﹣5≤x ≤3时,函数的最大值和最小值之差是20,求b 的值.【解答】(1)y =x 2+x +2;(2)n =―m 2﹣4m ;(3)b =﹣b =10﹣【解析】(1)将点(1,4)代入y =x 2+bx +2b ,得1+b +2b =4,∴b =1,∴函数解析式是y =x 2+x +2;(2)∵y =x 2+bx +2b =(x +12b )2―14b 2+2b ,设函数图象顶点坐标为(m ,n ),∴m =―12b ,n =―14b 2+2b ,∴b =﹣2m ,∴n =―14×(―2m )2+2(―2m)=―m 2﹣4m ;(3)∵y =(x +12b )2―14b 2+2b ,∴对称轴x =―12b ,在y =x 2+bx +2b 中,当x =﹣5时,y =25﹣5b +2b =25﹣3b ,当x =3时,y =9+3b +2b =9+5b ,分两种情况:①当b ≤0时,2b =c ≤0,函数不经过第三象限,则c =0;此时y =x 2,当﹣5≤x ≤3时,函数最小值是0,最大值是25,∴最大值与最小值之差为25,此种情况不符合题意;②当b>0时,2b=c>0,函数不经过第三象限,则△≤0,∴b2﹣8b≤0,∴0<b≤8,∴﹣4≤x=―b<0,2b2+2b,当﹣5≤x≤3时,函数有最小值―14∵当x=3和x=﹣5对称时,对称轴是:x=﹣1,∴当﹣4≤―b<―1时,函数有最大值9+5b,2∵函数的最大值与最小值之差为20,b2+2b)=20,∴9+5b﹣(―14∴b=﹣6﹣,当﹣1<―b<0时,函数有最大值25﹣3b;2∵函数的最大值与最小值之差为20,b2+2b)=20,∴25﹣3b﹣(―14∴b=10﹣8(舍),综上所述b=﹣b=10﹣29.如图,抛物线y=ax2+bx+c经过点A(﹣2,0),B两点,对称轴为x=1,与y轴交于点C(0,6),点P是抛物线上一个动点,设点P的横坐标为m(1<m<4).连接BC.(1)求抛物线的函数解析式;(2)当△BCP的面积等于9时,求点P的坐标;2【解答】(1)y =―34x 2+32x +6;(2)点P(3,154)【解析】(1)依题意得4a ―2b +c =0―b 2a =1c =6解得a =―34b =32c =6,故抛物线的解析式为:y =―34x 2+32x +6;(2)A (﹣2,0)关于直线x =1的对称点B (4,0),如图所示,过点P 做y 轴的平行线交直线BC 于点D ,设直线BC 的解析式为y =kx +b ,∴4k +b =0b =6,解得k =―32,∴直线BC 的解析式为y =―32x +6,设点P(m ,―34m 2+32m +6),则点D(m ,―32m +6),S △BPC =12PD ×OB =2(―34m 2+32m +6+32m ―6)=2(―34m 2+3m),∴2(―34m 2+3m)=92,解得:m 1=1,m 2=3,又∵1<m <4,∴m =3,∴y P =―34×9+32×3+6=154,∴点P(3,154).30.如图,在直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0)(1)求抛物线的解析式和顶点E 坐标;(2)该抛物线有一点D ,使得S △DBC =S △EBC ,求点D 的坐标.【解答】(1)y =45(x ―3)2―165,E 坐标为(3,―165);(2)D (3―,165)或(3+,165)【解析】(1)由题意,设y =a (x ﹣1)(x ﹣5),代入A (0,4),得a =45,∴y =45(x ―1)(x ―5),∴y =45(x ―3)2―165,故顶点E 坐标为(3,―165);(2)∵S △DBC =S △EBC ,∴两个三角形在公共边BC 上的高相等,又点E 到BC 的距离为165,∴点D 到BC 的距离也为165,则45(x ﹣3)2―165=165,解得x =则点D (3―,165)或(3+,165).31.已知二次函数y =ax 2﹣4ax +3+b (a ≠0).(1)求出二次函数图象的对称轴;(2)若该二次函数的图象经过点(1,3),且整数a ,b 满足4<a +|b |<9,求二次函数的表达式;(3)对于该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤x 1≤t +1,当x 2≥5时,均有y 1≤y 2,请结合图象,直接写出t 的取值范围.【解答】(1)对称轴是x=―4a2a=2;(2)y=﹣3x2+12x﹣6或y=﹣4x2+16x﹣9;(3)当a>0时,﹣1≤t ≤4【解析】(1)二次函数图象的对称轴是x=―4a2a=2;(2)该二次函数的图象经过点(1,3),∴a﹣4a+3+b=3,∴b=3a,把b=3a代入4<a+|b|<9,得4<a+3|a|<9.当a>0时,4<4a<9,则1<a<94.而a为整数,∴a=2,则b=6,∴二次函数的表达式为y=2x2﹣8x+9;当a<0时,4<﹣2a<9,则―92<a<―2.而a为整数,∴a=﹣3或﹣4,则对应的b=﹣9或﹣12,∴二次函数的表达式为y=﹣3x2+12x﹣6或y=﹣4x2+16x﹣9;(3)∵当x2≥5时,均有y1≤y2,二次函数y=ax2﹣4ax+3+b(a≠0)的对称轴是x=2,∵y1≤y2,∴①当a>0时,有|x1﹣2|≤|x2﹣2|,即|x1﹣2|≤x2﹣2∴2﹣x2≤x1﹣2≤x2﹣2,∴4﹣x2≤x1≤x2,∵x2≥5,∴4﹣x2≤﹣1,∵该二次函数图象上的两点A(x1,y1),B(x2,y2),设t≤x1≤t+1,当x2≥5时,均有y1≤y2,∴t≥―1 t+1≤5∴﹣1≤t ≤4.②当a <0时,|x 1﹣2|≥|x 2﹣2|,即|x 1﹣2|≥x 2﹣2∴x 1﹣2≥x 2﹣2,或x 1﹣2≤2﹣x 2,∴x 1≥x 2,或x 1≤4﹣x 2∵x 2≥5,∴4﹣x 2≤﹣1,∵该二次函数图象上的两点A (x 1,y 1),B (x 2,y 2),设t ≤x 1≤t +1,当x 2≥5时,均有y 1≤y 2,∴t 比x 2的最大值还大,或t +1≤比4﹣x 2的最小值还小,这是不存在的,故a <0时,t 的值不存在,综上,当a >0时,﹣1≤t ≤4.32.如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),C (0,3)两点,它的对称轴与x 轴交于点F ,过点C 作CE ∥x 轴交抛物线于另一点E ,连结EF ,AC .(1)求该抛物线的表达式及点E 的坐标;(2)在线段EF 上任取点P ,连结OP ,作点F 关于直线OP 的对称点G ,连结EG 和PG ,当点G 恰好落到y 轴上时,求△EGP 的面积.【解答】(1)y =﹣(x ﹣1)2+4,E (2,3);(2)S △EGP =12S △EGF =12×12×1【解析】(1)把A (﹣1,0),C (0,3)两点代入抛物线y =﹣x 2+bx +c 中得:―1―b +c =0c =3,解得:b =2c =3,∴该抛物线的表达式为:y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴对称轴是:x =1,∵CE ∥x 轴,∴点C 与点E 是对称点,∴E (2,3);(2)连接FG ,过P 作PM ⊥x 轴于M ,过E 作EN ⊥x 轴于N ,则PM ∥EN ,∵F 与G 关于OP 对称,且G 在y 轴上,∴OF =OG =1,∴FG =OGF =45°,∵OC =3,∴OG =3﹣1=2=CE ,∴△ECG 是等腰直角三角形,∴EG =CGE =45°,∴∠EGF =90°,∵E (2,3),F (1,0),易得EF 的解析式为:y =3x ﹣3,设P (x ,3x ﹣3),∵∠POM =45°,∴△POM 是等腰直角三角形,∴PM =OM ,即x =3x ﹣3,x =32,∴P (32,32),∴FM =MN =12,∵PM ∥EN ,∴FP =EP ,∴S △EGP =12S △EGF =12×12× 1.。
北师大数学九年级下册第二章-确定二次函数的表达式(含解析)
第02讲_确定二次函数的表达式知识图谱二次函数解析式的求法知识精讲 一般式 ()20y ax bx c a =++≠已知任意3点坐标,可用一般式求解二次函数解析式待定系数法已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,求a b c、、的值解:把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,顶点式 ()2y a x h k =-+()0a ≠已知顶点坐标或对称轴时,可用顶点式求解二次函数解析式顶点式求解析式 一抛物线和y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),求其解析式解:∵两条抛物线形状与开口方向相同,∴a =﹣2,又∵顶点坐标是(﹣2,1),∴y =﹣2(x +2)2+1易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+三.二次函数的两根式两根式 1.已知抛物线与x 轴的两个交点坐标,可用两根式求解析式; 2. 已知抛物线经过两点,且这两点的纵坐标相等时,可在两根式的基础上求解析式两根式求解析式 已知抛物线y =ax 2+bx +c 过点A (-1,1),B (3,1),3(2,)2C - 求解析式解:设抛物线的解析式为y =a (x +1)(x -3)+1把3(2,)2c -代入解析式,求出a 即可 易错点:(1)任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示(2)二次函数解析式的这三种形式可以互化三点剖析一.考点:二次函数解析式的求法.二.重难点:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.三.易错点:顶点式中符号容易代错,例如顶点为()1,3-,错把解析式设为()213y a x =-+.待定系数法例题1、 已知抛物线2y ax bx c =++过()1,1-、()2,4-和()0,4三点,那么a b c 、、的值分别是( )A.164a b c =-=-=,,B.164a b c ==-=-,,C.164a b c =-=-=-,,D.164a b c ==-=,,【答案】 D【解析】 把点()1,1-,()2,4-和()0,4代入抛物线解析式可得14244a b c a b c c ++=-⎧⎪++=-⎨⎪=⎩,解得164a b c =⎧⎪=-⎨⎪=⎩,故答案为D 选项.例题2、 已知二次函数的图象经过(0,0)(-1,-1),(1,9)三点.(1)求这个函数的解析式;(2)求这个函数图象的顶点坐标.【答案】 (1)y =4x 2+5x(2)(58-,2516-). 【解析】 (1)设所求二次函数的解析式为y =ax 2+bx +c (a≠0),根据题意,得019c a b c a b c =⎧⎪-+=-⎨⎪++=⎩,解得450a b c =⎧⎪=⎨⎪=⎩,∴所求二次函数的解析式为y =4x 2+5x .(2)由22525454()816y x x x x =+=+-, ∴顶点坐标为(58-,2516-). 例题3、 已知抛物线2y x bx c =-++经过点A (3,0),B (-1,0).(1)求抛物线的解析式;(2)求抛物线的对称轴.【答案】 (1)y=-x 2+2x+3(2)x=1【解析】 暂无解析随练1、 已知二次函数的图像经过点()1,5--,()0,4-和()1,1,则这个二次函数的解析式为( ) A.2634y x x =-++ B.2234y x x =-+- C.224y x x =+- D.2234y x x =+-【答案】 D【解析】 由待定系数法可求得2234y x x =+-.随练2、 已知一个二次函数过()0,0,()1,11-,()1,9三点,求二次函数的解析式.【答案】 210y x x =-【解析】 设二次函数的解析式为2y ax bx c =++(0a ≠),因为抛物线经过点()0,0,()1,11-,()1,9,所以0119c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得1010a b c =⎧⎪=-⎨⎪=⎩,所以二次函数解析式为210y x x =-.顶点式例题1、 函数21212y x x =++写成y =a (x -h )2+k 的形式是( ) A.21(1)22y x =-+ B.211(1)22y x =-+ C.21(1)32y x =-- D.21(2)12y x =+- 【答案】 D【解析】 22211121(44)21(2)1222y x x x x x =++=++-+=+-. 例题2、 二次函数的顶点为(﹣2,1),且过点(2,7),则二次函数的解析式为_____________.【答案】 y=23(x 2)18++ 【解析】 设抛物线解析式为y=a (x+2)2+1,把(2,7)代入得a•(2+2)2+1=7,解得a=38, 所以抛物线解析式为y=38(x+2)2+1。
求二次函数解析式的三种方法
求二次函数解析式的三种方法二次函数是形如$y=ax^2+bx+c$的函数,其中$a \neq 0$。
它是数学中的基本函数之一,广泛应用于物理学、经济学、工程学等学科中。
解析式是指能够明确表达函数关系的数学表达式。
下面将介绍三种常用的方法来确定二次函数的解析式。
第一种方法是使用差值法。
差值法是通过给定的点来确定二次函数的解析式。
假设已知二次函数过三个不同的点$(x_1,y_1)$,$(x_2,y_2)$,$(x_3,y_3)$,那么可以将这三个点带入二次函数的解析式中,得到如下的方程组:$$\begin{cases}ax_1^2+bx_1+c=y_1 \\ax_2^2+bx_2+c=y_2 \\ax_3^2+bx_3+c=y_3 \\\end{cases}$$解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。
第二种方法是使用顶点法。
顶点法是通过二次函数的顶点坐标来确定解析式。
二次函数的顶点坐标可以通过公式$x=-\frac{b}{2a}$来求得。
将这个顶点坐标代入二次函数的解析式中,可以得到一个等于顶点对应的函数值的方程。
结合另外一个给定点的坐标,可以得到一个方程组。
解这个方程组可以得到$a$,$b$,$c$的值,从而确定二次函数的解析式。
第三种方法是使用因式分解法。
因式分解法是将二次函数的解析式进行因式分解,从而得到函数的解析式。
对于一般形式的二次函数$y=ax^2+bx+c$,我们可以将其写成$y=a(x-p)(x-q)$的形式,其中$p$和$q$是实数。
展开右边的乘积,可以得到如下的方程:$$ax^2+bx+c=a(x^2-(p+q)x+pq)$$通过比较系数,可以得到以下等式:$$\begin{cases}p+q=-\frac{b}{a} \\pq=\frac{c}{a}\end{cases}$$解这个方程组可以得到$p$和$q$的值,从而确定二次函数的解析式。
以上就是三种常用的方法来确定二次函数解析式的介绍。
确定二次函数的表达式
已知抛物线与x轴的交点坐标,选择交点式。
2、顶点式
3、交点式
4、平移式
将抛物线平移,函数解析式中发生变化的只有顶点坐标, 可将原函数先化为顶点式,再根据“左加右减,上加下减”的法则,即可得出所求新函数的解析式。
二次函数关系:
(顶点式) 解: ∵ 抛物线与x轴相交两点(-1,0)和(3,0) , ∴ (-1+3)/2 = 1 ∴ 点(1,4)为抛物线的顶点 可设二次函数解析式为: y=a(x-1)2+4 ∵ 抛物线过点(-1, 0) ∴ 0=a(-1-1)2+4 得 a= -1 ∴ 函数的解析式为: y= -(x-1)2+4
解:
1.已知抛物线的顶点为(-1,-3),与y轴交点为(0,-5),求该抛物线的解析式?
所以设所求的二次函数解析式为:y=a(x+1)2-3
因为已知抛物线的顶点为(-1,-3)
又点( 0,-5 )在抛物线上
a-3=-5, 解得a= -2
故所求的抛物线解析式为 y=-2(x+1)2-3
即:y=-2x2-4x-5
3 已知二次函数的图象在x轴上截得的线段长是4,且当x=1,函数有最小值-4,求这个二次函数的解析式.
由题意,得:
解:设图象与x轴的交点坐标为( ,0),( ,0),
把(1,-4)代入上式得:-4=a(1-3)(1+1)
解得:a=1
∴y=x2-2x-3
四、用平移式求二次函数的解析式、 1.将抛物线 向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。
∴ a(0+1)(0-1)=1
解得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
初中数学 文档:确定二次函数的表达式解题类型及方法
确定二次函数的表达式解题类型及方法二次函数常见表达式有一般式(也称三点式)、配方式(也称顶点式)和两根式(也称交点式)三种,各种表达式要注意根据不同的条件灵活选用,以简化解题过程,提高解题能力.下面针对各种条件通常采用的表达式作一简单的归纳.一、如果已知的条件是二次函数的三组对应值,或者其图象经过三个一般的点,那么一般采用一般式y =2ax bx c ++(a ≠0).例1 已知二次函数的图象经过点(1,2),(-1,-2),(0,3),求这个二次函数的表达式.分析:因为已知的三点仅是一般的点,故设y =2ax bx c ++,则 223a b c a b c c ++=⎧⎪-+=-⎨⎪=⎩,解得323a b c =-⎧⎪=⎨⎪=⎩,故所求的二次函数表达式为y =2323x x -++.二、如果已知条件是二次函数的最大(小)值,或者是图象的顶点坐标,那么一般采用配方式y =()2a x m n -+(a ≠0).例2 已知二次函数的图象的顶点坐标为(2,-3),且经过点(0,2),求这个函数的表达式.分析:因为图象的顶点为(2,-3),故可设其表达式为y =()223a x --,又经过点(0,3),故3=()2033a --,解得a =23, 所以y =()22333x --. 三、如果已知条件是二次函数图象与x 轴交点坐标,那么可采用两根式y =a (x -)(x -)(a ≠0).例3 已知二次函数的图象交x 轴于点(-2,0)和(6,0),且经过点(1,15),求它的表达式.分析:这里=-2,=6,故可设y =a (x +2)(x -6),把x =1,y =15代入,得15=a ×3×(-5),a =-1,故y =-(x +2)(x -6).四、综合运用各种表达式,再利用比较系数法 例4已知二次函数y =c bx ax ++2的图象的顶点为(2,-3),且在x 轴上截得的线段长为,求a ,b ,c 的值.解法一 由已知,二次函数的解析式可化为y =3)2(2--x a , 即y =-4ax +4a -3,故a a a a 12)34(4162=--=∆, 由3221=-x x 及求根公式,得3212=aa ,解得a =1. 故y =3)2(2--x ,即y =-4x +1,所以a =1,b =-4,c =1.解法二 设抛物线交x 轴于A 1212(0)(0)()x B x x x ,,,≤,则由AB =得 3221-=-x x , (1) 又对称轴为x =2,故2221=+x x , (2) 由(1)、(2)解得321-=x ,322+=x ,故可设y =(22a x x --,又抛物线经过(2,-3),故-3=a )3(3-,a =1,所以y =)32)(32(--+-x x ,即y =-4x +1,所以a =1,b =-4,c =1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、求二次函数关系式一.选择题(共8小题)1.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b<0,c<0 D.a>0,b>0,c<02.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<03.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A.a>1 B.a<1 C.a>0 D.a<04.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断中,不正确的是()A.a>0 B.b>0 C.c<0 D.b2﹣4ac>05.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1 B.0 C.1 D.﹣16.(已知点(﹣2,4)在抛物线y=ax2上,则a的值是()A.﹣1 B.1 C.±1 D.7.将二次函数y=x2的图象向下平移1个单位,再向右平移1个单位后所得图象的函数表达式为()A.y=(x+1)2+1 B.y=(x+1)2﹣1 C.y=(x﹣1)2+1 D.y=(x﹣1)2﹣18.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()二.填空题(共6小题)9.已知抛物线经过点(5,﹣3),其对称轴为直线x=4,则抛物线一定经过另一点的坐标是_________.10.如果二次函数y=(m﹣1)x2+5x+m2﹣1的图象经过原点,那么m=_________.11.若点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象上,比较a、b的大小:a_________b.(填“>”“<”或“=”).12.已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是_________.13.抛物线y=x2+2向左平移2个单位得到的抛物线表达式为_________.14.如果将抛物线y=3x2平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为_________.三.解答题(共8小题)15.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积.16.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.17.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.18.已知抛物线的顶点坐标是(8,9),且过点(0,1),求该抛物线的解析式.19.已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.20.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.21.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).22.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.26.2.3求二次函数关系式参考答案与试题解析一.选择题(共8小题)1.如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么()A.a<0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b<0,c<0 D. a>0,b>0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与y轴的交点的纵坐标即可判断c的正负,由此得出答案即可.解答:解:∵图象开口方向向上,∴a>0;∵图象的对称轴在x轴的正半轴上,∴﹣>0,∵a>0,∴b<0;∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,b<0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.2.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断正确的是()A.a>0,c>0 B.a<0,c>0 C.a>0,c<0 D.a<0,c<0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据与y轴的交点的纵坐标即可判断c的正负,由此解决问题.解答:解:∵图象开口方向向上,∵图象与Y轴交点在y轴的负半轴上,∴c<0;∴a>0,c<0.故选:C.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,运用了数形结合思想.3.二次函数y=(a﹣1)x2(a为常数)的图象如图所示,则a的取值范围为()A.a>1 B.a<1 C.a>0 D.a<0考点:二次函数图象与系数的关系.分析:由图示知,该抛物线的开口方向向下,则系数a﹣1<0,据此可求a的取值范围.解答:解:如图,抛物线的开口方向向下,则a﹣1<0,解得a<1.故选:B.点评:本题考查了二次函数的图象与系数的关系.二次函数y=ax2的系数a为正数时,抛物线开口向上;a 为负数时,抛物线开口向下;a的绝对值越大,抛物线开口越小.4.如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断中,不正确的是()A.a>0 B.b>0 C.c<0 D.b2﹣4ac>0考点:二次函数图象与系数的关系.分析:首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与y轴的交点的纵坐标即可判断c的正负,由二次函数y=ax2+bx+c的图象与x轴有两个交点,可得b2﹣4ac>0.解答:解:由图象的开口向上可得a开口向上,由x=﹣>0,可得b<0,由二次函数y=ax2+bx+c的图象交y轴于负半轴可得c<0,由二次函数y=ax2+bx+c的图象与x轴有两个交点,可得b2﹣4ac>0,所以B不正确.点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.5.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1 B.0 C.1 D.﹣1考点:二次函数图象上点的坐标特征;二次函数的定义.专题:计算题.分析:根据二次函数图象上点的坐标特征得到﹣m2+1=0,解得m1=1,m2=﹣1,然后根据二次函数的定义确定m的值.解答:解:把(0,0)代入y=(m﹣1)x2﹣mx﹣m2+1得﹣m2+1=0,解得m1=1,m2=﹣1,而m﹣1≠0,所以m=﹣1.故选D.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.6.已知点(﹣2,4)在抛物线y=ax2上,则a的值是()A.﹣1 B.1 C.±1 D.考点:二次函数图象上点的坐标特征.专题:计算题.分析:根据二次函数图象上点的坐标特征,把点(﹣2,4)代入y=ax2中得到a的方程,然后解方程即可.解答:解:∵点(﹣2,4)在抛物线y=ax2上,∴a•(﹣2)2=4,∴a=1.故选B.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.7.将二次函数y=x2的图象向下平移1个单位,再向右平移1个单位后所得图象的函数表达式为()A.y=(x+1)2+1 B.y=(x+1)2﹣1 C.y=(x﹣1)2+1 D.y=(x﹣1)2﹣1考点:二次函数图象与几何变换.分析:先得到抛物线y=x2的顶点坐标为(0,0),再利用点的平移规律得到点(0,0)平移后对应点的坐标为(1,﹣1),然后根据顶点式写出平移的抛物线解析式.解答:解:抛物线y=x2的顶点坐标为(0,0),把点(0,0)向右平移1个单位,向下平移1个单位得到对应点的坐标为(1,﹣1),所以平移后的新图象的函数表达式为y=(x﹣1)2﹣1.故选:D.点评:本题考查了二次函数图象上点的坐标特征:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.8.将抛物线y=(x﹣1)2向左平移2个单位,所得抛物线的表达式为()A.y=(x+1)2B.y=(x﹣3)2C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2考点:二次函数图象与几何变换.专题:几何变换.分析:先根据二次函数的性质得到抛物线y=(x﹣1)2的顶点坐标为(1,0),再利用点平移的规律得到点(1,0)平移后对应点的坐标为(﹣1,0),然后根据顶点式写出平移后抛物线的表达式.解答:解:抛物线y=(x﹣1)2的顶点坐标为(1,0),点(1,0)向左平移2个单位得到对应点的坐标为(﹣1,0),所以平移后抛物线的表达式为y=(x+1)2.故选A.点评:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.二.填空题(共6小题)9.已知抛物线经过点(5,﹣3),其对称轴为直线x=4,则抛物线一定经过另一点的坐标是(3,﹣3).考点:二次函数图象上点的坐标特征.分析:根据二次函数的对称性求解即可.解答:解:∵点(5,﹣3)关于对称轴直线x=4的对称点为(3,﹣3),∴抛物线一定经过另一点的坐标是(3,﹣3).故答案为:(3,﹣3).点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性.10.如果二次函数y=(m﹣1)x2+5x+m2﹣1的图象经过原点,那么m=﹣1.考点:二次函数图象上点的坐标特征;二次函数的定义.分析:把原点坐标代入函数解析式求解即可得到m的值,再根据二次项系数不等于0求出m≠1.解答:解:∵二次函数y=(m﹣1)x2+5x+m2﹣1的图象经过原点,∴m2﹣1=0,解得m=±1,∵函数为二次函数,∴m﹣1≠0,解得m≠1,所以,m=﹣1.故答案为:﹣1.点评:本题考查了二次函数图象上点的坐标特征,二次函数的定义,要注意二次项系数不等于0.11.若点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象上,比较a、b的大小:a<b.(填“>”“<”或“=”).考点:二次函数图象上点的坐标特征.分析:根据二次函数图象上点的坐标特征计算出自变量为﹣2和﹣3时的函数值,然后比较函数值的大小即可.解答:解:∵点(﹣2,a),(﹣3,b)都在二次函数y=x2+2x+m的图象,∴a=x2+2x+m=4﹣4+m=4,b=x2+2x+m=9﹣6+m=3+m,∴a<b.故答案为<.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是﹣5或3.考点:二次函数图象上点的坐标特征.分析:把函数值代入函数解析式,解关于x的一元二次方程即可.整理得,x2+2x﹣15=0,解得x1=﹣5,x2=3,所以,对应的自变量x的值是﹣5或3.故答案为:﹣5或3.点评:本题考查了二次函数图象上点的坐标特征,一元二次方程的解法,把函数值代入函数解析式得到方程是解题的关键.13.抛物线y=x2+2向左平移2个单位得到的抛物线表达式为y=(x+2)2+2.考点:二次函数图象与几何变换.分析:已知抛物线解析式为顶点式,顶点坐标为(0,2),则平移后顶点坐标为(﹣2,2),由抛物线的顶点式可求平移后的抛物线解析式.解答:解:∵y=x2+2顶点坐标为(0,2),∴向左平移2个单位后顶点坐标为(﹣2,2),∴所得新抛物线的表达式为y=(x+2)2+2.故答案为:y=(x+2)2+2.点评:本题考查了二次函数图象与几何变换.关键是把抛物线的平移理解为顶点的平移,根据顶点式求抛物线解析式.14.如果将抛物线y=3x2平移,使平移后的抛物线顶点坐标为(2,2),那么平移后的抛物线的表达式为y=3(x ﹣2)2+2.考点:二次函数图象与几何变换.分析:平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.解答:解:∵原抛物线解析式为y=3x2,的顶点坐标是(0,0),平移后抛物线顶点坐标为(2,2),∴平移后的抛物线的表达式为:y=3(x﹣2)2+2.故答案为:y=3(x﹣2)2+2.点评:本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.三.解答题(共8小题)15.抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=a(x﹣3)2﹣1,且平移后的抛物线经过点A(2,1).(1)求平移后抛物线的解析式;(2)设原抛物线与y轴的交点为B,顶点为P,平移后抛物线的对称轴与x轴交于点M,求△BPM的面积.考点:二次函数图象与几何变换.分析:(1)把点A代入平移后的抛物线y=a(x﹣3)2﹣1来求a的值;(2)根据平移前、后的函数解析式,然后求出B、P、M三点的坐标,根据三角形的面积公式即可求出△BPM的面积.解答:解:(1)把点A(2,1)代入y=a(x﹣3)2﹣1,得1=a(2﹣3)2﹣1,整理,得1=a﹣1,解得a=2.则平移后的抛物线解析式为:y=2(x﹣3)2﹣1;(2)由(1)知,平移后的抛物线解析式为:y=2(x﹣3)2﹣1,则M(3,0)∵抛物线y=ax2+bx+c(a≠0)向右平移2个单位得到抛物线y=2(x﹣3)2﹣1,∴平移前的抛物线解析式为:y=2(x﹣1)2﹣1.∴P(1,﹣1).令x=0,则y=1.故B(0,1),∴BM=∴S△BPM=BM•y P=××1=.点评:本题主要考查了二次函数解析式的确定、图形的面积求法、函数图象交点等知识及综合应用知识、解决问题的能力.16.在直角坐标平面内,抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点.(1)求抛物线的表达式;(2)写出该抛物线的顶点坐标.考点:待定系数法求二次函数解析式;二次函数的性质.分析:(1)把原点O、A(﹣2,﹣2)与B(1,﹣5)三点分别代入函数解析式,求得a、b、c的数值得出函数解析式即可;(2)把函数解析式化为顶点式,得出顶点坐标即可.解答:解:(1)∵抛物线y=ax2+bx+c经过原点O、A(﹣2,﹣2)与B(1,﹣5)三点,∴,解得:,(2)y=﹣2x2﹣3x=y=﹣2(x+)2+,抛物线的顶点坐标为(﹣,).点评:此题考查待定系数法求函数解析式,以及利用配方法求得顶点坐标.17.如图,已知二次函数的图象过A、C、B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC.(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式.考点:待定系数法求二次函数解析式.分析:(1)根据题目所给的信息可以知道OC=AB=5,点C在y轴上可以写出点C的坐标;(2)二次函数图象经过点A、B、C;这三个点的坐标已知,根据三点法确定这一二次函数解析式.解答:解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(4,0),∴OC=AB=5,∴点C的坐标为(0,5);(2)设二次函数解析式为:y=ax2+bx+5,把A(﹣1,0)、B(4,0)代入原函数解析式得出:a=﹣,b=;所以这个二次函数的解析式为:y=﹣x2+x+5.点评:此题主要考查了待定系数法求二次函数解析式,同时还考查了方程组的解法等知识.18.已知抛物线的顶点坐标是(8,9),且过点(0,1),求该抛物线的解析式.考点:待定系数法求二次函数解析式.分析:根据抛物线的顶点坐标设出抛物线的解析式,再把(0,1),代入求解即可.解答:解:∵抛物线的顶点坐标是(8,9),∴设抛物线的解析式为y=a(x﹣8)2+9,把(0,1),代入得1=64a+9,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣8)2+9.点评:本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.19.已知在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C;(1)求抛物线的表达式;(2)求△ABC的面积.考点:待定系数法求二次函数解析式.分析:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6,即可得出抛物线的表达式y=x2﹣5x+6;(2)先求出A(2,0),B(3,0),C(0,6),再利用三角形面积公式求解即可.解答:解:(1)把点B的坐标(3,0)代入抛物线y=x2+bx+6得0=9+3b+6,解得b=﹣5,所以抛物线的表达式y=x2﹣5x+6;(2)∵抛物线的表达式y=x2﹣5x+6;∴A(2,0),B(3,0),C(0,6),∴S△ABC=×1×6=3.点评:本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.20.如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.考点:待定系数法求二次函数解析式;二次函数的最值.专题:计算题.分析:根据二次函数的对称轴为直线x=2,设出二次函数解析式,把A与C坐标代入求出a与k的值,确定出二次函数解析式,找出函数图象最低点坐标即可.解答:解:设二次函数解析式为y=a(x﹣2)2+k,把A(1,0),C(0,6)代入得:,解得:,则二次函数解析式为y=2(x﹣2)2﹣2=2x2﹣8x+6,二次函数图象的最低点,即顶点坐标为(2,﹣2).点评:此题考查了待定系数法求二次函数解析式,以及二次函数的最值,熟练掌握待定系数法是解本题的关键.21.如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).考点:待定系数法求二次函数解析式;二次函数的性质.专题:计算题.分析:(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长.解答:解:(1)∵抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),∴将A与B坐标代入得:,解得:,则抛物线解析式为y=﹣x2+2x+3;(2)点D为抛物线顶点,由顶点坐标(﹣,)得,D(1,4),∵对称轴与x轴交于点E,∴DE=4,OE=1,∵B(﹣1,0),∴BO=1,∴BE=2,在Rt△BED中,根据勾股定理得:BD===2.点评:此题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.22.如图,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)已知点D(m,m+1)在第一象限的抛物线上,求点D关于直线BC对称的点的坐标.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征;坐标与图形变化-对称.专题:压轴题.分析:(1)由于抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,利用待定系数法即可确定抛物线的解析式;(2)由于点D(m,m+1)在第一象限的抛物线上,把D的坐标代入(1)中的解析式即可求出m,然后利用对称就可以求出关于直线BC对称的点的坐标.解答:解:(1)∵抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,∴,解之得:a=﹣1,b=3,∴y=﹣x2+3x+4;(2)∵点D(m,m+1)在第一象限的抛物线上,∴把D的坐标代入(1)中的解析式得m+1=﹣m2+3m+4,∴m=3或m=﹣1,∴m=3,∴D(3,4),∵y=﹣x2+3x+4=0,x=﹣1或x=4,∴B(4,0),∴OB=OC,∴△OBC是等腰直角三角形,∴∠CBA=45°设点D关于直线BC的对称点为点E∵C(0,4)∴CD∥AB,且CD=3∴∠ECB=∠DCB=45°∴E点在y轴上,且CE=CD=3∴OE=1∴E(0,1)即点D关于直线BC对称的点的坐标为(0,1);点评:此题考查传统的待定系数求函数解析式,第二问考查点的对称问题,作合适的辅助线,根据垂直和三角形全等来求P点坐标。