平面解析几何 ppt课件

合集下载

高三数一轮复习课件:第九章 平面解析几何. .ppt..

高三数一轮复习课件:第九章 平面解析几何. .ppt..
解:如图,因为 kAP=12- -01=1,
kBP= 03--10=- 3, 所以 k∈(-∞,- 3]∪[1,+∞). 故填(-∞,- 3]∪[1,+∞).
2019年5月30日
你是我心中最美的云朵
18
类型二 求直线方程
根据所给条件求直线的方程. (1)直线过点(-4,0),倾斜角的正弦值为 1100; (2)直线过点(-3,4),且在两坐标轴上的截距相等; (3)直线过点(5,10),且到原点的距离为 5.
2019年5月30日
你是我心中最美的云朵
13
类型一 直线的倾斜角和斜率
(1)设直线 2x+my=1 的倾斜角为 α,若 m∈(-∞, -2 3)∪[2,+∞),则角 α 的取值范围是________.
解:据题意知 tanα=-m2 ,因为 m<-2 3或 m≥2.
所以 0<tanα< 33或-1≤tanα<0.
(3)过点 P1(x1,y1),P2(x2,y2)的直线方程 ①若 x1=x2,且 y1≠y2 时,直线垂直于 x 轴,方程为____________; ②若 x1≠x2,且 y1=y2 时,直线垂直于 y 轴,方程为____________; ③若 x1=x2=0,且 y1≠y2 时,直线即为 y 轴,方程为____________; ④若 x1≠x2,且 y1=y2=0,直线即为 x 轴,方程为____________.
x=


y=
.
2019年5月30日
你是我心中最美的云朵
4
2.直线的倾斜角与斜率 (1)直线的倾斜角:当直线 l 与 x 轴相交时,取 x 轴作为基准,x 轴____________与 直线 l 向上方向之间所成的角 α 叫做直线 l 的倾斜角.当直线 l 与 x 轴________或________ 时,我们规定它的倾斜角为 0°.因此,直线的倾斜角 α 的取值范围为 __________________. (2)斜率:一条直线的倾斜角 α 的____________叫做这条直线的斜率,常用小写字母 k 表示,即 k=______(α≠______).当直线平行于 x 轴或者与 x 轴重合时,k______0; 当直线的倾斜角为锐角时,k______0;当直线的倾斜角为钝角时,k______0;倾斜角为 ______的直线没有斜率.倾斜角不同,直线的斜率也不同.因此,我们可以用斜率表示 直线的倾斜程度.

新教材高中数学第二章平面解析几何1坐标法课件新人教B版选择性必修第一册

新教材高中数学第二章平面解析几何1坐标法课件新人教B版选择性必修第一册
如果点对应的①___________为(,
有序实数
)(即的坐标为(, 1 ),记作
(1 , 1 ),其中1 为的横坐标,1 为的纵坐标),且(2 , 2 ),则向量
(2 − 1 , 2 − 1 )
=②__________________,从而可以得到平面直角坐标系内两点之间的
ห้องสมุดไป่ตู้. 已知(, 6),(−2, ),(2,3),若点平分线段,则 + 等于
(
)A
A. 6
B. 1
C. 2
D. -2
2. 已知(1,2),(, 6),且|| = 5,则的值为( )
D
A. 4
D. -2或4
B. -4或2
C. -2
3. 已知△ 的顶点(2,3),(−1,0),(2,0),则△ 的周长是(
2. 已知点(−3,4), (2, 3),在轴上找一点,使|| = ||,求||的值.
[答案] 设点(, 0),则有|| =
|| =
(−3 − )2 + (4 − 0)2 = 2 + 6 + 25,
(2 − )2 + ( 3 − 0)2 = 2 − 4 + 7.
C. 以点为直角顶点的直角三角形
D. 以点为直角顶点的直角三角形
D. 10
)C
6. 光线从点(−3,5)射到轴上,经x轴反射后经过点(2,10),则光线从到
的距离为( )
C
A. 5 2
B. 2 5
C. 5 10
D. 10 5
[解析] 点(−3,5)关于x轴的对称点为′ (−3, −5),则光线从到的距离即
|| =
[5 − (−1)]2 + [3 − (−1)]2 = 62 + 42 = 52 = 2 13,

在职工程硕士GCT数学__第10章平面解析几何PPT课件

在职工程硕士GCT数学__第10章平面解析几何PPT课件
第10章 平面解析几何
一、平面向量 二、直线 三、圆 四、椭圆 (焦点在长轴上) 五、双曲线(焦点在实轴 六、抛物线
1
整体概述
概述一
点击此处输入
相关文本内容
概述二
点击此处输入
相关文本内容
概述三
点击此处输入
相关文本内容
2
第10章 平面解析几何
一、平面向量
1. 定义 具有大小和方向的量。
Hale Waihona Puke 向量常用 a ,● a ∥ a
● 定理
a ∥ b 存在数 ,使 a b
6
3. 向量的坐标
设 aa1i a2j,则 a(a1,a2)
ya
j
oi x
● 有了向量的坐标后,向量的运算可转化为其坐标
之间的运算。
● 设 A(x1, y1), B(x2 , y2 ) ,则
① A→B (x2x1,y2y1)

d
|

AB |
● 经过两点 A( x1, y1), B(x2 , y2 )的直线斜率为:
k y2 y1 x2 x1
( x1 x2 )
17
2. 直线方程的几种形式
① 点斜式
.k P(x0 , y0 )
yy0k(xx0)
(微分学中,导数的几何意义)
② 斜截式
y
k, b
③ 截距式
b
y kxb
o x x y 1
② a b a1b1a2b2 0
★ 6. 中点坐标公式
x x1 x2 2
M (x, y)
A( x1 , y1 )
B(x2 , y2 )
y y1 y2 2
13
例 在平面直角坐标系中,已知两点 A (cos110,sin110)

高中数学--平面解析几何课件ppt

高中数学--平面解析几何课件ppt
【答案】 B
目录
【名师点评】 直线倾斜角的范围是[0,π),而这个区间不 是正切函数的单调区间,因此根据斜率求倾斜角的范围时,
要分0,π2 与π2,π 两种情况讨论.由正切函数图象可以 看出当 α∈0,π2时,斜率 k∈[0,+∞);当 α=π2时,斜 率不存在;当 α∈π2,π时,斜率 k∈(-∞,0).
不包括垂直于 的非零截距,b 是
x 轴和 y 轴及过
直线在 y 轴上的

原点的直线
非零截距
Байду номын сангаас
目录
名 方程的形式

已知条件
局限性

Ax+By+C=
无限制,可表
___________________

0(A2+B2≠0)
A,B,C 为系数 示任何位置的
___________________

直线
目录
思考探究 过两点P1(x1,y1),P2(x2,y2)的直线是否一定可用两点式方程表示? 提示:不一定.(1)若x1=x2且y1≠y2,直线垂直于x轴,方程为x=x1. (2)若x1≠x2且y1=y2,直线垂直于y轴,方程为y=y1. (3)若x1≠x2且y1≠y2,直线方程可用两点式表示.
目录
考点探究讲练互动
考点突破
考点 1 直线的倾斜角与斜率
例1 直线 2xcosα-y-3=0(α∈[π6,π3])的倾斜角的变化范围 是( )
A.[π6,π3]
B.[π4,π3]
C.[π4,π2]
D.[π4,23π]
目录
【解析】 直线 2xcosα-y-3=0 的斜率为 k=2cosα,由于 α∈[π6,π3],所以12≤cosα≤ 23,因此 k=2cosα∈[1, 3]. 设直线的倾斜角为 θ,则有 tanθ∈[1, 3],由于 θ∈[0,π), 所以 θ∈[π4,π3],即倾斜角的变化范围是[π4,π3].

《平面解析几何》课件

《平面解析几何》课件

向量运算
向量的加法和减法
向量加法和减法是向量运 算中的基本运算,包括向 量的平移、旋转和拉伸等。
向量的数量积和向量 积
在所有的线性代数中,向 量的数量积和向量积是最 常用的向量积运算之一。
向量的投影
向量的投影是计算向量在 投影方向上的长度的一种 方法,是一种常用的数学 概念,应用广泛。
二次曲线
椭圆 双曲线 抛物线
《平面解析几何》PPT课 件
本课程介绍平面解析几何,一门研究平面上点、直线、圆、二次曲线等图形 的位置关系和相互运算的学科。
简介
什么是平面解析几何
是最基础的空间几何的入门课,学习解析几何可以帮助你更好地理解各种数学问题。
历史发展
解析几何的提出是十七世纪科学革命时期的一项重要成就。
坐标系
直角坐标系
由平面上到定点F1、F2的距离之和为定常值 2a。
双曲线也由平面上到定点F1、F2的距离之差 为定常值2a。
抛物线是是一个平面曲线,因其具有完美的抛 物线形状而得名。
结论
平面解析几何的应用
平面解析几何是现代数学的一个分支,它对于计 算机科学、物理学、经济学、心理学等学科都有 非常重要的应用。
本课程的主要内容回顾
截距法是三种构图法之一,大大简化了复 杂的运算。
3 法线式
4 点斜式
数学中,直线的法线式是表示某直线在某 点处垂直的一条直线的代数式。
在点斜式中,直线上任意一点的坐标及其 方向与坐标平面上已知一点相对应的斜率 确定。
圆的方程
标准式
以坐标系原点为圆心,以半 径长为圆的方程。
一般式
圆的一般式是用Ax2 + Ay2 + Bx + By + C = 0的形式表示 的。

平面解析几何 PPT课件

平面解析几何 PPT课件

高 是要考虑正切函数的单调性.

解 题
考 点
3.用截距式写方程时,应先判断截距是否为0,若
训 练
要 通
不确定,则需要分类讨论.
要 高


目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程



直线的倾斜角与斜率







打 牢
[例1] (1)(2012·岳阳模拟)经过两点A(4,2y+1),
训 练 要 高 效
目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程
基 础

几何条件
知称
方程
局限性
高 分 障


要 截 在x轴、y轴上

不包括_垂__直__于__坐__



距 的截距分别为a, __xa_+__by_=__1__ 标轴 和_过__原__点__

高 式 b(a,b≠0)
的直线


识 要
则直线l的方程为
()
碍 要
打 牢
A.3x+4y-14=0
B.3x-4y+14=0
破 除
C.4x+3y-14=0
D.4x-3y+14=0


频 考 点
解析:由y-5=-34(x+2),得3x+4y-14=0.
题 训 练
要 通
答案:A
要 高


目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程

频 考


_A_x_+__B__y+__C__=__0_

[课件]解析几何中的平面几何PPT

[课件]解析几何中的平面几何PPT
解析几何中的平 面几何
圆锥曲线发展史
古希腊数学家希波克拉底( Hippocrates of Chios 公元前460),在解决“立方倍积”问题 时,发现圆锥曲线。另外一位古希腊数学家梅内 克缪斯(Menaechmus 公元前375 ~ 公元前325 ),用平面截不同的圆锥,发现圆锥曲线。
阿波罗尼(Apollonius 公元前260 ~ 公元前190)
B
D A
F2
F2
O
F1
F1
图1.1
图1.2
图1.3
解析几何的创立
勒内· 笛卡尔(Rene Descartes) 公元1596~公元1650 Descartes认为,以往的几何、 代数研究都存在很大缺陷:欧氏几 何中没有那种普遍适用的证明方法 ;代数的方法具有一般性,但它完 全受法则和公式的控制。所以,代 数与几何必须互相取长补短。不 过,他推崇代数的力量,认为代数方法在提供广泛的 方法论方面要高出几何方法,因此代数具有作为一门 普遍的科学方法的潜力。所以他把精力集中在研究怎 样把代数方法用于解决几何问题,其结果是创立了解 析几何。
欧几里德(约公元前330年—前275年 ) 古希腊数学家,被称为“几何之父”。 欧几里德几何:把人们公认的一些 几何知识作为定义和公理,在此基 础上研究图形的性质,推导出一系 列定理,组成演绎体系。
阿波罗尼采用欧几里德几何方法即用演绎、推理 的方法研究圆锥曲线
几何法
圆锥曲线
在阿波罗尼的《圆锥曲线》问世后的 13 个世纪里,除了古希腊数学家帕普斯(Pappus 约 4 世纪)在《数学汇编》证明:与定点及 定直线的距离成定比例的点的轨迹是圆锥曲线 外,整个数学界对圆锥曲线的研究几乎没有什 么进展。
2
2

大一解析几何课件ppt

大一解析几何课件ppt

两点式方程
表示两点之间的直线方程,形式 为$frac{x-x_1}{x_2-
x_1}=frac{y-y_1}{y_2y_1}=frac{z-z_1}{z_2-z_1}$。
空间中平面与球面方程
平面方程
表示平面上所有点的坐标满足的 方程,形式为 $Ax+By+Cz+D=0$。
球面方程
表示球面上所有点的坐标满足的 方程,形式为$(x-a)^2+(yb)^2+(z-c)^2=R^2$。
上的向量即为这两个向量的和。
向量的模
向量的模表示向量的大小,记作|a|,计算 公式为$sqrt{a_1^2 + a_2^2 + cdots +
a_n^2}$。
数乘
数乘是指用一个实数乘以一个向量,结果 仍为同一向量类型的向量。数乘满足结合 律和分配律。
向量的积
向量的积分为点乘和叉乘两种,点乘结果 为标量,叉乘结果为向量。点乘满足交换 律和分配律,叉乘满足结合律。
矩阵及其运算
矩阵的加法
矩阵的加法是指对应元素相 加,得到的结果仍为一个矩 阵。
数乘矩阵
数乘矩阵是指用一个实数乘 以一个矩阵,结果仍为一个 矩阵。数乘矩阵满足结合律 和分配律。
矩阵的乘法
矩阵的乘法需要满足一定的 条件,即左矩阵的列数等于 右矩阵的行数。矩阵的乘法 不满足交换律和结合律。
转置矩阵
转置矩阵是指将矩阵的行列 互换得到的新矩阵。转置矩 阵满足$A^T = (A^T)^T$ 和$A^T B = B^T A$。
05
解析几何的应用
解析几何在物理学中的应用
解析几何在物理学的应用非常广泛,特别是在经典力学和电 磁学中。通过解析几何的方法,我们可以更好地理解和描述 物理现象,例如在研究物体的运动轨迹、速度和加速度时, 解析几何提供了重要的数学工具。

苏教版必修2数学课件-第2章平面解析几何初步第2节直线与方程教学课件

苏教版必修2数学课件-第2章平面解析几何初步第2节直线与方程教学课件
栏目导航
3.如何判断点(m,n)与圆(x-a)2+(y-b)2=r2的位置关系? [提示] 将点A(m,n)代入方程左边,若(m-a)2+(n-b)2=r2, 点A在圆上;若(m-a)2+(n-b)2<r2,点A在圆内;若(m-a)2+(n- b)2>r2,点A在圆外.
栏目导航
【例3】 已知圆C的标准方程为(x-5)2+(y-6)2=a2(a>0). (1)若点M(6,9)在圆上,求半径a; (2)若点P(3,3)与Q(5,3)有一点在圆内,另一点在圆外,求a的 取值范围.
栏目导航
自主预习 探新知
栏目导航
1.圆的定义及标准方程 (1)圆的定义 平面内到定点的距离等于定长的点的集合叫做圆.其中定点是 圆的圆心;定长是圆的半径.
栏目导航
(2)圆的标准方程

特殊情况
一般情况
圆心
(0,0)
(a,b)
半径 标准方程
备注
r(r>0)
r(r>0)
_x_2_+__y_2=__r_2_
栏目导航
[解] 法一:设圆的方程为(x-a)2+(y-b)2=r2,
a+b+5=0,
则(0-a)2+(2-b)2=r2, (-3-a)2+(3-b)2=r2,
a=-3,
解得b=-2, r=5.
∴圆的标准方程为(x+3)2+(y+2)2=25.
栏目导航
法二:因为A(0,2),B(-3,3),所以线段AB的中点坐标为 -32,52,直线AB的斜率kAB=-3-3-20=-13,
_(x_-__a_)_2_+__(y_-__b_)_2=__r_2_
确定圆的标准方程的关键是确定_圆__心__和_半__径__
栏目导航

新教材高中数学第二章平面解析几何3圆及其方程3直线与圆的位置关系课件新人教B版选择性必修第一册

新教材高中数学第二章平面解析几何3圆及其方程3直线与圆的位置关系课件新人教B版选择性必修第一册
= 2 2 − 2 = 8 ⇒ 25 − 2 = 4 ⇒= 3,当直线的斜率不存
已知圆E经过点(−1,2), (6,3),且_____________
(i)求圆的方程;
(ii)已知直线经过点(-2,2),直线与圆相交所得的弦长为8,求直线
的方程.
(i)设圆的方程为 2 + 2 + + + = 0,依题意有
5 − + 2 + = 0,
易知圆心到直线y=x的距离 =
所以切线长的最小值为
2
3 2

2
− 2
=
3 2 2
( )
2
−(
2)2
=
10
,故选C.
2
探究点三 直线和圆相交

(1) 求直线: 3 + − 6 = 0被圆: 2 + 2 − 2 − 4 = 0截得的弦的长.
3 + − 6 = 0
2 − 3 + 2 = 0,解得交点
D. 相离
[解析] 圆 2 + 2 = 1的圆心为(0,0),半径 = 1.
因为圆心(0,0)到直线 − 2 − 1 = 0的距离 =
所以直线与圆相交但直线不过圆心.
|0−0−1|
12 +(−2)2
=
5
<1,
5
(2) (多选)已知圆: ( + cos)2 + ( − sin)2 = 1,直线: = .下
①若所求直线的斜率存在,设切线斜率为,
则切线方程为 + 3 = ( − 4),即 − − 4 − 3 = 0.
设圆的圆心为,则(3,1),因为圆心到切线的距离等于半径1,

平面解析几何初步PPT精品课件

平面解析几何初步PPT精品课件

【自主解答】 (1)由直线方程的斜截式可知,所求直线的斜截式方程为 y
=2x+5.
(2)∵倾斜角为
150°,∴斜率
k=tan
150°=-
3 3.
由斜截式可得方程为 y=- 33x-2.
(3)设直线在两坐标轴上的截距为 a, 当 a=0 时,直线的斜截式方程为 y=43x. 当 a≠0 时,设直线的斜截式方程为 y=-x+b,则有 4=-3+b,即 b=7. 此时方程为 y=-x+7, 故所求直线方程为 y=43x 或 y=-x+7.
(2)法一 由题意知,直线 l1⊥l2. ①若 1-a=0,即 a=1 时,直线 l1:3x-1=0 与直线 l2:5y+2=0 显然垂 直. ②若 2a+3=0,即 a=-32时,直线 l1:x+5y-2=0 与直线 l2:5y-4=0 不垂直. ③若 1-a≠0,且 2a+3≠0,则直线 l1,l2 的斜率 k1,k2 都存在,k1=-a1+-2a, k2=-2aa-+13.




1
3
2.2.2 直线方程的几种形式

阶 段
2
业 分 层 测

1.会求直线的点斜式,斜截式,两点式和一般式的方程.(重点) 2.掌握确定直线位置的几何要素,掌握直线方程的几种基本形式及它们之 间的关系.(难点)
[基础·初探]
教材整理 1 直线方程的几种形式
阅读教材 P77~P79 内容,完成下列问题.
2.点斜式方程 y-y0=k·(x-x0)可表示过点 P(x0,y0)的所有直线,但 x=x0 除外.
[再练一题] 1.求满足下列条件的直线的点斜式方程. (1)过点 P(-4,3),斜率 k=-3; (2)过点 P(3,-4),且与 x 轴平行; (3)过 P(-2,3),Q(5,-4)两点. 【导学号:60870062】

苏教版必修2数学课件-第2章平面解析几何初步第1节直线与方程教学课件

苏教版必修2数学课件-第2章平面解析几何初步第1节直线与方程教学课件

即5x2--y21=31--x52=1,解得 x2=7,y1=0.
(2)显然,直线斜率存在.由三点共线,得 kAB=kAC,即2-2 a=2-2 b,
整理得 2a+2b=ab.∴1a+1b=a+ abb=2aa++b2b=12.]
栏目导航
已知 A(x1,y1),B(x2,y2),C(x3,y3),若有 x1=x2=x3 或 kAB=kAC, 则有 A,B,C 三点共线.利用斜率判断三点共线应注意以下三点:
栏目导航
(2)直线的斜率与倾斜角的关系 ①从关系式上看:若直线 l 的倾斜角为 α(α≠90°),则直线 l 的 斜率 k= tan α .
栏目导航
②从几何图形上看:
直线情形
α的 大小 k的 大小
0°<α<90

90° 90°<α<180°
°
k = __ta_n_α____ =
0
k=__ta_n_α__ 不存在
栏目导航
已知直线上两点(x1,y1),(x2,y2),表示直线的斜率时,要注意 直线斜率存在的前提,即只有 x1≠x2 时才能用斜率公式求解.当 x1 =x2 时,直线斜率不存在,此时直线的倾斜角为 90°.当点的坐标中 含有参数时,要注意对参数的讨论.
栏目导航
1.过点 P(-2,m),Q(m,4)的直线的斜率为 1,则 m=________. 1 [-m2--4m=1,m=1.]
思路探究:(1) kP1P2=kP2P3=1 → 分别解方程求x2,y1 (2) kAB=kAC → 化简得a与b的关系 → 代入化简求值
栏目导航
(1)7
0
1 (2)2
[(1)由 α=45°,故直线 l 的斜率 k=tan 45°=1,

新教材高中数学第二章平面解析几何章末总结课件新人教B版选择性必修第一册

新教材高中数学第二章平面解析几何章末总结课件新人教B版选择性必修第一册
[答案] 联立得得൝ 2
+ 2 = 4,
得൞
1 =
1 =
4 5
, 2
5

2 5
, 2
5
4 5
,
5
2 5

,
5
=−
=
∴ || =
=
4 5
5
(
+
4 5 2
)
5
2 5
5
+(
+
2 5 2
)
5
(1 − 2 )2 + (1 − 2 )2
= 4.
方法归纳
(1)判断直线与圆的位置关系以几何法为主,解题时应充分利用圆的几何性
(2)解圆锥曲线的性质问题时,一般要灵活地应用圆锥曲线的定义、方程及
其图形.
4.
2
已知双曲线: 2


2
2
= 1(>0, >0)的左、右焦点分别为1 , 2 ,点是右
支上一点,连接1 与轴交于点,若|1 | = 2||(为坐标原点), 1 ⊥ 2 ,
则双曲线的渐近线方程为(
[解析] 设(−, 0),则直线的方程为 = 3( + ),即 3 − + 3 = 0,
因为直线 3 − + 3 = 0恰好与圆 2 + 2 = 2 相切,
所以圆心(0,0)到直线 3 − + 3 = 0的距离等于半径,即
则|| = + =
3

= 4则 = 8,
2
因为直线过点(2,1),所以


所以直线的方程为
4

2
1

+ = 1,所以 = 4, = 2,

平面解析几何_PPT课件

平面解析几何_PPT课件

y_-__y_0_=__k_(_x_-__x_0_) 不含_垂__直__于___x_轴_
的直线
碍 要 破 除
高 频
斜截 斜率为k,纵截 式 距为b
_y_=__k_x_+___b_
不含_垂__直__于__x_轴__
的直线
解 题
考 点 要 通 关
两点 式
过两点(x1,y1), (x2,y2),
_yy_2-_-_y_y1_1=__x_x_2--__x_x1_1
不包括垂___直__于__坐__ 标轴 的直线
训 练 要 高 效
(x1≠x2,y1≠y2)
目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程
基名


几何条件
方程
局限性

知称



要 打
截 在x轴、y轴上
不包括_垂__直__于__坐__
要 破

距 的截距分别为a, __xa_+__by_=__1__ 标轴 和_过__原__点__
目录
第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 第二节 两直线的位置关系 第三节 圆 的 方 程 第四节 直线与圆、圆与圆的位置关系 第五节 椭圆 第六节 双曲线 第七节 抛物线 第八节 曲线与方程 第九节 圆锥曲线的综合问题
新课标(理科)
第一节 直线的倾斜角与斜率、直线的方程
第八章 平面解析几何
经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率 公式为 k=xy22--xy11=xy11--xy22 .
训 练 要 高 效
目 新课标(理科) 录
第一节 直线的倾斜角与斜率、直线的方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

还有一点值得注意的是,坐标系与参数方程在多 年退出后又作为选修专题4-4重新进入了中学数 学。该专题是解析几何初步、平面向量、三角函 数等知识的综合应用和进一步深化。其中,极坐 标系和参数方程是重点内容,而对于柱坐标系、 球坐标系等则只要求学生作简单了解。
在“坐标系与参数方程”专题中,学生将了解曲 线的多种表现形式,体会从实际问题中抽象出数 学问题的过程,培养探究数学问题的兴趣和能力, 体会数学在实际中的应用价值,提高应用意识和 实践能力。
具体而言,运用坐标表示,使得几何的“点”和 代数的“数”之间构成对应关系,进而根据点动 成线,把曲线上的“几何点集”,和满足方程的 “坐标数集”对应起来,并且能够相互转换。通 过坐标把曲线的性质译成了代数的语言,使许多 曲线有了一般的表示法和统一的研究手段。
总之,解析几何的基本手段是用坐标表示数,用 方程表示曲线,用代数方法来研究几何图形。这 种数和形之间的转换能力,是“数学双基”的一 部分,是数学思想的华彩乐章。
8 平面解析几何
8.1 内容概述
解析几何是17世纪数学发展的重大成果之一,其 本质是用代数方法研究图形的几何性质,体现了 数形结合的重要数学思想。
与课程改革前相比,中学解析几何变化不大,主 体内容仍然是:直线与方程、圆与方程、圆锥曲 线与方程。只是前两者作为必修模块,统称为平 面解析几何初步,第三者则放到选修1-1和选修 2-1中。另外,还在平面解析几何初步中增加了 一点空间直角坐标系的简单知识。
“数学中的转折点是笛卡儿的变数。有了变数, 运动进入了数学.有了变数,辩证法进入了数学. 有了变数,微分和积分立刻成为必要的了.” (恩格斯《自然辩证法》 )
2、曲线的方程为什么要满足纯粹性与完备性?
曲线的方程和方程的曲线是解析几何的基本概念 和理论基石,它反映了曲线和方程之间的统一。
曲线可以看作适合某种条件的点的集合或轨迹, 曲线的方程则是平面上具有某种几何性质的点的 坐标之间关系的反映,这样几何中的形和代数中 的数就统一起来,研究曲线的几何问题可以转化 为研究方程的代数问题;反过来,代数问题也可 以转化为几何问题来研究。
牛顿在这基础上,将曲线看作是动点的路径,把 物体运动的轨迹表示为参数方程x=x(t), y=y(t). 然 后研究流数x’(t)和y’(t);莱布尼茨则从曲线的切 线入手研究曲线性质,在坐标系上观察曲线在一 点的切线斜率的变化。由此,诞生了微积分.
而追溯函数的来源,它正是对各种特殊的曲线的 概括,从而最终成为描述运动的工具.
通常称条件(1)为方程的完备性(或曲线的纯粹性), 称条件(2)为方程的纯粹性(或曲线的完备性)。但 曲线方程为什么要满足纯粹性与完备性?
中学数学教学比较重视建立坐标观念,而较忽视 解析几何中运动变化思想。无论是理解解析几何 思想本质(没有点动成线,何谈曲线方程)还是理 解数学学科发展,这都是不利的。
如所知,数学进步的一次重要飞跃是从常量数学 到变量数学。而变量数学的创立有两个主要标志: 解析几何和微积分。解析几何之所以列入,很重 要的在于它奠定了从动态角度解决一系列复杂代 数和几何问题的理论基础。以运动为基础,方程 与曲线统一起来,代数学与几何学统一起来,运 动也由此顺理成章地进入了代数学,产生了函数。
中学课本通常这样定义曲线的方程:
在直角坐标系中,如果某曲线C(看作点的集合或适合某 种条件的点的轨迹)上的点与一个二元方程f (x, y)=0的实 数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点。
那么,这个方程叫做曲线的方程;这条曲线叫做方程的 曲线。
直线和圆是最简单的几何图形。圆锥曲线在数学 上是一个非常重要的几何模型,有很多非常好的 几何性质。这些重要的几何性质在日常生活、社 会生产及其他科学中都有着重要而广泛的应用。
在引入圆锥曲线时,应通过丰富的实例(如行星 运行轨道、抛物运动轨迹、探照灯的镜面),使 学生了解圆锥曲线的背景与应用。教师可以向学 生展现圆锥曲线在实际中的应用,例如,投掷铅 球的运行轨迹、卫星的运行轨迹。
8.2 问题研究
1、如何理解解析几何的基本思想?
解析几何的基本思想当然是数形结合。但是,数 形结合思想是以两个重要的思想观念为基础的: 一是坐标观念,一是运动变化的思想。
坐标观念通过位置量化,解决了点的代数化问题, 而运动变化思想则通过引入点动成线观念,实现 了曲线的代数化。笛卡尔的重要贡献在于他把运 动与变化的思想引入数学,从动态的角度解决几 何问题,把曲线看作是运动的轨迹。
在“平面解析几何初步”模块中,学生将在平面 直角坐标系中建立直线和圆的代数方程,运用代 数方法研究它们的几何性质及其相互位置关系, 并了解空间直角坐标系。体会数形结合的思想, 初步形成用代数方法解决几何问题的能力。
在“圆锥曲线与方程”模块中,学生将学习圆锥 曲线与方程,了解圆锥曲线与二次方程的关系, 掌握圆锥曲线的基本几何性质,感受圆锥曲线在 刻画现实世界和解决实际问题中的作用。结合已 学过的曲线及其方程的实例,了解曲线与方程的 对应关系,进一步体会数形结合的思想。
从某种程度上讲,解析几何对变量数学的意义较 之微积分更为基本,它奠定了微积分研究的基础。
解析几何的历史贡献就在于它人们只关注如何求出方程的根。几 何研究虽然把曲线看作动点运动的轨迹,但是曲 线不能计算。只当解析几何把动点形成的曲线看 作是“坐标(数)”变化的结果,变数才破土而出。
解析几何的教学要重视使学生经历“几何问题代 数化——处理代数问题——分析代数结果的几何 意义——解决几何问题”的过程,不断体会数形 结合的思想。
在平面解析几何初步的教学中,教师应帮助学生 经历如下的过程:首先将几何问题代数化,用代 数的语言描述几何要素及其关系,进而将几何问 题转化为代数问题;处理代数问题;分析代数结 果的几何含义,最终解决几何问题。这种思想应 贯穿平面解析几何教学的始终,帮助学生不断地 体会“数形结合”的思想方法。
相关文档
最新文档