《数学建模》选修课班第1-4次作业
《数学建模1》《数学建模2》《数学建模3》《数学建模4》试题及答案
1为调查大学中某一年级学生参加外语考试作弊的比例,用随机问答法进行调查。
设计的两个问题为:问题1:你在这次考试中有作弊行为;问题2:你在这次考试中无作弊行为。
设计的题号卡共100张,其中75张标有数字1,25张标有数字2。
请200名学生根据任意抽得的卡上的标号对问题1或问题2用“是”或“否”回答(抽出的卡再放回),结果有60名回答为“是”,则该年级学生外语考试作弊的比例约为[ 单选题:6 分]A 1%B 5%C 10%D 15%试题解析您的答案:C回答正确2如果原料钢管的长度为19米,当客户的需求为4米、6米、8米有几种合理的切割模式?[ 单选题:6 分]A 6B 7C 8D 不确定试题解析您的答案:B回答正确3原料钢管的长度为19米,客户的需求为4米50根、6米20根、8米15根,则需要的最少原料钢管数为[ 单选题:6 分]A 24B 25C 26D 27试题解析您的答案:D回答正确4在合理切割模式下,余料的长度应该[ 单选题:6 分]A 小于客户需要钢管的最小长度B 小于客户需要钢管的最大长度C 大于客户需要钢管的最小长度D 大于客户需要钢管的大长度试题解析您的答案:A回答正确5在敏感问题调查中,为了减轻被调查者的抵触情绪,瓦纳设计了一种随机问答法,这种方法需要向调查者提几个问题[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确6钢管下料问题1中,客户需求的钢管米数为[ 多选题:8分 ]A 4B 6C 8D 10试题解析您的答案:ABC回答正确7钢管下料问题2中,在客户增加了需求之后,客户需求的钢管米数为[ 多选题:8分 ]A 4B 5C 6D 8试题解析您的答案:ABCD回答正确8利用瓦纳的随机问答法进行敏感问题调查时,调查结果与下列哪些量有关[ 多选题:8分 ]A 调查的人数B 回答“是”的人数C 标有不同数字的题号卡所占的比例D 进行调查的时间试题解析您的答案:ABC回答正确9钢管下料问题中,对于大规模问题,用模型的约束条件界定合理模式时采用的做法是[ 多选题:8分 ]A 增加约束B 缩小可行域C 减小约束D 增大可行域试题解析您的答案:AB回答正确10钢管下料问题中,在合理切割模式下,余料的米数可以为[ 多选题:8分 ]A 1B 2C 3D 4试题解析您的答案:ABC回答正确11LINGO软件只能求解整数线性规划问题[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12敏感问题调查时,直接向被调查者提问该问题就可以得到真实的结果[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13钢管下料时,不同的切割标准对应的切割方案也不同[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确14用户的需求种类越多,对应的合理切割模式也越多[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15利用瓦纳的随机问答法进行敏感问题调查时,标有数字1和数字2的题号卡的数量必须相等[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1市场经济中,若供大于求,则下阶段会出现?[ 单选题:6 分]A 价格上涨B 价格下降C 没有变化D 供求平衡试题解析您的答案:B回答正确2若有10个工作台,传送带上有40个挂钩,稳态情况下,一个周期内运走的产品数占总产品数的比例为?[ 单选题:6 分]A 25%B 50%C 89.4%D 100%试题解析您的答案:C回答正确3市场经济中,生产者管理水平提高会导致?[ 单选题:6 分]A 平衡点的稳定条件放宽B 平衡点的稳定条件收紧C 没有变化D 市场震荡加剧试题解析您的答案:A回答正确4甲乙丙三系人数分别为103, 63, 34, 总共21个代表席位,按Q值方法进行分配,丙系分得的席位数为?[ 单选题:6 分]A 4B 3C 5D 不确定试题解析您的答案:A回答正确5甲乙丙三系人数分别为103, 63, 34, 总共20个代表席位,按照比例加惯例的方法,甲系分得的席位数为?[ 单选题:6 分]A 9B 10C 11D 不确定试题解析您的答案:B回答正确6若a表示消费者对需求的敏感程度,b表示生产者对价格的敏感程度,则下列说法中正确的是[ 多选题:8分 ]A a越小越有利于经济稳定B a越大越有利于经济稳定C b越小越有利于经济稳定D b越大越有利于经济稳定试题解析您的答案:AC回答正确7市场经济中的蛛网模型主要研究?[ 多选题:8分 ]A 商品数量与价格的变化规律B 商品数量与价格的振荡在什么条件下趋向稳定C 生产者管理水平对平衡点稳定性的影响D 当不稳定时政府能采取什么干预手段使之稳定试题解析您的答案:ABCD回答正确8提高传送带效率的途径有?[ 多选题:8分 ]A 增加工作台数B 减少工作台数C 增加挂钩数D 减少挂钩数试题解析您的答案:BC回答正确9传送系统的效率模型中,主要研究?[ 多选题:8分 ]A 衡量传送带效率的指标B 提高传送带效率的途径C 效率与工作台数量的关系D 效率与挂钩数量的关系试题解析您的答案:ABCD回答正确10席位分配的理想化准则应满足?[ 多选题:8分 ]A 每方分得的席位数介于应得的席位数向上取整和向下取整之间B 当总席位增加时,每方分得的席位数都不会减少C 每方分得的席位数应该四舍五入D 随机分配试题解析您的答案:AB回答正确11席位分配时,Q值方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12席位分配时,比例加惯例方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13在市场经济中,供求关系是一直保持平衡的[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14挂钩数量越多,传送带的效率就越高[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15席位分配时,比例加惯例方法和Q值方法各有优缺点[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确1A、B两家电视机厂竞争的二人零和纯策略博弈模型中,A厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确2二人零和纯策略博弈求解时采用的原则是?[ 单选题:6 分]A 考虑到最坏的可能性的基础上争取最好结果B 考虑到最好的可能性的基础上争取最好结果C 考虑到最坏的可能性的基础上争取最坏结果D 考虑到最好的可能性的基础上争取最坏结果试题解析您的答案:A回答正确3A、B两家电视机厂竞争的二人零和纯策略博弈模型中,B厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 不确定试题解析您的答案:B回答正确41981年美国国会表决里根总统年度财政预算时,民主党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 弃权试题解析您的答案:A回答正确51981年美国国会表决里根总统年度财政预算时,共和党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 与民主党妥协试题解析您的答案:C回答正确6二人零和纯策略博弈问题中,利用最大最小原则(最小最大原则)对A的赢利矩阵进行操作,得到的最优解aij满足?[ 多选题:8分 ]A aij是它所在行中的最小值B aij是它所在列中的最小值C aij是它所在行中的最大值D aij是它所在列中的最大值试题解析您的答案:AD回答正确7求纳什均衡点时,采用的方法是[ 多选题:8分 ]A 对赢利表中的赢利对的第一个元素按列求出最大值,将最大元素标上“*”B 对赢利对的第二个元素按行求出最大值,将最大元素标上“*”C 两个元素同时标有“*”号的即为纳什均衡点D 一个元素标有“*”号的即为纳什均衡点试题解析您的答案:ABC回答正确8二人非零和纯策略博弈模型的求解原则有?[ 多选题:8分 ]A 理性原则B 无悔原则C 自由原则D 随机原则试题解析您的答案:AB回答正确9本节讲述的矩阵博弈模型有?[ 多选题:8分 ]A 二人零和纯策略博弈B 二人非零和纯策略博弈C 三人零和纯策略博弈D 三人非零和纯策略博弈试题解析您的答案:AB回答正确10二人零和纯策略博弈的求解时,采用的原则可以称为?[ 多选题:8分 ]A 最大最小原则B 最小最大原则C 最大最大原则D 最小最小原则试题解析您的答案:AB回答正确11二人非零和纯策略博弈模型中,对应任意的赢利矩阵,纳什均衡点必然存在[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12二人零和纯策略博弈模型中,鞍点对应的策略符合最小最大原则[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确13二人非零和纯策略博弈模型中,无悔原则和理性原则是一回事[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14二人零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15二人非零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1多阶段决策时,考虑的原则是?[ 单选题:6 分]A 风险越低越好B 风险越高越好C 期望收益越大越好D 决策过程越简单越好试题解析您的答案:C回答正确2随机事件是?[ 单选题:6 分]A 在一定条件下可能发生也可能不发生的事件B 在一定条件下一定发生的事件C 在一定条件下不可能发生的事件D 从来没发生过的事件试题解析您的答案:A回答正确3有一大批产品,其中15%为一等品,75%为二等品,10%为三等品.一、二、三等产品的单价分别为10元8元和6元.有人要采购一批这种产品,但来不及检验,商品的价格可定为[ 单选题:6 分]A 10元B 8元C 6元D 8.1元试题解析您的答案:D回答正确4口袋中有大小重量相同的红黄球各1个,黑球2个,任摸一球,摸到红球的概率为?[ 单选题:6 分]A 0.25B 0.5C 0.75D 1试题解析您的答案:A回答正确5某船主要对下月渔船是否出海做出决策。
数学建模第一次作业
14-15(2)数学建模第一次作业注意事项:提交时间截至3月27日课前,请将电子文档发送至邮箱sxjm@。
两个题目做到一个word文档里,文档和邮件标题均以“学号+姓名”命名。
请注意提交时间(顺序会影响给分结果)。
一、(必做题)ppt的思考题(1)~(4),由学号的后两位除以4的余数来确定;二、(必做题)本文档里的题目1~5,由学号的后两位除以5的余数来确定;三、(选做题)对于“生猪价格下降1%”理解的,0.65(11%)tp=-请根据ppt课件上的过程给出相应的结果(包括图形和灵敏性分析等)。
1油污清理问题一处石油泄漏污染了200英里的太平洋海岸线,所属石油公司被责令在14天内将其清除,预期则要被处以10000美元/天的罚款。
当地的清洁队每周可以清理5英里的海岸线,耗资500美元/天,额外雇佣清洁队则要付每支清洁队18000美元的费用和500美元/天的清洁费用.(1). 为使公司的总支出最低,应该额外雇佣多少支清洁队?采用5步方法,并求出清洁费用。
(2). 讨论清洁队每周清洁海岸线长度的灵敏性。
分别考虑最优的额外雇佣清洁队的数目和公司的总支出。
(3). 讨论罚金数额的灵敏性。
分别考虑公司用来清理漏油的总天数和公司的总支出。
(4). 石油公司认为罚金过高而提出上诉。
假设处以罚金的唯一目的是为了促使石油公司及时清理泄漏的石油,那么罚金的数额是否过高?*(5). (选做题)即使一开始采取围堵措施,海浪仍导致油污以每天0.5英里的速度沿海岸线扩散,这将导致最终清理的海岸线超过200海里,请分析扩散速度对公司总支出的影响。
2报刊价格问题一家有80000订户的地方日报计划提高其订阅价格。
现在的价格为每周1.5美元,据估计如果每提高定价10美分,就会损失5000订户。
(1)采用五步法,求使利润最大的订阅价格(2)对(1)中所得结论讨论损失5000订户这一参数的灵敏性。
分别假设这个参数值为3000,4000,5000,6000或7000,计算最优订阅价格(3)设n=5000为提高定价10美分而损失的订户数,求最优订阅价格p作为n的函数关系。
数学建模课后作业
数学建模实验P.172 实验二最短电缆长度问题设有九个节点,它们的坐标分别为a(0,15), b(5,20), c(16,24), d(20,20), e(33,25), f(23,11), g(35,7), h(25,0), i(10,3)任意两个节点之间的距离为:问:怎样连接电缆,使每个节点都连通,且所用的总电缆的长度为最短.问题分析:本题研究的是一个最优化问题。
问题中给出了9个节点坐标,需要从复杂的连接方案中选出最短的电缆连接路线。
要设计方案求最短电缆长度,可先求出任意两点间的距离,然后在构造边权矩阵,用prim算法求电缆线的最优连通方案。
符号说明:W:任意两点之间的距离矩阵X:节点的横坐标Y:节点的纵坐标解:先计算出任意两点间的距离;W=[];X = [0 5 16 20 33 23 35 25 10]; Y = [15 20 24 20 25 11 7 0 3]; N=length(X);for i=1:Nfor j=1:N W=[W;(abs(X(i)-X(j))+abs(Y(i)-Y( j)))]endendW'输出结果截图为:将结果整理列表如下:用prim算法求电缆线的最优连通方案;运行结果截图为:分析结果可知:最小生成树的边集合为{(1,2),(2,3),(3,4),(4,6),(6,8),(6,7),(3,5),(8,9)}即用prime算法求出的最优电缆连接方案为:{(a,b),(b,c),(c,d),(d,f),(f,h),(f,g),(c,e),(h,i)}。
P186实验一求最短路问题求图14.9所示有向网络中自点1到点6的最短有向路问题分析:用floyde 算法算出任意两点之间的最短的距离。
符号说明:D:任意两个点之间的最短距离n:迭代次数解:function [D,path]=floyd(a)n=size(a,1);%设置D和Path的初值D=a;path=zeros(n,n);for i=1:nfor j=1:nif D(i,j)~=infpath(i,j)=j; %j是i的后继点endendend%做n次迭代,每次迭代均更新D(i,j)和path(i,j) for k=1:nfor i=1:nfor j=1:nif D(i,k)+D(k,j)<D(i,j)D(i,j)=D(i,k)+D(k,j);path(i,j)=path(i,k);endendendend在MATLAB命令窗口键入:a=[0 5 inf 3 inf inf;inf 0 4 2 inf inf;inf inf 0 2 4 3;inf inf inf 0 5 inf;inf inf inf inf 0 2;inf inf inf inf inf 0];[D,path]=floyd(a)运行结果截图为:D =0 5 9 3 8 10 Inf 0 4 2 7 7 Inf Inf 0 2 4 3 Inf Inf Inf 0 5 7 Inf Inf Inf Inf 0 2 Inf Inf Inf Inf Inf 0 path =1 2 2 4 4 4 0 2 3 4 4 3 0 0 3 4 5 6 0 0 0 4 5 5 0 0 0 0 5 6 0 0 0 0 0 6由运行结果得:因为path(1,6)=4,意味着顶点1的后继点为4, path(4,6)=5,从而顶点4的后继点为5,同理,因path(5,6)=6,从而顶点5的后继点为6,故1→4→5→6便是顶点1到顶点6的最短路径。
数学建模作业题+答案
数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。
答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。
答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。
要求,画线颜色调整为黑色,画布底面为白色。
(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。
) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。
6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。
数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。
附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。
【VIP专享】《数学建模》选修课班第1-4次作业
【VIP专享】《数学建模》选修课班第1-4次作业《数学建模》选修课班第1-4次作业第1次作业1. 什么是数学建模?答:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
数学建模是构造刻划客观事物原型的数学模型并用析究和解决实际问题的种方法。
运用这种科学方法,建模者必须从实际问题出发,遵循“实践――认识――实践”的辨证唯物主义认识规律,紧紧围绕着建模的目的,运用观察力、想象力和逻辑思维,对问题进行抽象、简化,反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。
因此,数学建模不仅仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。
当代计算机的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。
当今几乎所有重要的学科,只要在其名称前面或后面加上“数学”或“计算”二字,就成了现有的一种国际学术杂志名称。
这表明各学科正在利用数学方法和数学成果来加速本学科的发展。
就连计算机本身的产生和进步也是强烈地依赖于数学科学的发展,而计算机软件技术说到底也是数学技术。
简单地来说,就是对于一个现实对象,为了一个特定的目的,根据其内在规律,作出必要的简化假设,运用适当的数得到一个数学结构。
2 数学建模的基本步骤有哪些?答:数学建模的基本方法 1.模型准备。
2模型假设。
3.模型求解,4模型分析5模型验证(2——5之间进行循环)6模型应用一、数学建模题目1·以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。
2·给出若干假设条件:1.只有过程、规则等定性假设;2.给出若干实测或统计数据;3.给出若干参数或图形等。
数学建模选修课作业
二﹑MATLAB解决线性代数问题
⑴①矩阵A的逆矩阵-0.1250 -0.1250 0.4000 -0.0500
0.1250 0.1250 0.2000 -0.1500
1.7500 0.7500 -1.0000 0.5000
1.5000 0.5000 -1.2000 0.4000
3.利用三维曲面绘图命令绘制3个三维曲面的图形
(1)绘制平面z=x+y的图形
程序:x=0:1:2;
y=0:1:2;
[x,y]=meshgrid(x,y)%生成xy平面上网格坐标矩阵
z=x+y;
axis([0,2,0,2,0,4])
mesh(x,y,z)%做三维曲面命令
(2)绘制螺旋抛物面z=x2+y2的图形
ans secx*tanx
(4)求导exyz,
程序:syms u x y z;
u=exp(x*y*z);
diff(diff(u,(x),y),z)
ans xexyz+x2zyexyz
(5)求导e2xy,
程序:syms u x y
u=exp(2*x*y)
diff(diff(u,(2x),y),z)
ans 2xexyz+x2zyexyz
-0.1616 - 1.4968i
1.0452
-1.0554
⑷利用MATLAB矩阵访问命令对下面的矩阵做初等行变换使其成为一个上三角矩阵
1 -2 2 -1 1
0 -4 8 0 2
0 0 -2 3 3
0 0 0 -6 4
三﹑MATLAB绘图绘制下面的曲线
1.在区间0≤x≤2中绘制cosx的图形
数学建模作业及答案
数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。
数学建模课后习题作业
选修课——数学建模部分习题详细解答【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。
【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。
于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。
《模型作业设计方案-2023-2024学年高中通用技术苏教版》
《模型》作业设计方案第一课时一、课程背景:《模型》是一门重要的数学课程,通过本课程的进修,同砚将能够精通数学建模的基本原理和方法,培育解决实际问题的能力,提高数学分析和运算能力。
二、教学目标:1. 了解数学建模的观点和分类。
2. 精通数学建模的基本流程和方法。
3. 学会运用数学建模解决实际问题。
4. 培育数学思维和创新能力。
三、教学内容:1. 数学建模的基本观点和原理。
2. 数学建模的分类和应用领域。
3. 数学建模的基本流程:问题分析、模型建立、模型求解、模型评判。
4. 常用数学工具:微积分、线性代数、概率论等。
四、教学方法:1. 理论讲授:老师讲解数学建模的基本观点和方法。
2. 实例分析:老师引导同砚分析实际问题,并建立相应的数学模型。
3. 小组谈论:同砚分组谈论和解决数学建模问题,培育团队合作和解决问题的能力。
4. 实践操作:同砚利用计算机软件进行模型求解和分析,加深对数学建模的理解。
五、作业设计:1. 第一次作业:选择一个实际问题,分析问题背景和需求,提出初步的建模思路。
2. 第二次作业:建立数学模型并进行求解,分析模型的优缺点,提出改进方案。
3. 第三次作业:撰写数学建模报告,包括问题描述、模型建立、模型求解和结果分析。
六、评判方式:1. 作业评分:依据作业的完成状况和质量评定同砚的效果,包括模型的建立和求解过程。
2. 口头答辩:要求同砚在教室上对自己的建模过程和结果进行口头陈述,以检验其理解和表达能力。
3. 终期考核:通过期末考试考查同砚对数学建模的整体精通状况,包括理论知识和实际应用能力。
七、教学资源:1. 教材:《数学建模导论》2. 计算机软件:MATLAB、R、Python等3. 网络资源:公开的数学建模案例和教学视频八、实施规划:1. 第一周:介绍数学建模的观点和分类。
2. 第二周:讲解数学建模的基本流程和方法。
3. 第三周:同砚选择问题并分析,筹办第一次作业。
4. 第四周:同砚建立数学模型并进行求解,筹办第二次作业。
《数学建模》课程第一章自测练习及解答提示
《数学建模》课程第一章自测练习及解答提示一、填空题:1.设年利率为0.05,则10年后20万元的现值按照复利计算应为 . 解:根据现值计算公式:10)05.01(20)1(+=+=n R S Q 2783.1221201011≈=(万元) 应该填写:12.2783万元.2.设年利率为0.05,则20万元10年后的终值按照复利计算应为 . 解:根据终值计算公式:10)05.01(20)1(+=+=n R P S =5779.322021910=(万元) 应该填写:32.57793.所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .解:应该填写:问题分析,模型假设,模型建立,模型求解,模型分析.4.设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .解: 由商品的均衡价格公式:80352536001200)(=++=++=c a d b t p 应该填写:80.5.一家服装店经营的某种服装平均每天卖出110件,进货一次的批发手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 .解:根据经济订购批量公式:1911001.020022*≈⨯⨯==R c c T s b 209701.011020022*≈⨯⨯==s b c R c Q 应该填写:.2097,19**=≈Q T二、分析判断题1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决.解:(1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益.(2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等.(3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料.(4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型.2.一条公路交通不太拥挤,以至人们养成“冲过”马路的习惯,不愿意走临近的“斑马线”.交管部门不允许任意横穿马路,为方便行人,准备在一些特殊地点增设“斑马线”,以便让行人可以穿越马路.那末“选择设置斑马线的地点”这一问题应该考虑哪些因素?试至少列出3种.解:(1)车流的密度(2)车的行驶速度(3)道路的宽度(4)行人穿越马路的速度(5)设置斑马线地点的两侧视野等.3.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等.(1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额).(3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间.(5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划解:(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S1,设通过十字路口的距离为S2,汽车行驶速度为v,则黄灯的时间长度t应使距停车线S1之内的汽车能通过路口,即t(S1+S2)/v.S1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).4.为了培养想象力、洞察力,考察对象时除了从正面分析外,还常常需要从侧面或反面思考,试尽可能迅速地回答下列的问题:(1)某甲早8:00从山下旅馆出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅馆.某乙说,甲必在2天中的同一时刻经过路径中的同一地点.为什么?(2)甲乙两站之间有电车相通,每隔10分钟甲乙两站相互发一趟车,但发车时刻不一定相同,甲乙之间有一中间站丙,某人每天在随机的时刻到达丙站,并搭乘最先经过丙站的那趟车,结果发现100天中约有90天到达甲站,约有10天到达乙站.问开往甲乙两站的电车经过丙站的时刻表是如何安排的?(3)某人住T 市在他乡工作,每天下班后乘火车于6:00抵达T 市车站,他的妻子驾车准时到车站接他回家.一日他提前下班搭乘早一班火车于5:30抵T 市车站,随即步行回家,他的妻子像往常一样驾车前往,在半路上遇到他,即接他回家,此时发现比往常提前10分钟.问他步行了多长时间.解:(1)设想有两个人一人上山,一人下山,同一天同时出发,沿同一路径,必定相遇.(2)不妨设从甲站到乙站经过丙站的时刻表是:8:00,8:10,8:20,…,那么从乙站到甲站经过丙站的时刻表应该是:8:09,8:19,8:29,….(3)步行了25分钟.设想他的妻子驾车遇到他后,先带他去车站,再回家,汽车多行驶了10分钟,于是带他去车站这段路程汽车跑了5分钟,而到车站的时间是6:00,所以妻子驾车遇到他的时刻是5:55.三、计算题1.下面是众所周知的智力游戏:人带猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米.试设计一个安全过河方案,并使渡河次数尽量地少.解:人、猫、鸡、米分别记为i =1, 2, 3, 4,当i 在此岸时记x i =1,否则记x i =0,则此岸的状态可用s =(x 1, x 2, x 3, x 4)表示.记s 的反状态为s =(1-x 1, 1-x 2, 1-x 3, 1-x 4),允许状态集合为S ={(1, 1, 1, 1),(1, 1, 1, 0),(1, 1, 0, 1),(1, 0, 1, 1)(1, 0, 1, 0)及它们的5个反状态}.决策为乘船方案,记作d =(u 1, u 2, u 3, u 4),当i 在船上时记u i =1,否则记u i =0,允许决策集合为D ={(1, 1, 0, 0),(1, 0, 1, 0),(1, 0, 0, 1),(1, 0, 0, 0)}.记第k 次渡河前的状态为s k ,第k 次渡河的决策为d k ,则状态转移律为s k +1=s k +(-1)k d k ,设计安全过河方案归结为求决策序列d 1, d 2, …, d n D ,使状态s n S 按状态转移律由初始状态s 1=(1, 1, 1, 1)经n 步到达s n +1=(0, 0, 0, 0).一个可行方案如下: k1 2 3 4 5 6 7 8 s kd k (1,1,1,1) (1,0,1,0) (0,1,0,1) (1,0,0,0) (1,1,0,1) (1,0,0,1) (0,1,0,0) (1,0,1,0) (1,1,1,0) (1,1,0,0) (0,0,1,0) (1,0,0,0) (1,0,1,0) (1,0,1,0) (0,0,0,0) 2.假定人口的增长服从这样的规律:时间t 的人口为x (t ),t 到t +t 时间内人口的增长与x m - x (t )成正比 (其中x m 为最大容量).试建立模型并求解.作出解的图形并与指数增长模型、阻滞增长模型的结果进行比较.解 )(d d x x r t x m -=,r 为比例系数,0)0(x x =, 解为rt m m x x x t x ---=e )()(0,如图1中粗实线所示.当t 充分大时,它与Logistic 模型相近. 图13.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例x t O x 0x m指数模型 Logistic 模型方法构造模型解释这个现象.(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.(2)给出单位重量价格c 与w 的关系,画出它的简图,说明w 越大c 越小,但是随着w 的增加c 减小的程度变小.解释实际意义是什么? 解:(1)生产成本主要与重量w 成正比,包装成本主要与表面积s 成正比,其它成本也包含与w 和s 成正比的部分,上述三种成本中都含有与w 和s 无关的成分.又因为形状一定时一般有s w 2/3,故商品的价格可表为C = w + w 2/3+(,,为大于0的常数).(2)单位重量价格131--++==w w w C c γβα,其图2 简图如图2所示.显然c 是w 的减函数,说明大包装商品比小包装商品便宜;曲线是下凸的, 4.用宽w 的布条缠绕直径d 的圆形管道,要求布条不重叠,问布条与管道轴线的夹角应多大(如图3). 若知道管道长度,需用多长布条(可考虑两端的影响).如果管道是其它形状呢?解:将管道展开如图4,可得απcos d w =,若d 一 图3 定,0→w ,2πα→;d w π→,0→α.若管道长度为l ,不考虑两端的影响时布条长度显然为w dl π,若考虑两 端的影响,则应加上απsin dw .对于其它形状管道,只需将d π 改为相应的周长即可.5.建立不允许缺货的生产销售存贮模型.设生产速率为常数k ,销售速率为常数r ,k >r .在每一生产周期T 内,开 图4 始的一段时间(0<t <T 0)一边生产一边销售,后来的一段时间(T 0<t <T )只销售不生产,画出贮存量)(t q 的图形.设每次生产准备费为1c ,单位时间每件产品贮存费为2c ,以总费用最小为目标确定最优生产周期.讨论k 》r 和k r 的情况.解: 贮存量)(t q 的图形如图5.单位时间总费用 KT r k r c T c T c 2)()(21-+=, 使)(T c 达到最小值的最优周期)(221r k r c k c T -=*. 图5 当k 》r 时,r c c T 212=*,相当 于不考虑生产的情况.当k r 时,∞→*T ,因wd qO0 k -r r cO α w πd为产量被销量抵消,无法形成贮存量.四、综合应用题1.试建立方桌问题在四条腿脚呈长方形情形时的数学模型,以说明方桌能否在地面上放稳的问题.( 提示:要求按照五步建模法进行建模工作,本题至少应给出前四个步骤.) 解:问题分析所谓方桌可否在地面上放稳,可视为其四个桌脚可否同时着地,从而可将问题归结为桌脚与地面的距离是否同时为零,故构造这个距离函数是建模的关键,而证明四个距离函数同时为零这个命题是建模的最终目的.模型假设(1) 四条桌腿同长,视四个桌脚为四个几何点,四脚的连线呈长方形;(2) 地面的高度是连续变化的,即将地面看作数学上的连续曲面;(3)模型建立 如图6,以长方形的两条对角线的交点为原点建立平面直角坐标系,且不妨设A ,C 两桌脚开始时位于横轴上,则问题与旋转角度θ有关.注意到假设3,设A ,B 两个桌脚与地面距离之和为0)(≥θf ,另外两个桌脚与地面距离之 和为,0)(≥θg 则)(,θθf ∀与)(θg 中至少有一个为零,当 图6 0=θ时不妨假设0)(,0)(>=θθg f .又由假设2,以上两个函数均为旋转角度的连续函数,于是有命题:已知,0)0(,0)0(,0)()()(),(>==∀g f g f g f 且,的连续函数,对是θθθθθθ则0θ∃,使得.0)()(00==θθg f上述命题即为所建立的数学模型.模型求解将桌子旋转0180)(π,则A 、B 两点与D 、C 两点恰好交换位置.由假设便有,)(,0)(ππg f >.0=又由前述假设,.0)0(,0)0(>=g f令),()()(θθθg f h -=则有.0)(,0)0(><πh h 由于)(),(θθg f 的连续性知)(θh 也是连续函数.依据连续函数的基本性质(零点定理),必至少存在一个角度0θ,,00πθ<<使得0)(0=θh ,即).()(00θθg f =又根据θθθ∀=,0)()(g f 成立,故有.0)()(00==θθg f 模型分析由于本问题结论简单,符合实际,故分析过程从略.2.试建立确定情形下允许缺货的存储问题的数学模型.提示: 所谓的确定情形下的存储模型是指文字教材第一章提到过的不允许缺货的存储模型;所谓允许缺货是在不允许缺货模型假设条件下,再考虑因缺货造成的损失建立相应的模型.(要求按照五步建模法进行建模工作,本题应给出五个步骤.)解: 问题分析由题设,只须在不允许缺货模型条件下,考虑因缺货造成的损失即可.而缺货损失按天计算与下列因素有关:货物总需求量、缺货量、缺货时刻、每单位的缺货费用等. 模型假设 (1)每次定货费为C 1,每天每单位货物的存储费为C 2 (2)每天货物的需求量为r 单位.(3) 每T 天定货Q 单位,所定货物可在瞬间到达.(4)允许缺货,每天每单位货的缺货费为C 3缺货时,存储量q 视为负值,则)(t q 的图形变为,Q rt q +-=如图7所示.模型建立 图7 货物在1T t =时售完,则必有一段时间缺货.又在T t =时下一次定货量Q 到达,于是有1rT Q = (1)在一个定货周期内的总费用包括定货费1C 、存储费Q T C dt t q C T 102221)(1⎰=和缺货费.)(13dt t q C T T ⎰其中21)(2)()(11T T r dt Q rt dt t q TT T T -=-=⎰⎰ 其中用到了(1)式.于是总费用应为2/)(2/213121T T r C QT C C C -++= (2) 则由(1)式解出r Q T /1=并代入(2)式可得r Q rT C r Q C C C 2/)(2/23221-++= (3)每天的平均总费用便是rT Q rT C rT Q C T C T C Q T C 2/)(2///),(23221-++== (4)(4)式即为所求的数学模型.模型求解对(4)式分别求总费用对定货周期和定货量的偏导数,并令其为零解得0)()(22322322221=-+----=∂∂Q rT T C Q rT rT C rT Q C T C T C0)(32=--=∂∂Q rT rTC rT Q C Q C 由3230C C rT C Q Q C +=⇒=∂∂,代入0=∂∂TC 便可解出 32321*33221*2;2C C C C r C Q C C C rC C T +=+=. (5) (5)式就是在允许缺货情形下,最佳定货周期与最佳定货量公式.模型分析当3C 远远超过2C 时,(5)式就转化为不允许缺货模型中的相应结论,这也说明所建模型是合理的,结论也是正确的.。
数学建模试题卷及答案
西安邮电大学2011-2012第一学期《数学建模》选修课试题卷班级:软件1003班姓名:学号:成绩:一、解释下列词语,并举例说明(每小题满分5分,共15分)1.模型答:模型:所研究的系统、过程、事物或概念的一种表达形式,也可指根据实验、图样放大或缩小而制作的样品,一般用于展览或实验或铸造机器零件等用的模子。
例如飞机模型,用压制或浇灌方法使材料成为一定形状的工具。
通称“模型”。
2.数学模型答:数学模型:用数学语言描述的一类模型。
数学模型可以是一个或一组代数方程、微分方程、差分方程、积分方程或统计学方程,也可以是它们的某种适当的组合,通过这些方程定量地或定性地描述系统各变量之间的相互关系或因果关系。
除了用方程描述的数学模型外,还有用其他数学工具,如代数、几何、拓扑、数理逻辑等描述的模型。
需要指出的是,数学模型描述的是系统的行为和特征而不是系统的实际结构。
3.抽象模型答:抽象模型:是三维建模里这么称呼的就跟抽象雕塑的一样的。
实际不存在,理论上却存在,并用思维对事物进行客观认识的理论或者框架。
对获得的感性材料和感性经验,运用理性思维进行一番老粗取梢、去伪存真、由此及彼、由表及里的改造制作工夫,去掉事物非本质的、表面的、偶然的东西,抽取出事物本质的、内在的、必然的东西,揭示客观对象的本质和规律而建立的模型。
二、简答题(每小题满分8分,共24分)1.模型的分类答:按照模型替代原型的方式,模型可以简单分为形象模型和抽象模型两类,形象模型:直观模型、物理模型、分子结构模型等;抽象模型:思维模型、符号模型,数学模型等。
2.数学建模的基本步骤答:(1)建模准备:数学建模是一项创新活动,它所面临的课题是人们在生产和科研中为了使认识和实践进一步发展必须解决的问题。
建模准备就是要了解问题的实际背景,明确建模的目的,掌握对象的各种信息,弄清实际对象的特征,情况明才能方法对;(2)建模假设:根据实际对象的的特征和建模的目的,在掌握必要资料的基础上,对原型进行抽象、简化,把那些反映问题本质属性的形态、量及其关系抽象出来,简化掉那些非本质的因素,使之摆脱原型的具体复杂形态,形成对建模有用的信息资源和前提条件,并且用精确的语言作出假设,是建模过程关键的一步。
电大数学建模复习资料
第一次作业(第1-2章)一、填空题1.设年利率为0.05,则10年后20万元的现值按照复利计算应为 . 2.所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .3.设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .4.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(1) 参加展览会的人数n ;(2)气温T 超过C10;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .5.有人观察到鱼尾每摆动一次,鱼所移动的距离几乎与鱼身的长度相等,则鱼尾摆动的次数T (次/秒)、鱼身的长度L 和它的速度V 的关系式为 .二、分析判断题1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决.2. 一条公路交通不太拥挤,以至人们养成“冲过”马路的习惯,不愿意走临近的“斑马线”.交管部门不允许任意横穿马路,为方便行人,准备在一些特殊地点增设“斑马线”,以便让行人可以穿越马路.那末“选择设置斑马线的地点”这一问题应该考虑哪些因素?试至少列出3种.3.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等. (1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额). (3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间. (5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划4.在2.5节森林救火模型中,如果考虑消防队员的灭火速度λ与开始救火时的火势b 有关,试假设一个合理的函数关系,重新求解模型.5. 假设某个数学模型建成为如下形式:.e ])1(1[)(22122x ax x M x P --= 试在适当的假设下将这个模型进行简化.三、计算题 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.(2)给出单位重量价格c 与w 的关系,画出它的简图,说明w 越大c 越小,但是随着w 的增加c 减小的程度变小.解释实际意义是什么?2.设某产品的售价为p ,成本为q ,售量为x (与产量相等),则总收入与总支出分别为px I =,qx C =.试在产销平衡的情况下建立最优价格模型.四、综合题某人身高1.70 m , 以适当的初速度在地球表面上可跳过与其身高相同的高度.试利用类比建模法说明:若该人以相同的初速度在月球上跳,试问他能跳多高?(地球与月球的重力加速度之比为6:1)第一次作业(第1-2章)讲评一、填空题1.解:根据现值计算公式:10)05.01(20)1(+=+=n R S Q 2783.1221201011≈=(万元) 应该填写:12.2783万元.2.解:应该填写:问题分析,模型假设,模型建立,模型求解,模型分析. 3.解: 由商品的均衡价格公式:80352536001200)(=++=++=c ad b t p 应该填写:80.4.解:因为冰淇淋的销量与人数n 、气温T 成正比,与售价p 成反比,因此应该填写: ),10(,/)10(0C T p T Kn N ≥-= K 是比例常数;5.解:因为鱼尾摆动的次数T 、鱼身的长度L 与它的速度V 成正比,因此应该填写:kTL V = (k 是常数);二、分析判断题 1.解:(1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益.(2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等. (3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料. (4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型. 2.解:(1)车流的密度 (2)车的行驶速度 (3)道路的宽度(4)行人穿越马路的速度 (5)设置斑马线地点的两侧视野等. 3.解:(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层). 4.解:不妨设1)(+'=b b λλ,表示火势b 越大,灭火速度λ越小,分母b +1中的1是防止b →0x 时λ→∞而加的.最优解为λβλβλ'++'+++'=)1()(21]()1(2[23221b c b b b c b c x . 5.解:当ax较小的时候,可以利用二项展开式将小括号部分简化为 ,21)1(222122ax a x -≈- 从而有2e 2)(2x x a M x P =.若x 也很小,则可以利用x x+≈1e 将其进一步化简为 ).1(2)(22x x aMx P +=三、计算题 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.(2)给出单位重量价格c 与w 的关系,画出它的简图,说明ww 的增加c 减小的程度变小.解释实际意义是什么? 解:(1)生产成本主要与重量w 成正比,包装成本 主要与表面积s 成正比,其它成本也包含与w 和s 成正 比的部分,上述三种成本中都含有与w 和s 无关的成分. 又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为 C = αw +β w 2/3+γ(α,β,γ为大于0的常数).(2)单位重量价格131--++==w w wCc γβα,其 图2 简图如图2所示.显然c 是w 的减函数,说明大包装商品比小包装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品.2.解:因为售量x 依赖于价格p ,记作)(p f x =,称为需求函数,它是p 的减函数.由此可知收入I 和支出C 都是价格p 的函数,所以利润U 可以表示为)()()(p C p I p U -= (2.8)使利润U (p )达到最大的最优价格p *可以由0d d *==p p pU 得到,即**d d d d p p p p pC pI ===(2.9)其中p I d d 称为边际收入,pC d d 称为边际支出.(2.9)式表明最大利润在边际收入等于边际支出时达到.假设需求函数是线性函数,即bp a p f -=)(,0,>b a (2.10)并且每件产品的成本q 与产量x 无关,将总收入函数、总支出函数、需求函数和(2.10)式代入(2.8)式可得))(()(bp a q p p U --=用微分法求出使U (p )达到最大的最优价格p *为baq p 22*+=(2.11) 在(2.10)式中a 可以理解为这种产品免费供应时(p = 0)社会的需求量,称为“绝对需求量”.pxb d d -=表示价格上涨一个单位时销售量下降的幅度.在实际工作中a ,b 可以由价格p 和售量x 的统计数据用最小二乘法拟合来确定.(2.11)式表明最优价格是两部分之和,一部分是成本q 的一半,另一部分与“绝对需求量”成正比,与市场需求对价格的敏感系数成反比.四、综合题解:问题分析 由于月球上的情况不了解,可先建立我们所熟悉的在地球上的有关结论,然后通过类比来加以解决.模型假设(1) 人在地球上跳高与空气阻力关系微弱,故可忽略空气阻力不计; (2) 在地面上跳高,实际上就是克服地球引力把身体“抛”到高处.其实质是把人体的重心提高到了1.70米,故可视人体为一质点.一般地,人体的重心约在身高的一半处. 模型构建与求解 依假设,可视跳高为以初速 v 0 把位于身高一半处的一质点铅直上抛.为了求出所跳高度x 与时间 t 的函数关系,可建立起跳处为原点,水平方向为 x 轴,铅直向上为 y 轴正向的平面直角坐标系.则由g tv-=d d ,0)0(v v = 知 v (t ) = -gt + v 0 (2.12) 又由)(d d t v t x =,85.0270.1)0(==x 得 85.02)(02++=t v gt t x (2.13) 类比建模: 在月球上跳高与在地球上跳高相比是完全类似的,所差的仅是重力加速度.设月球上的重力加速度为g m ,若记月球上的速度及位置函数分别为v 0,x m (因题设初始速度相同,故仍记月球上的初速度为v 0), 则应有 v m (t ) = - g m t + v 0 (2.14)85.02)(02++=t v t g t x m m (2.15) 由(2.15)知,为求出此人在月球上能跳多高,只需求出初速v 0及跳到最高处所需时间.注意到初速与地球的相同,故可由式(2.12),(2.13)求之:因跳到最高处时v 0= 0,故v 0 = gt ,于是 t = v 0/g .又此人在地球上跳了1.70m 高,故有85.0)()(2170.10020++-=gv v g vg由此得v 0=g 7.1= 4.082 m/s (2.16)于是该人在地球上跳到1.70m 高处时所用的时间为t = v 0/g = 0.42s . 以下再求在月球上以相同的初速跳到最高处所用的时间,即由 (2.14) 式及v m (t)=0,得v 0= g m t m ,即g 7.1=g m t m ,由此可得t m =g 7.1/g m . (2.17)将(2.16),(2.17)两式代入(2.15)式,便有x m ≈-21g m (m g g 7.1)2+g 7.1(mg g 7.1)+0.85 =27.1mg g+0.85=5.9 (m)即在月球上能跳过的高度约为5.9米.(m g g 6=)模型分析为求出人在月球上的活动结论,与同类活动在地球上的相应结论通过类比方法加以解决,这是类比法的又一个成功范例.同样,利用地球上的初速及相应公式求得月球上所需数据也是很关键的一步,亦是巧妙之举.第二次作业(第3-5章)一、填空题1.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 ,其解为 .2.设某种物资有两个产地21,A A ,其产量分别为10、20,两个销地21,B B 的销量相等均为15.如果从任意产地到任意销地的单位运价都相等为a ,则最优运输方案与运价具有 两个特点.二、分析判断题1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的. (2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.三、计算题1.与Logistic 模型不同的另一种描述种群增长规律的是Gompertz 模型:xNrx t xln )(= ,其中r 和N 的意义与Logistic 模型相同.设渔场鱼量的自然增长服从这个模型,且单位时间捕捞量为h =Ex .讨论渔场鱼量的平衡点及其稳定性,求最大持续产量h m 及获得最大产量的捕捞强度 E m 和渔场鱼量水平x *0.2. 试求如表4所示运输问题的最优运输方案和最小运输费用:B 1、B 2、B 3供选择,运费依次为20,40和30;而进口港也有三个可供选择,代号为C 1,C 2和C 3,运费为:B 1到C 1、C 2、C 3依次为70、40、60,B 2到C 1、C 2、C 3依次为30、20、40,B 3到321,,C C C 依次为40、10、50;进口后可经由两个城市D 1, D 2运抵目的地E ,从C 1、C 2、C 3到D 1、D 2的运费为10和40,60和30,30和30;从D 1、D 2到E 的运费则为30和40. 试利用图模型协助策划一个运输路线,使总运费最低.四、综合题一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到一些数据:若每间客房定价为160元,住房率为55%;每间客房定价为140元,住房率为65%;每间客房定价为120元,住房率为75%;每间客房定价为100元,住房率为85%.欲使每天收入最高,每间客房定价应为多少?注:本题要求按照五步建模法给出建模全过程.第二次作业(第3-5章)讲评一、填空题1.解 应该填写:⎪⎩⎪⎨⎧==0)0(d d x x rx t x ,.e )(0rtx t x =2.解:因为该问题从任意产地到任意销地的单位运价都相等故其具有最优运输方案不惟一;总运费均相等特点.应该填写: 最优运输方案不惟一;总运费均相等.二、分析判断题1.解:设t 时刻采用新技术的人数为x(t ). (1)指数模型xtxλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数. (3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图1.图1三、计算题1.解: 模型为Ex xNrx x F x-==ln )( , 如图3所示,有2个平衡点:x = 0和x 0 =rE N -e.可证x = 0不稳定,x 0稳定(与E ,r 的大小无关).最大持续 产量为h m = rN/e ,获得h m 的E m = r ,x *0 =e /N .图32. 解:易见,这是一个产销平衡且为最小值类型的运输问题.我们有 (1) 利用最小元素法可得初始方案如表5,(2)使用闭回路法可得负检验数为12λ= -1,故令12x 进基(3)使用闭回路法进行调整知11x 出基,便得新的运输方案如表6表6(4)再进行检验知,所有检验数0≥ij λ,故得最优运销图如图2:图2 最小费用为385(百元).3.某公司自国外A 厂家进口一部分精密机器.由厂家到出口港有三个港口B 1、B 2、B 3供选择,运费依次为20,40rN/A 1 B 3 B 2 5 15 A 2 B 2 B 1 10 5 A 3 B 4 B 2 10 15和30;而进口港也有三个可供选择,代号为C 1,C 2和C 3,运费为:B 1到C 1、C 2、C 3依次为70、40、60,B 2到C 1、C 2、C 3依次为30、20、40,B 3到321,,C C C 依次为40、10、50;进口后可经 由两个城市D 1, D 2运抵目的地E , 从C 1、C 2、C 3到D 1、D 2的运费 为10和40,60和30,30和30; 从D 1、D 2到E 的运费则为30和 40. 试利用图模型协助策划一个 运输路线,使总运费最低.解:首先建立图模型如图7. 图7 利用双标号法求最短路线过程如图8.图8利用逆向搜索法可得最优运输方案为方案1 ,223E D C B A ⇒⇒⇒⇒ 方案2 ,113E D C B A ⇒⇒⇒⇒方案3 .112E D C B A ⇒⇒⇒⇒ .110min =l四、综合题 解:(一)问题分析1. 易于看出,定价每降低20元,住房率便增加10%,呈线性增长趋势;2. 160元的定价是否为最高价应给予确定;3. 是否所有客房定价相同需要确定. (二) 模型假设1. 在无其他信息时,每间客房的最高定价均为160元;2. 所有客房定价相同. (三)模型建立根据假设1.,如果设y 代表旅馆一天的总收入,而x 表示与160元相比降低的房价,则可得每降低1钱元的房价,住房率增加为10%/20=0.005.由此便可以得到)005.055.0)(160(150x x y +-= (1) 注意到,1005.055.0≤+x 又得到,900≤≤x 于是得到所求的数学模型为: max )005.055.0)(160(150x x y +-=,.900≤≤x (四)模型求解这是一个二次函数的极值问题,利用导数方法易于得到]90,0[25∈=x 为唯一驻点,问题又确实存在最大值,故25=x (元)即为价格降低幅度,也即160-25=135(元)应为最大收入所对应的房价.(五)模型分析 1. 将房价定在135元时,相应的住房率为%,5.6725005.055.0=⨯+最大收入为75.13668%5.67135150max =⨯⨯=y (元).表面上住房率没有达到最高,但是总收入达到最大,这自然是住房率与价格相互制约造成.2. 可以将五种定价的总收入求出以做比较(从略)和检验,知我们的结果是正确的.3. 为了便于管理,将价格定在140元/(天.间)也无妨,因为此时的总收入与最高收入仅差18.75元.4. 假如定价是180元,住房率应为45%,其相应的收入只有12150元,由此可知,我们的假设1.是正确的.13春综合练习题1一、填空题 1.设开始时的人口数为0x ,时刻t 的人口数为)(t x ,若人口增长率是常数r ,那麽人口增长问题的马尔萨斯模型应为 ,其解为 .2.设某种物资有两个产地21,A A ,其产量分别为10、20,两个销地21,B B 的销量相等均为15.如果从任意产地到任意销地的单位运价都相等为a ,则最优运输方案与运价具有 两个特点.二、分析判断题1.对于技术革新的推广,在下列几种情况下分别建立模型.(1)推广工作通过已经采用新技术的人进行,推广速度与采用新技术的人数成正比,推广是无限的. (2)总人数有限,因而推广速度还会随着尚未采用新技术人数的减少而降低. (3)在(2)的前提下考虑广告等媒介的传播作用.三、计算题1. 试求如表4所示运输问题的最优运输方案和最小运输费用:B 1、B 2、B 3供选择,运费依次为20,40和30;而进口港也有三个可供选择,代号为C 1,C 2和C 3,运费为:B 1到C 1、C 2、C 3依次为70、40、60,B 2到C 1、C 2、C 3依次为30、20、40,B 3到321,,C C C 依次为40、10、50;进口后可经由两个城市D 1, D 2运抵目的地E ,从C 1、C 2、C 3到D 1、D 2的运费为10和40,60和30,30和30;从D 1、D 2到E 的运费则为30和40. 试利用图模型协助策划一个运输路线,使总运费最低.一、填空题1.解 应该填写:⎪⎩⎪⎨⎧==0)0(d d x x rx t x ,.e )(0rtx t x =2.解:因为该问题从任意产地到任意销地的单位运价都相等故其具有最优运输方案不惟一;总运费均相等特点. 应该填写: 最优运输方案不惟一;总运费均相等.二、分析判断题1.解:设t 时刻采用新技术的人数为x (t ). (1)指数模型x txλ=d d . (2)Logistic 模型)(d d x N ax tx-=,N 为总人数. (3)广告等媒介在早期作用较大,它对传播速度的影响与尚未采用新技术的人数成正比,在模型(2)的基础上,有))((d d x N b ax tx-+= (2)和(3)区别见图1.图1三、计算题1. 解:易见,这是一个产销平衡且为最小值类型的运输问题.我们有 (1) 利用最小元素法可得初始方案如表5,表5(2)使用闭回路法可得负检验数为12λ= -1,故令12x 进基(3)使用闭回路法进行调整知11x 出基,便得新的运输方案如表6表6(4)再进行检验知,所有检验数0≥ij λ,故得最优运销图如图2:图2 最小费用为385(百元).2.某公司自国外A 厂家进口一部分精密机器.由厂家到出口港有三个港口B 1、B 2、B 3供选择,运费依次为20,40和30;而进口港也有三个可供选择,代号为C 1,C 2和C 3,运费为:B 1到C 1、C 2、C 3依次为70、40、60,B 2到C 1、C 2、C 3依次为30、20、40,B 3到321,,C C C 依次为40、10、50;进口后可经由两个城市D 1, D 2运抵目的地E ,从C 1、C 2、C 3到D 1、D 2的运费 为10和40,60和30,30和30; 从D 1、D 2到E 的运费则为30和40. 试利用图模型协助策划一个运输路线,使总运费最低. 解:首先建立图模型如图7. 利用双标号法求最短路线过程如图8.图8利用逆向搜索法可得最优运输方案为方案1 ,223E D C B A ⇒⇒⇒⇒ 方案2 ,113E D C B A ⇒⇒⇒⇒方案3 .112E D C B A ⇒⇒⇒⇒ .110min =l13春综合练习题2一、填空题1.设年利率为0.05,则10年后20万元的现值按照复利计算应为 .A 1B 3 B 2 5 15 A 2 B 2 B 1 10 5 A 3 B 4 B 2 10 152.所谓数学建模的五步建模法是指下列五个基本步骤,按一般顺序可以写出为 .3.设某种商品的需求量函数是,1200)(25)(+-=t p t Q 而供给量函数是3600)1(35)(--=t p t G ,其中)(t p 为该商品的价格函数,那麽该商品的均衡价格是 .4.在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关:(2) 参加展览会的人数n ;(2)气温T 超过C10;(3)冰淇淋的售价p .由此建立的冰淇淋销量的比例模型应为 .5.有人观察到鱼尾每摆动一次,鱼所移动的距离几乎与鱼身的长度相等,则鱼尾摆动的次数T (次/秒)、鱼身的长度L 和它的速度V 的关系式为 .二、分析判断题1. 从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决.2. 一条公路交通不太拥挤,以至人们养成“冲过”马路的习惯,不愿意走临近的“斑马线”.交管部门不允许任意横穿马路,为方便行人,准备在一些特殊地点增设“斑马线”,以便让行人可以穿越马路.那末“选择设置斑马线的地点”这一问题应该考虑哪些因素?试至少列出3种.3.怎样解决下面的实际问题.包括需要哪些数据资料,要作些什么观察、试验以及建立什么样的数学模型等. (1)估计一个人体内血液的总量.(2)为保险公司制定人寿保险计划(不同年龄的人应缴纳的金额和公司赔偿的金额). (3)估计一批日光灯管的寿命.(4)确定火箭发射至最高点所需的时间. (5)决定十字路口黄灯亮的时间长度.(6)为汽车租赁公司制订车辆维修、更新和出租计划.(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划三、计算题 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.(2)给出单位重量价格c 与w 的关系,画出它的简图,说明w 越大c 越小,但是随着w 的增加c 减小的程度变小.解释实际意义是什么?第一次作业(第1-2章)讲评一、填空题1.解:根据现值计算公式:10)05.01(20)1(+=+=n R S Q 2783.1221201011≈=(万元)应该填写:12.2783万元.2.解:应该填写:问题分析,模型假设,模型建立,模型求解,模型分析. 3.解: 由商品的均衡价格公式:80352536001200)(=++=++=c ad b t p 应该填写:80.4.解:因为冰淇淋的销量与人数n 、气温T 成正比,与售价p 成反比,因此应该填写:),10(,/)10(0C T p T Kn N ≥-= K 是比例常数;5.解:因为鱼尾摆动的次数T 、鱼身的长度L 与它的速度V 成正比,因此应该填写:kTL V = (k 是常数);二、分析判断题 1.解:(1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益.(2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等. (3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料. (4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型. 2.解:(1)车流的密度 (2)车的行驶速度 (3)道路的宽度(4)行人穿越马路的速度 (5)设置斑马线地点的两侧视野等. 3.解:(1)注射一定量的葡萄糖,采集一定容量的血样,测量注射前后葡萄糖含量的变化,即可估计人体的血液总量.注意采集和测量的时间要选择恰当,使血液中的葡萄糖含量充分均匀,又基本上未被人体吸收.(2)调查不同年龄的人的死亡率,并估计其在未来一定时期的变化,还应考虑银行存款利率和物价指数,保险金与赔偿金之比大体上应略高于死亡率.(3)从一批灯管中取一定容量的样本,测得其平均寿命,可作为该批灯管寿命的估计值.为衡量估计的精度,需要从样本寿命确定该批灯管寿命的概率分布,即可得到估计值的置信区间.还可试验用提高电压的办法加速寿命测试,以缩短测量时间.(4)根据牛顿第二定律建立火箭向上发射后的运动方程,初速已知,若不考虑空气阻力,很容易算出到达最高点(即速度为零)时间;若考虑空气阻力,不妨设其与火箭速度(或速度的平方)成正比,并有试验及拟合方法确定阻力系数,再解方程得到结果.(5)司机看到黄灯后停车要有一定的刹车距离S 1,设通过十字路口的距离为S 2,汽车行驶速度为v ,则黄灯的时间长度t 应使距停车线S 1之内的汽车能通过路口,即t ≈(S 1+S 2)/v .S 1可由试验得到,或按照牛顿第二定律解运动方程,进一步可考察不同车重、不同路面及司机反应灵敏程度等因素的影响.(6)根据资料和经验确定维修费用随着车龄和行驶里程的增加而增加的关系,再考虑维修和更新费用,可以以一年为一个时段,结合租金决定应该维修或更新.(7)统计在各层上班的人数,通过数据或计算确定电梯运行时间,以等待的人数与时间乘积为目标,建立优化模型,确定每部电梯运行的楼层(有的从大厅直接运行到高层).三、计算题 1.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗?比如洁银牙膏50g 装的每支1.50元,120g 装的每支3.00元,二者单位重量的价格比是1.2:1.试用比例方法构造模型解释这个现象.(1)分析商品价格c 与商品重量w 的关系.价格由生产成本、包装成本和其它成本决定,这些成本中有的与重量w 成正比,有的与表面积成正比,还有与w 无关的因素.(2)给出单位重量价格c 与w 的关系,画出它的简图,说明w 越大c 越小,但是随着w 的增加c 减小的程度变小.解释实际意义是什么? 解:(1)生产成本主要与重量w 成正比,包装成本 主要与表面积s 成正比,其它成本也包含与w 和s 成正 比的部分,上述三种成本中都含有与w 和s 无关的成分. 又因为形状一定时一般有s ∝w 2/3,故商品的价格可表为 C = αw +β w 2/3+γ(α,β,γ为大于0的常数).(2)单位重量价格131--++==w w wCc γβα,其 图2 简图如图2所示.显然c 是w 的减函数,说明大包装商品比小包装商品便宜;曲线是下凸的,说明单价的减少值随包装的变大是逐渐降低的,不要追求太大包装的商品.数学建模13春综合练习题3一、填空题。
《第1部分 数学建模活动案例》试卷及答案_高中数学必修第四册_沪教版_2024-2025学年
《第1部分数学建模活动案例》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在解决数学建模问题时,以下哪个步骤是首要的?()A、收集数据B、建立数学模型C、求解模型D、验证模型2、在数学建模活动中,以下哪个步骤不属于模型求解阶段?A. 模型建立B. 模型求解C. 模型检验D. 模型分析3、已知某班级有40名学生,男生人数为x,女生人数为y,则以下哪个方程可以表示这个班级的性别比例关系?A. x + y = 40B. x - y = 0C. x / y = 1 / 2D. 2x + y = 404、已知某校高一学生参加数学建模活动的比例为30%,若随机抽取10名学生,则预计参加数学建模活动的学生人数约为()A. 3人B. 4人C. 5人D. 6人5、某工厂生产一批产品,计划每天生产200个,但实际生产效率比计划高,5天内就完成了生产任务。
如果每天多生产50个,则可以在4天内完成任务。
设实际每天生产的产品数量为x个,则根据题意可以列出方程:200 * 5 = x * 4 + 50 * 4请选择下列选项中正确的一个:A. x = 150B. x = 175C. x = 200D. x = 2256、已知某校计划在校园内种植树木,考虑到美观和绿化,决定在道路两侧种植一定数量的树木。
若在每侧种植5棵树,则道路的总长度为50米;若在每侧种植6棵树,则道路的总长度为60米。
设道路的宽度为x米,每棵树的间隔为y米,则下列方程中正确的是()A. 5(x+y)=50B. 6(x+y)=50C. 5(x+2y)=50D. 6(x+2y)=607、某城市为了优化公共交通系统,计划在人口密集区域增设公交线路。
假设每增加一条公交线路可以服务的人口数呈递减趋势,即第一条线路可服务1000人,第二条线路可服务900人,以此类推,每新增一条线路,服务人数减少100人。
如果该市计划通过增加公交线路来覆盖3000人的出行需求,那么至少需要增加几条公交线路?A. 2B. 3C. 4D. 58、在解决实际问题时,建立数学模型的第一步是:A、确定数学模型的形式B、收集相关数据C、分析问题,提出假设D、选择合适的数学工具二、多选题(本大题有3小题,每小题6分,共18分)1、某城市交通管理部门为了研究城市交通拥堵情况,收集了早高峰时段某主要干道上通过车辆的数量数据,并假设这些数据服从正态分布。
第四次数学建模作业
实验五 MATLAB 的绘图
1、在同一坐标系下绘制下面三个函数在 t∈[0,4π]的图象。
y1 = t y y
2 3
=
t
− 0 .1 t
= 4π e
sin( t )
2、编写程序,选择合适的步距,绘制下面函数在区间[-6,6]中的图象。
90 120 1.5 150 1 0.5 30 2 60
180
0
ቤተ መጻሕፍቲ ባይዱ210
330
240 270
300
4、三维空间曲线绘制 z=0:0.1:4*pi;
x=cos(z); y=sin(z); plot3(x,y,z)
5、用 mesh 或 surf 函数,绘制下面方程所表示的三维空间曲面,x 和 y 的取值范围设为[-3, 3]。
sin x, y ( x ) = x, − x + 6,
x≤0 0< x≤3 x>3
3、用 compass 函数画下面相量图
ua = 1 ; ub = cos(-2*pi/3)+sin(-2*pi/3)*i ; uc=cos(2*pi/3)+sin(2*pi/3)*i; compass([ua,ub,uc,ua-ub,ub-uc,uc-ua])
x2 y2 z=− + 10 10 三、思考题
在同一坐标系下,用不同颜色和线型绘制以下两个函数在t∈[-2π,2π]范围内的图象。
y1 = 2
0 .5 t
y 2 = 2 e − 0 .2 t
数学建模选修课作业2012
数学建模选修课作业作业要求:1、三人一组,在下面四个题目中任选一题作答;2、采用Word文档编辑,按格式要求完成数学建模论文,不少于10页,(格式附后);3、请于2012年6月14日星期四晚上课程结束时按组上交打印稿,并同时上交电子文档,二者缺一均不给分;4、不按时上交者不给分;5、如有雷同,绝对零分。
A题血流系数问题用放射性同位素测量大脑局部血流量的方法如下:由受试者吸入含有某种放射性同位素的气体,然后将探测器置于受试者头部某固定处,定时测量该处的放射性记数率(简称记数率)同时测量他呼出气的记数率。
由于动脉血将肺部的放射性同位素输送到大脑,使脑部同位素增加,而脑血流量又将同位素带离,使同位素减少。
实验证明脑血流引起局部地区记数率下降的速度与当时该处的记数率成正比。
其比例系数反映该处的脑血流量,被称为血流量系数。
只要确定该系数即可推算出脑血流量。
动脉血从肺部输送同位素至大脑引起脑部记数率上升的速度与当时呼出的记数率成正比。
试建立确定血流系数的数学模型并计算上述受试者的脑血流系数。
B 题 摩托车选购问题你已经去过几家主要的摩托车商店,基本确定将从三种车型中选购一种。
你选择的标准主要有:价格、耗油量大小、舒适程度和外表美观情况。
经反复思考比较,构造了它们之间的成对比较矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=13151131517155118731A 三种车型(记为a ,b ,c )关于价格、耗油量、舒适程度及你对它们表观喜欢程度的成对比较矩阵为(价格) (耗油量) c b a c b ac b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121312121321 c b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡171271521511(舒适程度) (外表)c b a c b ac b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1411411531 c b a ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡17131715311 试建立模型解决下面问题:(1)根据上述矩阵可以看出四项标准在你心目中的比重是不同的,请按由重到轻的顺序将它们排出。
《数学建模》课后习题及答案
第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。
学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。
(2)2.1节中的Q值方法。
(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。
你能解释这种方法的道理吗。
如果委员会从10人增至15人,用以上3种方法再分配名额。
将3种方法两次分配的结果列表比较。
(4)你能提出其他的方法吗。
用你的方法分配上面的名额。
2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。
比如洁银牙膏50g装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。
试用比例方法构造模型解释这个现象。
(1)分析商品价格C与商品重量w的关系。
价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。
(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。
解释实际意义是什么。
3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。
假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。
若知道管道长度,需用多长布条(可考虑两端的影响)。
如果管道是其他形状呢。
5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模》选修课班第1-4次作业第1次作业1.什么是数学建模?答:当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
数学建模是构造刻划客观事物原型的数学模型并用析究和解决实际问题的种方法。
运用这种科学方法,建模者必须从实际问题出发,遵循“实践――认识――实践”的辨证唯物主义认识规律,紧紧围绕着建模的目的,运用观察力、想象力和逻辑思维,对问题进行抽象、简化,反复探索、逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。
因此,数学建模不仅仅是一种定量解决实际问题的科学方法,而且还是一种从无到有的创新活动过程。
当代计算机的发展和广泛应用,使得数学模型的方法如虎添翼,加速了数学向各个学科的渗透,产生了众多的边缘学科。
当今几乎所有重要的学科,只要在其名称前面或后面加上“数学”或“计算”二字,就成了现有的一种国际学术杂志名称。
这表明各学科正在利用数学方法和数学成果来加速本学科的发展。
就连计算机本身的产生和进步也是强烈地依赖于数学科学的发展,而计算机软件技术说到底也是数学技术。
简单地来说,就是对于一个现实对象,为了一个特定的目的,根据其内在规律,作出必要的简化假设,运用适当的数得到一个数学结构。
2 数学建模的基本步骤有哪些?答:数学建模的基本方法 1.模型准备。
2模型假设。
3.模型求解,4模型分析5模型验证(2——5之间进行循环)6模型应用一、数学建模题目1·以社会,经济,管理,环境,自然现象等现代科学中出现的新问题为背景,一般都有一个比较确切的现实问题。
2·给出若干假设条件:1.只有过程、规则等定性假设;2.给出若干实测或统计数据;3.给出若干参数或图形等。
根据问题要求给出问题的优化解决方案或预测结果等。
根据问题要求题目一般可分为优化问题、统计问题或者二者结合的统计优化问题,优化问题一般需要对问题进行优化求解找出最优或近似最优方案,统计问题一般具有大量的数据需要处理,寻找一个好的处理方法非常重要。
二、建模思路方法1、合适的寻优算法进行求解或利用比例分析、代数方法、微分方程等分析方法从基本物理规律以及给出的资料数据来推导出变量之间函数关系。
2、数据分析法对大量的观测数据进行统计分析,寻求规律建立数学模型,采用的分析方法一般有:1·回归分析。
2·时序分析法。
3·多元统计分析。
4、计算机仿真。
三、模型求解四.论文结构:1、问题的重述,背景分析2、问题的分析3、模型的假设,符号说明4、模型的建立(局部问题分析,公式推导,基本模型,最终模型等)5、模型的求解6、模型检验:模型的结果分析与检验,误差分析7、模型价:优缺点,模型的推广与改进8、参考文献9、附录第2次作业1.数学建模的分类有哪些?答:1.按照模型的应用领域(或所属学科)分:如人口模型、交通模型、环境模型、生态模型、城镇规划模型、水资源模型、再生资源利用模型、污染模型等 2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型、几何模型、微分方程模型、图论模型、马氏链模型、规划论模型 3.静态模型和动态模型,离散模型和连续模型,线性模型和非线性模型4.按照建模目的分:有描述模型、分析模型、预报模型、优化模型、决策模型、控制模型等 5.按照对模型结构的了解程度分:有所谓白箱模型、灰箱模型、黑箱模型.2.数学建模的作用并举例说明?答:在科学研究数学化的进程中, 数学建模为组织和构造新知识提供了方法, 有力地推进了各门科学的发展和完善。
随着计算机应用的发展, 数学建模又成为高新技术的一种“数学技术”, 发挥着关键性的作用,使高新技术不断取得丰硕成果。
时代的进步又使数学建模的内涵愈来愈丰富、深刻, 其应用也日渐广泛。
不论是自然科学工作者、工程技术人员, 还是社会科学工作者, 数学建模方法都将为他们提供一种重要的研究手段。
数学为组织和构造知识提供了方法,以至于当用于技术时就能使科学家和工程师们生产出系统的、能复制的,并且是可以传播的知识。
分析、设计、建模、模拟(仿真)及其具体实施就可能变成高效加结构良好的活动。
"因此"在经济竞争中数学科学是必不可少的,数学科学是一种关键的、普遍的、能够实行的技术"。
例如:在机械化生产车间里你可以看到这样的情景:排列整齐的工作台旁边工人们紧张地生产同一种产品,工作上方一条传送带在运转,带上设置若干钩子,工人们将产品挂在上方的钩子上带走,当生产进入稳定状态后,每个工人生产一件产品所需的时间是不的,而他挂产品的时刻是随机的。
衡量这种传送带的效率可以看它能否及时地把工人们生产的产品带走,显然在工人数目不变的情况下传送带的速度越快,带上的钩子越多,效率会越高。
我们要构造一个衡量传送带效率的指示,并且在一些简化假设下设立一个模型来描述这个指示与工人数目,钩子数量等参数的关系。
第3次作业1.某工厂有两条生产线,分别用来生产M和P两种型号的产品,利润分别为200元/个和300元/个,生产线的最大生产能力分别为每日100和120,生产线每生产一个M产品需要1个劳动日进行调试、检测等工作,而每个P产品需要2个劳动日,该厂每天只有160个劳动日可用,假如原材料等其它条件不受限制,问应如何安排生产计划,使获得的利润最大?解:设这两种产品的生产量分别为X1, x2则数学模型为:Max z=200X1+300X2{X1<=100,X2<=120}X1+2X2<=160Xi>=0 ,i=1,2模型求解(用lingo求解)最优解为X1=100,X2=30,最优值Z=29000即每天生产100个M产品,30个P产品,可获得29000元利润。
2. 如果你参加全国大学生数学建模竞赛,3天的竞赛时间你打算怎么合理安排?答:因为考核内容是一些现实中的生活内容:竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过高等学校的数学课程。
题目有较大的灵活性供参赛者发挥其创造能力。
参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
所以要多想想生活中的解决方法。
第一天应该认真审题,然后同伙伴们讨论该如何作答,同时查找各种可用的资料,组织答题思路,如何创新答题。
第二天就答题为主,第三天就写数学建模论文。
第4次作业1. 一汽车厂生产小、中、大三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润以及每月工厂钢材、劳动时间的现有量如表1所示。
试制订月生产计划,使工厂的利润最大。
表1 汽车厂的生产数据答:设每个月生产小,中,大型汽车的数量分别X1,X2,X3建立线性规划模型:Max z=2X1+3X2+4X3S·t· 1.5X1+3X2+5X3<=600280X1+250X2+400X3<=6000(X1,X2,X3>=0)模型求解(用lingo求解)经讨论IP的最优解X1=64,X2=168,X3=0,最优值Z=632所以每个月生产小,中,大型汽车的数量分别为64,168,0辆则可得最大利润。
2.大学生数学建模的竞赛论文怎么写作?答:概述应把论文的主要思绪、结论和模型的特征讲清楚,让人看到论文的新意。
概述又称概要,内容提要。
概述是以提供文献内容梗概为目的,不加评论和补充解释,简明、确切地记叙文献重要内容的短文。
其基本要素包括研讨目的、方法、结果和结论。
具体地讲就是研讨任务的主要对象和范围,采用的手腕和方法,得出的结果和重要的结论,有时也包括具无情报价值的其它重要的信息。
概述应具有独立性和自明性,并且拥有与文献同等量的主要信息,即不阅读全文,就能取得必要的信息。
对一篇完整的论文都要求写随文概述,概述的主要功用有以下几点。
1.让读者尽快了解论文的主要内容,以补充题名的缺乏。
现代科技文献信息浩如烟海,读者检索到论文题名后能否会阅读全文,主要就是经过阅读概述来判别,所以,概述担负着吸引读者和将文章的主要内容引见给读者的义务。
2.为科技情报文献检索数据库的树立和维护提供方便。
论文公布后,文摘杂志或各种数据库对概述可以不作修正或稍作修正而直接应用,从而防止他人编写概述能够发生的曲解、完善甚至错误。
(二)效果提出和假定的合理性模型假定是树立数学模型中十分要害的一步,关系到模型的成败和优劣。
所以,我们应该细致地剖析实践效果,从少量的变量中挑选出最能表现效果实质的变量,并简化它们的关系。
这局部外容就应该在论文的“效果的假定”局部中表现。
由于假定普通不是实践效果直接提供的,它们因人而异,所以在撰写这局部外容时要留意以下几方面:1.论文中的假定要以严厉、确切的数学言语来表达,使读者不致发生任何曲解。
2.所提出的假定确实是树立数学模型所必需的,与树立模型有关的假定只会扰乱读者的思考。
3.假定应验证其合理性。
假定的合理性可以从剖析效果进程中得出,例如从效果的性质动身作出契合知识的假定;或许由观察所给数据的图像,失掉变量的函数方式;也可以参考其他资料由类推失掉。
关于后者我们应指出文献资料(三)模型的树立在作出假定后,我们就可以在论文中引进变量及其记号,笼统而确切地表达它们的关系,经过一定的数学方法,最后顺利地树立方程式或归结为其他方式的数学效果,此处,一定要用剖析和论证的方法,即说理的方法,让读者清楚地了解失掉模型的进程。
上下文之间我们切忌逻辑推理进程中跃渡过大,影响论文的压服力,需求推理和论证的中央,应该有推导的进程而且应该力图严谨;援用现成定理时,要先验证满足定理的条件。
论文中用到的各种数学符号,必需在第一次出现时加以说明。
总之,我们要把失掉数学模型的进程表达清楚,使读者取得判别模型迷信性的一个依据。
(四)模型的计算与剖析把实践效果归结为一定的数学效果后,我们就要求解或停止剖析。
在数值求解时,我们应对计算方法有所说明,并给出所运用软件的称号或许给出计算顺序(通常以附录方式给出)。
我们还可以用计算机软件绘制曲线和曲面表示图,来笼统地表达数值计算结果。
基于计算结果,我们可以用由剖析方法失掉一些对实际有所协助的结论。
有些模型(例如非线性微分方程)需求作动摇性或其他定性剖析。
这时我们应该指出所依据的数学实际,并在推理或计算的基础上得出明白的结论。
在模型树立和剖析的进程中,带有普遍意义的结论我们可以用明晰的定理或命题的方式陈说出来。