圆锥曲线与方程 知识点详细
第二章《圆锥曲线与方程》知识点(精华)
圆锥曲线一.直线.圆(1)过两点1122(,),A x y B x y ,()的直线的斜率公式:)(211212x x x x y y k ≠--=(2)直线方程(3)两直线平行与垂直(两直线斜率都存在) 当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l(4)两点间距离公式:设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,则||AB =(5)点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=(6) 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.(7)圆的一般方程:022=++++F Ey Dx y x .圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(8)直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-;圆心到直线的距离22B A C Bb Aa d +++=则有中点是,其中点线与.圆相交于(9).直AB M AB222BOMB OM =+唯一让你变得与众不同的天赋是持续不断的忍耐和坚持二.椭圆知识点椭圆的定义:①平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)22(2121F F a a PF PF >=+, ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.②双曲线的定义可用集合语言表示为:{}a MF MF M P 221=+=.注意:若)(2121F F PF PF =+,则动点P 为线段21F F ;若)(2121F F PF PF <+,则动点P 无图形. 2.椭圆的标准方程与几何性质:三双曲线1.双曲线的定义:①平面内与两个定点1F 、2F 的距离的差的绝对值等于常数2a()212122F F a a MF MF <=-,的 点的轨迹叫做双曲线. 这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. ②双曲线的定义可用集合语言表示为:{}a MF MF MP 221=-=.注意:当122a F F =时,表示分别以1F 、2F 为端点的两条射线;当122a F F <时,轨迹不存在. 2.双曲线的标准方程与几何性质:注意:a 、b 、c 、e 的几何意义:a 叫做半实轴长;b 叫做半虚轴长;c 叫做半焦距;222c a b =+. e 叫做双曲线的离心率,ce a=且1e >,e 越大,双曲线的张口就越大四抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点, 直线l 叫做抛物线的准线.注意:当定点F 在定直线l 上时,点的轨迹为过点F 与直线l 垂直的直线. 2.抛物线的标准方程与简单几何性质: 注意:1. 若点00(,)M x y 是抛物线22(0)y px p =>上任意一点,则02pMF x =+. 2.若过焦点的直线交抛物线22(0)y px p =>于11(,)A x y 、22(,)B x y 两点,则弦长12AB x x p =++.。
圆锥曲线与方程知识点总结
圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。
圆锥曲线包括椭圆、双曲线和抛物线等。
1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC < 0,则为椭圆。
椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。
椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。
2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC > 0,则为双曲线。
双曲线有两个分支,其特点是到两个焦点的距离差固定。
双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。
3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。
若B^2 - 4AC = 0,则为抛物线。
抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。
抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。
4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。
(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。
(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。
(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。
圆锥曲线与方程知识点总结
圆锥曲线与方程知识点总结圆锥曲线是数学中的一个重要分支,涉及到许多有趣而复杂的数学概念和方程。
在这篇文章中,我们将对圆锥曲线和方程的关键知识点进行总结。
一、圆锥曲线的定义与分类圆锥曲线是由一个平面和一个双曲面或椭球面相交而形成的曲线。
根据平面和曲面的相对位置和交叉方式,圆锥曲线可以分为三类:椭圆、双曲线和抛物线。
椭圆是圆锥曲线中最简单也是最熟悉的一种形式。
它可以定义为平面上距离两个固定点之和为常数的点组成的集合。
椭圆有两个焦点,离焦点越远的点离圆心越远。
椭圆的方程是标准方程形式(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的半长轴和半短轴。
双曲线是由与椭圆相似的方式定义而成的。
它可以定义为平面上距离两个固定点之差为常数的点组成的集合。
双曲线有两个焦点,离焦点越远的点离中心轴越远。
双曲线的方程是标准方程形式(x-h)²/a² - (y-k)²/b² = 1或(x-h)²/a² - (y-k)²/b² = -1,其中(h,k)是双曲线的中心坐标,a 和b分别是双曲线的半长轴和半短轴。
抛物线也是圆锥曲线中的一种形式。
它可以定义为平面上距离一个固定点和一个固定直线的距离相等的点组成的集合。
抛物线有一个焦点和一条准线。
抛物线的方程是标准方程形式y = ax² + bx + c,其中a、b和c是常数。
二、圆锥曲线的性质与应用除了定义和方程,圆锥曲线还有许多重要的性质和应用。
下面我们将介绍其中的一些。
1. 焦点和准线:焦点是圆锥曲线的一个重要特征。
在椭圆和双曲线中,焦点是使得曲线上的点满足焦点定义的关键。
在抛物线中,焦点是使得平面上的点满足距离定义的关键。
准线是抛物线上离焦点最近的直线,具有独特的性质和应用。
2. 相似与合称性:圆锥曲线具有相似性质,即它们的形状在适当的缩放下保持不变。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结圆锥曲线是解析几何中的重要内容,它包括圆、椭圆、双曲线和抛物线四种曲线。
在学习圆锥曲线的方程时,我们需要掌握各种曲线的标准方程、一般方程以及一些重要的性质和定理。
接下来,我们将对圆锥曲线方程的知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。
首先,我们来看圆的方程。
圆的标准方程是(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为半径。
而圆的一般方程是x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。
在解析几何中,我们需要掌握如何由标准方程转化为一般方程,以及如何由已知条件确定圆的方程。
其次,我们来看椭圆的方程。
椭圆的标准方程是(x/a)² + (y/b)² = 1,其中a和b 分别为椭圆在x轴和y轴上的半轴长。
椭圆的一般方程是Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E为常数。
在学习椭圆的方程时,我们需要了解椭圆的离心率、焦点、长轴、短轴等重要概念,以及它们之间的关系。
接着,我们来看双曲线的方程。
双曲线分为两种类型,一种是横轴为对称轴的双曲线,另一种是纵轴为对称轴的双曲线。
横轴为对称轴的双曲线的标准方程是(x/a)² (y/b)² = 1,而纵轴为对称轴的双曲线的标准方程是(y/b)² (x/a)² = 1。
双曲线的一般方程也是由这些标准方程推导而来,我们需要掌握如何进行转化和确定双曲线的方程。
最后,我们来看抛物线的方程。
抛物线分为两种类型,一种是开口向上的抛物线,另一种是开口向下的抛物线。
开口向上的抛物线的标准方程是y² = 2px,开口向下的抛物线的标准方程是y² = -2px。
抛物线的一般方程也可以由这些标准方程推导而来,我们需要了解抛物线的焦点、准线、顶点等重要性质。
(完整版)《圆锥曲线》主要知识点
圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
圆锥曲线方程知识点总结
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
第3章圆锥曲线的方程知识点汇总
p 2
x p 2
x p 2
y p 2
y p 2
过抛物线的焦点且垂直于对称轴的弦称为通径: HH 2 p
AB x1 x2 p 参数 p 表示焦点到准线的距离, p 越大,开口越阔
谢谢观看!
A1 a,0 、 A2 a,0
A1 0, a 、 A2 0,a
实轴的长 2a
虚轴的长 2b
关于 x 轴、 y 轴对称,关于原点中心对称
F1 c,0 、 F2 c,0
F1 0, c 、 F2 0,c
F1F2 2c (c2 a2 b2)
3.2 双曲线
a,b, c 关系
离心率
渐近线方程 焦点到渐近线
图形
标准方程
顶点 离心率 对称轴
y2 2 px
y2 2 px
x2 2 py
x2 2 py
p 0
p 0
p 0
p 0
0, 0
e 1
x轴
y轴
3.3 抛物线
范围
焦点
准线方程
通径 焦点弦长
公式
参数 p 的
几何意义
x0
x0
y0
y0
F
p 2
,
0
F
p 2
,
0
F
0,
p 2ቤተ መጻሕፍቲ ባይዱ
F
0,
第3章 圆锥曲线的方程知识点汇总
3.1 椭圆
定义 焦点的位置
平面内与两个定点 F1 、 F2 的距离的和等于常数 2a (大于| F1F2 | 2 c )的点的
轨迹叫椭圆,两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
焦点在 x 轴上
焦点在 y 轴上
图形
圆锥曲线的方程知识点总结
同学们,咱们在高中数学里,圆锥曲线的方程可是个重要的家伙!今天就来给大家好好唠唠。
先说椭圆,它的方程就像一个温柔的“大胖子”。
比如说,椭圆方程$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$($a>b>0$),这里的$a$和$b$可重要啦,决定了椭圆的形状和大小。
就像一个大西瓜,$a$是长半轴,$b$是短半轴。
再看双曲线,那可是个“调皮鬼”。
双曲线方程$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,它有两支,一支向左跑,一支向右跑。
比如说,火箭发射的轨道,有时候就像双曲线。
还有抛物线,它是个“急性子”,总是一条线冲出去。
比如投篮的时候,篮球在空中划过的轨迹,就可能是抛物线,它的方程$y^2 =2px$($p>0$),$p$决定了抛物线的开口大小和方向。
怎么样,同学们,圆锥曲线的方程是不是没那么可怕啦?多做几道题,咱们就能把它们拿下!圆锥曲线方程,你真的懂了吗?亲爱的小伙伴们,今天咱们来聊聊圆锥曲线的方程。
想象一下,椭圆就像一个压扁的圆,比如我们常见的操场跑道,有一部分就是椭圆形状的。
它的方程$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$,告诉你怎么画出这个“压扁的圆”。
双曲线呢,像是两个背靠背的滑梯。
比如一些建筑的设计,就会用到双曲线的形状。
它的方程$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,让我们能算出滑梯的样子。
抛物线就简单啦,像喷泉水柱往上喷,然后落下来的轨迹。
家里的手电筒照出的光,也近似抛物线。
它的方程$y^2 = 2px$,帮我们描述这个美丽的曲线。
好好琢磨琢磨这些例子,圆锥曲线方程就不再神秘啦!圆锥曲线方程:数学世界的奇妙之旅小伙伴们,让我们一起踏上圆锥曲线方程的奇妙之旅吧!先说椭圆,它的方程就像一个神奇的密码。
比如我们看太阳系里行星的轨道,很多就是近似椭圆的。
高二圆锥曲线与方程知识点
高二圆锥曲线与方程知识点在高二数学学习中,圆锥曲线与方程是一个重要的知识点,它涉及到二元一次方程、抛物线、椭圆和双曲线等内容。
掌握这些知识点不仅能够帮助我们解决实际问题,也是高中数学学习的基础。
本文将从二元一次方程和三种圆锥曲线入手,详细介绍高二圆锥曲线与方程的相关知识点。
一、二元一次方程1. 二元一次方程的基本形式是:Ax + By + C = 0,其中A、B、C是已知数,且A和B不同时为零。
2. 当A和B同时为零时,方程没有解。
3. 当A或B有且只有一个为零时,方程有唯一解。
4. 当A和B都不为零时,方程有无数解,这类方程表示一条直线。
二、抛物线1. 抛物线的标准方程是:y = ax² + bx + c,其中a≠0,a、b、c为常数。
2. 抛物线开口方向由a的正负决定,a>0表示抛物线开口向上,a<0表示抛物线开口向下。
3. 抛物线的顶点坐标为(-b/2a, c-b²/4a)。
4. 抛物线的对称轴与x轴平行,方程为x = -b/2a。
三、椭圆1. 椭圆的标准方程是:(x-h)²/a² + (y-k)²/b² = 1,其中a、b分别表示椭圆长半轴和短半轴的长度,(h, k)表示椭圆的中心坐标。
2. 椭圆是关于x轴和y轴对称的。
3. 椭圆的焦点到中心的距离称为焦距,焦距的长度等于椭圆的长半轴长度。
4. 椭圆的离心率ε = c/a,其中c表示焦距的长度。
四、双曲线1. 双曲线的标准方程是:(x-h)²/a² - (y-k)²/b² = 1,其中a、b分别表示双曲线横轴和纵轴的半轴长度,(h, k)表示双曲线的中心坐标。
2. 双曲线是关于x轴和y轴对称的。
3. 双曲线的焦点到中心的距离称为焦距,焦距的长度等于双曲线的横半轴长度。
4. 双曲线的离心率ε = c/a,其中c表示焦距的长度。
五、总结通过学习高二圆锥曲线与方程的知识点,我们可以应用它们解决一些实际问题。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
圆锥曲线与方程知识点总结
圆锥曲线与方程知识点总结圆锥曲线是一种二维的曲线,它的形状类似于圆锥。
圆锥曲线的方程通常用参数方程的形式表示,其中包含两个参数t和k。
t是曲线上的点的横坐标,k是圆锥曲线的焦点到顶点的距离。
圆锥曲线的一般形式方程为:x = k * t * cos(t)y = k * t * sin(t)其中t是参数,k是圆锥曲线的焦点到顶点的距离。
圆锥曲线的特殊形式有:圆锥曲线的标准形式方程:x = ty = k * t^2圆锥曲线的极坐标形式方程:x = k * cos(t)y = k * sin(t)圆锥曲线的泊松形式方程:x = k * cosh(t)y = k * sinh(t)圆锥曲线的双曲线形式方程:x = k * cosh(t)y = k * sinh(t)圆锥曲线的性质:圆锥曲线是闭合的,即曲线的起点和终点重合。
圆锥曲线是对称的,即关于y轴对称。
圆锥曲线的顶点在y轴上。
圆锥曲线的焦点在x轴上。
圆锥曲线的焦点到顶点的距离称为焦距。
圆锥曲线的形状取决于焦距的大小。
当焦距大于0时,圆锥曲线的形状类似于圆锥,称为双曲圆锥曲线。
当焦距等于0时,圆锥曲线的形状类似于椭圆,称为椭圆圆锥曲线。
当焦距小于0时,圆锥曲线的形状类似于倒圆锥,称为凹圆锥曲线。
圆锥曲线的应用:圆锥曲线常用于几何图形的绘制,如圆锥体、圆柱体、圆台体等。
圆锥曲线还可以用于机械设计、建筑设计等领域。
总结:圆锥曲线是一种二维的曲线,其形状类似于圆锥,可以用参数方程、标准形式方程、极坐标形式方程、泊松形式方程和双曲线形式方程来表示。
圆锥曲线有若干性质,如闭合、对称、顶点在y轴上、焦点在x轴上等,并且其形状取决于焦距的大小。
圆锥曲线常用于几何图形的绘制,并在机械设计、建筑设计等领域得到广泛应用。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。
它在数学、物理、工程和计算机图形等领域具有广泛的应用。
本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。
一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。
它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。
- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。
- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。
2. 方程形式:圆锥曲线可以以各种形式的方程表示。
常见的方程形式包括标准方程、参数方程和极坐标方程。
二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。
椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。
2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。
3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。
4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。
5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。
三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。
抛物线对称于准线,并且具有一个顶点。
2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。
3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。
4. 极坐标方程:抛物线没有显式的极坐标方程。
5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。
圆锥曲线知识点总结
圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
圆锥曲线知识点 总结
圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。
圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。
它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。
- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。
- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。
- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。
2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。
- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。
- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。
- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。
3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。
参数方程是指用参数来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。
极坐标方程是指用极坐标来表示一个函数或曲线的方程。
对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。
焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。
6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。
圆锥曲线与方程知识点详细
圆锥曲线与方程知识点详细-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 。
3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
圆锥曲线知识点全归纳(完整精华版)
圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。
当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。
定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。
定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。
圆锥曲线与方程知识点详细
圆锥曲线与方程知识点详细圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们在数学、物理等领域都有着广泛的应用。
接下来,让我们详细了解一下圆锥曲线与方程的相关知识点。
一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。
焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} =1$($a > b > 0$)。
3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。
(3)顶点:焦点在$x$轴上的椭圆的顶点为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点为$(0, \pm a)$,$(\pm b, 0)$。
(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),离心率反映了椭圆的扁平程度,$e$越接近$0$,椭圆越圆;$e$越接近$1$,椭圆越扁。
二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。
2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,其中$a > 0$,$b > 0$,$c =\sqrt{a^2 + b^2}$。
高中数学圆锥曲线知识点总结
高中数学中,圆锥曲线是重要的内容之一。
以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。
2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。
3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。
-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。
-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。
4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。
-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。
5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。
-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。
6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。
-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。
-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。
-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。
7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。
同时,准线也是曲线的对称轴。
圆锥曲线知识点公式大全
圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。
它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。
1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。
2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。
焦距是c,满足c² = a² - b²。
3.离心率:离心率用e表示,e² = 1 - (b²/a²)。
离心率是一个衡量椭圆形状的指标,e=0表示圆。
4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。
5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。
6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。
7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。
以上是圆锥曲线的基本知识点和公式。
除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。
-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。
-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。
-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。
对于圆锥曲线来说,高斯曲率恒为常数。
希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。
高中数学圆锥曲线方程知识点总结
§8.圆锥曲线方程 知识要点一、椭圆方程1. 椭圆方程的第一定义:平面内与两个定点F 1,F 2的距离的和等于定长定长通常等于2a,且2a>F 1F 2的点的轨迹叫椭圆;1①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax=+.ii. 中心在原点,焦点在y 轴上:)0(12222b a b x a y=+.注:A.以上方程中,a b 的大小0a b >>,其中222b ac =-;B.在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小;②一般方程:)0,0(122 B A By Ax =+.③椭圆的标准方程:12222=+b y a x 的参数方程为⎩⎨⎧==θθsin cos b y a x 一象限θ应是属于20πθ .⑵椭圆的性质①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆;当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=;⑦焦点半径:i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则ii.设),(00y x P 为椭圆)0(12222 b a a y b x =+上的一点,21,F F 为上、下焦点,则由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a ca x e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆.⑧通径:垂直于x 轴且过焦点的弦叫做通径.坐标:),(2222a b c a b d -=和),(2ab c⑨焦点三角形的面积:若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan 2θb 用余弦定理与a PF PF 221=+可得;若是双曲线,则面积为2cot2θ⋅b ;(3)(4)共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 2.3.椭圆的第二定义:平面内到定点F 的距离和它到一条定直线LF 不在L 上的距离的比为常数e 01e <<的点的轨迹叫做椭圆;其中定点F 为椭圆的焦点,定直线L 为椭圆焦点F 相应的准线;二、双曲线方程1.2. 双曲线的第一定义:平面内到到两个定点F 1,F 2的差的绝对值等于定长定长通常等于2a,且2a<F 1F 2的点的轨迹叫做双曲线;12||||||2PF PF a -=;⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PF⑴①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-.一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b ya x 或02222=-by a xii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±bx a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c.③离心率ace =.④准线距c a 22两准线的距离;通径ab 22.⑤参数关系ace b a c =+=,222.⑥焦点半径公式:对于双曲线方程12222=-by ax21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点“长加短减”原则:与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号aex MF a ex MF -=+=0201 构成满足a MF MF 221=-M aex F M --='01⑶等轴双曲线:双曲线222a y x ±=-yA.定义:实轴和虚轴等长的双曲线叫做等轴双曲线;定义式:a b =;B.等轴双曲线的性质:1渐近线方程为:x y ±= ;2渐近线互相垂直;C.注意到等轴双曲线的特征a b =,则等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上;⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x .2.双曲线的第二定义:平面内到定点F 的距离和它到一条定直线LF 不在L 上的距离的比为常数ee>1的点的轨迹叫做双曲线;其中定点F 为双曲线的焦点,定直线L 为双曲线焦点F 相应的准线;三、抛物线方程1抛物线的概念平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 不在定直线l 上;定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线;方程()022>=p pxy 叫做抛物线的标准方程;注意:它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F2p ,0,它的准线方程是2px -= ;2抛物线的性质设0 p ,抛物线的标准方程、类型及其几何性质:注:①通径过焦点且垂直于坐标轴的线段为2p,这是过焦点的所有弦中最短的.px y 22=或py x 22=的参数方程为⎩⎨⎧==pt y pt x 222或⎩⎨⎧==222pt y ptx t 为参数. 四、圆锥曲线的统一定义1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.当10 e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1 e 时,轨迹为双曲线;当0=e 时,轨迹为圆a c e =,当b ac ==,0时.弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=2.备注1双曲线:1等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 2共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x . 备注2抛物线:1设抛物线的标准方程为2y =2pxp>0,则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p,焦点到准线的距离为p.2已知过抛物线2y =2pxp>0焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设Ax 1,y 1,Bx 2,y 2,则弦长AB=21x x ++p 或α2sin 2pAB =α为直线AB 的倾斜角,221p y y -=,2,41221px AF p x x +==AF 叫做焦半径. §弦长公式:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 。
3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。
当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。
注意:椭圆12222=+by a x 的图像中线段的几何特征(如下图):假设已知椭圆方程12222=+b y a x (0,0a b >>),且已知椭圆的准线方程为2a x c=±,试推导出下列式子:(提示:用三角函数假设P 点的坐标e PM PF PM PF ==22114、椭圆的另一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。
即上图中有e PM PF PM PF ==22115、椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+b x a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221=范围 a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点)0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace 准线方程 c a x 2±=ca y 2±=焦半径01ex a PF +=,02ex a PF -= 01ey a PF +=,02ey a PF -=椭圆有两条对称轴,它们分别是两焦点的连线及两焦点连线段的中垂线; 椭圆都有四个顶点,顶点是曲线与它本身的对称轴的交点;离心率确定了椭圆的形状(扁圆形状),当离心率越接近于0,椭圆越圆;当离心率越接近于1时,椭圆越扁。
6.直线与椭圆的位置关系1.将直线方程与椭圆方程联立,消元后得到一元二次方程,然后通过判别式∆来判断直线和椭圆是否相交、相切或相离。
2.消元后得到的一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,通常是写成两根之和与两根之积的形式,这是进一步解题的基础。
7.椭圆方程的求解方法1.要学会运用待定系数法来求椭圆方程,即设法建立,a b 或者,e c 中的方程组,要善于抓住条件列方程。
先定型,再定量,当焦点位置不确定时,应设椭圆的标准方程为12222=+by a x (0a b >>)或22221y x a b +=(0a b >>);或者不必考虑焦点的位置,直接把椭圆的标准方程设为221x y m n+= 或者 mx 2+ny 2=1 (0,0,m n m n >>≠),这样可以避免讨论及繁杂的计算,当已知椭圆上的两点坐标时这种解题更方便。
但是需要注意的是m和n(或者11m n和)谁代表2a,谁代表2b要分清。
不要忘记隐含条件和方程,例如:222 a b c =+,cea=等等。
不同的圆锥曲线有不同的隐含条件和方程,切勿弄混。
2.求解与椭圆几何性质有关的问题时要结合图形分析,即使画不出图形,思考时也要联想图形,注意数形结合法的使用,切勿漏掉一种情况。
【典型例题】1、椭圆的定义例1、已知F1(-8,0),F2(8,0),动点P满足|PF1|+|PF2|=16,则点P的轨迹为( )A 圆B 椭圆C线段 D 直线2、椭圆的标准方程例2、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6;(2)长轴是短轴的2倍,且过点(2,1);(3) 经过点(5,1),(3,2)3、离心率例3、椭圆22221(0)x ya ba b-=>>的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。
若∠F1PF2=60°,则椭圆的离心率为_________ 4、最值问题例4、椭圆2214xy+=两焦点为F1、F2,点P在椭圆上,则|PF1|·|PF2|的最大值为_____,最小值为_____5、直线和椭圆例10、已知直线l:y=2x+m,椭圆C:22142x y+=,试问当m为何值时:(1)有两个不重合的公共点;(2)有且只有一个公共点;(3)没有公共点.双曲线一、知识点讲解(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。
||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:(3①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到0x y a b±=。
②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ;(4)等轴双曲线为222t y x =-21.注意定义中“陷阱问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为ABCPOxy2.注意焦点的位置: 问题2:双曲线的渐近线为x y 23±=,则离心率为 【典型例题】 1.定义题:1.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的.2.如图2所示,F 为双曲线1169:22=-y x C 的左 焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称,则F P F P F P F P F P F P 654321---++的值是( ) A .9 B .16 C .18 D .273. P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为( ) (A )a -(B )b -(C )c -(D )c b a -+2.求双曲线的标准方程1.已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ;3.与渐近线有关的问题1若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.23.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x4.过点(1,3)且渐近线为x y 21±=的双曲线方程是 4.几何1.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( ) A . B .12 C. D .245.求弦1.双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为 ( )A. 12-=x yB. 22-=x yC. 32-=x yD. 32+=x y抛物线知识点1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 距离与到定直线l 的距离相等; (3)定点不在定直线上.知识点2.抛物线的标准方程和几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率 e =1准线方程 x =-p 2x =p 2 y =-p2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向 向右 向左 向上 向下 焦半径(其中P (x 0,y 0)|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2【典型例题】例1设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.变式练习1.(1)若点P到直线y=-1的距离比它到点(0,3)的距离小2,则点P的轨迹方程是________.(2)过抛物线y2=4x的焦点作直线l交抛物线于A,B两点,若线段AB中点的横坐标为3,则|AB|等于________.变式练习2.(1)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为( )A.18 B.24 C.36 D.48变式练习3.1.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点,若|F A|=2|FB|,求k的值.【归纳总结】4个结论——直线与抛物线相交的四个结论已知抛物线y2=2px(p>0),过其焦点的直线交抛物线于A,B两点,设A(x1,y1),B(x2,y2),则有以下结论:(1)|AB|=x1+x2+p或|AB|=2psin2α(α为AB所在直线的倾斜角);(2)x1x2=p2 4;(3)y1y2=-p2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p.3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.注:椭圆、双曲线、抛物线的标准方程与几何性质。