波利亚及其解题理论 (2)
波利亚的解题理论_2022年学习资料
解题过程:-·第1弄清问题-·条件(已知):-■1c-10:-2CosA/cosB-b/a=4/3-·③点 为△ABC内切圆上的动点、-口问题(未知):-·求点P到项点A、B、C的距离的平方和的-最小值和最大值。6
第2拟订计划-回忆原来有没有见过同类问题(没有),但见-过相关的问题:-o-1已知三角形的某些边角关系,判 三角形-的形状、解三角形等(知三求一,已知的三个-边角元素中至少有一个是边,题目基本符-合-·②如果三角形 以确定,那么此题就是求这-个三角形的某个特征曲线上的动点到三个顶-点的距离的平方和的最值问题。-17
如何解题-1.积累认识的资源-2.掌握转化的方法-3。及时调控的能力-4.良好信念系统的支持
波利亚的怎样解题表-解题过程分为以下四个阶段:-1.弄清问题-2.拟订计划-3.实现计划-4.回顾
波利亚的怎样解题表-1弄清问题-1未知数是什么?已知数据是什么?条件是什么?-满足条件是否可能?要确定未知 ,条件是否充分?或-者它是否不充分?或者是多余的?或者是矛盾的?-2画张图,并引入适当的符号.-3把条件的 部分分开,并把它们写下来。
波利亚《怎样解题表》简介-波利亚的数学教育思想概述-波利亚George Polya数学教育思想的核心问题数 学教育的目的是什么?-1波利亚主张数学教学的目的应当是提高学生的一般素-养:首先和主要的目标应当是教会青年 考、-2教什么样的思考?数学是什么?数学有什么特点?对数-学及其意义的认识的教学观起着决定性的作用。
我国数学解题研究的代表人物和代表作-罗增儒-戴再平-单蹲-朱华伟-·中学数学解题的-理论与实践M.-数学习 理论-南宁:广西教育-[M上海:上-出版社,2008-解题研究M.-海教育出版社,-年9:前言-南京:南京 -•数学解题策略-范大学出版社,-1991.3:-·数学解题学引论-2002.6-1996.10.-[M西 .陕西-•北京:科学出-师范大学出版社,-版社,2009.8.-1997.6-4
波利亚解题实例
用波利亚的解题方法解题在△ABC 中,C B A ∠∠∠,,所对的边分别是c b a ,,,且,43cos cos ,10===a b B A c p 为ABC 内切圆上的动点.求点p 到顶点C B A ,,的距离的平方和的最小值与最大值。
【分析】:第一步:理解题意。
本题的条件是(i)c=10,(ii),43cos cos ==a b B A (iii)P 是ABC 内切圆上的动点,所求的结论是要求出P 点到A ,B ,C 三顶点的距离的平方和的最值。
由此可得,这是一道关于图形的最值问题。
第二步:拟订计划.第二,①ABC 的三边,且的形状及其大小。
确定的ABC 的内切圆上有一动点对①小题,ABC 已具备了三个条件式,三角形不难解出来.对于②小题,拟引入直角坐标系,即能利用解析法列出目标函数,至再由c=10,43=a b 及222c b a =+,可解得a=6,b=8. 如图1,建立直角坐标系,使直角△ABC 的三个顶点 为A (8,0),B (0,6),C (0,0).在直角ABC 中,有,2,2=+=+r r c b a所以,内切圆的圆心为),2,2(O '方程为4)2()2(22=-+-y x .设圆上的任一点为P (x,y ),则有S=222PC PB PA ++因P是内切圆上的点,故o≤z≤4,于是当z=4时,有最小值72,当x=o时,有最大值88。
第四步:回顾讨论.对于上面解题过程的运算检验无误后可考虑:x=O时,P点运动到BC上的M,此时的所求平方和最大值为88;当x=4时,P点运动到过M的直径的另一端点N,此时得所求平方和最小值为72.此外,能否用别的方法来导出结果呢?对第①小题也可一开始用余弦定理作代换,对第②小题除选择不同的位置建立坐标系外,圆上的动点P也可以利用参数式表示,于是有好几种解法(略).本题虽然是一道不复杂的综合题,但善于解题的人也会从中获得一些有益的经验.(1)如果本题前部分不用正弦或余弦定理作代换,后半部分不使用解析法,虽仍能设法确定三角形并推导出目标函数,但解题过程的繁杂呈度明显上升.这说明,对于同样的素材(题设条件),选用不同的加工方法(解题方法),其繁简程度是有显著区别的.(2)(3)数形结合,会使计算大为简化,并且可能揭露问题.。
波利亚的数学解题理论及其在初中数与代数应用题教学中的应用
所谓数学建模就是在阅读材料、理解题意 的基础上,把实际问题抽象成数学问题,并 对获取的信息进行分析加工、去粗取精、抽 象概括,利用数学知识建立相应的数学模型 。从实际问题到纯数学问题,既有对新信息 的分析加工,又有对记忆中的原有信息的提 取再加工,是一个复杂艰难的过程。建构数 学模型,是解应用题的关键。
列方程(组)解应用题的一般步骤: 审题 ; (1)_______ 设元 ; (2)_______ 等量关系 (3)找出包含未知数的___________; 列出方程(组) ; (4)_______________ 求出方程(组)的解 ; (5)___________________ 检验并作答 . (6)_____________
在列方程(组)解应用题时,一般采用直 接设元法,但有时也使用间接设元。不论采用 什么方法设元,要首先寻找题目中的数量关系 ,然后再寻找等量关系,根据数量关系和等量 关系列出的方程,一般情况下,列出的方程的 个数要与未知数的个数相同。 根据题意列出的方程(组)可能是各种各样 的,这些方程(组)和我们学解方程(组)时 解过的方程(组)不一样,因此,我们要利用 学过的知识来判断是什么方程(组),然后, 根据不同类型方程(组)的解法去解方程(组 )。
初中数学应用题类型分类
方程应用题
一次函数应用题
统计应用题 其他应用题
不等式应用题
二次函数应用题
解直角三角形应用题
一、方程应用题芈月传中的数学题
• 例1:为了有效地控制沙尘暴等恶劣天气对人 类生存环境的破坏,我国北方某地决定加快植 树造林的速度,计划用两年的时间将防风林面 积从现在的20,000公顷扩大到2.4万公顷。求平 均每年增长的百分率。 • 例2:某种商品因换季准备打折出售。如果按 定价的七五折出售将赔25元,而按定价的九折 出售将赚20元,问这种商品的定价是多少。 方程应用题的解题步骤可用六个字概括,即 审(审题),设(设未知数),列(列方程),解(解 方程),检(检验),答。 考试内容多结合当前一些热点话题,如储蓄 问题,人均收入问题,环保问题,商品打折问 题等。
波利亚的解题理论
23
第三步
实现计划
解析:设原来的进价为 x ,售价为 y ,则由题 意可知现在的进价为 x1 10% ,由等量关系 列出方程
y x(1 10%) y x (1 25%) x(1 10%) x
13
1. 弄清问题
“弄清问题”阶段,重述问题,教会学生形成 正确的审题方法 ① 首先,了解已知是什么?未知是什么?条件 是什么?要确定未知数,条件是否充分? 是否 不充分?
② 其次,形成正确的审题方法。
③ 最后,注意引导学生挖掘已知条件与所求之 间的关系,特别是挖掘题中的隐含条件。
14
例如:计算 C
y ( x 0) 2 (0 2) 2 [ x (1)] 2 (0 3) 2
17
3. 实现计划
“实现计划”阶段,加强基础教学,善用 一题多变加深和提高解题能力 ① 实现你的求解计划,检验每一步骤. ② 你能否清楚地看出这一步骤是正确的?你 能否证明这一步骤是正确的?
波利亚的数学教育理论
1
回顾一下,我们学过的教育理论有哪些? 弗赖登塔尔数学教育理论 建构主义理论 数学教学理论
2
一、波利亚简介
二、波利亚数学教育理论 三、波利亚《怎样解题》
四《怎样解题》在中学数学中的应用
3
一、波利亚简介
波 利 亚 ( 1887-1985 ) , 美 籍匈牙利数学家。生于布达佩 斯,卒于美国。青年时期曾在布 达佩斯、维也纳、巴黎等地攻读 数学、物理和哲学,获博士学 位。1914年在瑞士苏黎世工业大 学任教 , 1938 年任数理学院院 长。1940年移居美国,历任布朗 大学、斯坦福大学教授。1963年 获美国数学会功勋奖。
波利亚的数学解题思想及其在中学数学教学中的应用
内蒙古师范大学硕士学位论文波利亚的数学解题思想及其在中学数学教学中的应用姓名:***申请学位级别:硕士专业:学科教学·数学指导教师:***20051010中文摘要乔治·波利亚对数学教育的研究麓贡献举世瞩目,他在数学教育上的成就主要包括解题理论、数学教育理论和教师教育理论三个方面,这三个方面的理论对我国的数学谦程与数学教学改蕈、数学教师的培养与培训都有着十分重要的指鼯意义。
本文通过对波翻耍畜关著箨麓磷究,把其中鲶波裂亚关予数学壤嚣思维理论,比较全面系统地整理出来,从宏观和微观两个方丽加以论述,使其形成一个较为完善的体系。
渡利亚的解题理论强调盼是数学憨维的教学,钝把解霪作为一种手段,通过怎样解题的教学,启迪学生的数学思维,达到培养学生分析和解决惩题麓力魏霆鳇。
解题的元认知结构是数学解题认知结构的重要组成部分,波利亚的解题理论给出_『没有冠以心理学名词的勰题元认知理论体系。
数学解题元认鲡能力盼携高,有赖予解遂学习者善于运霜波翻亚的“穗示语”,以及蒋于提炼具有个人风格的“提示语”。
近年寒,在素质教育滋下,人钔深入{爨究莠实载波穰亚的解题愚想。
教育创新的提嫩不仅符合时代和社会发展的要求,符合培养全面发展人的需要,而且像符合教育自身发展的客观规律,符合世界教育改革的大趋势,论文遥j建借鉴渡翻驻的数学解遂愚怒,阐述了教学过程孛如俺培养学生良好的思维方式和创新精神。
数学痘发法是波剩亚予1945年嚣绕“怎样勰题”提出的一静教学思想。
20世纪80年代初期美国提出“问题解决教学思想,给出了数学启发法一种新的解释理论。
另外,本文还对波剁亚著作中的合情推理进行了分析,指出合情推理在数学发现麓创造思维中的重瑟作用,结合我溺的数学谍程改革探讨了合情推理在数学教学中的独特优势。
关键词:波利戏,数学思维,闯题解决,数学教学GeorgePolya’Sresearchandcontributiononmathematicaleducationwasworld-famous.Hisachievementonmathematicaleducationmainlyincludedtheoryofproblemsolving,theoryofmathematicalteachingandtheoryofteachereducation.ThesethreekindsoftheorieshadgreatsignificanceonthereformofmoderncirrocumuliofmathematicsandteacherstOteaching,thecultivationandtrainingofmathematicalteachers幻ourcountry.ThroughthestudyofPolya’sworks,thearticleclearsuphisthinkingtheoryofsolution,anddiscussesitfrombothmicroandmacrophasestodevelopacomparativelycompletesystem.ThetheoryofsolvingproblemsPolyaemphasizesisakindofmathematicalthinking,whoregardssolvingproblemsasameansandtellspeoplehowtoenlightenthestudents’mathematicalthinkingwhichmayarriveattheaimofeducatingthestudents’abilitytoanalyzeandsolveproblems。
(完整版)波利亚的解题理论
波利亚的解题理论(讲稿)同学们好!今天我们大家一起来学习波利亚的解题理论。
首先,让我们了解一下波利亚的生平.乔治·波利亚(George Polya,1887-1985)美籍匈牙利数学家,生于匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根、巴黎等地攻读数学、数学、物理和哲学,1912年获数学博士学位。
他是法国科学院、美国全国科学院和匈牙利科学院的院士,是20世纪举世公认的数学家和数学教育家,也是享有国际盛誉的数学方法论大师,为数学方法论的现代研究,特别是为数学解题教学研究奠定了必要的理论基础。
他的成就主要包括解题理论、数学教学理论和教师教育理论,发表200多篇论文和许多专著,主要著作包括:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)等。
其中《怎样解题》与《数学的发现》集中论述了怎样解题的问题,而《数学与猜想》则对合情推理进行了生动地、富有创造性地论述。
在数学方面,对实变函数、复变函数和概率论等若干分支领域作出了开创性的贡献,留下了以他的名字命名的术语和定理。
在数学解题研究领域,波利亚是一面旗帜,也是一代宗师。
这里主要介绍他的解题理论。
学习波利亚的解题理论,首先需要了解对“解题”过程的界定。
波利亚认为,解题是智力的特殊成就,题目是数学的心脏,数学教学的本质在于教会学生解题,解题思想“应当诞生在学生心里,教师仅仅像助产士那样行事"(苏格拉底语),由此,数学教师的首要任务是发展学生解决问题的能力.为了帮助学生,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究可解题的思维过程,用朴素而现代化的形式来阐明探索法(既有助于发现的探索方法),并集几十年教学与科研之大成写成《怎样解题》一书,与1948年出版,风靡世界.其中“怎样解题"表仔细分析了求解各种数学问题时的思维过程,成为经典之作。
概括的说来,“怎样解题”表是波利亚的解题理论的核心内容。
波利亚的《怎样解题》(word版)
1.帮助学生第一部分在教室中目的教师最重要的任务之一是帮助学生。
这个任务并不很简单,它需要时间、实践、热忱以及健全合理的原则。
学生应当有尽可能多的独立工作经验。
但是如果让他独自面对问题而得不到任何帮助或者帮助得不够。
那么他很可能没有进步。
但若教师对他帮助过多,那么学生却又无事可干,教师对学生的帮助应当不多不少,恰使学生有一份合理的工作。
如果学生不太能够独立工作,那末教师也至少应当使他感觉自己是在独立工作。
为了做到这一点,教师应当考虑周到地、不显眼地帮助学生。
不过,对学生的帮助最好是顺乎自然。
教师对学生应当设身处地,应当了解学生情况,应当弄清学生正在想什么,并且提出一个学生自己可能会产生的问题,或者指出一个学生自己可能会想出来的步骤。
2.问题、建议、思维活动在打算对学生进行有效、不显眼而又自然的帮助时,教师不免一而再,再而三地提出一些相同的问题,指出一些相同的步骤。
这样,在大量的问题中,我们总是问:未知数是什么?我们可以变换提法,以各种不同的方式提问同一个问题:求什么?你想找到什么?你假定求的是什么?这类问题的目的是把学生的注意力集中到未知数上。
有时,我们用一条建议:看着未知数,来更为自然地达到同一效果。
问题与建议都以同一效果为目的:即企图引起同样的思维活动。
从作者看来,在与学生讨论的问题中,收集一些典型的有用问题和建议,并加以分类是有价值的。
前面这张表就包含了这类经过仔细挑选与安排的问题和建议;它们对于那些能独立解题的人也同样有用。
读者充分熟悉这张表并且看出在建议之后所应采取的行动之后,他会感到这张表中所间接列举的是对解题很有用的典型思维活动。
这些思维活动在表中的次序是按其发生的可能性大小排列的。
3.普遍性表中所提问题与建议的重要特点之一是普遍性,例如:未知数是什么?已知数是什么?条件是什么?这些问题都是普遍适用的,对于所有各类问题,我们提出这些问题都会取得良好效果。
它们的用途不限于任何题目。
我们的问题可以是代数的或几何的,数学的或非数学的,理论的或实际的,一个严肃的问题或仅仅是个谜语。
波利亚的解题理论
波利亚的解题理论一、波利亚的生平及主要著作对于我们数学学习者而言,大多都有过这样的经历:一道题,自己怎么想也想不出解法,而老师却给出了一个绝妙的解法。
这时候,我们最想知道“老师是怎么想出这个解法的”,如果这个解法不是很难,我们也许会问“自己完全可以想出,但为什么我没有想到呢?”要回答这个问题,实际上牵涉到对揭发数学问题解决规律的深入研究。
综观历史来看,美籍匈牙利数学家乔治。
波利亚(George Polya,1887-1985)不仅对上述问题特别感兴趣,而且在该领域做出了许多奠基性的工作。
波利亚是法国科学院,美国科学院和匈牙利科学院的院士,1887年出生在匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根、巴黎等地攻读数学、物理和哲学,获博士学位。
1914年在苏黎世著名的瑞士联邦理工学院任教。
1940年移居美国,1942年起任美国斯坦福大学教授。
他一生发表200多篇论文和许多专著。
他在数学的广阔领域内有精深的造诣,对实变函数、复变函数、组合论、概率论、数论、几何等若干分支领域都做出了开创性的贡献,一些术语和定理都以他的命名。
由于他在数学教育方面所取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席。
《怎样解题》(1944),《数学的发展》(1945)和《数学与猜想》(1961)这三本书就是他智慧的结晶。
这些书被译成很多国家的文字出版,其中《怎样解题》一书被译成17种文字,仅平装本就销售了100万册以上。
著名数学家范。
德。
瓦尔登1952年2月2日在瑞士苏黎世大学的会议致辞中说:“每个大学生,每个学者,特别是每个老师都应该都读读这本引人入胜的书”。
这些书成了世界范围内的数学教育名著,对数学教育产生了深刻的影响。
二、波利亚对数学教育的基本看法波利亚对于数学教育的目的、价值、方法非常关注。
他认为,“中小学生到底为什么要学习数学?要学什么样的数学?通过什么途径学好数学?”具体一点就是,在中小学阶段,是以“学数学”为主呢,还是以学如何“用数学”为主呢?这一点必须弄清楚。
波利亚解题理论
波利亚的怎样解题表陕西师范大学罗增儒罗新兵1乔治·波利亚乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先表明其对“问题解决”重要性的突出强调,同时也表明其对“问题解决”研究兴趣集中在启发法上.波利亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?下面是实践波利亚解题表的一个示例,能够展示波利亚解题风格的心路历程,娓娓道来,栩栩如生.2.2“怎样解题”表的实践例1给定正四棱台的高h,上底的一条边长a和下底的一条边长b,求正四棱台的体积F.(学生已学过棱柱、棱锥的体积)讲解第一,弄清问题.问题1.你要求解的是什么?要求解的是几何体的体积,在思维中的位置用一个单点F象征性地表示出来(图1).问题2.你有些什么?一方面是题目条件中给出的3个已知量a、b、h;另一方面是已学过棱柱、棱锥的体积公式,并积累有求体积公式的初步经验.把已知的三个量添到图示处(图2),就得到新添的三个点a、b、h;它们与F之间有一条鸿沟,象征问题尚未解决,我们的任务就是将未知量与已知量联系起来.第二,拟定计划.问题3.怎样才能求得F?由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥”,从一个大棱锥中截去一个小棱锥所生成的.如果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.图3问题4.怎样才能求得A与B?依据棱锥的体积公式(V=13Sh),底面积可由已知条件直接求得,关键是如何求出两个棱锥的高.并且,一旦求出小棱锥的高x,大棱锥的高也就求出,为x+h.我们在图示上引进一个新的点x,用斜线把A与x、a连结起来,表示A能由a、x得出,A =13a2x;类似地,用斜线把B 与b 、h、x连结起来,表示B 可由b、h、x得出,B=13b2(x+h)(图4),这就把求A 、B 转化为求x .图4问题5.怎样才能求得x ?为了使未知数x 与已知数a 、b、h联系起来,建立起一个等量关系.我们调动处理立体几何问题的基本经验,进行“平面化”的思考.用一个通过高线以及底面一边上中点(图5中,点Q)的平面去截两个棱锥,在这个截面上有两个相似三角形能把a 、b 、h 、x 联系起来(转化为平面几何问题),由△VPO1∽△VQO2得图5x a x h b =+②这就将一个几何问题最终转化为代数方程的求解.解方程②,便可由a 、b 、h 表示x,在图示中便可用斜线将x 与a、b、h 连结起来.至此,我们已在F 与已知数a 、b 、h 之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.作辅助线(过程略)如图5,由相似三角形的性质,得x a x h b =+,解得x=ah b a-. 进而得两锥体的体积为A=13a2x =13·3a h b a-,B=13b2(x+h)=13·3b hb a-,得棱台体积为F=B-A=13·33()b a hb a--=13(a2+ab+b2)h.③第四,回顾.(1)正面检验每一步,推理是有效的,演算是准确的.再作特殊性检验,令a→0,由③可得正四棱锥体的体积公式;令a→b,由③可得正四棱柱体的体积公式.这既反映了新知识与原有知识的相容性,又显示出棱台体积公式的一般性;这既沟通了三类几何体极限状态间的知识联系,又可增进三个体积公式的联系记忆.(2)回顾这个解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息(如图1所示,有棱台,a、b、h、F共5条信息),同时又要及时提取记忆网络中的有关信息(如回想:棱台的定义、棱锥的体积公式、相似三角形的性质定理、反映几何结构的运算、调动求解立体几何问题的经验积累等不下6条信息),并相应将两组信息资源作合乎逻辑的有效组合.这当中,起调控作用的关键是如何去构思出一个成功的计划(包括解题策略).由这一案例,每一个解题者还可以根据自己的知识经验各自进一步领悟关于如何制定计划的普遍建议或模式.(3)在解题方法上,这个案例是分析法的一次成功应用,从结论出发由后往前找成立的充分条件.为了求F,我们只需求A、B(由棱台体积到棱锥体积的转化——由未知到已知,化归);为了求A、B,我们只需求x(由体积计算到线段计算的转化——由复杂到简单,降维);为了求x,我们只需建立关于x的方程(由几何到代数的转化——数形结合);最后,解方程求x,解题的思路就畅通了,在当初各自孤立而空旷的画面上(图1),形成了一个联接未知与已知间的不中断网络(图5),书写只不过是循相反次序将网络图作一叙述.这个过程显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是制定一个计划,综合是执行这个计划”.(4)在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略水平上的解决),把F转化为A,B的求解(F=A-B),就明确了解题的总体方向;其次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;最后是特殊性解决(技能水平的解决),比如按照棱台的几何结构作图、添辅助线找出相似三角形、求出方程的解、具体演算体积公式等,是对推理步骤和运算细节作实际完成.(5)在心理机制上,这个案例呈现出“激活——扩散”的基本过程.首先在正四棱台(条件)求体积(结论)的启引下,激活了记忆网络中棱台的几何结构和棱锥的体积公式,然后,沿着体积计算的接线向外扩散,依次激活截面知识、相似三角形知识、解方程知识(参见图1~图5),……直到条件与结论之间的网络沟通.这种“扩散——激活”的观点,正是数学证明思维中心理过程的一种解释.(6)在立体几何学科方法上,这是“组合与分解”的一次成功应用.首先把棱台补充(组合)为棱锥,然后再把棱锥截成(分解)棱台并作出截面,这种做法在求棱锥体积时曾经用过(先组合成一个棱柱、再分解为三个棱锥),它又一次向我们展示“能割善补”是解决立体几何问题的一个诀窍,而“平面化”的思考则是沟通立体几何与平面几何联系的一座重要桥梁.这些都可以用于求解其他立体几何问题,并且作为一般化的思想(化归、降维)还可以用于其他学科.(7)“你能否用别的方法导出这个结果?”在信念上我们应该永远而坚定地做出肯定的回答,操作上未实现只是能力问题或暂时现象.对于本例,按照化棱台为棱锥的同样想法,可以有下面的解法.如图6,正四棱台ABCD-A1B1C1D1中,连结DA 1,DB 1,DC1,DB,将其分成三个四棱锥D-A1B1C1D1,D-AA1B1B,D-BB1C1C,其中1111D A B C D V -=13b 2h, 11D AA B B V -=11D BB C C V -.(等底等高)图6 图7 为了求11D AA B B V -,我们连结A B1,将其分为两个三棱锥D-ABB1与D-AA1B1(图7),因11AA B S ∆=b a1ABB S ∆, 故11D AA B B V -=b a1D ABB V -, 但1D ABB V -=1B ABD V -=13·12a2·h=16a 2h, 故11D AA B B V -=1D ABB V -+11D AA B V -=16a 2h+b a ·16a 2h=16(a 2+ab)h. 从而1111ABC D A B C D V -=11D AA B B V -+11D BB C C V -+1111D A B C D V -=16 (a 2+ab)h+16 (a 2+ab)h+13b 2h =13(a 2+ab +b 2)h . (8)“你能不能把这一结果或方法用于其他问题?”能,至少我们可以由正四棱台体积公式一般化为棱台体积公式(方法是一样的).注意到a2=S1,b2=S2,ab=12S S,可一般化猜想棱台的体积公式为V台=13(S1+12S S+S2)h.3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的贡献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础.20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法.但是,已有数学实践却未能获得预期的成功,尽管学生已经具备了必要的数学知识,也已经了解了相关的方法原则,或者说已执行了解题表的建议,却仍不能有效地解决问题,这不能不引起数学教育界的反思.(1)波利亚构建的“四阶段”解题系统具有开创性的意义,但局限于“四阶段”对学会“数学地思维”而言是不是有点简单化了?对数学问题解决全过程的探索可能比解题表所简洁描述的复杂得多.。
波利亚的怎样解题表
果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①
我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个
量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.
图3
问题4.怎样才能求得A与B?
一般化为棱台体积公式(方法是一样的).注意到
2=S
2=S
1,b
2,ab=S1S2,
可一般化猜想棱台的体积公式为
V台=
1
3
(S1+S1S2+S2)h.
3波利亚的解题观
对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认
识(见参考文献),我们将其归结为5个要点.
3.1程序化的解题系统
他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被I
CME(国际数学教育大会)聘为名誉主席.
作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学
等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学
家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变
显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是
制定一个计划,综合是执行这个计划”.
在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略
水平上的解决),把F转化为A,B的求解(F=A-B),就明确了解题的总体方向;其
次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;
怎样解题波利亚
波利亚的《怎样解题》——新浪:今日看点什么波利亚指出:解题的价值不是答案的本身,而在于弄清“是怎样想到这个解法的?”、“是什么促使你这样想,这样做的?”这就是说,解题过程还是一个思维过程,是一个把知识与问题联系起来思考、分析、探索的过程。
波利亚认为“对你自己提出问题是解决问题的开始”,“当你有目的地向自己提出问题时,它就变成你自己的问题了”,“怎样解题表”是《怎样解题》一书的精华。
波利亚的“怎样解题表”将解题过程分成了四个步骤,具体步骤如下:第一,弄清问题未知数是什么?已知数据(指已知数、已知图形和已知事项等的统称)是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图。
引入适当的符号。
把条件的各个部分分开。
你能否把它们写下来?第二,拟定计划找出已知数与求知数之间的联系。
如果找不出直接的联系,你可能不得不考虑辅助问题。
你应该最终得出一个求解的计划。
你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。
这里有一个与你现在的问题有关,且早已解决的问题,你能应用它吗?你能不能利用它?你能利用它的结果吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去。
如果你不能解决所提出的问题,可先解决一个与此有关的问题。
你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其它数据?如果需要的话,你能不能改变未知数和数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的所有必要的概念?第三,实现计划实现你的求解计划,检验每一步骤。
(完整版)波利亚的解题理论
波利亚的解题理论一、波利亚的生平及主要著作对于我们数学学习者而言,大多都有过这样的经历:一道题,自己怎么想也想不出解法,而老师却给出了一个绝妙的解法。
这时候,我们最想知道“老师是怎么想出这个解法的”,如果这个解法不是很难,我们也许会问“自己完全可以想出,但为什么我没有想到呢?”要回答这个问题,实际上牵涉到对揭发数学问题解决规律的深入研究。
综观历史来看,美籍匈牙利数学家乔治。
波利亚(George Polya,1887-1985)不仅对上述问题特别感兴趣,而且在该领域做出了许多奠基性的工作。
波利亚是法国科学院,美国科学院和匈牙利科学院的院士,1887年出生在匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根、巴黎等地攻读数学、物理和哲学,获博士学位。
1914年在苏黎世著名的瑞士联邦理工学院任教。
1940年移居美国,1942年起任美国斯坦福大学教授。
他一生发表200多篇论文和许多专著。
他在数学的广阔领域内有精深的造诣,对实变函数、复变函数、组合论、概率论、数论、几何等若干分支领域都做出了开创性的贡献,一些术语和定理都以他的命名。
由于他在数学教育方面所取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席。
《怎样解题》(1944),《数学的发展》(1945)和《数学与猜想》(1961)这三本书就是他智慧的结晶。
这些书被译成很多国家的文字出版,其中《怎样解题》一书被译成17种文字,仅平装本就销售了100万册以上。
著名数学家范。
德。
瓦尔登1952年2月2日在瑞士苏黎世大学的会议致辞中说:“每个大学生,每个学者,特别是每个老师都应该都读读这本引人入胜的书”。
这些书成了世界范围内的数学教育名著,对数学教育产生了深刻的影响。
二、波利亚对数学教育的基本看法波利亚对于数学教育的目的、价值、方法非常关注。
他认为,“中小学生到底为什么要学习数学?要学什么样的数学?通过什么途径学好数学?”具体一点就是,在中小学阶段,是以“学数学”为主呢,还是以学如何“用数学”为主呢?这一点必须弄清楚。
《波利亚解题理论》
• 这就要求教师要做到:
五 对波利亚“怎样解题”表的评 价
• 波利亚“怎样解题”表具有巨大的理论价 值。解题表中不仅蕴含着重要的思想方 法——化归、变换的思想方法,而且是各 种数学思想方法的源泉,在教学中利用解 题表,学生的自学能力有较快的提高,独 立思考校和进行创造性活动的能力也逐步 增强。 。
六 波利亚《怎样解题》启示
——你可以改述这个问题吗?回到定义! ——你若能解决这个问题,试先解决 一个有关的问题。你能想出一个更 容易着手的有关问题吗?一个更一 般的问题?一个更特殊的问题?一 个类似的问题?你能解决问题的一 部分吗? ——你用了全部的计划 ——实行你的解决计划,校核每一步骤。
(一)必须了解问题 ——未知数是什么?已知数是什么? 条件是什么? ——可能满足什么条件 ——画一个图,引入适当的符号。
拟订计划
(二)找出已知数和未知数之间的 关系。假使你不能找出关系,就得 考虑辅助问题,最后应该想出一个 计划。
——你以前见过它吗? ——你知道什么有关的问题吗? ——注视未知数!试想出一个有相同 或相似的未知数的熟悉问题。
讲解 第三步:实现计划: • 证明: 过直线a任作一个平面γ, 和平面α相交于直 线b 直线a∥平面α a∥b 直线a ⊥平面β b⊥平面β
γ β
a b
α
而平面α过直线b,则 平面α⊥平面β. • 检查:直线和平面平行的性质定理, 直线和直线 平行的性质定理,平面和平面垂直的判定定理, 三个定理清晰保证每步成立。
波利亚的解题理论6666666666
拟定计划
• 问题明确后,便是通常所说的真正的解题阶段. • 熟悉的问题,有一定套路的问题,不需太多思考. • 稍进一步的问题,需要一点变化,波利亚的表中 ‚你是否见过相同的或形式稍有不同的问题?‛可 用,以唤醒你的记忆,从大脑的信息库中找到一个 可以利用的模式. • 真正的问题是不能照套的,需要解题者发挥某种程 度的主动性与创造性.主动性与创造性程度越大, 问题的难度越大,质量越高.对这类问题来说,波 利亚所说的‚你以前见过它吗?‛等等,就不用再 考虑了,没有多大用处.这类问题往往是竞赛性的.
(3)执行计划
13)把你想好的解题过程具体地用术语,符号, 图形,式子表述出来. 14)修正解题方向以及原来拟定的不恰当的方 案. 15)解题要求是:严密具有逻辑性.
执行计划
• 在解题中,这一步是最容易的,如果计划 是完善的,执行计划往往是‚例行公事‛, 作一些机械性的计算,但计划往往是不完 善的,所以又往往需要回到上一步,出现 一些反复.此外,计算或操作中也许有困 难存在,甚至会遇到难以逾越的困难,这 时原来计划必须推倒重来.
解题必须实践
• 解题是一种实践性的技能,就像游泳、滑 雪或弹钢琴一样,只能通过模仿和实践学 到它……你想学会游泳,你就必须下水,你 想成为解题的能手,你就必须去解题. ——波利亚 • 学习数学要做到熟练化.熟能生巧,进而 出神入化.而要这样,就必须练。 ——华罗庚
案例分析1
• 已知正四棱台的高h,上底的边长为a,下 底的边长为b,求正四棱台的体积F.
合情推理
• 合情推理就是从已有的知识和具体的事实经验出发, 通过观察、实验、类比、联想、归纳、猜想等手段 在某种情境和过程中推出可能性结论的推理.这种 推理的途径是从观察、实验入手,通过类比而产生 联想,或通过归纳而作出猜想.合情推理的实质是 ‚发现‛。 • 波利亚呼吁:"让我们教猜想吧!"我国的理科教学, 历来较多强调逻辑推理,而对合情推理有所忽视.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波利亚(1887-1985)的生平
• 波利亚的重要数学著作有: 《怎样解题》、《数学的发现》多卷、《数 学与猜想》多卷等。
《怎样解题》
内容简介: • ‚怎样解题表‛是一书的精华 • 它讨论的是数学中发现和发明的方法 和规律,但同时对在其他任何领域中怎样 进行正确思维都有明显的指导作用。 • 在本书的指导下,学会了怎样摒弃 不相干的东西,直捣问题的心脏。
a
a
a
与已知矛盾。
• 这就从反面告诉我们,要考虑当 a1 a2 an 时, 求证式能取等号的条件,因而,基本不等式的应用,应 使 ai 1时取等号。 • 8、重新回到课本习题,再考虑你能利用它吗?你能利 用它的方 法吗?如果你不能直接利用它,那么你能不 能作适当的变通?为了出现特征常数‚3‛ ,为了使等 1 ,思维受到广 挑战,拆项的念头迟早会 号成立时 a i 产生 2 1 1 33
a
i
a
i
a
i
• 从而
(2 ai) 3
i 1
n
n
3
a1 a2 an 3
n
• 第三,实现计划(略)
• 第四、回顾 • 9.你能否用别的方法导出这些结论? • 可以.因为这里是一个与自然数有关的命题, 所以我们会想到用 数学归纳法(此外,还有 其他办法,如柯西不等式、磨光变换等). • (1),n = l时,命题显然成立(取等号), • (2)假设n=k时,命题成立.即 ai 0 ,且当 • ⑤ a1 a2 ak 1
• 波利亚还是杰出的数学教育家,他对数学思 维一般规律的研究,堪称是对人类思想宝库 的特殊贡献。他的数学教育思想的核心问题: 数学教育的目的是什么? --波利亚主张数 学教育的目的应当是提高学生的一般素养; 首先和主要的目标应当是教会青年思考。
波利亚(1887-1985)的生平
• 为了表彰波利亚对数学的杰出贡献,1963 年美国数学协会授予他以功勋奖,1968年美 国教育电影图书协会授予他以数学物理最 高荣誉奖。 • 晚年的波利亚视力极度下降,就借助于有 放大作用的阅读机继续坚持阅读并回答别 人的问题,甚至还想学习计算器.他不断 地向别人述说:「我的数学兴趣还没有 完!」
• 有数学归纳法知,原等式不成立。
k
由于(a1 a2), a1 ,。。。, ak , ak 1 满足归纳假设,
• 12.抓住数学归纳法中的关键步骤
1 a1 a2 a1 a2
• 可以改 写成‚磨光变换‛的形式. • (1)当 1 2 n 1 时,显然 • • (2+a1)(2+a2)...(2+an)>=3n • 命题成立。
•
5 .你能不能利用它?
记得作业题的证明是,有
• 得
1 ai 2 ai
(1 a ) 2 a a ...a
n i 1 i 1 2 n n
2
n
• 若如法泡制,可由 • 2 ai 2 2 • 得
n i 1 i
a
i
④
n n 1 2 n
(2 a ) (2 2 ) a a a (2 2 ) 3
<怎样解题表>
变换,推广,类 比,作出新的 数学发现. 执 行 计 划 检 验 回 顾
弄 清 题 意
拟 定 计 划 ( 核 心 )
概括方法论因 素,建立数学 模型.
弄清题意
已知、未知 题目要求干什么 可否画图形 能否数学化
拟定计划(核心)
结果 类似题目 有关定义、定理 已有题目可否利用 条件转化,建立等式或不等式 辅助元素 举一反三
• 首先,我们看到用二维平均不等式没有
2 ai 2
• • • •
2
ai
n
没有出现求证不等式所需要的特征数‚3‛ 其次,由 2 2 3使我们进步想到 (2 2 ) (2 1)(2 2) (2 n) 的最小值, 不是 它是一个比3更小的下界,这也就说明,用④ 式时缩小得过头了.事实上,式④不能取等号, n 否则 ai 2(i 1,2, , n), 有 a1 a 2 a n 2 1
执行计划
解题过程用术语,符号,图形,式子表述出来. 修正解题方向以及原来拟定的不恰当的方 案. 解题要求是:严密具有逻辑性.
检验回顾
你能拟定其它解题方案吗? 你能利用它吗?你能用它的结果吗?你能用 它的方法吗? 你能找到什么方法检验你的结果吗?
相关例题
• 例:已知a1,a2,...,an是n个正数,满足a1a2...an=1,求 证(2+a1)(2+a2)...(2+an)>=3n。 • 讲解:我们来实践一下波利亚的解题表。 • 第一,你必须弄清问题 • 1、这是一个什么问题? • 答:这是一个代数问题,一个条件不等式证 明题。 • 2、已知条件是什么? • 共有俩个:(1)a1,a2...,an是n个正数; • (2) a1a2...an=1.
下一节
引入
• 在日常生活中,合情推理几乎无处不在,
比如:
"它可能是……"(猜测) "做出来看一看"(实验), "由上所述可得……"(归纳), "将人心比自心"(类比), "可以想象"(联想), "实践是检验真理的唯一标准"(检测)等
历史来源
• 合情推理是波利亚的‚启发法‛的一个推理
模式波利亚多年深入研究数学问题解决过程得 出的理论成果.波利亚对启发法解释道:"现代启 发法力求了解问题解决过程,特别是问题解决过 程中典型有用的智力活动.……在这种研究中,我 们不应忽视任何一类问题,并且应当找出处理各 类问题所共有的特征来;我们的目的应当是找出 一般特征而与主题无关." • 启发法源于他对问题解决的研究,问题解决就 是"在没有现成的解题方法时寻找一条解题途 径,就是从困难中找到出路,就是寻求一条绕过 障碍的道路,由适当的方法达到所要去的而不能 立即达到的目的".
•
3、求证是什么?
• 答:是一个不等式
(2 a1)( 2 a2) (2 an) 3
n
• 其左边是n个因式的积,每一个因式有相同 的结构 (2 ai);而右边 是个与 ai无关的常 数‚3",其屮‚3‛是个特征数.
• 第二:,拟定计划 • 4、你以前见过它吗?你是否见过相同 的问题而形式稍有不同? • • 以前没有见过.我们或者取n=2,3作 试探,或者回想起原高屮 统编教材见过一 道条件相同. 而结论不同的不等式证明題。 n (1 a1)(1 a 2) (1 a n) 2 ③ •
k 1 k
(由⑥式)
这表明n=k+1时命题成立.
由数学归纳法知,命题对一切自然数成立. 10、你能否检验这个论证?
冋顾第二步中⑤式与⑦式联立的推理,会 发现违反了同一律(偷 换概念),即第k号 命题中的ai与第k+1号命题中的ai虽然使用 了同一个宇母,但一般地字母所代替的数 值是不相同的,如果保持⑤ 式,那么⑦式 实际上是
波利亚解题理论
波利亚(1887.12.13-1985.9.7)
波利亚(1887-1985)的生平
• 波利亚,美国著名数学家、教育家。出生 于匈牙利的布达佩斯。曾先后在布达佩斯、 维也纳、哥廷根、巴黎等地攻读数学、物 理学和哲学。 • 1912年,在布达佩斯获约特沃斯·洛伦得大 学哲学博士学位。 • 1914年,在苏黎世瑞士联邦理工学院任 教,1928年任教授,1938年任数理学院院长。
• •
aa
1
2
ak
a
k 1
Hale Waihona Puke 1⑧• 所以,不能由⑤与⑧联立得出,
a
k 1
1
• 此题到底能不能用数学归纳法?
• 回答是肯定的,对第二步作调整如下,其基 本想法是把⑦中某两 个ai的积看成⑤式中的 某一个ai . • 当n=k+1时,由 •
a a a a
1 2 k
波利亚(1887-1985)的生平
• • • • 1940年移居美国,先在布朗大学任教。 1942年后一直在斯坦福大学任教。 1953年起,任该校退休教授。 波利亚在众多的数学分支中都颇有建树, 共发表200多篇著名论文,以他的名字命名 的波利亚计数定理则是近代组合数学的重 要工具。
波利亚(1887-1985)的生平
总结与应用
• •
总结 :
类比推理和归纳推理的过程如下:从具 体问题出发——观察、猜想、比较、联想— —归纳、类比——提出猜想。 • 可见,归纳推理和类比推理都是根据已 有的事实,经过观察、猜想、比较、联想 ,再进行归纳、类比,然后提出猜想得推 理。我们把它们统称为合情推理。 • 合情推理是指‚合乎情理‛的推理。数 学研究中,得到一个新结论之前,合情推 理常常能为我们提供证明的思路和方向
n
• 6、实现你的求解计划,检验每一步骤.你 能否清楚看出这一步 是正确的.你能否证明 这一步骤是正确的?
• 其实,由8<9知 2 2 3,从而
(2 2 )
n
3
n
• 可见,形式套用有关作业题不能成功,缩小 过头了. • 7、尚未成功不等于彻底失败,你能找出没 有成功的原因吗? (第五公设试证没有成功, 却诞生了更加伟大的非欧几何)
1
4 2(1 a1 a2) a1 a2 3(2 a1 a2)
• 可得
(2 a1)(2 a2) (2 ak )(2 ak 1) 3(2 a1 a2)(2 a3) (2 ak )(2 ak 1) 有(2 a1 a2)(2 a3) (2 ak )(2 ak 1) 3 。