电磁场与电磁波(第4版)第5章部分习题参考解答
电磁场与电磁波(第四版)习题解答
![电磁场与电磁波(第四版)习题解答](https://img.taocdn.com/s3/m/60491cc5284ac850ad0242f7.png)
电磁场与电磁波(第四版)习题解答第1章习题习题1.1给定三个矢量A 、B 和C 如下:23x y z =+-A e e e .4y z=-+B e e ,52x z =-C e e ,解:(1)22323)12(3)A x y z e e e A a e e e A+-===+-++- (2)2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e •=+-•-+=-(4)arccos135.5A B AB θ•===︒ (5)1711cos -=⋅=⋅⋅==B B A A B B A A A A AB Bθ(6)12341310502xy zx Y Z e e e A C e e e ⨯=-=---- (7)0418520502xy zx Y Z e e e B C e e e ⨯=-=++-()(23)(8520)42x Y Z x Y Z A B C e e e e e e •⨯=+-•++=-123104041xy zx Y Z e e e A B e e e ⨯=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ⨯•=---•-=-(8)()10142405502x y zx Y Z e e e A B C e e e ⨯⨯=---=-+-()1235544118520xy zx Y Z e e e A B C e e e ⨯⨯=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。
解:29)4(32222=-++=A776)5(4222=+-+=B31)654()432(-=+-⋅-+=⋅z y x z y x e e e e e e B A则A 与B之间的夹角为131772931cos =⎪⎪⎭⎫ ⎝⎛⋅-=⎪⎪⎪⎭⎫⎝⎛⋅⋅=ar BA B A arcis ABθ A 在B上的分量为532.37731cos -=-=⋅=⋅⋅⋅==B B A BA B A A A A AB Bθ习题1.9用球坐标表示的场225rr =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ;(2)求在直角坐标中点(3,4,5)--处E 与矢量22x y z =-+B e e e 构成的夹角。
《电磁场与电磁波》(第四版)课后习题解答(全)
![《电磁场与电磁波》(第四版)课后习题解答(全)](https://img.taocdn.com/s3/m/08d59a100b4e767f5acfce9a.png)
第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。
和向量错误!未找到引用源。
垂直。
(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。
电磁场和电磁波第四版课后思考题答案及解析第四版全谢处方饶克谨高等教育出版社
![电磁场和电磁波第四版课后思考题答案及解析第四版全谢处方饶克谨高等教育出版社](https://img.taocdn.com/s3/m/ebea8cfe80eb6294dc886c23.png)
2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述 和 所表征的静电场特性表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无布的电场强度。
2.6简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 2.8简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=•∇E 0=⨯∇E ερ/=•∇E 0=⨯∇E VS 0 0=⋅∇BJ B 0μ=⨯∇0=⋅∇B J B0μ=⨯∇0μC P•∇=-p ρnsp e •=P ρE P EDεε=+=0在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即 2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度: 磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
电磁场与电磁波第四版课后答案
![电磁场与电磁波第四版课后答案](https://img.taocdn.com/s3/m/55b058ca3186bceb19e8bb97.png)
答案:① aA =
1 14
(ax
+
2ay
−
3az
)
;②
A−B =
53 ;③ A • B = −11;
④
θ AB = 135.48 ; ⑤
A× C = −(4ax +13ay +10az ) ; ⑥
A •(B × C)=(A • B)× C = −42 ; ⑦
(A× B)× C = 2ax − 40ay + 5az 和
托克斯定理求解此线积分。
∫ ∫ 答案:① A •dl = π a4 ;② (∇ × A) dS = π a4 。
l
4
l
4
1-18 试在直角坐标系下证明: − 1 ∇2 (1 R)=δ(r − r′)。 4π
∫ 1-19 若矢量 A = a(R cos2 ϕ
R3 ),1 ≤ R ≤ 2 ,求
∇• AdV 。
⎡ 2 sinhξ cosη
⎢ ⎢
cosh 2ξ − cos 2η
⎢
答案:[M ] = ⎢−
2 coshξ sinη
⎢ cosh 2ξ − cos 2η
⎢
⎢
0
⎢⎢⎣
2 coshξ sinη cosh 2ξ − cos 2η
2 sinhξ cosη cosh 2ξ − cos 2η
0
⎤ 0⎥
⎥ ⎥ 0⎥ 。 ⎥ ⎥ 1⎥ ⎥⎥⎦
+ ay
y − 2x x2 + y2
。
1-22 已知 A = a a x + b a y + c a z ,写出圆柱坐标系和圆球坐标系下 A 的表达式。
答案: A = (a cosϕ + b sinϕ )ar + (b cosϕ − a sin ϕ )aϕ + caz ;
电磁场与电磁波(第四版)课后答案__谢处方
![电磁场与电磁波(第四版)课后答案__谢处方](https://img.taocdn.com/s3/m/24cd4c380722192e4536f6ff.png)
电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
《电磁场与电磁波》(第四版)习题集:第5章 均匀平面波在无界空间中的传播
![《电磁场与电磁波》(第四版)习题集:第5章 均匀平面波在无界空间中的传播](https://img.taocdn.com/s3/m/56a2536a9ec3d5bbfc0a7451.png)
E波传播方向Hz图5.1.1 均匀平面波第5章 均匀平面波在无界空间中的传播在上一章中,我们从麦克斯韦方程出发,导出了电场强度E 和磁场强度H 所满足的波动方程,本章我们将讨论电磁波的传播规律与特点。
我们从最简单的均匀平面波着手,所谓均匀平面波是指电磁波的场矢量只沿着它的传播方向变化,在与波传播方向垂直的无限大平面内,电场强度E 和磁场强度H 的方向、振幅和相位都保持不变。
例如沿直角坐标系的z 方向传播的均匀平面波,在x 和y 所构成的横平面上无变化,如图5.1.1所示。
均匀平面波是电磁波的一种理想情况,它的特性及讨论方法简单,但又能表征电磁波重要的和主要的性质。
虽然这种均匀平面波实际上并不存在,但讨论这种均匀平面波是具有实际意义的。
因为在距离波源足够远的地方,呈球面的波阵面上的一小部分就可以近似看作一个均匀平面波。
本章首先讨论在无界理想介质中均匀平面波的传播特点和各项参数的物理意义,然后讨论有耗媒质中均匀平面波的传播特点,最后讨论各向异性媒质中均匀平面波的传播特点。
5.1 理想介质中的均匀平面波5.1.1 理想介质中的均匀平面波函数假设所讨论的区域为无源区,即0ρ=、0=J ,且充满线性、各向同性的均匀理想介质,现在我们来讨论均匀平面波在这种理想介质中的传播特点。
首先考虑一种简单的情况,假设我们选用的直角坐标系中均匀平面波沿z 方向传播,则电场强度E 和磁场强度H 都不是x 和y 的函数,即0x y∂∂==∂∂E E ,0x y ∂∂==∂∂H H同时,由0∇=E 和0∇=H ,有0z E z ∂=∂,0zH z∂=∂ 再根据z E 和z H 的波动方程,可得到0z E =,0z H =这表明沿z 方向传播的均匀平面波的电场强度E 和磁场强度H 都没有沿传播方向的分量,图5.1.2 (0,)cos x xm E t E t ω=的曲线图5.1.3(,0)cos x xm E z E kz =的曲线即电场强度E 和磁场强度H 都与波的传播方向垂直,这种波又称为横电磁波(TEM 波)。
电磁场与电磁波(第4版)第5章部分习题参考解答
![电磁场与电磁波(第4版)第5章部分习题参考解答](https://img.taocdn.com/s3/m/2bb00855a9956bec0975f46527d3240c8447a131.png)
电磁场与电磁波(第4版)第5章部分习题参考解答GG5.1 在自由空间中,已知电场E(z,t)=ey103sin(ωt?βz)V/m,试求磁场强度G H(z,t)。
解:以余弦为基准,重新写出已知的电场表示式GπGE(z,t)=ey103cos(ωt?βz?V/m 2这是一个沿+z方向传播的均匀平面波的电场,其初相角为?90D。
与之相伴的磁场为G1GG1GGπH(z,t)=ez×E(z,t)=ez×ey103cos(ωt?βz?η0η023πG10G=?excos(ωt?βz?)=?ex2.65sin(ωt?βz) A/m120π25.2 理想介质(参数为μ=μ0、ε=εrε0、ζ=0)中有一均匀平面波沿x方向传播,已知其电场瞬时值表达式为GGE(x,t)=ey377cos(109t?5x) V/m GG试求:(1) 该理想介质的相对介电常数;(2) 与E(x,t)相伴的磁场H(x,t);(3) 该平面波的平均功率密度。
G解:(1) 理想介质中的均匀平面波的电场E应满足波动方程G2G?E?2E?με2=0 ?tG据此即可求出欲使给定的E满足方程所需的媒质参数。
方程中2G?EyGGG229et?5x) ?E=ey?Ey=ey=?y9425cos(102?xG22?EG?EyG18937710cos(10eet?5x) ==?×yy22 ?t?x 故得?9425cos(109t?5x)+με*377×1018cos(109t?5x)+=0即9425με==25×10?18 18377×10故25×10?18εr==25×10?18×(3×108)2=2.25 μ0ε0其实,观察题目给定的电场表达式,可知它表征一个沿+x方向传播的均匀平面ω109波,其相速为vp===2×108m/s k5而vp====3×108 3故εr=()2=2.25 2GGGGG(2) 与电场E相伴的磁场H可由?×E=?jωμ0H求得。
《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社
![《电磁场与电磁波》第4版(谢处方_编)课后习题答案_高等教育出版社](https://img.taocdn.com/s3/m/7d719b608e9951e79b89271d.png)
1 1 ( ) 2 d y dz ( ) 2 d y dz 2 2 1 2 1 2 1 2 1 2
1 1 2 x 2 ( ) 2 d x dz 2 x 2 ( ) 2 d x d z 2 2 1 2 1 2 1 2 1 2 1 1 1 24 x y ( )3 d x d y 24 x 2 y 2 ( )3 d x d y 2 2 24 1 2 1 2 1 2 1 2
1 r 42 32 5 、 tan (4 3) 53.1 、 2 3 120 故该点的球坐标为 (5,53.1 ,120 ) 1.9 用球坐标表示的场 E e 25 , r r2 (1)求在直角坐标中点 (3, 4, 5) 处的 E 和 E x ;
(2) 在球坐标系中
故 PP 为一直角三角形。 1 2P 3
1 1 1 R1 2 R 2 3 R 1 2 R 2 3 1 7 6 9 17.13 2 2 2 1.3 求 P(3,1, 4) 点到 P(2, 2,3) 点的距离矢量 R 及 R 的方向。 解 rP ex 3 e y ez 4 , rP ex 2 e y 2 ez 3 ,
(2)三角形的面积
S
则
RPP rP rP ex 5 e y 3 ez
且 RPP 与 x 、 y 、 z 轴的夹角分别为
1.4
ex RPP 5 ) cos 1 ( ) 32.31 RPP 35 e R 3 y cos 1 ( y P P ) cos 1 ( ) 120.47 RPP 35 e R 1 z cos 1 ( z PP ) cos 1 ( ) 99.73 RPP 35 给定两矢量 A ex 2 e y 3 ez 4 和 B ex 4 e y 5 ez 6 ,求它们之间的夹角和
《电磁场与电磁波》第4版(谢处方编)课后习题答案五章习题解答
![《电磁场与电磁波》第4版(谢处方编)课后习题答案五章习题解答](https://img.taocdn.com/s3/m/385b6114eef9aef8941ea76e58fafab069dc442f.png)
《电磁场与电磁波》第4版(谢处⽅编)课后习题答案五章习题解答五章习题解答5.1 真空中直线长电流I 的磁场中有⼀等边三⾓形回路,如题5.1图所⽰,求三⾓形回路内的磁通。
解根据安培环路定理,得到长直导线的电流I 产⽣的磁场02I rφµπ=B e 穿过三⾓形回路⾯积的磁通为d S ψ==?B Sg 0002[d ]d d 2d d z ddII zz x x x xµµππ=? 由题5.1图可知,()tan6z x d π=-=,故得到d d dx d x x ψ-==0[2I b µπ5.2 通过电流密度为J 的均匀电流的长圆柱导体中有⼀平⾏的圆柱形空腔,如题5.2图所⽰。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:⼀个电流密度为J 、均匀分布在半径为b 的圆柱内,另⼀个电流密度为J -、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进⾏叠加即可得到圆柱内外的磁场。
由安培环路定律d CI µ?=?B l ?,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产⽣的磁场为 020222b b b b b b r b b r b r J r B J r µµ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产⽣的磁场为 020222a a a a a a r a a r a r J r B J r µµ?- 这⾥a r 和b r 分别是点a o 和b o 到场点P 的位置⽮量。
将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:220222b a ba b a r r B J r r µ??=?- ()b r b >圆柱内的空腔外:2022b a a ar B J r r µ??=?- ??(,)b a r b r a <> 空腔内: ()0022b a B J r r J d µµ=?-=? ()a r a <I题 5.1 图题5.2图式中d 是点和b o 到点a o 的位置⽮量。
《电磁场与电磁波》课后习题解答(第五章)
![《电磁场与电磁波》课后习题解答(第五章)](https://img.taocdn.com/s3/m/1eb28867c850ad02de804145.png)
《电磁场与电磁波》课后习题解答(第五章)————————————————————————————————作者:————————————————————————————————日期:习题及参考答案5.1 一个点电荷 Q 与无穷大导体平面相距为d ,如果把它移动到无穷远处,需要作多少功?解:用镜像法计算。
导体面上的感应电荷的影响用镜像电荷来代替,镜像电荷的大小为-Q ,位于和原电荷对称的位置。
当电荷Q 离导体板的距离为x 时,电荷Q 受到的静电力为2)2(042x Q F επ-=静电力为引力,要将其移动到无穷远处,必须加一个和静电力相反的外力2)2(042x Q f επ=在移动过程中,外力f 所作的功为d Q d dx dx Q dx f 016220162επεπ=⎰∞⎰∞= 当用外力将电荷Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以,在整个过程中,外力作的总功为dq8/2επ。
也可以用静电能计算。
在移动以前,系统的静电能等于两个点电荷之间的相互作用能:d Q d Q Q d Q Q q q W 082)2(04)(21)2(042122211121επεπεπϕϕ-=-+-=+=移动点电荷Q 到无穷远处以后,系统的静电能为零。
因此,在这个过程中,外力作功等于系统静电能的增量,即外力作功为dq8/2επ。
5.2 一个点电荷放在直角导体内部(如图5-1),求出所有镜像电荷的位置和大小。
解:需要加三个镜像电荷代替 导体面上的感应电荷。
在(-a ,d )处,镜像电荷为-q ,在(错误!链接无效。
)处, 镜像电荷为q ,在(a ,-d )处,镜像电荷为-q 。
图5-1 5.3 证明:一个点电荷q 和一个带有电 荷Q 、半径为R 的导体球之间的作用力为]2)22(2[04R D DRq D D qR Q q F --+=επ其中D 是q 到球心的距离(D >R )。
证明:使用镜像法分析。
1 电磁场与电磁波课后习题答案第五章
![1 电磁场与电磁波课后习题答案第五章](https://img.taocdn.com/s3/m/cd1b5bd3195f312b3169a508.png)
5.3设y=0为两种磁介质的分界面,y<0为媒质1,其磁导率为1μ,y>0为媒质2,其磁导率为2μ,分界面上有电流密度s x J 2a A/m =分布的面电流,已知媒质1中磁场强度为123/x y z H a a a A m =++ 求媒质2中磁场强度2H 解:mA a a a H a n J H H n z y x y S /52)(2121212++=-==-⨯μμ其中则由到媒质设电磁波由媒质5.6已知在空气中,电场强度矢量为90.1sin(10)cos(610)/y E a x t z V m ππβ=⨯-求磁场强度H 和相位常数β 解:3939,0.2310sin(10)cos(61054.41)0.1310cos(10)sin(61054.14)20/x z E jwB B HH a x t z a x t z rad mμππππηωμεωνπ--∇⨯=-==-⨯⨯--⨯⨯-==÷=由得相位常数:5.7自由空间中,已知电场强度矢量为4cos()3cos()x y E a t z a t z ωβωβ=-+-求(1)磁场强度的复数表达式(2)坡印廷矢量的瞬时表达式(3)平均坡印廷矢量 解: (1)m/4)e a 3a (120113e a e 4a zj -y x z-j y z -j x )(V B H B j E E z βββπμω-==-=⨯∇+=得由 (2)z)-t (cos 245a H E S z)-t 4)cos(a 3a (1201z)-t 3cos(a z)-t cos(4a 2z y x ),(y x )t ,(βωπβωπβωβω=⨯=-=+=所以t z z H E w/m 2(3)()[]ππ485)43()34(120121HE Re 21S av zy x y x a a a a a =-⨯+=⨯=*5.9 将下列复数形式的场矢量变换成瞬时表达式,或作用反的变换 (1)43j z j z x y Ea e a je ββ--=+()()2(,)4Re[]3Re[]4cos()3cos()24cos()3sin()j t z j t z z t x y x y x y E a ea ea t z a t z a t z a t z πωβωβπωβωβωβωβ-+-=+=-+-+=---(2)4sin()sin()cos()cos()x z Ea x t z a x t z a aππωβωβ=-+-(,)()()2()2()4sin()cos()cos()cos()24sin()Re[]cos()Re[]4sin()cos()4sin()cos()z t x z j t z j t z x z j z j zz x z j z j zx z E a x t z a x t z a a a x e a x e a aE a x ea x e aaa j x e a x e a aπωβωβπββββπππωβωβππππππ--------=--+-=+=+=-+(3)cos()2sin()x y E a t z a t z ωβωβ=-+-(,)()()2()cos()2cos()2Re[]2Re[]2z t x y j t z j t z x y j z j zz x y E a t z a t z a ea eE a e a je πωβωβββπωβωβ-----=-+--=+=-(4)sin 3cos(cos )jkz y x Ea j k e θθ-=(sin )2()(sin )2(,)3cos(cos )3cos(cos )Re[]3cos(cos )cos(sin )23cos(cos )sin(sin )j kz z y x j t kz z t y x y x y x E a k eE a k ea k t kz a k t kz πθπωθθθπθωθθωθ---+===-+=--(5)2sin()y Ea t z ωβϕ=-+(,)()()()2cos()22Re[]2z t y j t z y j z z y E a t z a j e E a je ωβφβφπωβφ-+-+=-+-=-=-5.12 对于线性,均匀和各向同性导电媒质,设媒质的介电常数为,磁导率为电导率为,试证明无源区域中时谐电磁场所满足的波动方程为2222E jw E k E H jw H k Hμσμσ∇=-∇=-式中22k w με=解:H k H j H HH j H H Hj H H H E HH H E j E H Ej E D j J H2222220)j ()()(j )()(-=∇-=∇∴=⋅∇-⋅+=∇-⋅∇∇-=⨯∇⨯∇⨯∇+∇=⋅∇∇+⨯∇=⨯∇⨯∇+=+=⨯∇ωμσμεωωμσωμωεσωμωεσωεσω即代入上式将E k E j E 22:-=∇ωμσ同理5.15设电场强度和磁场强度分别为cos()cos()o e o m E E t H H t ωφωφ=+=+求其平均坡印廷矢量。
电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波
![电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波](https://img.taocdn.com/s3/m/361cbef5dd3383c4bb4cd2df.png)
第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。
5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。
若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。
(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。
(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。
(4)相速p v kω==m/s ),表示等相位面的移动速度。
(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。
在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。
电磁场与电磁波课后习题及答案五章习题解答
![电磁场与电磁波课后习题及答案五章习题解答](https://img.taocdn.com/s3/m/fded5d31783e0912a3162a1f.png)
五章习题解答真空中直线长电流I 的磁场中有一等边三角形回路,如题图所示,求三角形回路内的磁通。
解 根据安培环路定理,得到长直导线的电流I 产生的磁场02I rφμπ=B e 穿过三角形回路面积的磁通为d S ψ==⎰B S 32320002[d ]d d 2d b d b z ddII zz x x x xμμππ=⎰ 由题图可知,()tan63z x d π=-=,故得到320d 3d b d x d x x ψπ-==⎰03[23I b b μπ 通过电流密度为J 的均匀电流的长圆柱导体中有一平行的圆柱形空腔,如题图所示。
计算各部分的磁感应强度B ,并证明腔内的磁场是均匀的。
解 将空腔中视为同时存在J 和J -的两种电流密度,这样可将原来的电流分布分解为两个均匀的电流分布:一个电流密度为J 、均匀分布在半径为b 的圆柱内,另一个电流密度为J -、均匀分布在半径为a 的圆柱内。
由安培环路定律,分别求出两个均匀分布电流的磁场,然后进行叠加即可得到圆柱内外的磁场。
dbIz题 图d S由安培环路定律d CI μ⋅=⎰B l ,可得到电流密度为J 、均匀分布在半径为b 的圆柱内的电流产生的磁场为 020222b b b b b b r b b r b r J r B J r μμ⎧⨯<⎪⎪=⎨⨯⎪>⎪⎩ 电流密度为J -、均匀分布在半径为a 的圆柱内的电流产生的磁场为 020222a a a a a a r a a r a r J r B J r μμ⎧-⨯<⎪⎪=⎨⨯⎪->⎪⎩这里a r 和b r 分别是点a o 和b o 到场点P 的位置矢量。
将a B 和b B 叠加,可得到空间各区域的磁场为圆柱外:22222b a ba b a r r B J r r μ⎛⎫=⨯- ⎪⎝⎭ ()b r b > 圆柱内的空腔外:2022b a a a r B J r r μ⎛⎫=⨯- ⎪⎝⎭ (,)b a r b r a <> 空腔内: ()0022b a B J r r J d μμ=⨯-=⨯ ()a r a < 式中d 是点和b o 到点a o 的位置矢量。
电磁场与电磁波答案(第四版)谢处方精编版
![电磁场与电磁波答案(第四版)谢处方精编版](https://img.taocdn.com/s3/m/e60d6da3b9f3f90f76c61b86.png)
一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11(4)由 c o s AB θ=8==A B A B ,得 1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
geqplAAA电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育
![geqplAAA电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育](https://img.taocdn.com/s3/m/29273fc727284b73f24250cd.png)
点电荷的严格定义是什么 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
研究宏观电磁场时,常用到哪几种电荷的分布模型有哪几种电流分布模型他们是如何定义的 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么电偶极子的电场强度又如何呢,点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。
) 简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
-简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场极化强度的如何定义的极化电荷密度与极化强度又什么关系 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度电位移矢量是如何定义的在国际单位制中它的单位是什么ερ/=•∇E 0=⨯∇E ερ/=•∇E 0=⨯∇EVS 00=⋅∇B J B 0μ=⨯∇0=⋅∇B JB0μ=⨯∇0μI l d B C 0μ⎰=⋅P•∇=-p ρn sp e •=P ρ&电位移矢量定义为 其单位是库伦/平方米 (C/m 2)简述磁场与磁介质相互作用的物理现象 在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即磁化强度是如何定义的磁化电流密度与磁化强度又什么关系(磁化电流面密度与磁化强度: 磁场强度是如何定义的在国际单位制中它的单位是什么 磁场强度定义为: 国际单位之中,单位是安培/米(A/m)2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
电磁场与电磁波(第四版)课后答案 第五章习题
![电磁场与电磁波(第四版)课后答案 第五章习题](https://img.taocdn.com/s3/m/6c44ca6210661ed9ad51f3ba.png)
5 Rˆ
5
EmI zˆj 5
可见
EmR EmI 5
zˆ Rˆ zˆ 1 xˆ 2yˆ 1 yˆ 2xˆ nˆ
5
5
Rˆ zˆ 1 xˆ 2yˆ zˆ 0
5
因为
EmR、E相mI 位相差
90 ,所以电场为一个左旋圆极化波。
与之相伴的磁场为
H r 1 nˆ E r 1 2xˆ yˆ xˆ 2 yˆ j 5zˆ e j2xy
S z,t E z,t H z,t ez153.6 cos2 6 108t 2 z W / m2
5.19自由空间中均匀平面波电场表达式为
E r,t xˆ 2yˆ zˆEzm 10cost 3x y zV / m
式中 Ezm 为待定量。试由表达式确定波的传播方向、角频率、
第五章 习题
5.6在自由空间传播的均匀平面波的电场强度的复矢量为
E
z
ex104 e
j 20 z
ey104 e
j
20
பைடு நூலகம்
z 2
V /m
试求(1)平面波的传播方向和频率 (2)波的极化方式 (3)磁场强度H (4)流过沿传播方向单位面积的平均功率
解:(1)传播方向为z方向 由题意知
k 20 00
试有此表达式确定波的传播方向、波长、极化状态,并求出磁场
H r
解:波的传播方向由波矢量的方向确定,由:
k r kxx ky y kzz 2x by cz
得
kx 2
ky b kz c
为确定b和c,利用
k Em 0
有 2xˆ byˆ czˆ • xˆ 2yˆ j 5zˆ 2 2b j 5c 0
波长 相速
2 2 m 1m 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1 在自由空间中,已知电场3(,)10sin() V/m y E z t e t z ωβ=−G G,试求磁场强度。
(,)H z t G解:以余弦为基准,重新写出已知的电场表示式3π(,)10cos( V/m 2y E z t e t z ωβ=−−G G这是一个沿方向传播的均匀平面波的电场,其初相角为z +90−D 。
与之相伴的磁场为300311π(,)(,)10cos(210πcos() 2.65sin() A/m120π2z z y x x H z t e E z t e e t z e t z e t z ωβηηωβωβ=×=×−−=−−−=−−G G G G G G G5.2 理想介质(参数为0μμ=、r 0εεε=、0σ=)中有一均匀平面波沿x 方向传播,已知其电场瞬时值表达式为9(,)377cos(105) V/m y E x t e t x =−G G试求:(1) 该理想介质的相对介电常数;(2) 与(,)E x t G相伴的磁场;(3) 该平面波的平均功率密度。
(,)H x t G 解:(1) 理想介质中的均匀平面波的电场E G应满足波动方程2220EE tμε∂∇−=∂G G据此即可求出欲使给定的E G满足方程所需的媒质参数。
方程中222929425cos(105)y y y y y E E e E e e t x x∂∇=∇==−−∂G G G G 221892237710cos(105)y y y E E e e t t x∂∂==−×−∂∂G G G x = 故得91899425cos(105)[37710cos(105)]0t x t x με−−+×−即18189425251037710με−==×× 故181882r 0025102510(310) 2.25εμε−−×==×××=其实,观察题目给定的电场表达式,可知它表征一个沿x +方向传播的均匀平面波,其相速为98p 10210 m/s 5v k ω===× 而8p 310v ====×故2r 3() 2.252ε==(2) 与电场相伴的磁场E G H G 可由0j E ωμ∇×=−H G G求得。
先写出的复数形式,故E G j5377e V/m x y E e −=G Gj5000j5j597111377e (j5)j j j 1e 1.5e A/m 104π10y x z zx xz z E H E e e xe e ωμωμωμ−−−−∂=−∇×=−=−−∂==××G G G G G G则得磁场的瞬时表达式9j j5j109(,)Re[e ]Re[ 1.5e e ] 1.5cos(105) A/m t x t z z H x t H e e t x ω−===−G G G G也可以直接从关系式n 1H e η=×G G E G 得到H Gj5j5j501377e 377e 1.5e A/m x x x y z z H e e e e η−−=×==G G G G G x −(3) 平均坡印廷矢量为 *j5j5av 11Re[]Re[377e 1.5e ]282.75 W/m22x x y z x S E H e e e −−=×=×=G G G 2G G G5.3 在空气中,沿方向传播的均匀平面波的频率y e G400 MHz f =。
当、时,电场强度的最大值为,表征其方向的单位矢量为。
试求出电场和磁场0.5 m y =0.2 ns t =E G250 V/m 0.60.8x z e e −G GE G H G 的瞬时表示式。
解:沿方向传播的均匀平面波的电场强度的一般表达式为y e Gm (,)cos()E y t E t ky ωφ=−+G G根据本题所给条件可知,式中各参数为:82π8π10 rad/s f ω==× 888π108πrad/m 3103k c ω×====× m 250(0.60.8) V/m x z E e e =−G G G由于、0.5 m y =0.2 ns t =时,E G达到最大值,即89m m 8π1cos(8π100.210)32E E φ−×××−×+=G G于是得到4π4π88π32575φ=−=。
故88π88π(150200)cos(8π10375x z E e e t y =−×−+G G G801558π88π()cos(8π103π4π375y x z H e E e e t y η=×=−+×−+G G G G G 5.4 有一均匀平面波在0μμ=、04εε=、0σ=的媒质中传播,其电场强度m πsin()3E E t kz ω=−G +。
若已知平面波的频率150 MHz f =,平均功率密度为。
试求:(1) 电磁波的波数、相速、波长和波阻抗;(2) 、时的电场值;(3) 经过20.265 μW/m 0t =0z =(0,0)E 0.1 μs t =后,电场值出现在什么位置?(0,0)E解:(1) 由的表达式可看出这是沿E Gz +方向传播的均匀平面波,其波数为6812π2π150104π150102π rad/m 310k f ===××=×××=×相速为8p 1.510 m/s v ===×波长为2π1 m kλ==,波阻抗为60π188.5 η===≈Ω (2) 平均坡印廷矢量为26av m 10.26510 W/m 2S E η−==×2 故得61/22m (20.26510)10 V/m E η−−=××≈因此3m π(0,0)sin(8.6610 V/m 3E E −==×(3) 随着时间的增加,波将沿t z +方向传播,当0.1 μs t =时,电场为2266π10sin(2π)3π10sin(2π150100.1102π8.66103E f kz z −−−=−+=××××−+=×)3−得πsin(30π2π0.8663z −+=),即ππ30π2π33z −+=,则15 m z =5.5 理想介质中的均匀平面波的电场和磁场分别为710cos(6π100.8π) V/m x E e z =×−G G ,71cos(6π100.8π) A/m 6πy H e z =×−G G试求该介质的相对磁导率r μ和相对介电常数r ε。
解:由给出的和的表达式可知,它表征沿E G H Gz +方向传播的均匀平面波,其相关参数为:角频率,波数76π10 rad/s ω=×0.8πrad/m k =,波阻抗1060π 16πE Hη===Ω而0.8πrad/m k ==== (1)60πη===Ω (2) 联立解方程式(1)和(2),得2μ=,8ε=96π10 rad/sω==×,93103GHz2πfω==×=(2) 原电场可表示为是左旋圆极化波。
4j20π(j)10e zx yE e e−−=+G G G(3) 由1zH eη=×G GGE得π4j(20π)j20π77π210(j)e 2.6510e 2.6510e A/m 120πzz zy x x yH e e e e−−−−−−−=−=−×+×Gj20G G G G(4)πj(20π)*4j20π42av11Re[]Re{[10e10e]22zzx yS E H e e−−−−−=×=+G G G G Gπj(20π)77π2[ 2.6510e 2.6510e]}z zx ye e−−−−×−×+×j20−G G1122.6510 W/mze−=×G即11av2.6510 WP−=×5.7在空气中,一均匀平面波的波长为12,当该波进入某无损耗媒质中传播时,其波长减小为8 c,且已知在媒质中的cmm EG和HG的振幅分别为50和。
求该平面波的频率和媒质的相对磁导率和相对介电常数。
V/m 0.1 A/m解:在自由空间中,波的相速,故波的频率为8p310m/sv c==×8p92003102.510 Hz1210v cfλλ−×====××在无损耗媒质中,波的相速为928p2.510810210 m/sv fλ−==×××=×又pv==故2r rp9()4cvμε==(1) 无损耗媒质中的波阻抗为mm505000.1E EHHη====ΩGG又由于ηη==故2rr0500()(3772μηεη==(2) 联立式(1)和式(2),得r1.99μ=,r1.13ε=5.8在自由空间中,一均匀平面波的相位常数为0.524 rad/mβ=,当该波进入到理想介质后,其相位常数变为 1.81 rad/mβ=。
设该理想介质的r1μ=,试求该理故880.524310 1.57210 rad/s ω==××=× 在理想电介质中,相位常数 1.81 rad/m β==,故得到2r 2001.8111.93εωμε==电介质中的波速则为88p 0.8710 m/s v =====× 5.9 在自由空间中,一均匀平面波的波长为00.2 m λ=,当该波进入到理想介质后,其波长变为0.09 m λ=。
设该理想介质的r 1μ=,试求该理想介质的r ε和波在该理想介质中的传播速度。
解:在自由空间,波的相速,故波的频率为8p 310 m/s v c ==×8p 90310 1.510 Hz 0.2v f λ×===× 在理想介质中,波长0.09 m λ=,故波的相速为98p 1.5100.09 1.3510 m/s v f λ==××=× 另一方面,p v ===故 228r 8p 310 4.941.3510c v ε⎛⎞⎛⎞×===⎜⎟⎜⎟⎜⎟×⎝⎠⎝⎠5.10 均匀平面波的磁场强度的振幅为H G 1A/m 3π,在自由空间沿方向传播,其相位常数z e −G30 rad/m β=。