肿瘤干细胞异质性 的综述cell
肿瘤干细胞与EMT
肿瘤干细胞与EMT肿瘤干细胞(cancer stem cell,CSC)学说认为,肿瘤实际上是由一小群具有无限增殖潜能和自我更新能力的干细胞样细胞及其产生的分化程度不均一的细胞团组成,其中具有自我更新能力并能产生异质性肿瘤细胞的细胞被称为肿瘤干细胞。
肿瘤干细胞的两个重要特性:一是具有自我更新驱动肿瘤发生的能力,二是具有多向分化形成肿瘤的异质性的潜能1。
上皮间质转化(epithelial-to-mesenchymal transition,EMT)是具有极性的上皮细胞转化为具有移行能力的间质细胞,并获得侵袭和迁移能力的过程。
EMT是一个多步骤的动态变化过程,上皮细胞间相互作用消失,组织结构松散,立方上皮细胞转变为纺锤形纤维细胞形态,并表现出侵袭性。
实体肿瘤中央的细胞为上皮细胞表型,周围的细胞常常会呈间质细胞表型,其较强的运动能力使肿瘤细胞在局部产生浸润,并侵入血和淋巴管而转移至靶器官。
到达靶器官后,癌细胞可发生间质上皮转化(MET)来重建细胞间连接及细胞骨架从而形成转移灶2。
EMT与肿瘤转移密切相关,而且也可以作为得到肿瘤干细胞的方法3。
近年来,肿瘤干细胞与EMT之间的关联性逐渐受到研究者的关注,二者在肿瘤的复发、转移和耐药性上面有很多相似点4。
肿瘤干细胞模型和EMT的概念试图从不同的角度来揭示肿瘤的发展,但两者都不能独立地解释所有生物学事件。
诱导EMT能促使肿瘤细胞获得干细胞特性,通过诱导分化的肿瘤细胞最终形成肿瘤干细胞并维持干性,而肿瘤干细胞同样具有EMT特征。
然而,EMT是通过何种分子机制转化干细胞样细胞的,目前尚不清楚。
下面向大家介绍目前已知的关于EMT和肿瘤干细胞间分子机制上的关联性。
连接EMT与肿瘤干细胞的信号通路:EMT和CSC的形成均是动态的过程,受到TGFβ、Wnt /β-catenin、Hedgehog、Notch等多种信号通路的调控。
TGFβ作为多功能的细胞因子,可诱导EMT的发生,研究表明,在TGFβ诱导EMT产生时可获得肿瘤起源干细胞(tumor-initiating stem cells,TISCs),且转录因子SNAIL和Nanog的上调参与其中5。
肿瘤的进化与异质性及其在转移中的意义
肿瘤的进化与异质性及其在转移中的意义魏金旺;盛媛媛【摘要】肿瘤转移是恶性肿瘤最主要的生物学特性之一,也是导致患者死亡的主要原因.肿瘤的转移潜能是肿瘤异质性的表现之一,而异质性则起源于肿瘤细胞本身及宿主微环境在进化上的差异.这些进化上的差异除了传统理论所认为的基因突变之外,还包括表观基因组学调控、蛋白质修饰等非基因水平方面的改变.本文将结合“种子与土壤”理论,从肿瘤进化与异质性的角度,综述肿瘤细胞自身和癌周环境对肿瘤转移的影响,以期推动肿瘤转移的研究及拓展诊疗思路.【期刊名称】《复旦学报(医学版)》【年(卷),期】2016(043)001【总页数】5页(P122-126)【关键词】肿瘤转移;进化;异质性【作者】魏金旺;盛媛媛【作者单位】复旦大学生物医学研究院上海200032;复旦大学附属华山医院普外科上海200040;复旦大学肿瘤转移研究所上海200040;复旦大学生物医学研究院上海200032;复旦大学附属华山医院普外科上海200040;复旦大学肿瘤转移研究所上海200040【正文语种】中文【中图分类】R73-37恶性肿瘤是威胁人类健康最严重的疾病之一[1],而具有局部浸润和远处转移的能力是恶性肿瘤最主要的生物学特性之一,也是导致患者死亡的主要原因[2]。
肿瘤侵袭转移过程是肿瘤细胞与宿主微环境之间相互作用的动态连续过程,这个过程是复杂的、多步骤的,对其机制的研究也经历了漫长的过程[3]。
Paget提出的“种子与土壤”经典转移理论已经在基础和临床研究中得到充分验证[4-5]。
基于这一理论,本文将从“种子”和“土壤”两个方面,重点介绍进化和异质性与肿瘤转移的关系,对恶性肿瘤转移的相关机制进行综述,以期推动恶性肿瘤转移的研究及拓展诊疗思路。
肿瘤进化和异质性的起源:两种假说在从正常细胞发展到肿瘤细胞的过程中,进化和异质性是一直互相伴随的。
在正常细胞中就存在异质性,表现为各个体之间遗传背景的差异,以及同一个体不同器官之间的分化状态差异[6-7]。
肿瘤干细胞与肿瘤血管异质性
中国肿瘤临床 2 0 1 4 年第4 1 卷第2 期 C h i n J C l i n O n c o l 2 0 1 4 , V o 1 . 4 1 , N o . 2 w w w . c j c o . c n
肿瘤 干细胞 与肿瘤血 管异质性 术
刘志勇
摘要
n e o u s a n d c a n c e r s t e m c e l l s ( CS C s ) p l a y a n i mp o r t a n t r o l e d u r i n g t u mo r n e o v a s c u l a r i z a t i o n . T h i s r e v i e w h i g h l i g h t s t h e c o n t r i b u t i o n o f
s e l s a n d v a s c u l o g e n e s i s v i a r e c r u i t me n t o f e n d o he t l i a l p r o g e n i t o r c e l l s f r o m t h e b o n e ma r r o w, a n d t h e e n d o t h e l i a l — d e p e n d a n t v e s s e l s a r e t h e o n l y wa y t h a t p r o v i d e s t u mo r wi t h b l o o d . Ho we v e r , mo r e a n d mo r e s t u d i e s i n d i c a t e t h a t t u mo r mi c r o c i r c u l a t i o n n e t wo r k i s h e t e r o g e —
胃癌肿瘤干细胞相关信号通路及靶向治疗研究进展
胃癌肿瘤干细胞相关信号通路及靶向治疗研究进展
高云鹤;马连港;蔡爱珍;郗洪庆;陈凛
【期刊名称】《世界华人消化杂志》
【年(卷),期】2017(25)4
【摘要】胃癌是世界范围内最常见的肿瘤之一,其死亡率在全球所有肿瘤中居第3位.因此,探究胃癌的发病及演变机制,为治疗胃癌提供理论依据尤为必要.过去数十年中,肿瘤干细胞的学说的提出与发展大大深化了人们对胃癌的认识.肿瘤干细胞是一类具有自我更新能力并能产生异质性肿瘤细胞的细胞,胃癌干细胞(gastric cancer stem cell,GCSC)在发生进展过程中都会伴随干细胞相关信号通路的异常,随着研究的深入,特别是针对GCSC及相关信号通路的研究取得了一定的成果,为阐明和治疗胃癌提供新的理论基础和实验依据.本文就干细胞相关的几条信号通路对GCSC影响与机制和靶向抑制信号通路关键靶点的治疗进行了综述.
【总页数】7页(P351-357)
【关键词】胃癌;肿瘤干细胞;信号通路;靶向治疗
【作者】高云鹤;马连港;蔡爱珍;郗洪庆;陈凛
【作者单位】中国人民解放军总医院普通外科普通外科研究所
【正文语种】中文
【中图分类】R329.2
【相关文献】
1.鼻咽癌干细胞相关信号通路及其靶向治疗研究进展 [J], 胡晶;戴娜;蔺婷;唐诗环(综述);何迎春(审校)
2.肿瘤干细胞相关信号通路调节与靶向治疗 [J], 郑媛媛;王继红;李庆伟
3.卵巢癌干细胞标志物及相关信号通路的研究进展和靶向治疗 [J], 何男;韩世愈
4.肿瘤干细胞相关信号通路在胃癌发生发展中的研究进展 [J], 席小龙;姜波健;俞继卫
5.肿瘤干细胞相关机制及靶向肿瘤干细胞治疗研究进展 [J], 马慧;任正刚
因版权原因,仅展示原文概要,查看原文内容请购买。
如何认识和处理肿瘤异质性
如何认识和处理肿瘤异质性钟睿;李慧;张爽;柳菁菁【摘要】肿瘤异质性是恶性肿瘤的特征之一,可使肿瘤的生长速度、侵袭与转移、药物敏感性、预后等各方面产生差异.肿瘤驱动基因和靶向药物的发现发展开启了战胜肿瘤的希望之门,然而异质性的存在又让肿瘤治疗陷入了难以攻克的困境.在肿瘤复发、进展演化的过程中肿瘤异质性如影随形,纷繁复杂.凭借不断进步的检测技术认识和理解肿瘤异质性,针对肿瘤异质性的原因和表型,定制治疗方案已成为当今精准医疗领域的重点范畴.本综述对肿瘤异质性进行了分析和探讨,从而更好的帮助我们了解肿瘤异质性,有利于我们通过多种手段对抗肿瘤异质性.【期刊名称】《中国肺癌杂志》【年(卷),期】2018(021)009【总页数】7页(P712-718)【关键词】肿瘤异质性;精准医疗;驱动基因;新技术【作者】钟睿;李慧;张爽;柳菁菁【作者单位】130012长春,吉林省肿瘤医院肿瘤转化医学实验室;130012长春,吉林省肿瘤医院肿瘤转化医学实验室;130012长春,吉林省肿瘤医院胸部肿瘤内科;130012长春,吉林省肿瘤医院胸部肿瘤内科【正文语种】中文同病异治和异病同治体现了早期人们对肿瘤异质性的认知,随着大规模基因测序等技术手段和对肿瘤生物起源和发展的了解[1-4],有关肿瘤异质性的新研究和新概念不断涌现,包括伴随治疗而产生的肿瘤时间异质性和通过克隆进化而体现的肿瘤空间异质性[5]。
肿瘤异质性不仅表现在肿瘤内和肿瘤间、原发和继发肿瘤、肿瘤细胞和循环肿瘤细胞存在异质性,也表现在同一肿瘤组织的不同肿瘤细胞间存在异质性。
根据肿瘤异质性设计更精准的药物组合,才能发挥最大药物有效性和产生最小药物毒性[6]。
本文主要围绕近年来肿瘤异质性在发展历程、驱动因素、研究现状、检测手段以及治疗策略方面的最新进展进行综述。
1 肿瘤异质性的发展历程最初发现肿瘤具有异质性可追溯到19世纪,病理学之父Virchow在光镜下发现癌细胞具有不同形态,这也是肿瘤进行病理分型的基础[7]。
肿瘤的诱导分化和凋亡疗法
01
干细胞是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞
02
干细胞
传统观念认为,肿瘤是由体细胞突变而成,每个肿瘤细胞都可以无限制地生长。但这无法解释肿瘤细胞似乎具有无限的生命力以及并非所有肿瘤细胞都能无限制生长的现象
Therapeutic implications of Cancer Stem Cells
Most therapies fail to consider the difference in drug sensitivities of cancer stem cells compared to their non-tumorigenic progeny. Most therapies target rapidly proliferating non-tumorigenic cells and spare the relatively quiescent cancer stem cells.
Distinct classes of cells exist within a tumor. Only a small definable subset, the cancer stem cells can initiate tumor growth.
Two General Models for Cancer Heterogeneity异质性
Origin of the Theory of Cancer Stem Cells
Only a small subset of cancer cells is capable of extensive proliferation Liquid Tumors In vitro colony forming assays: - 1 in 10,000 to 1 in 100 mouse myeloma cells obtained from ascites away from normal hematopoietic cells were able to form colonies In vivo transplantation assays: - Only 1-4% of transplanted leukaemic cells could form spleen colonies Solid Tumors - A large number of cells are required to grow tumors in xenograft models - 1 in 1,000 to 1 in 5,000 lung cancer, neuroblastoma cells, ovarian cancer cells, or breast cancer cells can form colonies in soft agar or in vivo
肿瘤干细胞的生物学特性
cell,TSC)的理论。这一理论为我们重新认识肿瘤
的起源和本质,以及临床肿瘤治疗提供了新的方
向和视觉角度。
2a
TSC是指肿瘤组织中少数具有自我更新和无限 增殖潜能的细胞,与肿瘤的形成和生长发育密 切相关。
目前已在白血病,乳腺癌,脑胶质瘤及恶性黑 色素瘤等肿瘤中得到证实。
3a
1 TSC具有正常干细胞的特性
在神经干细胞等非造血系统干细胞的表面也发 现表达有CD133分子。
12 a
TSC与正常干细胞的区别
TSC的增殖不受控制,而干细胞的增殖受到严 格的调控
TSC增殖后分化异常,而正常干细胞则可以分 化成正常的成熟细胞。
13 a
肿瘤,干细胞,TSC信号传导通路之间可能拥 有共同的途径 例如 Wnt Noth SHH PI3K等信号通路
11 a
6 TSC表达与正常干细胞相似 的分子标记
TSC和正常干细胞具有类似的细胞表面标志, 两者均出现相对幼稚化的特征。
例: CD133分子
部分造血系统肿瘤,尤其在急性白血病中存在 CD133表达异常。
1.1 均处于未分化状态
TSC具有相对无限的分裂增殖和多向分化潜能 细胞增殖的同时可诱导血管的生成
4a
1.2 端粒酶活性高
TSC具有扩增的端粒对称方式分裂
即一个子代细胞不可逆地分化成为功能专一的 终末分化细胞。
另一个子代细胞继续保持亲代的特征,作为干 细胞保留下来。
肿瘤组织内细胞并不完全相同,即肿瘤的异质 性
肿瘤的异质性是恶性肿瘤的特征之一,是指肿 瘤在生长过程中,经过多次分裂增殖,其子细 胞呈现出分子生物学或基因方面的改变,从而 使肿瘤的生长速度、侵袭能力、对药物的敏感 性、预后等各方面产生差异。
肿瘤干细胞研究进展 1
生命科学Chinese Bulletin of Life Sciences第21卷 第5期2009年10月Vol. 21, No. 5Oct., 2009文章编号 :1004-0374(2009)05-0715-05肿瘤干细胞研究进展潘秋辉1,宋尔卫2*(1中山大学附属第二医院医学研究中心,广州510120;2中山大学附属第二医院乳腺外科,广州510120)摘 要:在过去的十年中,肿瘤干细胞(cancer stem cell/tumor-initiating cell, CSC/TIC)虽然受到广泛重视,但也是争论的焦点。
如何正确认识C S C s 假说,以及C S C s 的生物学特点和C S C s 的治疗应用这些问题都存在巨大的争议。
该文对C S C s 的起源、分离鉴定的方法,以及信号通路、微环境等对C S C s 的调控关系,肿瘤的最佳治疗途径等问题进行综述。
关键词:干细胞;肿瘤干细胞;肿瘤治疗;分选鉴定中图分类号:R730.231 文献标识码:A Research progress of cancer stem cellsPAN Qiu-hui 1, SONG Er-wei 2*(1 Medical Research Center, second Affiliated Hospital, Sun Yat-sen University, Guangzhou 510120, China;2 Department of Breast Surgery, Second Affiliated Hospital, Sun Yat-sen University, Guangzhou 510120, China)Abstract: The investigation and study of cancer stem cells (CSCs) have received enormous attention over the past decade but remain topics of considerable controversy. Opinions about the validity of the CSC hypothesis,the biological properties of CSCs, and the relevance of CSCs to cancer therapy differ widely. In the following text, we discuss the origin, the identification, regulatory pathway, microenviroment and the new potential therapeutic targets elucidated by considering cancer as a problem in stem cell biology.Key words: stem cell; cancer stem cell; cancer therapy; identification of sorfing收稿日期:2009-08-21基金项目:国家自然科学基金重点项目(30830110);国家自然科学基金面上项目(30600328)*通讯作者:E-mail: songerwei02@1 肿瘤干细胞的概念肿瘤细胞群具有功能异质性,即不同的细胞亚群增殖、分化能力并不相同。
肿瘤干细胞
肿瘤干细胞研究的前景及方向
继续寻找各类肿瘤干细胞特异性的表面 标记,以便进一步分离、纯化肿瘤干细 胞,并设计针对肿瘤干细胞的特异性的 治疗方案;
进一步阐明正常干细胞生理和肿瘤干细 胞病理生理功能的分子调控途径以及导 致成肿瘤干细胞生成的分子机制,以便 找到新的治疗靶点; 进一步研究肿瘤细胞群体的异质性并设 计综合性的治疗方案。
二 起源于过渡细胞群 过渡细胞群细胞也有可能成为肿瘤突 变的靶细胞,过渡细胞的突变可使其重 新获得自我更新能力并诱导干细胞表面 标记的表达,从而成为肿瘤干细胞。
肿瘤干细胞和正常干细胞自我 更新的共同调控途径
(一)Bmi-1信号通路 Bmi-1是一种转录抑制因子,在小鼠 和人的HSC中呈高表达,说明Bmi-1可能 参与正常造血。 Bmi-1通过抑制 P16lnk4a和P19Alf蛋白的表达发挥作用, 这两种蛋白分别具有抑制细胞增殖和促 进细胞死亡功能
研究人员将Bmi-1基因敲除小鼠的干细胞 植入放射线照射后的正常小鼠体内,发 现HSC只能短暂地产生正常血细胞,至 第8周时来源于植入细胞的血细胞几乎全 部消失。同时,如果第6周时将该植入小 鼠的骨髓再次植入第二只小鼠体内,则 未见Bmi-1缺失的血细胞生成。
肿瘤干细胞研究的临床启示
肿瘤干细胞可逃避放疗和化疗药物 的作用, 的作用,是肿瘤耐药和复发的根源
肿瘤干细胞
武汉大学医学院免疫学系
概述
肿瘤-较均质的细胞群体 20世纪50年代提出-异质性-肿瘤干细胞 目前已证实: 白血病干细胞 乳腺癌干细胞 脑癌干细胞
干细胞的分裂特性
它们分裂时,一个子细胞分化成特定类型 的细胞并最终停止分裂,而另一个仍保持 干细胞的特性,以相同的途径再次分裂的 能力
传统观点
肿瘤干细胞的特性及其在疾病治疗中的应用
肿瘤干细胞的特性及其在疾病治疗中的应用肿瘤是细胞异常增生和分化的结果,其形成原因很复杂。
肿瘤细胞具有多样性和异质性,这种异质性在一定程度上影响着肿瘤的发展。
近年来,研究表明肿瘤的异质性是肿瘤干细胞引起的,并且肿瘤干细胞在肿瘤的形成和发展过程中发挥着重要的作用。
一、肿瘤干细胞的定义肿瘤干细胞是能够自我更新和分化成多种类型细胞的细胞群体,它们可以使肿瘤持续不断地增长和扩散。
肿瘤干细胞和正常干细胞的特性类似,包括自我更新、多向分化和无限生长等,而且它们还能够抵抗化疗药物和放疗等治疗手段的影响。
二、肿瘤干细胞的特性1、自我更新肿瘤干细胞能够不断地自我更新,保持其数量的稳定性。
这种自我更新能力使得肿瘤干细胞在肿瘤的起始和发展过程中起到了重要的作用。
2、多向分化与正常干细胞相似,肿瘤干细胞也具有多态分化能力,能够分化成多种不同类型的细胞,包括肌肉细胞、神经细胞、软骨细胞和淋巴细胞等,在促进肿瘤的异质性上具有关键作用。
3、无限增殖正常细胞存在分化受限性,在不断分裂分化后会逐渐失去增殖能力,在新生活的自然选择和免疫监视下被淘汰。
肿瘤干细胞破坏了这种分化受限性,善于增殖、分化,更难被人体治疗手段所杀死。
三、肿瘤干细胞的应用肿瘤干细胞在治疗肿瘤疾病中有着广泛的应用前景,包括筛选和评估新药物、性能优越的基因治疗方法、作为肿瘤免疫治疗的靶点等。
全面理解肿瘤干细胞的特性和生物学功能可有力促进现代肿瘤极个性化治疗的研究和设计。
1、筛选新型药物肿瘤干细胞的存在往往意味着传统治疗方案的局限性,即早期或中期治疗通常可以减少肿瘤的体积或者消失,但无法从根本上消除肿瘤干细胞和造成复发的根源。
因此,使用肿瘤干细胞作为药物筛选的对象可能更为合适。
利用肿瘤干细胞可以更好地评价和验证药物的效果,以期寻找到更好的治疗方法。
2、基因治疗通过基因工程技术对肿瘤干细胞进行研究和改变,可以实现对肿瘤细胞产生最明显和持久的抑制作用。
例如,将治疗基因转移至肿瘤干细胞中,可以改变其生长、分化和存活的方式,从而对肿瘤的发展产生抑制作用。
肿瘤异质性简介
肿瘤异质性简介肿瘤异质性tumor heterogeneity,是恶性肿瘤的特征之⼀,可以使肿瘤在⽣长速度,侵袭与转义,预后等各⽅⾯产⽣差异。
肿瘤异质性的体现形式多种多样,可以简单划分为以下两类1. 肿瘤间异质性,inter-tumor heterogeneity, 不⽤类型肿瘤的细胞存在基因型和表型差异2. 肿瘤内异质性,intra-tumor heterogeneity,同⼀种肿瘤其细胞也存在基因型和表型差异⽰意图如下对于瘤内异质性,⼜存在不同治疗阶段的时间异质性,原发和转移肿瘤间的空间异质性等。
除此之外,肿瘤微环境之间,肿瘤细胞和肿瘤循环细胞之间,同⼀肿瘤组织的不同肿瘤细胞也存在异质性。
深⼊研究肿瘤异质性,有助于了解肿瘤产⽣的机制,演化规律,解释治疗过程中耐药性等产⽣的原因,结合不同肿瘤类型和时期,为患者量⾝定制个性化的治疗⽅案,更好的实现精准医疗。
关于肿瘤异质性产⽣的机制,有以下两种假说1. clonal evolution model克隆进化模型,肿瘤细胞群起源与单个细胞,在增殖的过程由于多次突变分化成了不同的亚克隆细胞群,⽰意如下该模型⼜可以进⼀步划分为线性进化和分⽀进化模型,图⽰如下线性进化模型描述的肿瘤细胞向着具有⽣长优势的克隆进化,相⽐祖先克隆,顺序克隆包含更多的有⼒突变;分⽀进化模型中多个亚克隆具有相同的祖先克隆,不同分⽀的进化⼤⼤增加了肿瘤异质性。
2. cancer stem cell model肿瘤⼲细胞模型,肿瘤组织内内可以分为肿瘤⼲细胞和其他细胞两⼤类,随着肿瘤⼲细胞的增殖和分化,形成了肿瘤异质性,其他细胞经过⼏次分化后最终死亡,⽰意图如下⽬前有各种检测⼿段可以⽤于肿瘤异质性的研究,以NGS测序为主的技术⼿段由于其通量⾼,检测周期快等特性占据半壁江⼭,根据检测对象的不同,细分为循环肿瘤DNA(ctDNA), 循环肿瘤细胞(CTC),⾎液中游离的DNA(cfDNA), 肿瘤组织DNA,在对应的数据分析中,除了常规的call variants外,预测肿瘤亚克隆结构也是⼀项核⼼的分析内容。
肿瘤干细胞的免疫学
肿瘤干细胞的免疫学肿瘤干细胞的免疫学特性机体的免疫系统在肿瘤的发生发展中起着重要的作用,根据目前提出的肿瘤免疫编校(tumor immunoediting)概念[1],肿瘤免疫可分为免疫清除、免疫平衡和免疫逃逸3个阶段。
免疫清除阶段与以前提出的肿瘤免疫监视过程相一致,是指免疫系统可以及时发现和清除肿瘤细胞。
免疫清除可能是彻底的,所有的肿瘤细胞均被清除掉;也可能是不完全的,只有部分肿瘤细胞被清除掉。
在只有部分肿瘤细胞被清除的情况下,免疫系统和肿瘤细胞相互作用进入了免疫平衡阶段。
在免疫平衡阶段,肿瘤细胞可处在休眠状态,或者少部分肿瘤细胞由于基因的进一步突变等获得了抗免疫攻击的能力而继续增殖。
此阶段的免疫系统因选择性地杀死敏感的肿瘤细胞仍可以控制肿瘤的进展,但若最终不能将肿瘤完全清除,肿瘤进一步发展到免疫逃逸阶段。
在免疫逃逸阶段生长的肿瘤细胞大部分产生了抵抗免疫攻击的能力,并能产生多种因子抑制机体的瘤免疫系统。
此时免疫系统已不能控制肿瘤的生长,甚至一些免疫细胞和免疫因子反而促进肿瘤的生长,最终的结果是肿瘤无控制地进展。
当前的肿瘤免疫理论是建立在传统的肿瘤发展理论基础之上。
传统的肿瘤发展理论认为尽管肿瘤细胞具有异质性,但每个肿瘤细胞分裂的子代细胞都具有相同产生肿瘤的能力。
而最近的研究证实了肿瘤干细胞的存在。
肿瘤干细胞理论认为肿瘤中存在有少量肿瘤干细胞,如正常干细胞一样,肿瘤干细胞具有自我复制和定向分化能力,只有肿瘤干细胞才具有无限增殖和形成新肿瘤的能力,而占肿瘤组织绝大部分比例的分化肿瘤细胞不能形成肿瘤,肿瘤干细胞是肿瘤生长、转移和复发的根源。
目前已在多种肿瘤中分离鉴定到了肿瘤干细胞,并对它们的生物学特性进行了初步研究。
伴随着肿瘤干细胞研究的日益深入,与之相对应,肿瘤免疫的理论也必将进一步发展。
由于是一个崭新的概念,现在关于肿瘤干细胞免疫学特性的研究还非常少。
鉴于肿瘤免疫在肿瘤发展中的重要作用,肿瘤干细胞免疫学特性的研究会日益受到重视。
肿瘤干细胞的研究进展
课程考核论文课程名称:肿瘤干细胞的研究进展成绩:肿瘤干细胞的研究进展摘要:肿瘤干细胞是肿瘤中具有自我更新能力和分化潜能,能产生异质性细胞的细胞。
本文简要阐述了肿瘤干细胞的来源、分离技术及鉴定,并对以肿瘤干细胞分化、临床应用前景和问题进行了综述。
关键词:肿瘤、干细胞、应用肿瘤干细胞(cancer stem cells,CSC)理论认为,肿瘤组织中绝大多数细胞增殖能力有限,不能自我更新,不会导致肿瘤的复发、转移;CSC只占肿瘤细胞中的极少部分,却是肿瘤发生、发展的关键。
CSC研究有可能阐明肿瘤的发生机制,使肿瘤治愈,从而引发肿瘤学领域的革命性变革,意义重大。
本文拟就CSC 的起源和鉴定等作一简要综述。
一、肿瘤干细胞的来源肿瘤干细胞起源目前有两种学说:(1)由于正常干细胞突变形成肿瘤干细胞;(2)一些已经开始分化的原始细胞或成熟细胞去分化变为幼稚细胞并具有分裂能力。
Sell 认为恶性肿瘤的产生和发展是由于干细胞的分化受阻,而不是成熟细胞的去分化;干细胞是起始事件或“第一次打击”(即获得永生性)突变的靶标,干细胞本身具有永生性,只需获得异常增殖的突变即可;体细胞的突变不会形成肿瘤,是因为成熟细胞的半衰期短,一个正常细胞形成转化细胞至少需要几年至几十年,在促进事件或”第二次打击”(即获得异常增殖能力),细胞通常早已死亡。
尽管缺乏直接的实验证据,但也有研究人员认为CSC是正常SC同其他细胞融合的结果。
因为骨髓细胞容易与其他类型的细胞发生融合,Marx等_6认为,Houghton等在胃上皮细胞观察到的骨髓细胞是骨髓细胞与上皮细胞融合所形成的。
细胞融合因子CD 是乳腺癌干细胞的阳性标记,暗示CSC可能具有与其它细胞融合的能力。
Bjerkvij等观察到在病理条件下,SC和已经出现肿瘤相关基因突变的细胞发生融合,这种融合后的细胞具有sC的特性。
胚胎干细胞是指胚胎内细胞团或原始生殖细胞,具有发育全能性,在理论上可以诱导分化为机体内所有类型的细胞,在体外可以大量扩增、筛选、冻存和复苏而不会丧失其原有的特性。
癌干细胞的可塑性和异质性
癌干细胞的可塑性和异质性摘要:异质性是哺乳动物细胞在体外和体内无所不在的特征。
即使在最佳的培养条件下的人类胚胎干细胞是异质性。
在成体器官体干细胞也是,含有具有不同再生能力的自我更新细胞的许多亚群。
成体干细胞的分化的后代也保留显著发育可塑性。
像正常干细胞,癌干细胞(CSCs)显示出类似的显著表型和功能异质性,并且子代表现多样可塑性。
在这里,将讨论CSCs在肿瘤发生和发展的背景下异质性和可塑性。
通过了解肿瘤干细胞和分化后代之间的相互关系,希望能开发更好的治疗方案,防止肿瘤细胞的变异体能产生新的肿瘤和远处转移。
关键词:肿瘤干细胞;异质性;可塑性癌干细胞(CSCs)大多数肿瘤是多种亚型和功能不同的细胞组成的异质体。
其异质性可能来源于由不稳定的基因驱动克隆演变,或/和来源于分化的类干细胞,常被称为癌干细胞或肿瘤起始细胞 [1]。
现在研究展示克隆演变及癌干细胞引起肿瘤的发展不是独立的,而是两者的机制共同创造肿瘤异质性 [2]。
关于癌干细胞存在性没有争议,混淆的CSCs概念存在困惑。
首先,CSCs是功能性概念,具有正常干细胞样功能。
第二,癌干细胞也许不是起源于正常干细胞。
因为祖细胞有很强的增殖力,理论上可以成为转化目标。
已经转化的祖细胞获得自我更新能力,变成CSCs形成肿瘤。
BRCA1基因突变的在基底干细胞显著减少,但在管腔祖细胞的显着增加。
这些观测结果以及随后基因表达谱和功能研究,表明了异常管腔祖可能代表BRCA1相关基底乳腺肿瘤的转型目标[3]。
来自BRCAmut/ +患者乳腺上皮细胞产生的肿瘤相对于BRCA+ / +增加基底分化[4]。
这表明在肿瘤发展过程中特定的遗传突变决定祖细胞的表型。
第三,对于临床肿瘤,最初转化的细胞可能不是细胞的起源地。
最近对少突胶质前体细胞的研究支持该观点,少突胶质前体细胞为恶性胶质瘤的细胞起源地,虽然在神经元和神经胶质祖细胞中都有初始转化 [5]。
第四,癌干细胞在不同的癌症患者中是不同的,随着疾病的进展也是不断变化的。
肝癌的肿瘤异质性与个体化治疗
肝癌的肿瘤异质性与个体化治疗肝癌是一种令人担忧的疾病,它的特点之一就是肿瘤的异质性。
肝癌患者之间存在明显的肿瘤特征不同,这给治疗带来了挑战。
然而,随着医学科技的不断进步,个体化治疗成为治疗肝癌的一种新趋势。
本文将探讨肝癌的肿瘤异质性以及个体化治疗的重要性。
一、肝癌的肿瘤异质性肝癌是一种异质性肿瘤,即肝癌患者之间存在明显的肿瘤特征差异。
这种异质性主要表现在病理类型、分子表型、遗传基因等方面。
根据病理类型的不同,肝癌可分为肝细胞癌和胆管细胞癌等多种类型。
而在分子表型方面,肝癌可分为肝癌干细胞型、血管生成型、抑癌基因缺失型等多种类型。
此外,肝癌还存在着不同的遗传基因突变,例如TP53、CTNNB1等。
这种肿瘤异质性给肝癌的治疗带来了一定的困难。
传统的治疗方法往往只能广义地用于肝癌的整体治疗,而无法满足不同个体的特殊要求。
因此,研究肝癌的肿瘤异质性,并找到相应的个体化治疗方法,成为目前的一个热点。
二、个体化治疗的重要性个体化治疗是根据患者的个体特点和病理特征,量身定制的治疗方案。
相比于传统的广义治疗方法,个体化治疗具有更高的针对性和准确性,能够更好地满足患者的需求。
在肝癌的个体化治疗中,首先需要对患者的肿瘤进行基因检测和分析。
通过基因检测,可以了解肿瘤的分子特征和遗传突变情况,为个体化治疗提供依据。
例如,对于存在TP53突变的肝癌患者,可以选择针对该基因突变的特定治疗药物。
在个体化治疗的过程中,还可以结合肿瘤的病理类型和分子表型,制定更为精确的治疗方案。
个体化治疗的目标是提高患者的生存率和治疗效果。
通过个体化的治疗方案,可以最大限度地发挥药物的疗效,减少治疗的副作用和不良反应。
此外,个体化治疗还能够帮助医生更好地评估患者的预后,为患者提供更为准确的医疗建议。
三、个体化治疗的现状和挑战个体化治疗在肝癌治疗中的应用已经取得了一定的进展。
目前,一些针对肝癌特异性突变的靶向药物已经被临床应用,并取得了一定的疗效。
肿瘤干细胞分离方法的研究进展
hepar耐∞∞d∞aIllati∞0f锄‘Tc.EDDA/HYNIc.[LyB3].b0耐嘲in细
Med
C舢∞,2006,27(4):371.376.
[18]G眦i8 P,d a1.凸刹cal and biolo画cal ch|删=telizati∞0fn棚&(cO),/‰Tc(CO)3 b0I出油l∞p Logu∞[J].Nud Med B“,20cr7,34(1):17啦. [19】刁姗g H,schlII如嵋dl髓J,w赫B,d矗1.DcH.A.PEs矾,・
M,B阳锄n wA,B暇naId BF,d正.Tl哪托sp帅∞a矗口
[22]Ma翻V,c8∞ia-G舡ayoa
J Med
E,B协咖tein
P,d
a1.N们d蜘Tc-lI.
∞Y.DarrAo.1妒-0ct∞a6de憎di咖clide
1841.1846.
beled聃口她珊in∞丑109ll∞诵tlI叩衄∞d biodiBtEibIni∞舯币洲糟[J].
my加id 1273.1279.
[26]GotIhaIdtM,BeheMP,B棚衄D,d
in
a1.I唧姗ed劬啪r胁蒯∞
p缸∞协WitII m哦∞恤}i8Ied medull日|Iy
carcin伽咀[J].E叮J Nud M。d Mol Imaging,2006,33(11):
[14】Ginj M,sc知面n Js,chen J,魄a1.Ⅸ面目n,Bymhe8i8,蛐d biologi—
2003。30(8):1134一1139.
D帆~吒onju酬硝mⅢDtenein analo伊∞for i瑚giIIg且nd
阳∞pt咖iⅡ眦蜘删d倪矗ne乜lm咖:mol∞lllar蜥B h in椭mIIldr伊
细胞异质性研究方法策略解析
细胞异质性研究方法策略解析多细胞生物个体由多种形态功能不同的细胞组成,细胞的异质性(heterogeneity) 是一个普遍存在的生物学现象,即使看起来相同的细胞,也可能存在显著的异质性。
在很多疾病发生的情况下,这些异常的细胞常常藏匿于正常细胞之中,特别是肿瘤组织具有极强的细胞异质性,其中决定肿瘤发展方向的细胞可能只占整个肿瘤组织的一小部分。
研究细胞异质性,是一个单细胞层面的范畴。
单细胞间的异质性存在于DNA、RNA、蛋白等各个层面。
在此,我们将结合具体案例,介绍从单细胞转录组着手,通过高通量数据分析方法揭示单细胞异质性的研究思路。
单细胞基因表达谱,叩开细胞异质性大门目前,通过高通量的分子技术平台,对一定数量的单细胞的进行基因表达水平的检测(RNA 或蛋白),是揭示细胞异质性最有效的途径之一。
法国国家科研中心分子细胞及遗传学研究所I Davidson团队通过对黑色素瘤单细胞进行基因表达水平的研究,发现了黑色素瘤两个亚类细胞群(增殖型细胞和侵染(invasive)型细胞)之间异质性产生的分子基础,并为临床肿瘤检测提供了全新的思路和线索(ref. 1)。
肿瘤并不是均一的细胞团,肿瘤组织的不同细胞具有不同的侵染增殖能力及成瘤潜能。
传统的抗肿瘤药物对增殖速度快的肿瘤细胞清除效果较好,但对已发生转变并获得耐药性的细胞则效果十分有限。
I Davidson研究团队将一株增殖速度快但侵染能力差的黑色素瘤细胞注入小鼠皮下培养成瘤,待12周后将实体瘤取出,利用Fluidigm C1系统获得该肿瘤单细胞的cDNA样本,并利用Biomark高通量qPCR仪对92个单细胞的113个基因进行了检测。
引人注目的是,他们在少量肿瘤单细胞中检测出了侵染(invasive)相关基因(ZEB1,GLI2,MYOF)和耐药基因(ABCBS)的表达(图1)。
“我们利用单细胞的检测手段,发现在原本低侵染性的黑色素瘤细胞中,一小部分已经转变成了高侵染性的肿瘤细胞,并且还具备了耐药性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Leading EdgeEssay822 Cell 138, September 4, 2009 ©2009 Elsevier Inc.What Is the Cancer Stem Cell Model?To devise more effective cancer ther-apies it will be critical to determine which cancer cells have the potential to contribute to disease progression. If most cancer cells can proliferate exten-sively and metastasize, then virtually all cells must be eliminated to cure the disease. Consistent with this view, tra-ditional cancer therapies have sought to eliminate as many cancer cells as possible. In contrast to this approach, the cancer stem cell model proposes that the growth and progression of many cancers are driven by small sub-populations of cancer stem cells (Reya et al., 2001; Dick, 2008). The cancer stem cell model does not address the question of whether cancers arise from normal stem cells. Rather, it suggests that irrespective of the cell-of-origin, many cancers may be hierarchically organized in much the same manner as normal tissues. Just as normal stem cells differentiate into phenotypically diverse progeny with limited prolifera-tive potential, it is argued that cancer stem cells also undergo epigenetic changes analogous to the differentia-tion of normal cells, forming phenotyp-ically diverse nontumorigenic cancer cells that compose the bulk of cells in a tumor. These epigenetic changes are proposed to be associated with an irreversible (or rarely reversible) loss of tumorigenic capacity such that the vast majority of cells in these cancershave little capacity to contribute to dis-ease progression. To characterize and eliminate the malignant cells in cancers that follow this model, it is necessary to focus on the small subpopulations of tumorigenic cells.Consistent with the cancer stem cell model, certain cancers (including some germ cell cancers and some leukemias) have been recognized for decades to include neoplastic cells that differenti-ate into post-mitotic derivatives. Germ cell cancers give rise to highly differ-entiated cells, such as those that make neural tissue (Illmensee and Mintz, 1976). Some leukemias give rise to highly differentiated hematopoietic cells (Fearon et al., 1986; Barabe et al., 2007). These cancers are obviously hierarchically organized. The more controversial question raised by recent studies is whether many other cancers exhibit a similar hierarchical organiza-tion, even when overt differentiation is not evident among the cancer pelling data support the can-cer stem cell model in various human cancers including malignant germ cell cancers (Kleinsmith and Pierce, 1964; Illmensee and Mintz, 1976), leu-kemias (Lapidot et al., 1994; Bonnet and Dick, 1997), breast cancers (Al-Hajj et al., 2003), brain cancers (Singh et al., 2004), and colon cancers (Dal-erba et al., 2007; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). In each case, only small subpopulations of cells can transfer disease upon transplantationinto immunocompromised NOD/SCID mice, and markers have been identified that distinguish the leukemogenic/tum-origenic cancer cells from the bulk pop-ulations of nonleukemogenic/tumori-genic cells. The ability to predict which cells are tumorigenic based on marker expression indicates that the tumori-genic cells are intrinsically different from nontumorigenic cancer cells. Yet, no clear morphological distinction was found between tumorigenic and nontu-morigenic breast cancer cells (Al-Hajj et al., 2003), implying that differentia-tion need not be overt for the cells to be hierarchically organized. The observa-tion that tumorigenic cells have tended to be rare in the cancers found so far to follow a cancer stem cell model implies that epigenetic differences distinguish tumorigenic from nontumorigenic cells because it is implausible that only rare cancer cells have a genotype permis-sive for extensive proliferation. Tum-origenic cancer stem cells also form phenotypically diverse nontumorigenic cells, recapitulating at least some of the heterogeneity in the tumors from which they derive.Despite strong data supporting the stem cell model in some cancers, it is important to acknowledge a number of caveats. There is no direct evidence in these cancers that tumorigenic cells differ from nontumorigenic cells as a result of epigenetic rather than genetic differences. Moreover, the conclusion that transplanted cancer stem cellsHeterogeneity in Cancer: Cancer Stem Cells versus Clonal EvolutionMark Shackleton,1 Elsa Quintana,1 Eric R. Fearon,2 and Sean J. Morrison 1,2,*1Howard Hughes Medical Institute, Life Sciences Institute, Center for Stem Cell Biology 2Department of Internal MedicineUniversity of Michigan, Ann Arbor, MI 48109, USA *Correspondence: seanjm@ DOI 10.1016/j.cell.2009.08.017The identification and characterization of cancer stem cells might lead to more effective treat-ments for some cancers by focusing therapy on the most malignant cells. To achieve this goal it will be necessary to determine which cancers follow a cancer stem cell model and which do not, to address technical issues related to tumorigenesis assays, and to test the extent to which cancer cell heterogeneity arises from genetic versus epigenetic differences.can recapitulate the heterogeneity of the tumors from which they derive is based on limited analyses of only two or three surface markers. It has not yet been determined whether there is also genetic heterogeneity within the pri-mary tumors that is not recapitulated after cancer stem cell transplantation. It therefore remains possible that the functional and phenotypic diversity within these cancers is underestimated and partially genetically determined. The cancer stem cell model has been carefully tested in only a small subset of cancers. Although this model is often assumed to apply widely to other can-cers, recent data demonstrate that leu-kemogenic/tumorigenic potential is a common attribute of cells in some can-cers (Kelly et al., 2007; Williams et al., 2007; Quintana et al., 2008) making this a questionable assumption. Second, the NOD/SCID mouse transplantation assay, which has been the source of most of the compelling data supporting the cancer stem cell model, dramati-cally underestimates the frequency of human cancer cells with tumorigenic potential in some cancers (Quintana et al., 2008). This suggests the need to re-evaluate some of the evidence sup-porting the model using assays that are more permissive for the engraftment of human cancer cells. If some cancers that are currently thought to follow a cancer stem cell model actually have common tumorigenic cells and hetero-geneity is generated through genetic and epigenetic mechanisms, the pro-gression of these cancers may be moreaccurately described by the clonal evo-lution model (Nowell, 1976) (Table 1).The Cancer Stem Cell Model andClinical BehaviorThe response of some cancers to ther-apy does appear to be influenced byepigenetic differences between leu-kemogenic/tumorigenic cells and theirnonleukemogenic/tumorigenic progeny.For example, chronic myeloid leukemiaappears to be sustained by leukemicstem cells that are more resistant to thedrug imatinib than their differentiatedprogeny (O’Hare et al., 2006; Oravecz-Wilson et al., 2009). There is also evi-dence that cancer stem cells in gliomas(Bao et al., 2006) and breast cancers(Li et al., 2008; Diehn et al., 2009) mightbe intrinsically more resistant to ther-apy than other cells in these cancers.Conversely, the undifferentiated cellsthat drive testicular cancer progressionare more sensitive to cisplatin therapythan the differentiated cells they form(Masters and Koberle, 2003). This indi-cates that although the epigenetic stateof cancer stem cells can influence theresponse to therapy, these cells are notalways more resistant than their nontu-morigenic progeny.Although the cancer stem cell modelis likely to explain the clinical behaviorof some cancers, the observation thatmany cancers re-emerge after treat-ment does not necessarily imply thatthe cells that survive therapy are intrin-sically more resistant than the cellsthat are killed. All cancer cells within agiven patient might have a similar prob-ability of surviving and expanding aftertherapy, or the surviving cells might bein a protective microenvironment. Incases where there are intrinsic differ-ences in the sensitivity of cancer cellsto therapy, these differences can begenetically determined (Sikic, 2008).Therefore, therapy-resistant cancerstem cells do not necessarily exist inmany cancers. Resistance to therapyin many cancers may be explainedby epigenetic and genetic differencesamong tumorigenic cancer cells thatlack hierarchical organization, just aspredicted by clonal evolution (Nowell,1976).Epigenetic differences between can-cer stem cells and their progeny arelikely to be an important determinant ofthe clinical behavior of some cancersbut not others, whereas clonal evolutionis likely to be important in all cancers.The cancer stem cell model and theclonal evolution model are not mutu-ally exclusive in cancers that are hier-archically organized into epigeneticallydistinct populations of tumorigenic andnontumorigenic cancer cells. In thesecancers, clonal evolution still occursin the cancer stem cells (Barabe et al.,2007). For example, the leukemic stemcells that maintain chronic myeloid leu-kemia despite imatinib therapy wouldbe selected to develop imatinib resis-tance mutations over time by clonalevolution (Shah et al., 2007). How-ever, in cancers in whichtumorigenicCell 138, September 4, 2009 ©2009 Elsevier Inc. 823824 Cell 138, September 4, 2009 ©2009 Elsevier Inc.potential is common and there is little evidence of hierarchical organization, heterogeneity in response to therapy likely arises primarily from clonal evo-lution, not from epigenetic differences between cancer stem cells and their progeny.The Cancer Stem Cell Model Addresses Potential, Not FateThe cancer stem cell literature has addressed the potential of cancer cells to contribute to disease, not the actual fate of cells within patients. Potential describes what cells are capable of doing under permissive conditions, whereas fate describes what they actually do in a specific circumstance. The central tenet of the cancer stem cell literature has been that the vast majority of cells within at least some cancers have lost the potential to proliferate extensively, as revealed by their inability to transfer dis-ease to immunocompromised mice and in some cases by their inability to pro-liferate in culture. It has been proposed that the nontumorigenic cancer cells can be ignored in therapy because they lack the potential to contribute to disease.These inferences regarding tumori-genic potential are sometimes confused with the question of which cells are actu-ally fated to contribute to disease in patients. The issue of fate is a different question that has not been addressed by the cancer stem cell field. Indeed, there are almost no data in all of cancer biol-ogy that address the question of whether many cancer cells or few cancer cells are actually fated to contribute to disease in patients because this question can only be addressed within the patient and therefore is experimentally less feasible. It is important to bear in mind that just because a cell has the potential to form a tumor does not mean that it actually does so within a patient. Cancer cells with tumorigenic potential might be held in check, transiently or permanently, by environmental or immunological mecha-nisms that prevent them from actually contributing to disease.To test the cancer stem cell model, it is necessary to identify all of the cells with the potential to proliferate extensively and to contribute to disease (Figure 1). If a cancer cell has the potential to form a tumor in any assay, then it has not entered an epigenetic state in which it has lost the ability to proliferate, and it is perilous to ignore this cell when treating a patient. For this reason, tumorigenic potential is presumably the key consid-eration when devising therapeutic strat-egies because therapies must target all cells with the potential to contribute to disease in a patient. It is not safe to base therapeutic strategies on assumptions regarding fate because fate is context dependent. Cancer cells fated to con-tribute to disease in one context (such as in a primary tumor) may be quite different from cells fated to contribute to disease in other contexts (such as after metasta-sis or therapy). Rational approaches to therapy must therefore target all of the cells with the potential to contribute to disease.A fundamental question is whether immunocompromised mice are reliable models for studying human cancer. The answer may depend upon the aspect of cancer biology being studied. Trans-plantation into highly immunocompro-mised mice is the best, albeit imperfect, way of assessing which human cancer cells have the potential to form tumors/leukemias. In contrast, such stud-ies often cannot address the extent to which these cells might be positively or negatively regulated by environmental mechanisms, such as immune function, in patient tissues. For example, an inter-esting question is whether some cancer cells are more immunogenic than oth-ers in patients. This question should not be confused with the cancer stem cell model, which addresses the very differ-ent issue of whether intrinsic epigenetic differences among cancer cells limit their proliferative potential. The question of whether some cancer cells are more immunogenic than others in patients may not be directly testable because it requires tumorigenesis assays that rep-licate the syngeneic immune response that occurs in patients against their own tumors. The xenogeneicimmuneFigure 1. Testing the Cancer Stem Cell ModelDuring the dissociation of solid tumors (left), conditions must be optimized to maximize the preservation of cell viability and surface marker expression. During cell separation (middle), care must be taken to use viability dyes and markers to exclude dead cells, hematopoietic cells, endothelial cells, and stromal cells (if possible) by flow cytometry from the cancer cell preparation. The tumorigenicity of all cells must be tested in assays optimized for the engraftment of human cancer cells (right). For nontumorigenic cell populations, it is critical to confirm that they contain live cancer cells, rather than normal cells or debris. If markers can be identified that distinguish tumorigenic from nontumorigenic cells, an important question is whether these cancer cell populations are distinguished by epigenetic rather than genetic differences.response that occurs in mice against human cells is much more powerful and depends upon very different immu-nological mechanisms than the syn-geneic response in patients does. For these reasons, it is critical to distinguish between questions of potential that can be addressed in xenograft models and questions of fate that must be addressed in human tissues or in models of mouse cancer.Underestimating Tumorigenic PotentialThe xenogeneic immune response that mice mount against human cells is a critical variable that determines the ability of human cancer cells to engraft in mice. Even highly immunocompro-mised NOD/SCID mice, lacking B and T cells, retain natural killer cells that reject most transplanted human cells (McKenzie et al., 2005). As human can-cer cells are transplanted into increas-ingly immunocompromised mice, fewer and fewer cells are required to transfer disease (Bonnet and Dick, 1997; Feur-ing-Buske et al., 2003; Kennedy et al., 2007; Quintana et al., 2008).The use of NOD/SCID mice can underestimate the frequency of human cancer cells with tumorigenic poten-tial due to the xenogeneic immune response in these mice. The percent-age of melanoma cells that form tumors in NOD/SCID mice deficient in the interleukin-2 receptor γchain (IL2Rγnull mice), which lack T, B, and natural killer cells, is orders of magnitude higher than the percentage that form tumors in NOD/SCID mice. Although only ~1 in a million melanoma cells form tumors in NOD/SCID mice, 1 in 4 can form tumors in NOD/SCID IL2Rγnull mice when coinjected with Matrigel (Quin-tana et al., 2008). Thus tumorigenic potential is a common attribute of cellsin some human cancers, even though tumorigenic cells can appear to be rare in the NOD/SCID mouse transplanta-tion assay.Although this suggests that the fre-quency of leukemogenic/tumorigenic cells in other cancers should be re-evaluated in optimized assays, it does not necessarily mean that such cells will be as common in other cancers as they are in melanoma. Additional work is required to determine whichcancers have common leukemogenic/tumorigenic cells and which have rareleukemogenic/tumorigenic cells (Fig-ure 1). This is a critical issue as modelsand therapies must account for the fullspectrum of human cancer cells withthe potential to contribute to disease.Even highly immunocompromisedNOD/SCID IL2Rγnull mice may underes-timate the frequency of human cancercells with tumorigenic potential due todifferences between the mouse andhuman tissue environments. Incompat-ibilities between mouse ligands andhuman receptors for certain growthfactors and adhesion molecules mayimpair the survival, proliferation, ormigration of human cells in mice. More-over, human cancers are often hetero-topically transplanted into mice (that is,transplanted into locations thatdiffer Figure 2. Cancers Need Not Be Hierarchically Organized to Be HeterogeneousCD133 expression distinguishes tumorigenic from nontumorigenic cancer cells in some brain tumors and some colon cancers (Singh et al., 2004; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). However, the expression of CD133 (or other stem cell markers) by small subpopulations of cells in other cancers does not necessarily mean that these cells are cancer stem cells. CD133 expression was heterogeneous in melanomas from 6 of 12 patients (Quintana et al., 2008).(A) Representative CD133 staining in one of these melanomas (positive staining was defined using an isotype control).(B) A reanalysis of the CD133− (blue) and CD133+ (red) fractions after separation using magnetic beads.(C) When these cells were transplanted into NOD/SCID IL2Rγnull mice, both the CD133− and CD133+ frac-tions of cells contained high frequencies of tumorigenic cells (D) (Quintana et al., 2008). The tumors that arose from CD133− cells and from CD133+ cells contained similar proportions of CD133− and CD133+ cells. This indicates that individual cancer cells can recapitulate the heterogeneity of the tumors from which they derive, even when there is no evidence that the cancer follows a cancer stem cell model or that tumorigenic cells are hierarchically organized.Cell 138, September 4, 2009 ©2009 Elsevier Inc. 825from the locations in which the tumors normally arise in patients). Differences between the native environment of can-cer cells in patients and the environment into which these cells are transplanted in mice can reduce the engraftment of cells with tumorigenic potential. These effects can be mitigated by expressing human growth factors in mice (Lapi-dot et al., 1994; Feuring-Buske et al., 2003) and by optimizing the site of transplantation (Kennedy et al., 2007). As tumorigenesis assays are optimized (Table S1 available online), it is likely that estimates of the frequency of cells with leukemogenic/tumorigenic poten-tial will increase significantly in most human cancers.The Biological Basis of Cancer Cell HeterogeneityThe cancer stem cell model posits that differences in tumorigenic poten-tial among cancer cells from the same patient are largely epigenetically deter-mined. Moreover, this model requires such epigenetic differences to be largely irreversible because if nontu-morigenic cells could efficiently revert to the tumorigenic state it would not be possible to distinguish tumorigenic from nontumorigenic cells and such cancers would not be hierarchically organized. Consistent with the model, cancer stem cells differentiate into nontumorigenic cancer cells in germ lineage cancers (Kleinsmith and Pierce, 1964; Illmensee and Mintz, 1976), chronic myeloid leukemia (O’Hare et al., 2006), and some brain tumors (Pic-cirillo et al., 2006).The extent to which cancer cells dif-ferentiate to a nontumorigenic state has not been directly tested in most other cancers. The ability to distinguish rare tumorigenic cells from nontumori-genic cells in several cancers based on marker expression implies that the tumorigenic cells are epigenetically distinct from nontumorigenic cells in these cancers (e.g., Lapidot et al., 1994; Bonnet and Dick, 1997; Al-Hajj et al., 2003; Singh et al., 2004; O’Brien et al., 2007; Ricci-Vitiani et al., 2007). However, if tumorigenic cells are much more common in some of these can-cers than currently estimated, a legiti-mate question arises about whether they are really distinguished from non-tumorigenic cells by epigenetic mech-anisms. Some cancer cells would beexpected to lack tumorigenic potentialbecause they are fated to undergo celldeath or senescence due to deleteri-ous genetic changes or localization tounsupportive environments. If nontum-origenic cells represent 50% or 75% ofcells in a tumor, it is conceivable thattheir lack of tumorigenic potential isexplained entirely by genetic and envi-ronmental mechanisms. Therefore,in cancers in which tumorigenic cellsare common, it will be vital to assesswhether epigenetic differences distin-guish tumorigenic and nontumorigeniccells to determine whether such can-cers follow a cancer stem cell model.The mere observation that some can-cer cells are more tumorigenic thanothers is entirely consistent with clonalevolution (Table 1).Melanoma illustrates these issues.We estimate that at least 25% of humanmelanoma cells have tumorigenic poten-tial, and we have not been able to iden-tify any markers that distinguish tumori-genic from nontumorigenic melanomacells, despite considerable effort (Quin-tana et al., 2008). This does not provethat melanoma does not follow a cancerstem cell model as markers that distin-guish tumorigenic from nontumorigeniccells could be identified in the future.Nevertheless, the simplest interpreta-tion of the currently available data isthat many melanoma cells have a simi-lar tumorigenic capacity, that these cellsare not hierarchically organized (Figure2), and that melanoma does not, there-fore, appear to follow a cancer stem cellmodel. If markers are identified in futurethat can distinguish tumorigenic fromnontumorigenic melanoma cells, it willbe important to test whether these cellsare distinguished by genetic differences,epigenetic differences, or localization todistinct environments.Distinguishing Tumorigenic fromNontumorigenic CellsEvidence that tumorigenic cells canbe distinguished from nontumorigeniccells based on marker expression isa cornerstone of the cancer stem cellmodel. Without this evidence, it wouldbe possible that all cancer cells havethe same stochastic probability of pro-liferating or forming a tumor. Thus, theability of markers to distinguish leuke-mogenic/tumorigenic cells from non-leukemogenic/nontumorigenic cells inleukemias (Lapidot et al., 1994; Bonnetand Dick, 1997), breast cancers (Al-Hajjet al., 2003), brain cancers (Singh etal., 2004), and colon cancers (Dalerbaet al., 2007; O’Brien et al., 2007; Ricci-Vitiani et al., 2007) is strong evidencethat these cancers follow a cancer stemcell model.As markers are further evaluated inadditional studies and in larger num-bers of tumors, some markers willlikely prove less robust than they cur-rently appear. CD133 appeared to be arobust marker of brain tumor stem cellsin initial studies (Singh et al., 2004; Baoet al., 2006), but more recent studieshave found that this marker does notdistinguish tumorigenic from nontu-morigenic cells in many other braintumors (Joo et al., 2008; Ogden et al.,2008; Wang et al., 2008). This raisesthe possibility that some brain tumorsmay follow a cancer stem cell model,whereas others do not. This is likely tobe a general issue in a variety of can-cers as many of the markers used todistinguish tumorigenic from nontum-origenic cancer cells may turn out towork in some circumstances but notin others. It is important to rememberthat in the absence of markers thatcan distinguish tumorigenic from non-tumorigenic cancer cells, there is noevidence that a cancer follows a can-cer stem cell model as there can beno evidence of intrinsic differencesamong cancer cells in tumorigenicity(without markers there is no way to ruleout the possibility that all cancer cellshave a similar stochastic probability offorming tumors). It will be important todetermine what fraction of patients witheach type of cancer actually have can-cers that express informative markersand follow a cancer stem cell model.Given these uncertainties in markerrobustness, markers alone should notbe relied upon to assess potential bio-logical differences between tumori-genic and nontumorigenic cells; func-tional assays are required to confirmdifferences in therapy sensitivity andother biological properties.826Cell 138, September 4, 2009 ©2009 Elsevier Inc.There are also a number of technical pitfalls that can falsely appear to dis-tinguish tumorigenic from nontumori-genic cancer cells (Table S1). Tumors contain neoplastic cancer cells as well as non-neoplastic stromal and immune cells, but markers are rarely available to distinguish them. Many solid cancer stem cell studies have not even taken advantage of known hematopoietic and endothelial markers to exclude these cells from sorted cancer cell preparations. Thus, it is possible that the depletion of tumorigenic activity in “nontumorigenic” cell populations in some studies could be caused by the presence of non-neoplastic cells in these populations rather than by the presence of nontumorigenic cancer cells. Additionally, debris from dying cells and necrotic tissue can appear indistinguishable from live cells by flow cytometry if the debris contains little DNA and does not take up viabil-ity dyes. As a result, nontumorigenic fractions can be identified from some tumors, not because large numbers of cancer cells lack tumorigenic poten-tial, but because the tumors yield large quantities of debris that is dif-ficult to distinguish from live cells by flow cytometry. It is critical to exclude debris as much as possible from can-cer cell preparations and to examine all sorted fractions by microscopy to ensure the presence of live cells. Some Cancers Follow a Cancer Stem Cell Model, Others Do Not Although studies of human cancers in immunocompromised mice can be confounded by species incompatibili-ties, the conclusion that some cancers follow a cancer stem cell model has been confirmed in studies of mouse cancers. Even when cells from some mouse leukemias (Deshpande et al., 2006; Krivtsov et al., 2006; Yilmaz et al., 2006), mouse breast cancers (Cho et al., 2008; Vaillant et al., 2008; Zhang et al., 2008), and mouse squamous cell carcinomas (Malanchi et al., 2008) are transplanted into fully histocompatible wild-type recipient mice, some of these cancers appear to follow a cancer stem cell model marked by the presence of small subpopulations of cancer cells that have much more leukemogenic/tumorigenic capacity than the bulkpopulation of neoplastic cells. As aresult of parallel studies of human andmouse cancers, there is strong evi-dence that some cancers follow a stemcell model.Some cancers follow a stem cellmodel, but it is dangerous to gen-eralize. The cancer stem cell modelappears to apply to some mouse acutemyeloid leukemias (Deshpande et al.,2006; Krivtsov et al., 2006; Yilmaz etal., 2006) but not others (Kelly et al.,2007). It would not be surprising if can-cers with different constellations ofmutations differ in the extent to whichthey follow a stem cell model. The samepoint applies to markers. Just becauseCD133 expression identifies cancerstem cells in some cancers does notmean this marker will be informative inother cancers (Figure 2). Markers shouldbe validated in significant numbers ofpatients before they are assumed to beinformative in all patients. It is neces-sary to rigorously test the cancer stemcell model in every circumstance inwhich it is hypothesized to apply, usingassays that are optimized to detect thefull spectrum of cells with tumorigenicpotential.The Significance of Cancer CellHeterogeneityCancers that do not follow a cancer stemcell model are not necessarily homoge-neous. Although we have not been ableto identify any markers that distinguishtumorigenic from nontumorigenic mela-noma cells, we observe considerableheterogeneity within individual mela-nomas in terms of cellular morphology,pigmentation, and marker expression(Quintana et al., 2008). There are likelybiologically and clinically importantforms of heterogeneity among cancercells that are unrelated to distinctionsbetween tumorigenic and nontumori-genic cells. The clonal evolution modelpredicts that there should be geneticheterogeneity among cancer cells thatleads to heterogeneity in phenotype,function, and response to therapy. Epi-genetic differences are presumably lay-ered on top of these genetic differencesto confer additional heterogeneity. Yet,the mere existence of such heterogene-ity does not imply that cancers must behierarchically organized into tumorigenicand nontumorigenic fractions, nor doesthe lack of hierarchical organizationimply that cancers are homogeneous(Figure 2).Although the cancer stem cell modelwas introduced to describe cancersin which intrinsic epigenetic differ-ences among cancer cells causethese cells to reside in a hierarchy oftumorigenic and nontumorigenic cells(Reya et al., 2001; Dick, 2008), the termcancer stem cell is now used so pro-miscuously as to threaten any mean-ing. Some have described the normalcell that is transformed into cancer(the cell-of-origin) as the cancer stemcell, even though the cancer stem cellmodel does not address the cell-of-ori-gin (for more discussion of this issue,see Dick, 2008). Others have begun todescribe any clonogenic cancer cell asa cancer stem cell. The cancer stemcell model becomes meaningless andcan no longer be readily distinguishedfrom the clonal evolution model whenany clonogenic cancer cell is consid-ered a cancer stem cell. Although it istrue that cancer stem cells need notbe rare (Kelly et al., 2007), cancers inwhich most cells are similarly tumori-genic do not follow a cancer stem cellmodel because there can be no mean-ingful hierarchy within these tumors.Indeed, in cases in which most cancercells have tumorigenic potential thereis little that can be gained in terms oftherapy or biology by distinguishingthese cells from minority populationsof nontumorigenic cells. Some cancersare just good old fashioned cancer inwhich nearly every cell is bad.Whether a cancer is comprised ofcommon tumorigenic cells that are het-erogeneous as a result of clonal evo-lution or whether the cancer containsa hierarchy of epigenetically distincttumorigenic and nontumorigenic cells,cancers often arise and progress due todysregulation of self-renewal pathwaysborrowed from normal stem cells (Reyaet al., 2001). Carcinogenic mutations caninappropriately activate normal stem cellself-renewal pathways. In some cases,carcinogenesis preserves the epigeneticprograms that regulate stem cell differ-entiation, allowing cancer stem cells toform a hierarchy of cancer cells. In otherCell 138, September 4, 2009 ©2009 Elsevier Inc. 827。