第10章相关分析与回归分析
第10章 线性相关与回归
直线回归方程的用途 1.两变量间存在直线关系时,直 线方程可定量地描述两变量间的线性 依存关系。 2.根据直线回归方程由已知变量 值估计未知变量值:如统计预测。
应用直线回归方程时应注意的问题 1.求出样本资料的直线回归方程 后应进行假设检验。 2.应用直线回归方程时,要注意 方程只适用于自变量X的样本数据波动 范围,不能任意外延其应用范围。
在进行假设检验时,无效假设H0 为:ρ=0,即两变量间无直线相关关系; 备择假设H1为:ρ≠0,两变量间有直 线相关关系。常用的假设检验方法是t 检验,检验统计量t值的计算公式如下:
r0 tr Sr
r 1 r n2
2
,v n2
例9-2 就例9-1资料,问某地4岁 儿童体重与体表面积间是否有直线关系?
反双曲正切变换:
z tanh r
或
1
1 1 r z ln 2 1 r
z u
Z的1-α可信区间计算公式:
2
n 3 , z u 2
n3
缩写
z u
a2
n3
ρ的1-α可信区间计算公式:
tanh z u 2
缩写
n 3 , z u 2
XY (3) 58.113 62.5282 64.296 65.0916 73.3862 82.3918 83.952 90.9198 92.34 102.576 ∑XY=775.5946
X
2
Y
2
(4) 121.00 139.24 144.00 151.29 171.61 187.69 207.36 222.01 231.04 256.00 2 ∑X =1831.24
5.4 5.2
《SPSS统计分析》第10章 相关分析
12.990 16.290 17.990 19.290
12.500 15.800 17.500 18.800
11.500 14.800 16.500 17.800
2.200 5.500 7.200 8.500
3.300 5.000 6.300
3.300
1.700 3.000
5.000 1.700
1.300
3.分析两个变量间线性关系的程度。往往因为第三个变量的作用,使相关系数不能真正反映两个 变量间的线性程度。 这是应该控制一个变量的变化求另两个变量间的相关系数,也就是说, 在第三个变量不变的情况下,两个变量的线性程度。
CORRELATIONS /VARIABLES=VCP with HEIGHT WEIGHT /PRINT=TWOTAIL NOSIG /MISSING=PAIRWISE .
6.300 3.000 1.300
1.800 1.500 3.200 4.500
2.700 6.000 7.700 9.000
5.000 8.300 10.000 11.300
12.000 15.300 17.000 18.300
9: 9 14.790 14.300 13.300
4.000 1.800 1.500 3.200 4.500
返回
典型相关分析
返回
典型相关分析概念
典型相关分析是用来描述两组随机变量间关 系的统计分析方法。
通过线性组合,可以将一组变量组合成一个 新的综合变量。虽然每组变量间的线性组合有无 数多个,但通过对其施加一些条件约束,能使其 具有确定性。
典型相关分析就是要找到使得这两个由线性 组合生成的变量之间的相关系数最大的系数。
学习通过编程解决偏相关问题
第10章 回归分析..
介绍: 1、回归分析的概念和模型 2、回归分析的过程
回归分析的概念
寻求有关联(相关)的变量之间的关系 主要内容:
从一组样本数据出发,确定这些变量间的定 量关系式 对这些关系式的可信度进行各种统计检验 从影响某一变量的诸多变量中,判断哪些变 量的影响显著,哪些不显著 利用求得的关系式进行预测和控制
补充:回归分析
以下的讲义是吴喜之教授有 关回归分析的讲义,很简单, 但很实用
定量变量的线性回归分析
对例1(highschoo.sav)的两个变量的数据进行线性回归, 就是要找到一条直线来最好地代表散点图中的那些点。
100
y 0 1 x
S1 60 70 80 90
y 26.44 0.65 x
2.
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise
我们只讲前面3个简单的(一般教科书的讲法)
10.1 线性回归(Liner)
一元线性回归方程: y=a+bx
a称为截距 b为回归直线的斜率 用R2判定系数判定一个线性回归直线的拟合程度:用来说明用自变 量解释因变量变异的程度(所占比例)
b0为常数项 b1、b2、…、bn称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度: 用来说明用自变量解释因变量变异的程度(所占比例)
第10章 相关与回归分析_PPT幻灯片
直线相关
相关 ---- 变量间的互依关系
直 线 相 关 (linear correlation) : 简 单 相 关 (simple correlation),用于双变量正态分布资料。
图10-2 相关系数示意图
散点呈椭圆形分布,
X、Y 同时增减---正相关
(positive correlation);
2. 计算检验统计量
0.8012
t
4.017
1 (0.8012 )2
11 2
n 2 11 2
3. 确定 P 值下结论(根据 t 值或查附表 11 r 界值表)
t=4.017>t0.05(9)=3.69,按 =0.05 水准拒绝 Ho,…
五、总体相关系数的区间估计(了解)
必须先对 r 作 z 变换
170
47
173
42
160
44
155
41
173
47
188
50
178
47
183
46
180
49
165
43
166
44
பைடு நூலகம்
1891
500
Xy 7990 7266 7040 6355 8131 9400 8366 8418 8820 7095 3174 86185
x2 28900 29929 25600 24025 29929 35344 3684 33489 32400 27225 28561 326081
变量间关系问题:年龄~身高、肺活量~体重、药物剂 量与动物死亡率等。
两种关系:
依存关系:应变量(dependent variable) Y 随自变量 (independent variable) X变化而变化。
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
回归分析与相关分析
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
[课件]第10章事物间的因果关系回归分析PPT
x的线性关系所决定的部分,即可以直接由x估计的部分。 b为回归系数,也是回归线的斜率。 残差:估计值ŷ和每一个实测值之间的差称为残差。残差 表示因变量y除了自变量x以外的其他所有未进入模型或未 知但可能与y有关的随机和非随机因素共同引起的变异, 即不能由x估计的部分。
最小二乘原理即残差的平方和最小。
回归系数
常数项即a
自变量的回 归系数即b
如果p值小于0.05,说明该自变 量的回归系数在统计上是显著的, 即有足够的把握认为b不为0。
建立回归方程: y=1.935+0.021x 其中y表示儿童的知识量评分 x表示儿童接触电视的时间。
15
将一元线性回归进行推广,引入多个自变量,以利用更多 的信息来解释因变量的变化,即可得多元线性回归方程
如果p值小于0.05,说明 该自变量的回归系数在统 计上是显著的,即有足够 的把握认为b不为0。
建立回归方程:
y=-6.886+1.455x1+0.009x2
强制回归法:所有自变量强制纳入回归模型 向前回归法:将自变量按顺序选入回归模型。首先选入的
是与因变量有最大相关性的自变量,同时必须满足选入条 件,然后再考虑下一个自变量。 向后回归法:与向前法相反。首先将所有变量纳入模型, 然后按顺序移除,最先移除的是与因变量相关性最小的自 变量,直至方程中没有满足移除条件的变量。 逐步回归法:将向前回归与向后回归结合起来。每向模型 引入一个新变量,均要考察原来在模型中的自变量是否还 有统计意义,是否可以被剔除。较合理。 移除法:建立回归模型前设立条件,根据条件删除自变量。
第二步:考察因变量的正态性
在因变量的正态 性不理想的情况 下,回归方程可 以体现因变量与 自变量的因果关 系,不: y=b0+b1×· x1+b2×x2
第十章 线性相关与回归
相关与回归
28
直线回归就是用来研究两个连续性变量x 直线回归就是用来研究两个连续性变量 之间的数量依存关系。 和y之间的数量依存关系。其中 为自变 之间的数量依存关系 其中x为自变 y为因变量 它依赖于x。 为因变量, 量,y为因变量,它依赖于x。 直线回归适用于单变量正态分布资料, 直线回归适用于单变量正态分布资料,即 y为随机正态变量,x为可以精确测量的 为随机正态变量, 为可以精确测量的 为随机正态变量 值。
31
根据上例的数据,求男青年身高与前臂长之间的回归 方程。 从相关系数的计算中,已经求得:
• • • • • • ∑X=1891 ∑Y=500 ∑ X2=89599 ∑ Y2=22810 ∑XY=86185 N=11
相关与回归 12
例 10.1
• 从男青年总体中随机抽取11名男青年的身 高和前臂长,身高和前臂长均以cm为单位, 测量结果如表10-1所示,试计算身高与前 臂长之间的相关系数?是正相关还是负相 关?
相关与回归
13
表10-1 11例男青年身高与前臂长的测量结果 例男青年身高与前臂长的测量结果
编号 1 2 3 4 5 6 7 8 9 10 11 身高(cm) 170 173 160 155 173 188 178 183 180 165 166 前臂长(cm) 47 42 44 41 47 50 47 46 46 43 44
X、Y 变化趋势相同---变化趋势相同---完全正相关; 完全正相关; 反向变化----完全负相关。 反向变化----完全负相关。 ----完全负相关
图12-3 12相关系数示意图
相关与回归
9
X、Y 变化互不影响----零 变化互不影响-------零
相关(zero 相关(zero correlation)
生物统计学:第10章 多元线性回归分析及一元非线性回归分析
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,
第十章双变量回归与相关
(9-3) (9-4)
式中 lXY 为 X 与 Y 的离均差积和:
l
XY
(X
X
)(Y
Y
)
XY
(
X
)( n
Y
)
(9 5)
除了图中所示两变量呈直线关系外,一 般还假定每个 X 对应Y 的总体为正态分布, 各个正态分布的总体方差相等且各次观测 相互独立。这样,公式(9-1)中的 Yˆ 实际上 是 X 所对应 Y 的总体均数 Y|X 的一个样本估 计值,称为回归方程的预测值(predicted value), 而 a 、 b 分别为 和 的样本估计。
(Y Y ) 2 (Yˆ Y ) 2 (Y Yˆ ) 2
数理统计可证明:
å (Yˆ - Y )(Y - Yˆ ) = 0
上式用符号表示为
SS总 SS回 SS残
(9-6)
式中
SS总 即 (Y Y)2 , 为 Y 的 离 均 差 平 方
和,表示未考虑 X 与Y 的回归关系时Y 的 总变异。
离 Y Yˆ 。
➢ 求解a、b实际上就是“合理 地”找到一条能最好地代表
数据点分布趋势的直线。
最小二乘法(least sum of squares)原则:即保证各实 测点至直线的纵向距离的 平方和最小。
(X,Y)
b lXY lXX
( X X )(Y Y ) (X X )2
a Y bX
5.列出回归方程(回归直线绘制见图 9-1)
Yˆ 1.6617 0.1392X
此直线必然通过点( , )X且与Y 纵坐标轴相交于 截距 a 。如果散点图没有过坐标系原点,可在 自变量实测范围内远端取易于读数的 X 值代入 回归方程得到一个点的坐标,连接此点与点 ( , )也可X绘Y出回归直线。
多元相关与回归分析
固定资产投资额的回归系数为负号(-0.029193) ,与预期的不一致
参数的最小二乘估计
求解各回归参数的标准方程如下
使因变量的观察值与估计值之间的离差平方和达到最小来求得 。即
参数的最小二乘法
参数的最小二乘法 (例题分析)
【例】一家大型商业银行在多个地区设有分行,为弄清楚不良贷款形成的原因,抽取了该银行所属的25家分行2002年的有关业务数据。试建立不良贷款y与贷款余额x1、累计应收贷款x2、贷款项目个数x3和固定资产投资额x4的线性回归方程,并解释各回归系数的含义
01
在样本容量一定的条件下,不断向模型中增加自变量,即使新增的变量与Y不相关,模型的R2也可能上升,至少不会下降。
在实际应用中,研究人员更欢迎简单的模型,这样的模型更简单和易于解释。如果根据R2来选择模型,显然会倾向于复杂的模型。
更常用的指标是“修正后的Ra2”。
修正的判定系数
修正多重判定系数 (adjusted multiple coefficient of determination) 用样本量n和自变量的个数k去修正R2得到 计算公式为 避免增加自变量而高估 R2 意义与 R2类似 数值小于R2
先对因变量拟合包括所有k个自变量的回归模型。然后考察p(p<k)个去掉一个自变量的模型(这些模型中每一个都有的k-1个自变量),使模型的SSE值减小最少的自变量被挑选出来并从模型中剔除
01
第10章时间序列数据的基本回归分析
第10章时间序列数据的基本回归分析时间序列数据是指按时间顺序排列的一系列观测值,具有时间依赖性的特点。
在时间序列数据中,我们通常会面临许多问题,如预测未来的走势、分析变量间的关系等。
回归分析是一种用来建立变量间关系的统计方法,因此在时间序列数据中,同样可以使用回归分析方法来建立变量间的关系模型。
在进行时间序列数据的基本回归分析时,我们首先需要确定一个主要的解释变量(自变量)和一个被解释变量(因变量)。
主要的解释变量用来解释被解释变量的变化,从而确定它们之间的关系。
然后,我们需要对数据进行可视化和统计分析,以了解数据的特征和趋势。
首先,我们可以使用时间序列图来可视化数据的变化趋势。
时间序列图是一种按照时间顺序展示数据的图表,通过观察时间序列图,我们可以判断数据是否存在趋势、季节性或周期性等特征。
如果数据存在明显的趋势,我们可以使用线性回归模型来建立变量间的关系。
如果数据存在明显的季节性或周期性,我们可以使用季节性模型或周期模型来建立变量间的关系。
此外,我们还可以通过自相关函数(ACF)和偏自相关函数(PACF)来判断数据是否存在自相关性。
然后,我们可以使用普通最小二乘法(OLS)来估计回归模型的参数。
OLS是一种通过最小化观测值与模型估计值之间的差异来估计参数的方法。
对于时间序列数据,我们需要进行数据的平稳化处理,以确保模型的有效性。
常见的平稳化方法包括差分法和对数变换法。
通过平稳化处理后,我们可以得到平稳时间序列数据,然后应用OLS方法来估计模型的参数。
最后,我们可以使用统计检验来评估回归模型的拟合程度和显著性。
常见的统计检验包括F检验和t检验。
F检验用来评估模型的整体显著性,而t检验用来评估模型的各个参数的显著性。
如果模型的F检验和t检验显著,则说明回归模型能够很好地解释因变量的变化,并且模型参数是统计显著的。
总结起来,时间序列数据的基本回归分析包括确定主要的解释变量和被解释变量、可视化和统计分析数据、估计回归模型的参数、以及评估模型的拟合程度和显著性。
第10章 回归分析
7
解: 依题意,实验次数n=5,y~x为一元线性关系y=a+bx。根据最小二乘 法原理,有:
i 1 2 3 4 5
xi 2 4 5 8 9 28
yi 2.01 2.98 3.50 5.02 5.07 18.58
x i2 4 16 25 64 81 190
yi2 4.04 8.88 12.25 25.20 25.70 76.07
xiyi 4.02 11.92 17.50 40.16 45.63 119.23
解得a=1.155,b=0.4573。 因此关系式为:y=1.155+0.4573x。
如果用简化算法,则有:
故关系式为:y=1.155+0.4573x,即两种计算方法结果是一致的。 可见,根据实验数据建立回归方程,可采用最小二乘法,基本步骤为: ① 根据实验数据画出散点图; ② 确定经验公式的函数类型; ③ 通过最小二乘法得到正规方程组; ④ 求解正规方程组,得到回归方程的表达式。 其实①②两点正是第9章建立数学模型的过程,所以建立数学模型是回 归分析的前提。
13
[例10-2] 试用相关系数检验法对例10-l中得到的经验公式进行显著性检验 (α=0.05)。 解:
当α=0.05,n=5时,查得相关系数临界值 r0.05,3=0.8783。所以r>r, f, 所得的经验公式有意义。
14
应当指出的是,相关系数r有一个明显的缺点:即它接近于1的程度与实 验数据组数n有关。当n较小时,|r|容易接近于1;当n较大时,|r| 容易偏小。特别是当n=2时,因两点确定一条直线,|r|总等于1。所 以,只有当实验次数n较多时,才能得出真正有实际意义的回归方程。
2
回归分析的主要内容: 确定回归方程,检验回归方程的可信性 10.2 一元线性回归分析 10.2.1 一元线性回归方程的建立 一元线性回归分析又称直线拟合,是处理两个变量x和y之间关系的方法。 所谓一元是指只有一个自变量x,因变量y在某种程度上是随x变化的。 设有一组实验数据,实验值为 (xi, yi) (i=1,2,…,n)。若x,y符合线性关 系,或已知经验公式为直线形式,就可拟合为直线方程,即:
第10章相关分析及回归分析
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
第10章 线性相关与回归
∑( X X)(Y Y) ∑( X X) ∑(Y Y)
2 i i
=
LXY LXX.LYY
2
相关系数r没有测量单位,其数值为-1≤≤+1 没有测量单位,其数值为-
相关系数的计算方法
计算时分别可用下面公式带入相关系数r 计算时分别可用下面公式带入相关系数r的 计算公式中
∑ (X ∑ (Y ∑ (X
四,进行线性相关分析的注意事项
⒊ 依据公式计算出的相关系数仅是样本相关系
数,它是总体相关系数的一个估计值,与总体 它是总体相关系数的一个估计值, 相关系数之间存在着抽样误差,要判断两个事 相关系数之间存在着抽样误差, 物之间有无相关及相关的密切程度, 物之间有无相关及相关的密切程度,必须作假 设检验. 设检验.
蛙蛙蛙 蛙蛙蛙
20
10
0 0 10 20 30
温度
2.计算回归系数与常数项 2.计算回归系数与常数项
在本例中:
∑ X = 132
∑ Y = 246
∑X ∑Y
2
= 2024
= 6610
X = 12
2
Y = 22.363
∑ XY = 3622
l b = XY = l XX
∑
XY
∑
( ∑ X )( ∑ Y ) (132)(246) 3622 670 n 11 = = = 1.523 2 2 (∑ X ) 132 440 2 2024 X 11 n
X2
4 16 36 64 100 144 196 256 324 400 484 2024
Y2
25 121 121 196 484 529 1024 841 1024 1156 1089 6610
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,可以分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数以及进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方法是不同的,一元线性回归中相关系数和测定系数有着密切的关系,得到样本相关系数后还要对总体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的基本原理方法,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方法估计回归参数,回归参数的性质和显著性检验,随机项方差的估计,回归方程的显著性检验,利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必须知道在什么情况下能用,什么情况下不能用。
相关分析和回归分析必须以定性分析为前提,否则可能会闹出笑话,在进行预测时选取的样本要尽量分散,以减少预测误差,在进行预测时只有在现有条件不变的情况下才能进行,如果条件发生了变化,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了掌握基本计算的内容,起码应认真理解书上的例题,做完本指导书上的全部计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy、Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
如果能自己把这些公式推证一下,搞清其关系,那就更容易记住了。
三、练习题(一)填空题1事物之间的依存关系,根据其相互依存和制约的程度不同,可以分为()和()两种。
2.相关关系按相关关系的情况可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的密切程度分()、()和();按相关关系的方向分()。
3.回归方程只能用于由()推算()。
4.一个自变量与一个因变量的线性回归,称为()5.估计变量间的关系的紧密程度用()6.在相关分析中,要求两个变量都是随机的,而在回归分析中要求自变量是(),因变量是()。
7.已知剩余变差为250,具有12对变量值资料,那么这时的估计标准误差是()。
8.将现象之间的相关关系,用表格来反映,这种表称为(),将现象之间的相关关系用图表示称()。
9.若两个变量完全不相关,则相关系数等于(),若两个变量完全相关,则相关系数等于()。
10.在回归方程y=a+bx中,待定系数a为(),b为()。
11.若已知y为每亩蔬菜产量(单位:百公斤),x为每亩地施肥量(单位:公斤),已知y=+并已知每亩地最高施肥量为70公斤,最低施肥量为35公斤,那么每亩地蔬菜产量的大致变动范围为()到()。
(二)名词解释1.函数关系2.相关关系3.单项因果关系4.互为因果关系5.回归分析6.一元线性回归模型7.估计标准误差(三)判断题1.某一变量的每一个数值都有另一变量的确定的值与之对应,这种关系叫相关关系。
()2.任何两个有相关关系的现象,计算其相关系数一定是在-1至1之间。
()3.当相关系数等于1或-1时,两个变量的关系是函数关系,当相关系数等于零时,说明两个变量之间的关系不是相关关系。
()4.计算相关系数时,首先要确定自变量和因变量。
()5.积距相关系数的正负号主要取决于计算公式的分子符号。
()(四)单项选择题1.相关分析研究的是()。
A、变量间相互关系的密切程度B、变量之间因果关系C、变量之间严格的相依关系D、变量之间的线性关系2.若变量X的值增加时,变量Y的值也增加,那么变量X和变量Y之间存在着()。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系3.若变量X的值增加时,变量Y的值随之下降,那么变量X和变量Y之间存在着()。
A、正相关关系B、负相关关系C、直线相关关系D、曲线相关关系4.相关系数等于零表明两变量()。
A、是严格的函数关系B、不存在相关关系C、不存在线性相关关系D、存在曲线线性相关关系5.相关关系的主要特征是()。
A、某一现象的标志与另外的标志之间的关系是不确定的B、某一现象的标志与另外的标志之间存在着一定的依存关系,但它们不是确定的关系C、某一现象的标志与另外的标志之间存在着严格的依存关系D、某一现象的标志与另外的标志之间存在着不确定的直线关系6.时间数列自身相关是指()。
A、两变量在不同时间上的依存关系B、两变量静态的依存关系C、一个变量随时间不同其前后期变量值之间的依存关系D、一个变量的数值与时间之间的依存关系7.如果变量X和变量Y之间的相关系数为负1,说明两个变量之间()。
A、不存在相关关系B、相关程度很低C、相关程度很高D、完全负相关8.若物价上涨,商品的需求量愈小,则物价与商品需求量之间()。
A、无相关B、存在正相关C、存在负相关D、无法判断是否相关9.相关分析对资料的要求是()。
A、两变量均为随机的B、两变量均不是随机的C、自变量是随机的,因变量不是随机的D、自变量不是随机的,因变量是随机的10.回归分析中简单回归是指()。
A、时间数列自身回归B、两个变量之间的回归C、变量之间的线性回归D、两个变量之间的线性回归(五)多项选择题1.下列属于相关关系的有()。
A、农作物收获量和施肥量之间的关系B、家庭收入与生活费支出间的关系C、圆面积和圆半径之间的关系D、身高与体重之间的关系E、美国人口数和加拿大粮食产量之间的关系2.下述关系中属于负相关的有()。
A、在合理限度内,农业中施肥量和平均亩产量之间的关系B、工业企业中生产用固定资产平均价值和产品总产量之间的关系C、商业企业的劳动效率和流通费用率之间的关系D、单位产品成本和原材料消耗量之间的关系E、工业产品产量和单位产品成本之间的关系3.现象间相互依存的类型有()。
A、函数关系B、相关关系C、回归关系D、随机关系E、结构关系4.下列语句中正确的有()。
A、具有明显因果关系的两变量一定不是相关关系B、只要相关系数数值较大,两变量就一定存在密切的相关关系C、相关系数的符号可说明两变量相互关系的方向D、样本相关系数和总体相关系数之间存在着抽样误差E、不具有因果关系的变量一定不存在相关关系5.回归方程可用于()。
A、根据自变量预测因变量B、给定因变量推算自变量C、推算时间数列中缺失的数据D、给定自变量推算因变量E、用于控制因变量6、直线相关分析的特点有()。
A、两变量不是对等的B、两变量只能算出一个相关系数C、相关系数有正负号D、两个变量都是随机的E、相关系数的绝对值是介于0-1之间的数(六)简答题1.什么是相关关系,相关分析有什么作用?2.简述相关分析的特点。
3.简述相关分析和回归分析的关系。
(七)论述题试述相关与回归分析应注意的几个问题。
(八)计算题年份1979 1980 1981 1982 1983 19841985存栏数企业编号 1 2 3 4 5 6 7 8产量(千件)单位成本(万元)②②列出正规方程组求单位成本倚产量的回归方程并解释回归方程中各系数的经济意义;③③试估计产量为3千件的单位成本;④④计算估计标准误差。
3.已知:n=6 ∑x=21 ∑y=426 ∑xx=79 ∑yy=30268∑xy=1481要求:①计算相关系数②建立回归方程③计算估计标准误差4.某市1995—1999年每人平均月收入和商品销售额资料如下表:年份平均每人月收入(十元)x商品销售额(十万元)y1995 1996 1997 1998 1999 48606468762230283240(1)以人均收入为自变量,商品销售额为因变量,建立直线回归方程;(2)用最小平方法求人均收入数列的直线趋势方程,并估计2000年该市的人均收入;(3)根据2000年的人均收入的估计值,利用回归方程推算2000年该市的商品销售额。
5.有10个同类企业的生产性固定资产年平均原值和总产值资料如下表:企业编号生产性固定资产原值(万元)x工业总产值(万元)y1 2 3 4 5 6 7 8 9 10 3139102004094155023141210102212255241019638815913928605151612191624根据上表资料:(1)计算相关系数;(2)建立回归直线方程;(3)计算估计的标准误差;(4)估计生产性固定资产为1100万元时的工业总产值。
6.某市1997—2001年各年的职工生活费收入和商品销售额的资料如下:年份职工生活费收入(千元)x商品销售额(亿元)y1997 871998 1999 2000 2001 93 100 106 1147.某市电子工业企业的年设备能力和年劳动生产率的资料如下:企业编号年设备能力(千瓦/人)年劳动生产率(千元/人)企业编号年设备能力(千瓦/人)年劳动生产率(千元/人)1 2 3 4 5 6 7 8 91011121314要求:(1)计算以劳动生产率为因变量的回归方程;(2)解释回归方程中b 待定系数的经济意义;若新建一企业,其年设备能力为千瓦/人,估计劳动生产率将为多少?8.已知1991—2000年个人消费支出和收入资料如下(单位:亿元):年度个人收入x 消费支出y 年度个人收入x 消费支出y1991 19926470778292566066707819981999200010712514316518988102118136155要求:(1)判断两者的关系;(2)建立直线回归方程;(3)计算估计的标准误差;(4)若个人收入为213亿元时,估计个人消费支出。
9.某市10家百货商店每人平均完成销售额和利润资料如下:商店序号每人月平均销售额(千元)x 利润率(%)y1 2 3 4 5 6 7 8 6 5 8 1 4 7 6 39 10 37)建立直线回归方程;(4)若某商店每人月平均销售额为2千元,估计其利润率;(5)计算估计的标准误差。
10.某家具厂生产家具的总成本与木材耗用量有关,其资料是:1 2 3 4 5 6 7木材耗用量(千立方米)总成本(千元)准误差;(3)计算相关系数,判断相关程度。