无机材料的脆性断裂与强度
无机非金属材料的优点和缺点

无机非金属材料的优点和缺点
无机非金属材料是指不含金属元素的材料,如陶瓷、玻璃、陶瓷纤维等。
它们具有以下优点和缺点:
优点:
1.耐高温性能:无机非金属材料通常具有较高的熔点和耐高
温性能,能够在高温环境下保持稳定的性能,不易熔化、变形或失效。
2.耐腐蚀性能:大多数无机非金属材料具有优良的耐酸碱、
耐腐蚀性能,能够在酸碱环境中长期稳定地使用。
3.绝缘性能:许多无机非金属材料具有良好的绝缘性能,可
用于电气绝缘材料、绝缘体等应用,可阻止电流流动以及对电器元件或电线电缆的保护。
4.高硬度和强度:无机非金属材料通常具有较高的硬度和强
度,耐磨损、耐刮擦,在一些机械应用中表现出较好的性能。
5.尺寸稳定性:无机非金属材料在温度变化下的尺寸稳定性
较好,不易受热胀冷缩的影响,因此可用于高精度设备和工艺要求较高的场合。
缺点:
1.脆性:无机非金属材料通常具有较高的脆性,对于弯曲、
碰撞等力量容易导致破裂和断裂,限制了其在某些应用中的使用。
2.加工难度:无机非金属材料通常具有高硬度和脆性,难以
进行复杂形状的加工和成型,加工过程中易产生裂纹和损伤,限制了其制造和应用范围。
3.导热性能较差:相对于金属材料,无机非金属材料的导热
性能较差,热传导速度慢,热容量较低,不适合用于需要高导热性能的应用。
4.重量较大:无机非金属材料的密度通常较大,相比于金属
材料,质量较重,不适合用于要求轻量化的场合。
总体而言,无机非金属材料具有耐高温、耐腐蚀、良好的绝缘性能等优点,但也存在脆性、加工难度高等缺点。
其选择应根据具体应用的需求和特性来进行评估和权衡。
传统无机非金属材料的定义和特点

传统无机非金属材料的定义和特点
传统无机非金属材料是指不含金属元素的材料,通常主要由非金属元素的化合物构成。
其特点如下:
1. 化学性质稳定:传统无机非金属材料具有较高的化学稳定性,不易被常见的酸、碱、有机溶剂侵蚀,能够在各种环境下长期稳定使用。
2. 机械性能差:相对于金属材料,传统无机非金属材料的强度和韧性较低,通常具有脆性。
这也意味着在应力作用下容易发生断裂。
3. 热物性稳定:传统无机非金属材料具有良好的热稳定性,在高温环境下,能够保持相对稳定的化学和物理性质。
4. 电绝缘性:无机非金属材料通常是优良的电绝缘材料,对电流具有很好的绝缘性能。
5. 导热性能差:相对于金属材料,传统无机非金属材料的导热性能较差,导热系数低。
6. 可透明性:某些传统无机非金属材料,如玻璃和陶瓷,具有较好的透明性能,对可见光具有较高的透射性。
7. 多样性:传统无机非金属材料种类繁多,包括陶瓷、玻璃、石墨、硅酸盐、氮化硅、氧化铝等,可根据不同的需求选择合适的材料。
第二章 材料的脆性断裂与强度

裂纹的三种扩展方式或类型 Ⅰ型(掰开型)张开或拉伸型,裂纹表面直 接分开。
Ⅱ型(错开型)滑开或面内剪切型,两个裂 纹表面在垂直于裂纹前缘的方向上相对滑动。 Ⅲ型(撕开型)外剪切型,两个裂纹表面在
平行于裂纹前缘的方向上相对滑动。
裂纹长度与断裂应力的关系:
等有关的系数.
k c c
1 2
k 是与材料、试件尺寸、形状、受力状态
在接近平衡位置 O 的区域,曲线可以用直线代替,服 从虎克定律:
x E E a
a 为原子间距 x 很小时 sin
因此,得:
2x
2x
th
E a
可见,理论结合强度只与弹性模量,表面能和晶 格距离等材料常数有关。 通常, 约为 aE ,这样,
E th 10
100
五.裂纹扩展的动力和阻力
1.裂纹扩展的动力 Irwin将裂纹扩展单位面积所降低的弹性 应变定义为应变能释放率或裂纹扩展力。 对于有内裂纹 2c 的薄板:
G
d we 2dc
c
E
2
其中 G为裂纹扩展的动力。
对于有内裂的薄板:
K
a c
临界状态:G c K c
E
2
(平面应力状态)
Inglis研究了具有孔洞的板的应力集中问题,得 到结论:孔洞两个端部的应力几乎取决于孔洞的长度 和端部的曲率半径,而与孔洞的形状无关。 Griffith根据弹性理论求得孔洞端部的应力 A
A c a2 1 2 , a c
c A 1 2
式中, 为外加应力。
K
3 xy 2r cos 2 sin 2 cos 2
材料的脆性断裂与强度

材料的脆性断裂与强度§2.1 脆性断裂现象⼀、弹、粘、塑性形变在第⼀章中已阐述的⼀些基本概念。
1.弹性形变正应⼒作⽤下产⽣弹性形变,剪彩应⼒作⽤下产⽣弹性畸变。
随着外⼒的移去,这两种形变都会完全恢复。
2.塑性形变是由于晶粒内部的位错滑移产⽣。
晶体部分将选择最易滑移的系统(当然,对陶瓷材料来说,这些系统为数不多),出现晶粒内部的位错滑移,宏观上表现为材料的塑性形变。
3.粘性形变⽆机材料中的晶界⾮晶相,以及玻璃、有机⾼分⼦材料则会产⽣另⼀种变形,称为粘性流动。
塑性形变和粘性形变是不可恢复的永久形变。
4.蠕变:当材料长期受载,尤其在⾼温环境中受载,塑性形变及粘性形变将随时间⽽具有不同的速率,这就是材料的蠕变。
蠕变的后当剪应⼒降低(或温度降低)时,此塑性形变及粘性流动减缓甚⾄终⽌。
蠕变的最终结果:①蠕变终⽌;②蠕变断裂。
⼆.脆性断裂⾏为断裂是材料的主要破坏形式。
韧性是材料抵抗断裂的能⼒。
材料的断裂可以根据其断裂前与断裂过程中材料的宏观塑性变形的程度,把断裂分为脆性断裂与韧性断裂。
1.脆性断裂脆性断裂是材料断裂前基本上不产⽣明显的宏观塑性变形,没有明显预兆,往往表现为突然发⽣的快速断裂过程,因⽽具有很⼤的危险性。
因此,防⽌脆断⼀直是⼈们研究的重点。
2.韧性断裂韧性断裂是材料断裂前及断裂过程中产⽣明显宏观塑性变形的断裂过程。
韧性断裂时⼀般裂纹扩展过程较慢,⽽且要消耗⼤量塑性变形能。
⼀些塑性较好的⾦属材料及⾼分⼦材料在室温下的静拉伸断裂具有典型的韧性断裂特征。
3.脆性断裂的原因在外⼒作⽤下,任意⼀个结构单元上主应⼒⾯的拉应⼒⾜够⼤时,尤其在那些⾼度应⼒集中的特征点(例如内部和表⾯的缺陷和裂纹)附近的单元上,所受到的局部拉应⼒为平均应⼒的数倍时,此过分集中的拉应⼒如果超过材料的临界拉应⼒值时,将会产⽣裂纹或缺陷的扩展,导致脆性断裂。
虽然与此同时,由于外⼒引起的平均剪应⼒尚⼩于临界值,不⾜以产⽣明显的塑性变形或粘性流动。
无机材料物理性能知识总结

第一章物理基础知识与理论物理性能本质:外界因素(作用物理量)作用于某一物体,如:外力、温度梯度、外加电场磁场、光照等,引起原子、分子或离子及电子的微观运动,在宏观上表现为感应物理量,感应物理量与作用物理量呈一定的关系,其中有一与材料本质有关的常数——材料的性能。
晶体结构:原子规则排列,主要体现是原子排列具有周期性,或者称长程有序。
非晶体结构:不具有长程有序。
点阵:晶体内部结构概括为是由一些相同点子在空间有规则作周期性无限分布,这些点子的总体称为点阵。
晶体由(基元)沿空间三个不同方向,各按一定的距离(周期性)地平移而构成,(基元)每一平移距离称为周期。
晶格的共同特点是具有周期性,可以用(原胞)和(基失)来描述。
分别求立方晶胞、面心晶胞和体心晶胞的原胞基失和原胞体积?(1)立方晶胞:(2)面心晶胞(3)体心晶胞晶体格子(简称晶格):晶体中原子排列的具体形式。
晶列的特点:(1)一族平行晶列把所有点包括无遗。
(2)在一平面中,同族的相邻晶列之间的距离相等。
(3)通过一格点可以有无限多个晶列,其中每一晶列都有一族平行的晶列与之对应。
(4 )有无限多族平行晶列。
晶面的特点:(1)通过任一格点,可以作全同的晶面与一晶面平行,构成一族平行晶面. (2)所有的格点都在一族平行的晶面上而无遗漏;(3)一族晶面平行且等距,各晶面上格点分布情况相同;(4)晶格中有无限多族的平行晶面。
格波:晶体中的原子在平衡位置附近的微振动具有波的形式。
色散关系:晶格振动谱,即频率和波矢的关系。
声子:晶格振动的能量是量子化的,晶格振动的量子单元称作声子,声子具有能量ħ ,与光子的区别是不具有真正的动量,这是由格波的特性决定的。
声学波与光学波的区别:前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动。
德布罗意假设:一切微观粒子都具有波粒二象性。
无机非金属材料的性能分析

其他物理与化学性能
三、能带理论
晶体中,由于原子之间的相互作用,原子中 的能级将“展开”,电子也可以从一个原子移 到另一个原子上,从而不断的在晶体中运动。 电子的这种运动叫做共有化。其能量是量子化 的,每个能级只能容纳两个自旋方向相反的电 子。由于晶体中电子能级间的间隙很小,可以 把能级分布看成是准连续的,称为能带。
-
ε r称相对介电常数。
其他物理与化学性能
其他物理与化学性能
其他物理与化学性能
• 研究材料磁性的最基本的任务是确定材料的磁化 强度M与外磁场强度H和温度T的关系,在一定 温度下,定义:M=χH • χ称为物质的磁化率,即单位外磁场强度下材 料的磁化强度。它的大小反映了物质磁化的难易 程度,是材料的一个重要的磁参数。同时,它也 是物质磁性分类的主要依据。
滞弹性:是指在弹性范围内出现的非弹性 现象。应变不仅与应力有关,而且与时间 有关。
•
弹性变形
蠕变:固体材料在恒定荷载下,变形随时间延续而缓 慢增加的不平衡过程,或材料受力后内部原子由不平 衡到平衡的过程。当外力除去后,蠕变变形不能立即 消失。 例如:沥青、水泥混凝土、玻璃和各种金属等在持续 外力作用下,除初始弹性变形外,都会出现不同程度 的随时间延续而发展的缓慢变形(蠕变)。
材料的断裂
为何断裂强度 的理论值与实 际值差别如此 之大?
材料的断裂
材料的断裂
• 无机非金属材料缺陷,萌生出微裂纹;
• 微裂纹应力集中,微裂纹扩展。
第二章 无机非金属材料的 性能
第三节 其他物理与化学性能
介电陶瓷
锂离子电池
快离子导体
吸铁石
收音机喇叭
收音机喇叭上的吸铁石 不是铁磁体!
车窗玻璃
无机材料的断裂及裂纹扩展课件

裂纹的萌生和扩展
初始裂纹在外部载荷的作 用下逐渐扩大并萌生新的 裂纹,这些裂纹相互作用 并形成裂纹扩展的路径。
最终断裂
当裂纹扩展到一定程度时 ,材料发生最终断裂。
裂纹扩展的速率控制
应力强度因子
应力强度因子是控制裂纹扩展速 率的一个重要参数,它表征了裂
01
线弹性断裂力学是研究材料在弹性范围内发生的断裂行为,适
用于材料在断裂前没有发生塑性变形的情形。
应力和应变的关系
02
在材料发生断裂前,应力和应变的关系是线性的,遵循胡克定
律。
弹性模量和泊松比
03
描述材料在弹性范围内对变形响应的两个重要参数是弹性模量
和泊松比。
弹塑性断裂力学
01
弹塑性断裂力学的定义和适用范围
,越不容易发生断裂。
应力集中
应力集中是指在材料中存在的 一些缺陷或不平整区域,这些 区域容易产生应力集中,降低 材料的强度。
温度和湿度
温度和湿度也会影响材料的强 度和韧性,进而影响材料的断 裂性能。
加载速度
加载速度越快,材料的断裂时 间越短,越容易发生脆性断裂
。
02
无机材料的裂纹扩展
裂纹扩展的机制
无机材料的断裂及裂纹扩展课件
目录
• 无机材料断裂概述 • 无机材料的裂纹扩展 • 无机材料的断裂力学 • 无机材料的断裂及裂纹扩展实验研究 • 无机材料的断裂及裂纹扩展研究进展 • 无机材料的断裂及裂纹扩展在工程中的应
用
01
无机材料断裂概述
断裂定义与分类
断裂定义
断裂是指材料在应力或温度等外 部因素作用下,内部应力超过材 料强度,导致材料结构破坏的现 象。
提高无机材料断裂强度的措施

提高无机材料断裂强度的措施无机材料在工程领域中具有广泛的应用,如建筑材料、电子材料、陶瓷材料等。
然而,由于其脆性,无机材料的断裂强度往往较低,这给其应用带来了一定的限制。
因此,提高无机材料的断裂强度成为了研究的热点之一。
本文将从材料设计、制备工艺、表面处理和应力分析等方面探讨提高无机材料断裂强度的措施。
一、材料设计。
材料的设计是提高无机材料断裂强度的关键。
通过合理的配方设计和晶体结构控制,可以有效地提高材料的断裂强度。
例如,在陶瓷材料中,通过添加适量的增韧剂和控制晶粒尺寸,可以有效地提高材料的断裂韧性。
此外,合金化、微观组织调控等方法也可以有效地提高材料的断裂强度。
二、制备工艺。
制备工艺对材料的断裂强度也有着重要的影响。
合理的制备工艺可以有效地减少材料内部的缺陷和杂质,从而提高材料的断裂强度。
例如,在陶瓷材料的制备过程中,控制烧结温度和时间,采用合适的成型工艺等都可以有效地提高材料的断裂强度。
三、表面处理。
表面处理是提高无机材料断裂强度的重要手段之一。
通过表面处理可以有效地改善材料的表面性能,增强其抗裂纹扩展能力。
例如,在陶瓷材料中,可以采用化学镀膜、离子注入等方法对材料进行表面处理,从而提高其断裂强度。
四、应力分析。
应力分析是提高无机材料断裂强度的重要手段之一。
通过对材料的应力分布进行分析,可以有效地预测材料的断裂行为,并采取相应的措施进行改善。
例如,在陶瓷材料中,可以通过有限元分析等方法对材料的应力分布进行模拟,从而指导材料的设计和制备工艺。
综上所述,提高无机材料断裂强度是一个复杂而又具有挑战性的问题。
通过材料设计、制备工艺、表面处理和应力分析等多种手段的综合应用,可以有效地提高无机材料的断裂强度,从而拓展其在工程领域中的应用范围。
希望本文的内容能对相关领域的研究工作提供一定的参考和借鉴。
无机材料物理性能习题答案

1材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:根据题意可得下表由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-4一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
1-5试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:V oigt 模型可以较好地模拟应变蠕变过程:拉伸前后圆杆相关参数表 体积V/mm 3直径d/mm 圆面积S/mm 2拉伸前 1227.2 2.5 4.909 拉伸后1227.22.44.5240816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量//0--t t σττ./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
无机材料的脆性断裂与强度

无机材料的脆性断裂与强度脆性断裂是指在受力条件下,无机材料会发生不可逆的破裂现象,而无法发生塑性变形。
与之相对的是韧性断裂,韧性断裂发生在材料能够发生塑性变形的情况下。
无机材料的脆性断裂与强度有密切关系。
强度是指材料抵抗外力的能力,是一个评价材料抗拉、抗压、抗弯等载荷的指标。
脆性材料的强度主要受材料内部微观缺陷和断裂导致的应力集中影响。
下面分三个方面介绍无机材料的脆性断裂与强度的关系。
首先,无机材料的脆性断裂与晶体结构有关。
无机材料的晶体结构决定了材料的原子排列和键合情况,从而影响了材料的力学性能。
晶体结构中的离子键、共价键或金属键不易发生移动,因此无机材料的塑性变形能力较弱。
当材料受到外力作用时,由于无法有效地分散应力,应力会在缺陷处或晶界处集中,导致材料的断裂。
例如,金刚石具有非常坚硬的晶体结构,但其断裂韧性很低,容易在受力时发生脆性断裂。
其次,无机材料的脆性断裂与材料的纯度和缺陷有关。
纯度高的材料内部缺陷较少,力学性能较好,强度较高。
材料的缺陷可以包括晶界、孔洞、裂纹等,这些缺陷会导致应力的集中。
晶界是由于晶体的生长形成的界面,常常是材料中最脆弱的部分。
孔洞和裂纹是材料中的缺陷,它们会在受力时成为应力集中的位置,从而导致材料的脆性断裂。
因此,提高无机材料的纯度,减少缺陷的存在,可以提高材料的强度和抗断裂能力。
最后,无机材料的脆性断裂与外界温度和应力速率有关。
温度对材料的强度和断裂行为有很大影响。
低温会导致材料的强度和韧性下降,使得材料更容易发生脆性断裂。
高温会增加材料的塑性,降低材料的强度,使得材料更容易发生韧性断裂。
应力速率也是影响材料脆性断裂的因素之一、应力速率较快时,材料不容易发生塑性变形,从而容易发生脆性断裂。
应力速率较慢时,材料有足够的时间进行塑性变形,从而能够发生韧性断裂。
综上所述,无机材料的脆性断裂与强度有着紧密的关系。
晶体结构、纯度和缺陷、温度以及应力速率都会对材料的强度和断裂行为产生影响。
无机材料物理性能

弹性模量:使物体产生伸长一倍变形量所需的应力上限弹性模量:两相通过并联组合得到混合系统的E 值称之~~下限弹性模量:两相通过串联组合得到混合系统的E 值称之~~粘弹性:某些非晶体或多晶体在应力较小时间时表现粘性弹性滞弹性:无机固体和金属的弹性模量依赖于时间的现象蠕变:当对粘弹性体施加恒定应力σ0时,其应变随时间而增加的现象弛豫:当施加恒定应变ε0在粘弹性体上,应力随时间而减小的现象。
影响蠕变的因素:1.温度2.应力3.显微结构的影响4.组成5.晶体结构塑性形变:指在一中外力移去后不能恢复的形变。
塑性形变的两种基本方式:滑移和孪晶声频支:相邻原子具有相同的振动方向光频支:相邻原子振动方向相反,形成了一个范围很小,频率很高的振动热膨胀:物体的体积或长度随温度的升高而增大的现象热传导:当固体材料一端的温度比另一端高时,热量会从热端自动的传向冷端,这个现象就称~~。
声子热导的机理:声子与声子的碰撞产生能量转移(声子:声频波的量子)介质损耗:电场作用下,单位时间内电介质因发热而损耗的电能抗热震断裂性:材料发生瞬时断裂,抵抗这种破坏的性能。
抗热震损伤性:在热冲击循环作用下,材料表面开裂、剥落并不断发展,最终碎裂或变质,抵抗这类破坏的性能。
热应力因子:由于材料热膨胀或收缩引起的内应力双碱效应(中和效应):当玻璃中碱金属离子总浓度较大时,碱离子总浓度相同的情况下,含两种碱金属离子比含一种碱金属离子的玻璃电导率要小。
当两种碱金属浓度比适当时,电导率可以降到很低。
压碱效应:含碱玻璃中加入二价金属氧化物,尤其是重金属氧化物,可使玻璃电导率降低热稳定性:材料在温度急剧变化而不被破坏的能力,也被称为抗热震性。
铁电体:能够自己极化的非线性介电材料,其电滞回路和铁磁体的磁滞回路形状相近似。
稳定传热:物体内温度分布不随时间改变。
载流子的迁移率:载流子在单位电场中的迁移速率。
移峰效应:在铁电体中引入某种添加物生成固溶体,改变原来的晶胞参数和离子间的相互关系,使居里点向低温或高温方向移动。
提高无机材料强度及改善韧性的途径

通过添加合金元素,形成置换固溶体或间隙固溶体,提高材料强度。
固溶强化
利用相变过程中产生的应力场,提高材料强度。
相变强化
通过引入位错,增加材料内部应力,提高材料强度。
位错强化
强化机制
通过添加短纤维或连续纤维,提高材料强度和韧性。
纤维增强
颗粒增强
晶须增强
通过添加纳米颗粒或微米颗粒,提高材料强度和韧性。
通过添加晶须,提高材料强度和韧性。
03
02
01
添加增强剂
热处理工艺优化
通过调整热处理温度、时间和气氛,优化材料内部结构,提高材料强度。
塑性加工工艺优化
通过塑性加工技术,如轧制、锻造、挤压等,优化材料内部结构,提高材料强度。
复合制备工艺优化
通过复合制备技术,如粉末冶金、喷射沉积、激光熔覆等,实现材料成分和结构的优化,提高材料强度。
引入增韧相
制备工艺优化
控制结晶度
通过控制结晶度,使材料内部晶粒细化,提高韧性。
热处理工艺优化
通过优化热处理工艺,如退火、淬火等,使材料内部结构更加均匀,提高韧性。
VS
在材料表面涂覆一层高韧性的涂层,如陶瓷涂层、金属涂层等,提高表面韧性。
表面织构化
通过表面织构化技术,在材料表面形成微米或纳米级的纹理结构,提高表面韧性。
增强相与基体的界面结合
复合材料的增强机制
在复合材料中引入柔性相,如橡胶粒子、弹性体等,能够吸收和分散冲击能量,提高复合材料的韧性。
引入柔性相
通过优化增强相的排布,使裂纹在扩展过程中发生偏转或分叉,增加裂纹扩展路径的长度,从而提高复合材料的韧性。
裂纹的偏转与分叉
利用增强相之间的桥接作用,阻止裂纹的进一步扩展,并通过增强相的拔出、脱粘等机制,吸收能量,提高复合材料的韧性。
材料物理性能及测试-作业

第一章无机材料的受力形变1 简述正应力与剪切应力的定义2 各向异性虎克定律的物理意义3 影响弹性模量的因素有哪些?4 试以两相串并联为模型推导复相材料弹性模量的上限与下限值。
5 什么是应力松弛与应变松弛?6 应力松弛时间与应变松弛时间的物理意义是什么?7 产生晶面滑移的条件是什么?并简述其原因。
8 什么是滑移系统?并举例说明。
9 比较金属与非金属晶体滑移的难易程度。
10 晶体塑性形变的机理是什么?11 试从晶体的势能曲线分析在外力作用下塑性形变的位错运动理论。
12 影响晶体应变速率的因素有哪些?13 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么?14 影响塑性形变的因素有哪些?并对其进行说明。
15 为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?16 高温蠕变的机理有哪些?17 影响蠕变的因素有哪些?为什么?18 粘滞流动的模型有几种?19 影响粘度的因素有哪些?第二章无机材料的脆性断裂与强度1 试比较材料的理论强度、从应力集中观点出发和能量观点出发的微裂纹强度。
2 断裂能包括哪些内容?3 举例说明裂纹的形成?4 位错运动对材料有哪两方面的作用?5 影响强度的因素有哪些?6 Griffith关于裂纹扩展的能量判据是什么?7 试比较应力与应力强度因子。
8 有一构件,实际使用应力为1.30GPa,有下列两种钢供选:甲钢:sf =1.95GPa, K1c =45Mpa·m 1\2乙钢:sf =1.56GPa, K1c =75Mpa·m 1\2试根据经典强度理论与断裂强度理论进行选择,并对结果进行说明。
9 结构不连续区域有哪些特点?10 什么是亚临界裂纹扩展?其机理有哪几种?11 介质的作用(应力腐蚀)引起裂纹的扩展、塑性效应引起裂纹的扩展、扩散过程、热激活键撕裂作用引起裂纹扩展。
12 什么是裂纹的快速扩展?13 影响断裂韧性的因素有哪些?14 材料的脆性有哪些特点?通过哪些数据可以判断材料的脆性?15 克服材料脆性和改善其强度的关键是什么?16 克服材料的脆性途径有哪些?17 影响氧化锆相变的因素有哪些?18 氧化锆颗粒粒度大小及分布对增韧材料有哪些影响?19. 比较测定静抗折强度的三点弯曲法和四点弯曲法,哪一种方法更可靠,为什么?20. 有下列一组抗折强度测定结果,计算它的weibull模数,并对该测定数据的精度做出评价。
第二章 无机材料的断裂强度

(1 u2 ) c2
E
2
则,推出平面应力状态的临界应力为: c
2E C
平面应变状态的临界应力为: c
2E (1 u2 )c
Griffith推导的结果与(2.12)基本一致,只系数稍有差 别,与(2.6)理论强度公式类似。(2.6)中a为原子间 距,而上式中c为裂纹半长,可见使a、 c在同一数量级, 就可以使材料达到理论强度
键合方式
简化
th
sin
2x
σth –理论结合强 度(材料原子 间结合力的最 大值)
原子间结合力与距离的关系
将材料拉断时,产生两个新表面,因此使单位面
积的原子平面分开所作的功等于产生两个单位面
积的新表面所需的表面能,材料才能断裂。
分开单位原子平面所作
的功:v
2 0
th
sin
采用弯曲方法测量无机材料的断裂强度: 三点弯曲或四点弯曲梁实验
一般以0.5mm/min的位移速率对试样进行加载,测 出试样断裂时的临界载荷P。对于三点弯曲实验,试 样的强度3-pt由P40 式(2.24)计算;对于四点弯 曲实验,试样的强度4-pt由P40 式(2.25)计算。
导致测试误差的因素:
Griffith从能量平衡的观点出 发,认为裂纹扩展的条件是: 物体内储存的弹性应变能的 减小大于或等于开裂形成两 个新表面所需增加的表面能。 反之,裂纹不会扩展。即物 体内储存的弹性应变能的是 裂纹扩展的动力
平面应力状态下应变能的降
低为:
We
c 2
E
2
平面应变状态下应变能的降低为:We
通常, P,所以由 P控制着断裂行为。一般, P103,所以金属材料的允许裂纹尺寸比陶瓷材料 高3个数量级。
无机材料物理性能题库

无机材料物理性能题库一、填空题1、晶体中的塑性变形有两种基本方式:滑移和孪晶。
2、影响弹性模量的因素有晶体结构、温度、复相。
3、一各向异性材料,弹性模量E=109pa,泊松比u=0。
2,则其剪切模量G=()。
4、裂纹有三种扩展方式或类型:掰开型,错开型和撕开型。
其中掰开型是低应力断裂的主要原因。
5、弹性模量E是一个只依赖于材料基本成份的参量,是原子间结合强度的一个标志,在工程中表征材料对弹性变形的抗力,即材料的刚度。
.6、无机材料的热冲击损坏有两种类型:抗热冲击断裂性和抗热冲击损伤性。
7、从对材料的形变及断裂的分析可知,在晶体结构稳定的情况下,控制强度的主要参数有三个:弹性模量,裂纹尺寸和表面能。
8、根据材料在弹性变形过程中应力和应变的响应特点,弹性可以分为理想弹性和非理想弹性两类。
9、Griffith微裂纹理论从能量的角度来研究裂纹扩展的条件,这个条件是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。
(2分)10、在低碳钢的单向静拉伸试验中,整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变形以及不均匀集中塑性变形4个阶段。
11、一25cm长的圆杆,直径2。
5mm,承受4500N的轴向拉力。
如直径拉伸成2.4mm,问:设拉伸变形后,圆杆的体积维持不变,拉伸后的长度为27.13 cm;在此拉力下的真应力为9.95×108 Pa、真应变为0。
082;在此拉力下的名义应力为9。
16×108 Pa、名义应变为0.085.12、热量是依晶格振动的格波来传递的,格波分为声频支和光频支两类。
13.激光的辐射3个条件:(1)形成分布反转,使受激辐射占优势;(2)具有共振腔,以实现光量子放大;(3)至少达到阀值电流密度,使增益至少等于损耗。
14、杜隆-伯替定律的内容是:恒压下元素的原子热容为25J/Kmol.15、在垂直入射的情况下,光在界面上的反射的多少取决于两种介质的相对折射率.18、导电材料中载流子是离子、电子和空位.19、金属材料电导的载流子是自由电子,而无机非金属材料电导的载流子可以是电子、电子空穴,或离子、离子空位。
第三章 无机材料的脆性断裂与强度

裂纹的亚临界生长(静态疲劳)
1. 亚临界生长:在应力作用下,随着时间的 推移,裂纹缓慢扩展。也叫静态疲劳。 动态疲劳:材料在循环应力或渐增应力 作用下的延时破坏。 2 裂纹缓慢生长的结果是裂纹尺寸加大,一 旦达到临界尺寸,就会失稳扩展而破坏。 研究意义:构件的使用寿命问题。
应力腐蚀理论
几种常用材料的断裂韧性
材料
M时效钢 铝合金
KIC(MP a/m)
100 44
材料
Si3N4
KIC(MPa/m)
5-6
高强度合金钢 92
Al2O3 SiC
环氧树脂 聚苯乙烯
4-4.5
Al2O3-ZrO2 4-4.5
SiAlON
Ti6Al4V ZrO2-Y2O3
5-7
40 6-15
3.5-6
0.8 0.7-1.1
阻力:
断裂韧性的测试方法
1、单边直通切口梁(SENB)法 测试方法及数据处理试样要求:光滑,要用 W7#研磨膏研磨,棱角相互垂直,B/W尺寸要 求严格,在整个试件长度范围内的变化不超过 0.02mm。用不超过0.25mm厚的锯片切口。 试件尺寸比例:a/W = 0.4~0.6, W/L = 1/4; B≈W/2。加载速度按形变速度来控制,规 定为0.05mm/min. 该方法只适合于晶粒大小在20-40μm的粗晶粒 陶瓷。对细晶粒的陶瓷,测得的数值偏大。
在一定的环境温度和应力场强度因子作用下,材料 中关键裂纹尖端处, 扩展动力与裂纹扩展阻力的 比较,构成裂纹开裂和止裂的条件。 1. 裂纹尖端处的高度的应力集中导致较大的裂纹 扩展动力。裂纹尖端处的离子键受到破坏,吸附了 表面活性物质,使材料的自由表面能降低。裂纹的 扩展阻力降低。导致低应力水平下的开裂。 2. 新开裂的断裂表面,还没来得及被介质腐蚀, 其表面能仍然大于裂纹扩展动力,裂纹立即止裂。 接着是下一个腐蚀-开裂-止裂循环。导致宏观上的 裂纹缓慢生长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/2/6
9
理论结合强度的数学模型:
为了简单、粗略地估算理论结合强度,Orowan(奥罗万)
th
式中: th为理论结合强度 为正弦曲线的波长
2021/2/6
10
材料断裂时,将产生两个新表面, 使单位面积原子平面 分开所做的功等于产生两个新表面所需的表面能。
2021/2/6
1
第一节 脆性断裂现象
材料在外力作用下的表现行为:
形变 断裂
材料在外力作用下的行为过程:
弹性形变
塑性形变
脆性断裂
弹性畸变
粘性形变
断裂 韧性断裂
高温蠕变
蠕变断裂
2021/2/6
2
1、断裂的定义
固体材料在力的作用下分成若干部分的现象。
2、断裂的分类
根据断裂前发生塑性形变的情况,分为韧性断裂和 脆性断裂两种。
Sank The Titanic』,回答了80年未解之谜。上图是两
个冲击试验结果,左面的试样取自海底的Titanic号,右
面的是近代船用钢板的冲击试样。由于早年的Titanic
号采用了含硫高的钢板,韧性很差,特别是在低温呈脆
性。所以,冲击试样是典型的脆性断口。近代船用钢板
的20冲21/2击/6 试样则具有相当好的韧性。
E x E
a
2021/2/6
12
a为原子间距,
x很小时,
sin2x 2x
因此,得:
E
th
a
可见,理论结合强度只与弹性模量,表面能和晶 格距离等材料常数有关。
要得到高强度的固体,就要求 E和 大 , a小。
2021/2/6
13
式中a是晶格常数,随材料的种类的不同而 不同。
通常情况下,约等于E/100,这样 th = E/10
力集中问题,形成了裂纹尖端的应力集中理论。
该理论考虑了裂纹端部一点的应力,认为当tip等于材 料的理论强度时,裂纹就会被拉开,c 随之变大, tip又 进一步增加。如此恶性循环,导致材料迅速断裂。即裂纹
扩展的临界条件为:
σ
tip2
c a
E
a
th
这时的应力就是临界应力
σtip
2c
σtip
c,有:
c
E
第二章 无机材料的脆性断裂与强度
第一节 第二节 第三节 第四节
脆性断裂现象 理论结合强度 Griffith微裂纹理论 应力场强度因子和平面应变断裂韧性
第五节 第六节 第七节 第八节 第九节 第十节
裂纹的起源与快速扩展 无机材料中裂纹的亚临界生长 显微结构对材料脆性断裂的影响 提高无机材料强度改进材料韧性的途径 复合材料 无机材料的硬度
一. 理论的出发点
Griffith 认为实际材料中总是存在许多细小的 微裂纹或缺陷,在外力作用下产生应力集中现象, 当应力达到一定程度时,裂纹开始扩展,最终导 致断裂。即断裂并不是两部分晶体同时沿整个界 面拉断,而是裂纹扩展的结果。
2021/2/6
15
二. Inglis裂纹尖端应力集中理论 Inglis (英格里斯)于1913年研究了带孔洞板的应
(1)、韧性断裂(延性断裂) 是材料在断裂前及断裂过程中经历了明显宏观塑 性形变的过程。 (2)、脆性断裂 是材料在断裂前没有明显的宏观塑性形变,没有明 显的迹象,往往表现为突发的快速断裂过程。
脆性断裂具有很大的危险性!
2021/2/6
3
2002年11月19日,希腊“威望”号油轮在西班牙加利
西亚省所属海域触礁,断裂成两截,随后逐渐下沉。
熔融石英纤维 =24.1GPa E/4
碳化硅晶须 =6.47GPa E/23
氧化铝晶须 =15.2GPa E/33
尺寸较大的材料实际强度比理论强度低 得更多,约为E/100 – E/1000
2021/2/6
14
第三节 Griffith微裂纹理论
1920年Griffith为了解释玻璃的理论强度与 实际强度的差异,提出了微裂纹理论,后来逐渐成 为脆性断裂的主要理论基础。
4c
σ
2021/2/6
该理论只考虑了裂纹端部一点的应力 实际上裂纹端部的应力状态很复杂1。6
Griffith 借鉴上述理论结果,从能量的角度研究了裂 纹扩展的条件:物体内储存的弹性应变能的降低大于等于 由于开裂形成两个新表面所需的表面能,即物体内储存 的弹性应变能的降低(或释放)是裂纹扩展的动力。
5
3、脆性断裂行为
(1)、脆性断裂的步骤 裂纹和缺陷的形成 裂纹或缺陷的扩展
(2)、脆性断裂的形式
突发性断裂:材料受力→断裂源处裂纹尖端的横向拉 应力达到材料的结合强度→裂纹扩展→引起周围应力再 分配→裂纹的加速扩展→突发性断裂
缓慢断裂:材料受力→裂纹缓慢生长→缓慢开裂
裂纹的存在及其扩展行为是导致脆性断裂的根本原因,
并20决21/2/定6 材料抵抗断裂的能力!
6
(3)、断裂的断口形貌
韧性断裂
脆性断裂
2021/2/6
7
第二节 理论结合强度
前言:
材料强度是材料抵抗外力作用时表现出来的一种性 质,决定材料强度的最基本因素是分子、原子(离子) 之间的结合力; 无机材料的抗压强度是抗拉强度的近10倍,抗拉强 度是最值得研究的环节; 材料的断裂就是材料中外力克服了原子结合力,形 成了两个新的表面;在外加正应力作用下,将晶体 中的两个原子面沿垂直于外力方向拉断所需的应力 称为理论结合强度或理论断裂强度。
设分开单位面积原子平面所作的功为 V,则其值应
等于释放出的弹性应变能,可用图中曲线下所包 围的面积来计算,有:
V
2
0
th
sin
2 x dx
th 2
cos
2x 2 0
th
2021/2/6
11
设材料形成新表面的表面能为 ,则 V, 2有:
th 2
th
2
在接近平衡位置O的区域,曲线可以用直线代替(弹性 形变),服从虎克定律:
据悉,这艘船上共装有7.7万吨燃料油,可能是世界
2上021最/2/6 严重的燃油泄漏事件之一。
4
1912年号称永不沉没的豪华的泰坦尼克号(Titanic)
沉没于冰海中。究竟是什么原因导致这艘巨轮沉没
?1995年2月美国《科学大众》(Popular Science)杂
志发表了R Gannon 的文章,标题是『What Really
2021/2/6
8
理论结合强度的物理模型:
在外力作用下,解理面间的 原子结合遭到破坏,从而引起 晶体的脆性断裂。所以,晶体 的的理论强度应由原子间结合 力决定。当原子处于平衡位置 时,原子间的作用力为零;在拉 应力作用下,原子间距増大, 引力也增大。曲线上的最高点 代表晶体的最大结合力,即理
论断裂强度th 。