2016江苏高考数学试题及答案解析(理科)[解析版]
2016年普通高等学校招生全国统一考试(江苏卷)理科数学试题及参考答案解析
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ一、 填空题:本大题共14小题,每小题5分,共70分.1. 已知集合A ={-1,2,3,6},B ={x|-2<x<3},那么A ∩B =________.2. 若复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________.3. 在平面直角坐标系xOy 中,双曲线x 27-y 23=1的焦距是________.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,那么该组数据的方差是________. 5. 函数y =3-2x -x 2的定义域是________.6. 如图所示的算法流程图,输出的a 的值是________.(第6题)7. 将一枚质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.8. 已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 9. 定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.10. 如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a>b>0)的右焦点,若直线y=b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.(第10题)11. 设f(x)是定义在R 上且周期为2的函数,在区间[-1,1)上,f(x)=⎩⎪⎨⎪⎧x +a ,-1≤x<0,⎪⎪⎪⎪25-x ,0≤x<1,其中a ∈R .若f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,则f(5a)的值是________.12. 已知实数x ,y 满足⎩⎨⎧x -2y +4≥0,2x +y -2≥0,3x -y -3≤0,那么x 2+y 2的取值范围是________.13. 如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,若BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.(第13题)14. 在锐角三角形ABC 中,若sin A =2sin Bsin C ,则tan Atan Btan C 的最小值是________.二、 解答题:本大题共6小题,共90分.解答时应写出必要的文字说明、证明过程或演算步骤.15. (本小题满分14分)在△ABC 中,已知AC =6,cos B =45,C =π4.(1) 求边AB 的长; (2) 求cos ⎝⎛⎭⎫A -π6的值.\16. (本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.(1) 求证:直线DE ∥平面A 1C 1F ; (2) 求证:平面B 1DE ⊥平面A 1C 1F.(第16题)17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,如图,上部分的形状是正四棱锥PA 1B 1C 1D 1,下部分的形状是正四棱柱ABCDA 1B 1C 1D 1,并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1) 若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大?(第17题)18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A(2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程;(3) 设点T(t ,0)满足:存在圆M 上的两点P 和Q ,使得TA →+TP →=TQ →,求实数t 的取值范围.(第18题)19. (本小题满分16分)已知函数f(x)=a x +b x (a>0,b>0,a ≠1,b ≠1). (1) 设a =2,b =12.①求方程f(x)=2的根;②若对于任意x ∈R ,不等式f(2x)≥mf(x)-6恒成立,求实数m 的最大值. (2) 若0<a<1,b>1,函数g(x)=f(x)-2有且只有1个零点,求ab 的值.20. (本小题满分16分)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1) 求数列{a n }的通项公式;(2) 对任意正整数k(1≤k ≤100),若T {1,2,…,k},求证:S T <a k +1; (3) 设S C ≥S D ,求证:S C +S C ∩D ≥2S D .数学Ⅱ(附加题)21. 【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A. 选修41:几何证明选讲 如图,在△ABC 中,已知∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD.(第21-A 题)B. 选修42:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤120-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1-1202,求矩阵AB .C. 选修44:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.D. 选修45:不等式选讲设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a.【必做题】第22、23题,每小题10分,共20分,解答时应写出必要的文字说明,证明过程或演算步骤.22. (本小题满分10分)如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1) 若直线l过抛物线C的焦点,求抛物线C的方程;(2) 已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.(第22题)23. (本小题满分10分)(1) 求7C36-4C47的值;(2) 设m,n∈N*,n≥m,求证:(m+1)C m m+(m+2)C m m+1+(m+3)C m m+2+…+nC m n-1+(n +1)C m n=(m+1)C m+2.n+22016年普通高等学校招生全国统一考试(江苏卷)1. {-1,2} 【解析】由题意知A ∩B ={-1,2}.2. 5 【解析】由题意知z =5+5i ,所以z 的实部是5.3. 210 【解析】由题意知c =a 2+b 2=7+3=10,所以焦距为2c =210.4. 0.1 【解析】因为x =15(4.7+4.8+5.1+5.4+5.5)=5.1,所以s 2=15(0.42+0.32+02+0.32+0.42)=0.1.5. [-3,1] 【解析】由题意知3-2x -x 2≥0,解得-3≤x ≤1,所以原函数的定义域为[-3,1].6. 9 【解析】由流程图可知,在循环的过程中,a 与b 的值依次为1,9;5,7;9,5.因为9>5,所以输出的a =9.7. 56 【解析】由题意知,先后抛掷骰子2次,共有36个基本事件.其中点数之和大于等于10的基本事件有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,则点数之和小于10的基本事件共有30个.故所求的概率为3036=56.8. 20 【解析】设等差数列{a n }的公差为d ,则由题意知a 1+(a 1+d)2=-3,5a 1+10d =10,解得a 1=-4,d =3,所以a 9=-4+8×3=20.9. 7 【解析】如图,在同一平面直角坐标系中作出函数y =sin 2x 与y =cos x 在区间[0,3π]上的图象,可知共有7个交点.(第9题)10.63【解析】由题意知焦点F 的坐标为(c ,0),联立解得x =±32a ,故点B 的坐标为⎝⎛⎭⎫-3a 2,b 2,点C 的坐标为⎝⎛⎭⎫3a 2,b 2. 因为∠BFC =90°,所以BF →·CF →=0.又BF →=⎝⎛⎭⎫c +3a 2,-b 2,CF →=⎝⎛⎭⎫c -3a 2,-b 2,所以c 2-34a 2+14b 2=0.因为b 2=a 2-c 2,所以34c 2=12a 2,即c 2a 2=23,所以e =ca =23=63.11. -25 【解析】由题意知f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫-12=-12+a ,f ⎝⎛⎭⎫92=f ⎝⎛⎭⎫12=⎪⎪⎪⎪25-12=110. 因为f ⎝⎛⎭⎫-52=f ⎝⎛⎭⎫92,所以-12+a =110,解得a =35, 所以f(5a)=f(3)=f(-1)=-1+a =-1+35=-25.12. ⎣⎡⎦⎤45,13 【解析】作出实数x ,y 满足的可行域如图中阴影部分所示,则x 2+y 2即为可行域内的点(x ,y)到原点O 的距离的平方.由图可知点A 到原点O 的距离最近,点B到原点O 的距离最远.点A 到原点O 的距离即原点O 到直线2x +y -2=0的距离d =|0-2|12+22=255,则(x 2+y 2)min =45;点B 为直线x -2y +4=0与3x -y -3=0的交点,即点B 的坐标为(2,3),则(x 2+y 2)max =13.综上,x 2+y 2的取值范围是⎣⎡⎦⎤45,13.(第12题)13. 78 【解析】方法一:设DF →=a ,DB →=b ,则DC →=-b ,DE →=2a ,DA →=3a ,所以BA→=DA →-DB →=3a -b ,CA →=DA →-DC →=3a +b ,BE →=DE →-DB →=2a -b ,CE →=DE →-DC →=2a +b ,BF →=DF →-DB →=a -b ,CF →=DF →-DC →=a +b ,所以BA →·CA →=9a 2-b 2,BF →·CF →=a 2-b 2,BE →·CE →=4a 2-b 2.又因为BA →·CA →=4,BF →·CF →=-1,所以9a 2-b 2=4,a 2-b 2=-1,解得a 2=58,b 2=138,所以BE →·CE →=4a 2-b 2=4×58-138=78. 方法二:以D 为坐标原点,BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立平面直角坐标系,设点B 的坐标为(-a ,0),点C 的坐标为(a ,0),点A 的坐标为(b ,c),所以BA →=(b +a ,c),CA →=(b -a ,c),BF →=⎝⎛⎭⎫b 3+a ,c 3,CF →=⎝⎛⎭⎫b 3-a ,c 3. 因为BA →·CA →=b 2-a 2+c 2=4,BF →·CF →=b 29-a 2+c 29=-1,所以b 2+c 2=458,a 2=138.又因为BE →=BD →+DE →=⎝⎛⎭⎫23b +a ,2c 3,CE →=CD →+DE →=(23b -a ,2c 3), 所以BE →·CE →=49b 2-a 2+4c 29=49×458-138=78.14. 8 【解析】因为sin A =2sin Bsin C ,所以sin(B +C)=2sin Bsin C ,所以sin Bcos C +cos Bsin C =2sin Bsin C ,等式两边同时除以cos Bcos C ,得tan B +tan C =2tan Btan C. 又因为tan A =-tan(B +C)=tan B +tan Ctan Btan C -1,所以tan Atan Btan C -tan A =2tan Btan C ,即tan Btan C(tan A -2)=tan A.因为A ,B ,C 为锐角,所以tan A ,tan B ,tan C>0,且tan A>2, 所以tan Btan C =tan A tan A -2,所以原式=tan 2Atan A -2.令tan A -2=t(t>0),则tan 2A tan A -2=(t +2)2t =t 2+4t +4t =t +4t +4≥8,当且仅当t =2,即tan A =4时取等号. 故tan Atan Btan C 的最小值为8.15. (1) 因为cos B =45,0<B<π,所以sin B =1-cos 2B =1-⎝⎛⎭⎫452=35.由正弦定理知AC sin B =AB sin C ,所以AB =AC·sin Csin B =6×2235=5 2.(2) 在△ABC 中,因为A +B +C =π,所以A =π-(B +C), 所以cos A =-cos(B +C)=-cos ⎝⎛⎭⎫B +π4=-cos Bcos π4+sin Bsin π4.又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A<π,所以sin A =1-cos 2A =7210,所以cos ⎝⎛⎭⎫A -π6=cos Acos π6+sin Asin π6=-210×32+7210×12=72-620.16. (1) 在直三棱柱ABC -A 1B 1C 1中,A 1C 1∥AC.在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,所以DE ∥A 1C 1. 又因为DE平面A 1C 1F ,A 1C 1平面A 1C 1F ,所以直线DE ∥平面A 1C 1F.(2) 在直三棱柱ABC -A 1B 1C 1中,A 1A ⊥平面A 1B 1C 1. 因为A 1C 1平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又因为A 1C 1⊥A 1B 1,A 1A平面ABB 1A 1,A 1B 1平面ABB 1A 1,A 1A ∩A 1B 1=A 1,所以A 1C 1⊥平面ABB 1A 1. 因为B 1D平面ABB 1A 1,所以A 1C 1⊥B 1D.又因为B 1D ⊥A 1F ,A 1C 1平面A 1C 1F ,A 1F平面A 1C 1F ,A 1C 1∩A 1F =A 1,所以B 1D ⊥平面A 1C 1F. 因为直线B 1D平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F.17. (1) 由PO 1=2 m ,知O 1O =4PO 1=8 m ,因为A 1B 1=AB =6 m , 所以正四棱锥PA 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3), 正四棱柱ABCDA 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3), 所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). (2) 设A 1B 1=a m ,PO 1=h m ,则0<h<6,O 1O =4h m.如图,连接O 1B 1.在Rt △PO 1B 1中,因为O 1B 21+PO 21=PB 21,所以⎝⎛⎭⎫2a 22+h 2=36,即a 2=2(36-h 2), 所以仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h =263(36h -h 3),0<h<6,所以V′=263(36-3h 2)=26(12-h 2).令V′=0,得h =23或h =-23(舍去). 当0<h<23时,V ′>0,V 在(0,23)上是单调增函数; 当23<h<6时,V ′<0,V 在(23,6)上是单调减函数. 故当h =23时,V 取得极大值,也是最大值. 所以,当PO 1=2 3 m 时,仓库的容积最大.(第17题)18. 圆M 的标准方程为(x -6)2+(y -7)2=25, 所以圆心M(6,7),半径为5.(1) 由圆心N 在直线x =6上,可设N(6,y 0). 因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,所以圆N 的 半径为y 0,从而7-y 0=5+y 0,解得y 0=1, 所以圆N 的标准方程为(x -6)2+(y -1)2=1. (2) 因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m|5=|m +5|5.(第18题)如图,因为BC =OA =22+42=25,又MC 2=d 2+⎝⎛⎭⎫BC 22,所以25=(m +5)25+5, 解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.(3) 设P(x 1,y 1),Q(x 2,y 2),因为A(2,4),T(t ,0),TA →+TP →=TQ →,所以因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25. ② 将①代入②,得(x 1-t -4)2+(y 1-3)2=25,所以点P(x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上, 从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点, 所以5-5≤[(t +4)-6]2+(3-7)2≤5+5, 解得2-221≤t ≤2+221.所以实数t 的取值范围是[2-221,2+221 ]. 19. (1) 因为a =2,b =12,所以f(x)=2x +2-x .①方程f(x)=2,则2x +2-x =2,即(2x )2-2×2x +1=0, 所以(2x -1)2=0,所以2x =1,解得x =0.②由题意知f(2x)=22x +2-2x =(2x +2-x )2-2=(f(x))2-2, 因为f(2x)≥mf(x)-6对于x ∈R 恒成立,且f(x)>0,所以m ≤(f (x ))2+4f (x )对于x ∈R 恒成立.又(f (x ))2+4f (x )=f(x)+4f (x )≥2f (x )·4f (x )=4,且(f (0))2+4f (0)=4,所以m ≤4,故实数m 的最大值为4.(2) 因为函数g(x)=f(x)-2只有1个零点,又g(0)=f(0)-2=a 0+b 0-2=0,所以0是函数g(x)的唯一零点. 因为g′(x)=a x ln a +b x ln b ,又由0<a<1,b>1,知ln a<0,ln b>0,所以g′(x)=0有唯一解x 0=log b a⎝⎛⎭⎫-ln aln b .令h(x)=g′(x), 则h′(x)=(a x ln a +b x ln b )′=a x (ln a)2+b x (ln b)2,从而对任意x ∈R ,h ′(x)>0,所以g′(x)=h(x)是(-∞,+∞)上的单调增函数, 所以当x ∈(-∞,x 0)时,g ′(x)<g′(x 0)=0;当x ∈(x 0,+∞)时,g ′(x)>g ′(x 0)=0.所以函数g(x)在(-∞,x 0)上是单调减函数,在(x 0,+∞)上是单调增函数. 下证x 0=0.若x 0<0,则x 0<x 02<0,所以g ⎝⎛⎭⎫x 02<g(0)=0.又g(log a 2)=alog a 2+blog a 2-2>alog a 2-2=0,且函数g(x)在以x 02和log a 2为端点的闭区间上的图象不间断,所以在x 02和log a 2之间存在g(x)的零点,记为x 1.因为0<a<1,所以log a 2<0.又x 02<0,所以x 1<0,与“0是函数g(x)的唯一零点”矛盾. 若x 0>0,同理可得,在x 02和log b 2之间存在g(x)的非0的零点,矛盾.综上,x 0=0. 所以-ln aln b=1,故ln a +ln b =0,所以ab =1. 20. (1) 由已知得a n =a 1·3n -1,n ∈N *.所以当T ={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1. 又S T =30,故30a 1=30,即a 1=1,所以数列{a n }的通项公式为a n =3n -1,n ∈N *. (2) 因为T{1,2,…,k},a n =3n -1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k -1=12(3k -1)<3k ,所以S T <a k +1.(3) 下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D . ②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D . ③若D 不是C 的子集,且C 不是D 的子集. 令E =C ∩∁U D ,F =D ∩∁U C ,则E ≠,F ≠,E ∩F =,所以S C =S E +S C ∩D ,S D =S F +S C ∩D ,又由S C ≥S D ,得S E ≥S F . 设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l.由(2)知,S E <a k +1,所以3l -1=a l ≤S F ≤S E <a k +1=3k ,所以l -1<k ,即l ≤k. 又k ≠l ,故l ≤k -1,所以S F ≤a 1+a 2+…+a l =1+3+…+3l -1=3l -12≤3k -1-12=a k -12≤S E -12,故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1,即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D . 21. A. 在△ADB 和△ABC 中,因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,所以∠ABD =∠C. 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD.C. 椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程代入x 2+y 24=1,得⎝⎛⎭⎫1+12t 2+⎝⎛⎭⎫32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167, 所以AB =|t 1-t 2|=167. D. 因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a.22. (1) 抛物线C :y 2=2px(p>0)的焦点为⎝⎛⎭⎫p 2,0,由点⎝⎛⎭⎫p 2,0在直线l :x -y -2=0上,得p2-0-2=0,即p =4, 所以抛物线C 的方程为y 2=8x.(2) 设P(x 1,y 1),Q(x 2,y 2),线段PQ 的中点M(x 0,y 0),因为点P 和Q 关于直线l 对称,所以直线l 垂直平分线段PQ , 所以直线PQ 的斜率为-1,则可设其方程为y =-x +b. ①由错误!消去x ,得y 2+2py -2pb =0. (*)因为P 和Q 是抛物线C 上的相异两点,所以y 1≠y 2, 所以Δ=(2p)2-4×(-2pb)>0,化简得p +2b>0. 方程(*)的两根为y 1,2=-p±p 2+2pb ,从而y 0=y 1+y 22=-p. 因为点M(x 0,y 0)在直线l 上,所以x 0=2-p , 所以线段PQ 的中点坐标为(2-p ,-p). ②因为M(2-p ,-p)在直线y =-x +b 上, 所以-p =-(2-p)+b ,即b =2-2p.由①知p +2b>0,所以p +2(2-2p)>0,所以p<43,所以p 的取值范围是⎝⎛⎭⎫0,43. 23. (1) 7C 36-4C 47=7×6×5×43×2×1-4×7×6×5×44×3×2×1=0. (2) 当n =m 时,结论显然成立. 当n>m 时,(k +1)C m k =(k +1)·k !m !·(k -m )!=(m +1)·(k +1)!(m +1)!·[(k +1)-(m +1)]!=(m +1)C m +1k +1,k =m +1,m +2,…,n.又因为C m +1k +1+C m +2k +1=C m +2k +2,所以(k +1)C m k =(m +1)(C m +2k +2-C m +2k +1),k =m +1,m +2,…,n ,所以(m +1)C m m +(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C m n=(m +1)C m m +[(m +2)C m m +1+(m +3)C m m +2+…+(n +1)C mn ]=(m +1)C m +2m +2+(m +1)[(C m +2m +3-C m +2m +2)+(C m +2m +4-C m +2m +3)+…+(C m +2n +2-C m +2n +1)]=(m +1)C m +2n +2.。
2016年普通高等学校招生全国统一考试数学试题(江苏卷,参考版解析)
...因此 BE CE4a b4 5 137 .2288 8在锐角三角形 ABC 中, sin A 2sin B sin C ,那么 tan A tan B tan C 的最小值是 .8;xiv.由 sin Asin π A sin B C sin B cosC cos B sin C , sin A 2sin Bsin C ,可得 sin B cosC cos B sin C 2sin Bsin C 〔 * 〕,由三角形 ABC 为锐角三角形,那么 cosB 0,cos C 0 ,在〔 * 〕式两侧同时除以 cos B cosC 可得 tan B tan C2tan Btan C ,又 tan Atan π Atan BCtan B tan C (#) ,1 tan B tanC那么 tan A tan B tan Ctan B tan C1tan B tanC ,tan B tanC2由 tan B tanC2 tan B tanC2 tan B tanC 可得 tan A tan B tanC1,tan B tan C令 tan B tanC t ,由 A, B, C 为锐角可得 tan A0, tan B0,tanC 0 ,由(#)得 1 tan B tan C 0 ,解得 t 1tan A tan B tan C2t 2 2 ,t11 1t 2t1 1 1 1 21 1 11,由 t 1 那么0 ,因此 tan Atan B tanC最小值为 8,t2tt24 t2t4当且仅当 t 2 时取到等号,此时 tan B tan C 4 , tan B tan C 2 ,解得 tan B22,tan C22,tan A 4 〔或 tan B,tan C 互换〕,此时 A, B,C 均为锐角.二、解答题: 本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤.〔本小题总分值14 分〕在△ABC 中, AC 6 , cos B4, Cπ.54⑴求 AB 的长;⑵求 cos Aπ 的值.6⑴ 5 2;⑵7 26 .201.cos B4, B 为三角形的内角5sin B 3 5AB ACsinC sin BAB623,即: AB 5 2 ;25a) cos A cos C B sin B sin C cos B cosC2cos A10又A为三角形的内角72sin A10cos Aπ3cos A1s in A726.62220〔本小题总分值14分〕如图,在直三棱柱ABC A1 B1C1中, D, E 分别为 AB , BC 的中点,点F在侧棱 B1B 上,且 B D A F AC1A B C111,1 1 1 .求证:⑴直线 DE // 平面 AC FA1B1;11⑵平面 BDE平面AC F.111F 见解析;2.D, E 为中点,DE 为ABC 的中位线DE // AC又ABC A B C 为棱柱,AC //AC1 1 111CEA D BDE // AC1 1,又AC1 1平面 AC11F,且DEAC1 1FDE //平面AC F;1 1a)ABC A1B1C1为直棱柱,AA1平面 A1B1C1AA AC,又AC1A B1 1 11 1 1且AA1 A1 B1 A1, AA1 , A1 B1平面 AA1B1 BAC1平面AAB B,11113又 A 1FB 1D , DE B 1DD ,且 DE, B 1D平面 B 1 DEA F平面B DE,又A FAC F1111 1平面 B DE平面AC 1 F.11〔本小题总分值14 分〕现需要设计一个仓库,它由上下两局部组成,上局部的形状是正四棱锥P A 1 B 1C 1D 1,下局部的形状是正四棱柱 ABCD A 1B 1C 1 D 1〔如下图〕 ,并要求正四棱柱的高O 1O 是正四棱锥的高 PO 1的 4 倍.⑴假设AB6 m , PO 12 m ,那么仓库的容积是多少;PD 1 C 1⑵ 假设正四棱锥的侧棱长为6 m ,当 PO 1为多少时,仓库的容积最大?O 1A 1B 13;⑵ 2 3 m ; DC⑴ 312 mO3. PO 1 2 m ,那么OO 18 m ,ABV P A 1B 1C 1D 1=1S ABCD PO 11 62 224 m 3, V ABCDA 1B 1C 1D 1=S ABCD OO 1628 288 m 3 ,33V =V PABCDV ABCDABCD312 m3 ,11 1 111 11故仓库的容积为 312 m 3;a) 设 PO 1x m ,仓库的容积为 V ( x)那么 OO 1 4 x m , AO 1 136 x 2 m , A 1B 12 36 x 2 m ,11212V P A 1B 1C 1D 1= S ABCD PO 172 2 x 2x72x 2 x 3 24xx 3 m 3 ,3 3332233V ABCD A 1B 1C 1D 1=S ABCD OO 1724 x 288x2x 8 x m ,V x =V PABCDV ABCD ABC D24x 2 x 3 288x8x 326 x 3 312 x 0 x6 ,1 11 11 1 1 133V ' x26x 2 312 26 x 212 0 x 6 ,当 x 0,2 3 时,V' x0 , V x 单调递增,当 x2 3,6 时,V'x0 , V x 单调递减,因此,当 x2 3时,Vx 取到最大值,即 PO 1 23 m 时,仓库的容积最大.〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,〔本小题总分值14 分〕如图,在平面直角坐标系xOy 中,以M 为圆心的圆M :x 2y 2 12x 14y 600及其上一点 A 2,4 .⑴设圆 N 与x 轴相切,与圆M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程;⑵设平行于 OA 的直线 l 与圆M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程;⑶设点 T t,0满足:存在圆 M 上的两点 P 和Q ,使得TATPTQ ,XX 数t 的取值X 围.y2y21 ⑵ y 2x 5 或 y2 x 15 ⑶ 22 21,22 21 ;⑴ x 61M4.因为 N 在直线 x6 上,设 N 6, n ,因为与x 轴相切,A那么圆 N 为 x 622n 2, n 0y n又圆 N 与圆M 外切,圆M : x22Oxx 76 25 ,那么 7 nn 5 ,解得 n 1 ,即圆 N 的标准方程为 x 22;6 y 11a) 由题意得 OA 2 5 , k OA 2 设 l : y2 x b ,那么圆心M 到直线 l 的距离d12 7b5 b22,155 b2522 22 25, BCb那么 BC 2 5 d52 5,即2 252 5 ,5解得 b5 或 b 15 ,即 l : y2 x 5 或 y 2 x 15 ;i.TA TP TQ ,即 TA TQ TPPQ ,即TAPQ ,TAt2242,又 PQ ≤10,242≤ 10 ,解得 t 2 2 21,2 2 21 ,即 t 2对于任意 t22 21,2 2 21 ,欲使 TAPQ ,2此时 TA 10 TA 的平行线,使圆心到直线的距离为25TA ,只需要作直线 ,4必然与圆交于 P 、 Q 两点,此时 TA PQ ,即TA PQ ,因此对于任意 t2 2 21,2 2 21 ,均满足题意,。
2016年江苏省高考数学试卷(含详细答案解析)
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是.5.(5分)函数y=的定义域是.6.(5分)如图是一个算法的流程图,则输出的a的值是.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案;法2:由sin2x=cosx,即cosx(2sinx﹣1)=0,可得cosx=0或sinx=,结合题意,解之即可.【解答】解:法1:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.法2:依题意,sin2x=cosx,即cosx(2sinx﹣1)=0,故cosx=0或sinx=,因为x∈[0,3π],故x=,,,,,,,共7个,故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.方法二、运用向量的数量积的性质,向量垂直的条件:数量积为0,结合离心率公式计算即可得到所求.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,另解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),=(﹣a﹣c,),=(a﹣c,),•=0,则c2﹣a2十b2=0,因为b2=a2﹣c2,代入得3c2=2a2,由e=,可得e2==,可得e=.故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f (x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a 值,是解答的关键.12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13] .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,另解:由已知条件sinA=2sinBsinc,sin(B十C)=2sinBsinC,sinBcosC十cosBsinC=2sinBcosC,两边同除以cosBcosC,tanB十tanC=2tanBtanC,∵﹣tanA=tan(B十C)=,∴tanAtanBtanC=tanA十tanB十tanC,∴tanAtanBtanC=tanA十2tanBtanC≥2,令tanAtanBtanC=x>0,即x≥2,即x≥8,或x≤0(舍去),所以x的最小值为8.当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,B∈(0,π),∴sinB=,∵,∴AB==5;(2)cosA═﹣cos(π﹣A)=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC﹣A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,答:仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;答:当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,y=2x在R上单调,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)≥0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)等比数列{a n}中是公比为3的等比数列,则a4=3a3=9a2,当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S A≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a1+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:在△ABC中,由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,根据绝对值不等式的性质,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q 关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
2016年高考数学江苏省理科试题及答案解析版
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016 江苏(理)】已知集合 A={ - 1, 2, 3, 6} , B={x| - 2 V x V 3},则 A AB= _____ 【答案】{ - 1, 2}【解析】 解:•••集合 A={ - 1, 2, 3, 6} , B={x| - 2V x V 3}, ••• A n B={ - 1, 2},【2016江苏(理)】复数z= (1+2i ) (3- i ),其中i 为虚数单位,则z 的实部是 _______ , 【答案】5【解析】 解:z= (1+2i ) (3 - i ) =5+5i , 则z 的实部是5,【答案】2 , I• c =Uw 5 护=顶,【2016江苏(理)】已知一组数据4.7, 4.8, 5.1 , 5.4 , 5.5,则该组数据的方差是 _ 【答案】0.1【解析】 解:•••数据4.7, 4.8, 5.1, 5.4, 5.5的平均数为:—1工=匸(4.7+4.8+5.1+5.4+5.5 ) =5.1,5•该组数据的方差: 2 1 2 2 2 2 2 s=〒[(4.7 -5.1)+ (4.8 -5.1) + ( 5.1 - 5.1) + ( 5.4 -5.1) + ( 5.5 -5.1)]=0.1 ・【2016江苏(理)】函数y= : 「 ■-的定义域是 【答案】[-3, 11【解析】解:由3 - 2x - x 2%得:x 2+2x - 3包),解得:x €[ - 3 , 1 ],【2016江苏(理)】如图是一个算法的流程图,则输出的【2016江苏(理)】在平面直角坐标系2X2 y3a= ; b=二2xOy 中,双曲线专■=1的焦距是【解析】解:双曲线 =1中, 的焦距是2 一【答案】9【解析】解:当a=1, b=9时,不满足a> b,故a=5, b=7 ,当a=5, b=7 时,不满足a>b,故a=9, b=5当a=9, b=5时,满足a> b,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有 1 , 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_____ .【答案】卫【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1, 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6 0=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4, 6), (6 , 4), (5 , 5), (5 , 6), (6 , 5), (6 , 6),共6 个,•••出现向上的点数之和小于10的概率:4 6 5p=1「—.2【2016江苏(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a2=-3 , S5=10 ,贝U a9 的值是—.【答案】20【解析】解:••• {a n}是等差数列,S n是其前n项和,a1+a22=- 3 , S5=10 , 8]+( a^+d)'二- 3••5托4 ,5哲■尹左10解得a仁-4 , d=3 ,• a9= - 4+8 X3=20.【2016江苏(理)】定义在区间[0 , 3冗]上的函数y=sin2x的图象与y=cosx的图象的交点个数是—.【答案】7【解析】解:画出函数y=sin2x与y=cosx 在区间[0, 3 n上的图象如下:【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆‘1+-’ =1 (a> b>0)的2),由 / BFC=90 ° 可得k BF?k CF= - 1,_:_=- 1=1,2 2 °化简为b2=3a2- 4c2,由b2=a2- c2,即有3c2=2a2,C两点,且/ BFC=90 °则该椭圆的离心率是【解析】解:设右焦点可得B (-丄a,-2即有【答将y=*代入椭圆方程可得=± a,,一),C•-a _,【解析】 解:作出不等式组对应的平面区域,设Z=x 2+y 2,则Z 的几何意义是区域内的点到原点距离的平方, 由图象知A 到原点的距离最大, 点O 到直线BC : 2x+y - 2=0的距离最小,,即 A ( 2,3),此时 Z =22+32=4+9=13 ,则 z=d 2= 一) 2=十, 故Z 的取值范围是[半,13], 故答案为:[一,13].5【2016江苏(理)】设f ( x )是定义在R 上且周期为2的函数,在区间[-1,1) 上,f (x )I 匕【答案】-二,其中a€R ,若f (-吕)=f (半),则f (5a )的值是【解析】解:f (x )是定义在R 上且周期为2的函数,在区间[-1, 1) 上, f (x )=f —= 丄)丐--1 -.7 i +a,ii••• f (5a ) =f (3) =f (- 1) = - 1+-匸x - 2y+4^0【2016江苏(理)】已知实数x , y 满足2>0,则x 2+y 2的取值范围是得r s-2[尸3点O 到直线BC : 2x+y - 2=0的距离_ 2|【答[x - 2^4=0:- ------------【2016江苏(理)】如图,在△ ABC中,D是BC的中点,E, F是AD上的两个三等分点, -.? -.=4, °T? i;=-1,则n的值是 _.【答案】丄s【解析】解:•/ D是BC的中点,E, F是AD上的两个三等分点,••• ¥=□+『. 卜=-二+5 ,「= .1-0+3 I', = - U1+3 ',.•.干?飞=:卩2-「2=- i,';? '「.=9 下2-辰¥=4,s 8:r| —■ | —■冃|| jw | iH又•••i+2| I , : =- +2,,【2016江苏(理)】在锐角三角形ABC中,若sin A=2si nBsi nC,贝U tan Ata nBta nC的最小值是____ .【答案】8【解析】解:由sinA=sin ( n- A) =sin (B+C ) =sinBcosC+cosBsinC , sinA=2sinBsinC , 可得sinBcosC+cosBsinC=2sinBsinC ,①由三角形ABC为锐角三角形,则cosB>0, cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC ,又tanA= - tan ( n- A) = - tan (B+C ) = ------------- ------------- --- ② ,1 - tanBtanC门■ ' ?tanBtanC ,1 一t anBtanC由 tan B+ta nC=2ta nBta nC 可得 tan Ata nBta nC=-令 tanBtanC=t ,由 A , B , C 为锐角可得 tanA >0, tanB >0, tanC > 0, 由② 式得1 - tanBtanC V 0,解得t > 1,:■、解答题(共6小题,满分90分)4TT【2016江苏(理)】在厶ABC 中,AC=6 , cosB —, C^ .5 4(1 )求AB 的长; (2)求cos (A -丄)的值.6【2016江苏(理)】如图,在直三棱柱 ABC - A 1B 1C 1中,D , E 分别为AB , 点F 在侧棱B 1B 上,且B 1D 丄A 1F , A 1C 1丄A 1B 1.求证: (1)直线DE //平面A 1C 1F ;(2)平面B 1DE 丄平面A 1C 1F .2=- Rtan Ata nBta nC=-(丄迪21「由 t>1 2 * *得,-严= 因此tanAtanBtanC 的最小值为8,当且仅当t=2时取到等号,此时 tanB+tanC=4 , tanBtanC=2, 解得 tan B=2+ 工,tan C=2—『.,ta nA=4 ,(或 tanB , ta nC 互换),此时 A , B , C 均为锐角. …cos 则 tan Ata nBta nC=-2 (tat^BtanC ) 2 1 一t anBtanCBC 的中点,sinB=【解析】解:(1) •/ D, E分别为AB , BC的中点,••• DE为仏ABC的中位线,••• DE // AC ,••• ABC - A1B1C1 为棱柱,•AC // A1C1,•DE // A1C1,•/ A1C1?平面A1C1F,且DE?平面A1C1F,•DE // A1C1F;(2)T ABC - A1B1C1 为直棱柱,•AA 1 丄平面A1B1C1,•AA 1 丄A1C1,又T A1C1 丄A1B1,且AA 1A A1B1=A1, AA1、A1B1?平面AA1B1B,•A1C1 丄平面AA1B1B,•/ DE // A1C1,•DE 丄平面AA1B1B, 又••• A1F?平面AA 1B1B,•DE 丄A1F,又T A1F丄B1D, DE A B1D=D,且DE、B1D?平面B1DE,•A1F丄平面B1DE , 又T A1F?平面A1C1F, •平面B1DE丄平面A1C1F .【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A1B1C1D1,下部的形状是正四棱柱ABCD - A1B1C1D1 (如图所示),并要求正四棱柱的高010是正四棱锥的高PO1的4倍.(1 )若AB=6m , P01=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当P01为多少时,仓库的容积最大?【解析】 解:(1) •/ PO i =2m ,正四棱柱的高 010是正四棱锥的高 PO 1的4倍. /• 0i 0=8m ,•••仓库的容积 V=2>62>2+62^8=312m 3,3(2 )若正四棱锥的侧棱长为 6m , 设 P01=xm ,则 010=4xm , A 101= I - m ,A 1B 1= 下,-m ,则仓库的容积 V=g X(近剤 3" /)2?x+ (近勾36— F ) 2?4X =—^X 3+312X , (O v x3 「「■3v 6),• V = - 26X 2+312 , ( O v x v 6),当 O v x v 2.时,V'> 0, V ( x )单调递增; 当2 :;v x v 6时,V'v 0, V (x )单调递减; 故当x=2 一时,V (x )取最大值; 即当P01=2 . _;m 时,仓库的容积最大.【2016江苏(理)】如图,在平面直角坐标系 xOy 中,已知以M 为圆心的圆M : x 2+y 2- 12x - 14y+60=0 及其上一点 A (2, 4).(1) 设圆N 与x 轴相切,与圆 M 外切,且圆心 N 在直线x=6上,求圆N 的标准方程; (2) 设平行于 0A 的直线I 与圆M 相交于B 、C 两点,且BC=0A ,求直线I 的方程; M 上的两点P 和Q ,使得•:+“「=• i.i,求实数t 的取值【解析】 解:(1) ••• N 在直线x=6上,•设N (6, n ),•••圆 N 与 x 轴相切,•••圆 N 为:(x - 6) 2+ (y - n ) 2=n 2, n >0,又圆 N 与圆 M 外切,圆 M : x 2+y 2 - 12x - 14y+60=0,即圆 M : ((x - 6) 2+ (x - 7) 2=25 , • |7 — n|=|n|+5,解得 n=1 ,•••圆N 的标准方程为(x - 6) 2+ (y - 1) 2=1. (2)由题意得 0A=2 口,k °A =2,设 I : y=2x+b ,则圆心M 到直线l 的距离:解得b=5或b= - 15,•直线l 的方程为:y=2x+5或y=2x - 15.(3)设点T (t , 0)满足:存在圆 则 |BC|=2 •.辭BC=2「,,即(3) IN I ^ = li,即 T 】_T 「 一“ 即「〔Fl Ml ,I I 4=I :' ' I ',又底Ho ,即J (我—2]打牡削,解得t €[2 - 2阿,2+2阿], 对于任意t€[2 - 2阿,2+2届],欲使冠二而,此时,I 丑鬥0, 只需要作直线TA 的平行线,使圆心到直线的距离为必然与圆交于P 、Q 两点,此时|」=|川,即Z — ll.i,因此实数t 的取值范围为t €[2 - 2「, 2+2.「],. 【2016江苏(理)】已知函数 (1 )设 a=2, b=_.2① 求方程f (x ) =2的根; ② 若对于任意x€R ,不等式f (2)若 0v a v 1, b > 1,函数 【解析】解:(1 )设 a=2, f (x ) =a x +b x (a >0, b > 0, a 为,b 为).(2x )湘f ( x )- 6恒成立,求实数 m 的最大值; g (x ) =f (x ) - 2有且只有1个零点,求ab 的值.函数 f (x ) =a x +b x (a >0, b >0, a 鬥,b ^l ).b=-.2①方程f (x ) =2;即: =2,可得 x=0 .②不等式f (2x )初f (x )- 6恒成立,即-二2钥令t=^十丄,t 支.2K不等式化为:t 2- mt+4为在t 呈时,恒成立.可得:△<)或L 22-2inl-4>0即:m 2 - 160或m 詔, m € (-汽 4]. 实数m 的最大值为:4.(2) g (x ) =f (x )- 2=a x +b x - 2,ag'(x ) =ax In a+bx In b=ax|丄nr],0 v a v 1, b > 1 可得一-•,令 h(x ) = 1—则h (x )是递增函数,而,Ina v 0, Inb >0,因此,X0=__-lnbaIna+lnb ,1时,h (x 0) =0,)-6恒成立.湘(_x因此 x € (—a, x o )时,h (x )v 0, a Inb > 0,贝 U g' (x )v 0. x € (x o , + a)时,h (x )> 0, a x lnb >0,则 g'(x ) > 0, 则g (x )在(-a, x 0)递减,(x 0, + a)递增,因此g ( x )的最小值为:g (x 0). ①若 g (x 0)v 0, x v Iog a 2 时,a x > _ "、=2, b x > 0,则 g (x ) > 0,因此 x i v Iog a 2,且 x i v x 0时,g (x i )> 0,因此 g (x )在(x i , x 0)有零点, 则g (x )至少有两个零点,与条件矛盾.(1) 求数列{a n }的通项公式; (2) 对任意正整数 k (1惑000),若T?{1 , 2,…,k },求证:S T v &+1 ; (3) 设 C? U , D? U , S C 爲D ,求证:S C +S CP 壹S D . 【解析】 解:(1 )当 T={2 , 4}时,S T =a 2+a 4=a 2+9a 2=30 , 因此a 2=3,从而a 1= . =1, 故 a n =3n 1,(3 )设 A=?C ( C A D ), B=?D ( C A D ),则 A AB= ?,分析可得 S C =S A +S CAD , S D =S B +S CPD ,贝y S C +S CAD — 2S D =S A — 2S B , 因此原命题的等价于证明 S C^S B ,由条件S C ^S D ,可得S A 爲B ,① 、若 B=?,贝U S B =0 ,故 S A 支S B ,② 、若B 老,由S A ^S B 可得A 老,设A 中最大元素为I , B 中最大元素为 m , 若m 半1 ,则其与S Av a i+1毛m<S B 相矛盾,因为A AB=?,所以I 剂,则I 初+1 ,综上所述,S A 丝S B , 故 S C +S C PD 丝S D .附加题【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区 域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算 步骤.A .【选修4—1几何证明选讲】②若g (x 0)> 0,函数g (x ) =f (x )— 2有且只有1个零点,g (x )的最小值为g (x o ),可得 g (x o ) =0 ,由g (0) =a 0 . 0 i +b—2=0 , 因此 x 0=0 , 因此 1□电a可得ab=1.=0,F 1,即lna+lnb=0,In (ab ) =0, ab=1 .【2016江苏(理)】记U={1 , 2, 定义 S T =0 ;若 T={t 1, t 2,…,t k }, …,100},对数列{a n } (n€N ) 和U 的子集若 T=?,定义S T = I 一 兀LS T =a 1+a 3+a 66.现设{a n } (n€N )是公比为3的等比数列,且当 T={2 , 4}时,S T =30.+a t+ •• +二+ .例如:T={1 , 3, 66}时,(2)2 k — 1S T OH +a 2+ --a k =1+3+3 + --+3~_12~kv 3 =a k+1 S B<a 1+a 2+-a m =1+3+32+1a»+l2 =2即S A 支S ,【2016江苏(理)】如图,在△ ABC中,/ ABC=90 ° BD丄AC, D为垂足,E为BC的中点,求证:/ EDC= / ABD .因为E为BC的中点,所以DE=CE=2B C,2则:/ EDC= / C,由/ BDC=90 ° 可得 / C+Z DBC=90 ° 由Z ABC=90 ° 可得Z ABD+ Z DBC=90 ° 因此Z ABD= Z C,而Z EDC= Z C, 所以,Z EDC=Z ABD .B.【选修4—2:矩阵与变换】点,求线段AB的长.【2016江苏(理)】已知矩阵A=_ 1,矩阵B的逆矩阵B14,求矩阵AB .0 2【解析】解: _1•/ B 11"I0 2• B= (B••• AB=1 20 -212 i=2 20 12 20!=2,又A=1 20 -2C.【选修4—4: 坐标系与参数方程】【2016江苏(理)】在平面直角坐标系xOy中,已知直线I的参数方程为参数),椭圆C的参数方程为(0为参数),设直线I与椭圆C相交于A , B两(t为• |AB|=—「「,, I 二.【2016 江苏(理)】设 a >0, |x — 1|<—, |y — 2|v 卫,求证:|2x+y — 4|v a .、〒口口 亠 一、cI_ _,1 一巴【 -- ---- ------- -- --- 3可得 |2x+y — 4|=|2 (x — 1) + (y — 2) |则 |2x+y — 4|v a 成立.附加题【必做题】【2016江苏(理)】如图,在平面直角坐标系 xOy 中,已知直线l : x — y — 2=0,抛物线C :2y =2px ( p > 0).(1) 若直线I 过抛物线C 的焦点,求抛物线 C 的方程; (2) 已知抛物线 C 上存在关于直线I 对称的相异两点 P 和Q . ①求证:线段PQ 的中点坐标为(2— p , — p );x - y - 2=0,「.l 与x 轴的交点坐标(2, 0), 0).2s !+ a 33€|x — l|+|y - 2|V =a ,由.\=<os 日L y=2sin6,得2两式平方相加得V3^-y-后Q联立,解得• 「.7【解析】证明:由a >0, |x — 1|v 寻|y - 2|v 冷,Jo代入①并整理得, )-:I.【解析】解:2 •••抛物线C: y =8x.又••• P , Q 关于直线l 对称,.线段PQ 的中点坐标为(2—p ,_ p );②因为Q 中点坐标(2 — p , — p ).(n+1) C一( 3X2X144X3X2X1=7>20_ 4 X 35=0.证明:(2)对任意m €N *,① 当 n=m 时,左边=(m+1) C :=m+1 , 右边=(m+1) C :;;=m+1,等式成立.② 假设n=k (k 湘)时命题成立, 即(m+1)C +( m+2)C +( m+3)JILJl+LC 加+"k Ct-i +( k+1)C, =( m+1)C ::;,f 2 Vi,k _叮 ■ y丫2,kPQ 一yJ -: y2 屮yj I 2p _2p即:(2)证明:①设点 P (X 1 , y i ) , Q (X 2, y 2),贝U :码 2二y 22=Zpx 2又PQ 的中点在直线l 上,2填=2 - p ,2占y]4r 2="死旳+ y © yi 2-Fy 23=8p-4p 2yi +y £= -2p y 1/2=4p,即关于y 2+2py+4p 2_ 4p=0,有两个不相等的实数根,2 2•••△ > 0, (2p ) — 4 (4p — 4p )> 0,【2016江苏(理)】(1)求7C : —4C 卡的值; (2)设 m , n€N *, n >n ,求证:(m+1) C:+(m+2 )C +(m+3 )C+・・+nC | +n ' Ik PQ = — 1,即 y 1+y 2= — 2p ,\17 1当n=k+1时,=(^ft) C ;:;+ (kf2) c£i ,右边=;:」二春左边=(m+1)+ (m+3) ,■二 +(m+2V J1L + (k+1) + (k+2)•••(毗C 豔-(讯)C 常[k+3 -( k — m+1)]=(k+2)c 角, ](nrl-2) ! (k _ ID ) I•'•(讨1) C?:* (k+2)蹲十1 =(m+1) i :一 :,•••左边=右边, ••• n=k+1时,命题也成立,• m , n€N *, ng ( m+1) C 二 + ( m+2) C 血 a+1+ (m+3 )C=+・・+nC 九’n~ 1+ (n+1) C 二=n (m+1 ) C ])L +2 n+2 2016年江苏省高考数学试卷(共14小题,每小题5分,满分70分) 1. 2. 、填空题【2016 江苏(理)】已知集合 A={ - 1 , 2, 3, 6} , B={x| - 2< x V 3},则 A A B= 【2016江苏(理)】复数z=( 1+2i )( 3 - i ),其中i 为虚数单位,则z 的实部是 3. 2【2016江苏(理)】在平面直角坐标系 xOy 中,双曲线专■- =1的焦距是 4. ____________________________________________________________________________ 【2016江苏(理)】已知一组数据4.7,4.8,5.1,5.4, 5.5,则该组数据的方差是_________________ 5. 【2016江苏(理)】函数y= :「 .-的定义域是 _______________7.【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有 1, 2, 3, 4, 5, 6个点的正方体玩具) 先后抛掷2次,则出现向上的点数之和小于10的概率是 ____________28【2016江苏(理)】已知{a n }是等差数列,S 是其前n 项和,若a 1+a 2 = - 3, S 5=10,则 a 9的值是 __________________ .9. [ 2016江苏(理)】定义在区间[0 , 3冗]上的函数y=sin2x 的图象与y=cosx 的图象的交点 个数是 _____________ . T2肿10.[2016江苏(理)】如图,在平面直角坐标系xOy 中,F 是椭圆—亠 =1 (a >b > 0)a 2b 2的右焦点,直线y=^与椭圆交于B , C 两点,且/ BFC=90 °则该椭圆的离心率2-2y+4>0y 满足伍+y - 2>0 ,则x 2+y 2的取值范围3x-y- 3<Q是 _____________ .13. [2016江苏(理)】如图,在△ ABC 中,D 是BC 的中点,E , F 是AD 上的两个三等分6.【2016江苏(理)】如图是一个算法的流程图,则输出的 a 的值是 ______________(X )=,其中a 灵若((*)=心),则((5a )的值是12. [2016江苏(理)】已知实数X , 是.11. [2016江苏(理)】设f (x )是定义在 R 上且周期为2的函数,在区间[-1 , 1) 上, f点,•⑦「=4,丨=-1,贝U卜.?』的值是14. ____________ 【2016江苏(理)】在锐角三角形值是 . 二、解答题(共6小题,满分90分)47T 15. 【2016 江苏(理)】在厶 ABC 中,AC=6,cosB==,C=一 .5 4 (1 )求AB 的长;TT(2 )求 cos (A - 一)的值.616. 【2016江苏(理)】如图,在直三棱柱 ABC - A 1B 1C 1中,D , E 分别为AB , BC 的中点, 点F 在侧棱B 1B 上,且B 1D 丄A 1F , A 1C 1丄A 1B 1 .求证: (1) 直线 DE // 平面 A 1C 1F ; (2) 平面B 1DE 丄平面A 1C 1F .17. 【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱 锥P - A 1B 1C 1D 1,下部的形状是正四棱柱 ABCD - A 1B 1C 1D 1 (如图所示),并要求正四棱柱 的高010是正四棱锥的高 PO 1的4倍.(1 )若AB=6m , PO 1=2m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为 6m ,则当PO 1为多少时,仓库的容积最大?ABC 中,若 sinA=2sinBsinC ,则 tanAtanBtanC 的最小AG2 2 18. 【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M : x +y-12x - 14y+60=0 及其上一点 A (2, 4).(1) 设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2) 设平行于OA的直线I与圆M相交于B、C两点,且BC=OA,求直线I的方程;(3) 设点T( t, 0)满足:存在圆M上的两点P和Q,使得订|+「=Ti,求实数t的取值①求方程f (x) =2的根;②若对于任意x€R,不等式f (2x)湘f ( x)- 6恒成立,求实数m的最大值;(2)若O v a v 1, b> 1,函数g (x) =f (x)- 2有且只有1个零点,求ab的值.20. 【2016江苏(理)】记U={1 , 2,…,100},对数列{a n}(n3*)和U的子集T,若T=?,S T=a1+a3+a66.现设{a n}(n€N )是公比为3的等比数列,且当T={2 , 4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k (1惑O00),若T?{1 , 2,…,k},求证:S T v e k+1 ;(3)设C? U , D? U , S C^S D,求证:S C+S CPD ^2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .【选修4—1几何证明选讲】21. 【2016江苏(理)】如图,在△ ABC中,/ ABC=90 ° BD丄AC , D为垂足,E为BC的中点,求证:/ EDC= / ABD .C.【选修4—4:坐标系与参数方程】(a> 0, b > 0, a 力,b 詞).定义S T=0;若T={t 1 , t2, …,t k},定义ST p%+%+ ••+*.例如: T={1 , 3, 66}时,B.【选修4—2:矩阵与变换】r 1222. 【2016江苏(理)】已知矩阵A=,矩阵B的逆矩阵B-1= I 2 ,求矩阵AB .0 2已知函数f( x) =a x+b x23. 【2016江苏(理)】在平面直角坐标系 xOy 中,已知直线I 的参数方程为(2)设 m , n€N , n 身m ,求证:(m+1) C 7L + (m+2) HL (n+1) CI d为参数),椭圆C 的参数方程为.(0为参数),设直线I 与椭圆C 相交于A , B 两点,求线段AB 的长. 24.【2016江苏(理)】 设 a >0,|x - 1|^,|y -2心,求证:|2x+y - 4|< a . 附加题【必做题】25.【2016江苏(理)】 2C : y =2px ( p > 0).(1)若直线I 过抛物线 如图,在平面直角坐标系 xOy 中,已知直线I : x - y - 2=0 ,抛物线 C 的焦点,求抛物线 C 的方程;(2)已知抛物线C 上存在关于直线I 对称的相异两点①求证:线段PQ 的中点坐标为(2- p , - p );(1)求 7C : -4C(tC ' +(m+3 )C;+・・+nC r - n - I【解析】解:(1)•••△ ABC中,cosB=」,。
2016年高考江苏卷数学试题(含答案)
数学Ⅰ试题参考公式圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 圆锥的体积公式:V 圆锥13Sh ,其中S 是圆锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________. 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =232x x -- 的定义域是▲.6.如图是一个算法的流程图,则输出的a 的值是▲.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是▲. 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是▲.10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是▲.(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是▲.12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是▲.13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE⋅ 的值是▲.14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是▲. 二、解答题 (本大题共6小题,共90分.请在答题卡制定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C , (1)求AB 的长; (2)求πcos(6A )的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的四倍.(1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程; (3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
2016年江苏数学高考试卷含答案和解析
2016年江苏数学高考试卷含答案和解析D7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是______.9.(5分)定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx的图象的交点个数是______.10.(5分)如图,在平面直角坐标系xOy中,F 是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是______.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是______.12.(5分)已知实数x,y满足,则x2+y2的取值范围是______.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是______.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是______.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O 是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t 1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n ∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D ≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p >0).(1)若直线l过抛物线C的焦点,求抛物线C 的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N *,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏数学参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B={﹣1,2} .【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S 2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)函数y=的定义域是[﹣3,1] .【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5 当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)定义在区间[0,3π]上的函数y=sin2x 的图象与y=cosx的图象的交点个数是7.【分析】画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)如图,在平面直角坐标系xOy中,F 是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e 2==,可得e=,故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a值,是解答的关键.12.(5分)已知实数x,y满足,则x2+y2的取值范围是[,13].【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d 2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD 上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC 可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC >0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA >0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F ⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O 是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【分析】(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m时,O1O=8m,进而可得仓库的容积;(2)设PO 1=xm,则O1O=4xm,A1O1=m,A 1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O 是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O 1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO 1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y ﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).同理①若g(x0)<0,g (x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a ≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x 0)<0,x<log a2时,a x>=2,b x >0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g (x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x 0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t 1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n ∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D ≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p >0).(1)若直线l过抛物线C的焦点,求抛物线C 的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l 上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(1)求7C﹣4C的值;(2)设m,n∈N *,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N *,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
2016年江苏省高考数学试题(,含答案)
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数 学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,均为非选择题(第1题—第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡上的制定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x ⋅⋅⋅的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑棱柱的体积公式: V =Sh ,其中S 是棱柱的底面积,h 为高.棱锥的体积公式:V13Sh ,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________.5.函数y 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲ .(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分)在ABC △中,AC =6,4πcos .54BC ,(1)求AB 的长;(2)求πcos(6A)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥ .求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的四倍.。
2016年高考数学江苏省(理科)试题及答案【解析版】
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)【2016江苏(理)】已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=.【答案】{﹣1,2}【解析】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},【2016江苏(理)】复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是.【答案】5【解析】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,【2016江苏(理)】在平面直角坐标系xOy中,双曲线﹣=1的焦距是.【答案】2【解析】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.【2016江苏(理)】已知一组数据4。
7,4.8,5。
1,5。
4,5.5,则该组数据的方差是.【答案】0。
1【解析】解:∵数据4。
7,4。
8,5.1,5。
4,5。
5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5。
1,∴该组数据的方差:S2=[(4.7﹣5。
1)2+(4。
8﹣5。
1)2+(5。
1﹣5。
1)2+(5.4﹣5。
1)2+(5.5﹣5。
1)2]=0。
1.【2016江苏(理)】函数y=的定义域是.【答案】[﹣3,1]【解析】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],【2016江苏(理)】如图是一个算法的流程图,则输出的a的值是.【答案】9【解析】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,【2016江苏(理)】将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【答案】【解析】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.【2016江苏(理)】已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是.【答案】20【解析】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.【2016江苏(理)】定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是.【答案】7【解析】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.【2016江苏(理)】如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【答案】【解析】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,【2016江苏(理)】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.【答案】﹣【解析】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,【2016江苏(理)】已知实数x,y满足,则x2+y2的取值范围是.【答案】[,13]【解析】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【2016江苏(理)】如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【答案】【解析】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,【2016江苏(理)】在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是.【答案】8【解析】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.二、解答题(共6小题,满分90分)【2016江苏(理)】在△ABC中,AC=6,cosB=,C=.(1)求AB的长; (2)求cos(A﹣)的值.【解析】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【2016江苏(理)】如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【解析】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【2016江苏(理)】现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P ﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?【解析】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【2016江苏(理)】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x ﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【解析】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【2016江苏(理)】已知函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【解析】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=axlna+bxlnb=ax[+],0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【2016江苏(理)】记U={1,2,…,100},对数列{a n}(n∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【解析】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=<=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤。
2016年高考真题——数学(江苏卷) Word版含解析
【说明】: 【参考版答案】非官方版正式答案,有可能存在少量错误,仅供参考使用。
2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211n i i s x x n ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上.. 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则A B = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 . 【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c,因此焦距为2c =.4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 . 【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 . 【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 . 【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=,解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数s i n 2y x =的图象与c o s y x =的图象的交点个数是 . 【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2b y =与椭圆交于,B C 两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BFc ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=- ⎪ ⎪⎝⎭, 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ==.11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 .【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-. 12. 已知实数,x y 满足240,220,330,x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩ 则22x y +的取值范围是 .【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y +为可行域内的点到原点距离的平方.可以看出图中A 点距离原点最近,此时距离为原点A 到直线220x y +-=的距离, d ==()22min45x y +=, 图中B 点距离原点最远,B 点为240x y -+=与330x y --=交点,则()2,3B , 则()22max13x y +=.13. 如图,在ABC △中,D 是BC 的中点,,E F 是AD 上两个三等分点,4BA CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是 .B【答案】78; 【解析】令DF a =,DB b =,则DC b =-,2DE a =,3DA a =,则3BA a b =-,3CA a b =+,2BE a b =-,2CE a b =+,BF a b =-,CF a b =+, 则229BA CA a b ⋅=-,22BF CF a b ⋅=-,224BE CE a b ⋅=-,由4BA CA ⋅=,1BF CF ⋅=-可得2294a b -=,221a b -=-,因此22513,88a b ==,因此22451374888BE CE a b ⨯⋅=-=-=. 14. 在锐角三角形ABC 中,sin 2sin sin A B C =,则t a n t a n t a n AB C 的最小值是 .【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =,可得sin cos cos sin 2sin sin B C B C B C +=(*), 由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t > 2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 224B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴=sinC sin AB ACB =635=,即:AB = ⑵ ()cos cos sin sin cos cos A C B B C B C =-+=-cos A ∴= 又A 为三角形的内角sin A ∴=π1cos sin 62A A A ⎛⎫∴-=+= ⎪⎝⎭.16. (本小题满分14分)如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上, 且11B D A F ⊥,1111AC A B ⊥. 求证:⑴ 直线//DE 平面11AC F ;⑵ 平面1B DE ⊥平面11AC F .【答案】见解析;【解析】⑴ ,D E 为中点,DE ∴为ABC ∆的中位线//DE AC ∴又111ABC A B C -为棱柱,11//AC AC ∴11//DE AC ∴,又11AC ⊂平面11AC F ,且11DE AC F ⊄FEC BAC 1B 1A 1//DE ∴平面11AC F ;⑵111ABC A B C -为直棱柱,1AA ∴⊥平面111A B C 111AA AC ∴⊥,又1111AC A B ⊥且1111AA A B A =,111,AA A B ⊂平面11AA B B11AC ∴⊥平面11AA B B ,又11//DE AC ,DE ∴⊥平面11AA B B 又1A F ⊂平面11AA B B ,1DE A F ∴⊥ 又11A F B D ⊥,1DEB D D =,且1,DE B D ⊂平面1B DE 1A F ∴⊥平面1B DE ,又111A F AC F ⊂∴平面1B DE ⊥平面11AC F .17. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ; 【解析】⑴ 12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==, 111111113312m =P A B C D ABCD A B C D V V V --+=, 故仓库的容积为3312m ;⑵ 设1m PO x =,仓库的容积为()V x则14m OO x =,11AO,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1A1111233142888m ABCD A B C D ABCD V S OO x x x -⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<,()()22'263122612V x x x =-+=--()06x <<,当(0,x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=; ⑵ 由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==则BC =BC =,即=解得5b =或15b =-,即l :25y x =+或215y x =-; ⑶ TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值. 【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立,令122x xt =+,则由20x>可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立∵2t ≥时44t t +≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; ()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点, 2l o g 2bx >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分) 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<; ⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=;⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶ 设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C CDD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅,所以l m ≠,所以1l m +≥, 211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C CDD S S S +≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒,由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)ECBA已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121*********⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【答案】167; 【解析】直线l0y -,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB .D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析; 【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴ :20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵ ① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=- 即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵ 对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时, 左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+, 而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+ 因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。
【真题】2016年江苏省高考数学试题(含附加题+答案)
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:棱锥的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ▲.2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是▲.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是▲.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是▲.5.函数y =232x x --的定义域是▲.6.如图是一个算法的流程图,则输出的a 的值是▲.7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是▲.8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是▲.9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是▲.10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b +=>>0的右焦点,直线2by =与椭圆交于B ,注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。
本卷满分为160分。
考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
2016届江苏省高考数学试卷 解析版
2016年江苏省高考数学试卷一、填空题(共 小题,每小题 分,满分 分).( 分)( 江苏)已知集合 ﹣ , , , , ﹣ < < ,则 ..( 分)( 江苏)复数 ( )( ﹣ ),其中 为虚数单位,则 的实部是 ..( 分)( 江苏)在平面直角坐标系 中,双曲线﹣ 的焦距是 ..( 分)( 江苏)已知一组数据 , , , , ,则该组数据的方差是 ..( 分)( 江苏)函数 的定义域是 ..( 分)( 江苏)如图是一个算法的流程图,则输出的 的值是..( 分)( 江苏)将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,则出现向上的点数之和小于 的概率是 ..( 分)( 江苏)已知 是等差数列, 是其前 项和,若 ,则 的值是 .﹣ ,.( 分)( 江苏)定义在区间 , 上的函数 的图象与 的图象的交点个数是 ..( 分)( 江苏)如图,在平面直角坐标系 中, 是椭圆 ( > > )的右焦点,直线 与椭圆交于 , 两点,且∠ ,则该椭圆的离心率是 ..( 分)( 江苏)设 ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,其中 ∈ ,若 (﹣) (),则 ( )的值是 ..( 分)( 江苏)已知实数 , 满足,则 的取值范围是 ..( 分)( 江苏)如图,在△ 中, 是 的中点, , 是 上的两个三等分点, , ﹣ ,则 的值是 ..( 分)( 江苏)在锐角三角形 中,若 ,则的最小值是 .二、解答题(共 小题,满分 分).( 分)( 江苏)在△ 中, , , .( )求 的长;( )求 ( ﹣)的值..( 分)( 江苏)如图,在直三棱柱 ﹣ 中, , 分别为 , 的中点,点 在侧棱 上,且 ⊥ , ⊥ .求证:;( )直线 ∥平面⊥平面 .( )平面.( 分)( 江苏)现需要设计一个仓库,它由上下两部分组成,上部,下部的形状是正四棱柱 ﹣ (如图所示),的形状是正四棱锥 ﹣是正四棱锥的高 的 倍.并要求正四棱柱的高,则仓库的容积是多少?( )若 ,( )若正四棱锥的侧棱长为 ,则当为多少时,仓库的容积最大?.( 分)( 江苏)如图,在平面直角坐标系 中,已知以 为圆心的圆 : ﹣ ﹣ 及其上一点 ( , ).( )设圆 与 轴相切,与圆 外切,且圆心 在直线 上,求圆 的标准方程;( )设平行于 的直线 与圆 相交于 、 两点,且 ,求直线 的方程;( )设点 ( , )满足:存在圆 上的两点 和 ,使得 ,求实数 的取值范围..( 分)( 江苏)已知函数 ( ) ( > , > , ≠ , ≠ ).( )设 , .求方程 ( ) 的根;若对于任意 ∈ ,不等式 ( )≥ ( )﹣ 恒成立,求实数 的最大值;( )若 < < , > ,函数 ( ) ( )﹣ 有且只有 个零点,求 的值. .( 分)( 江苏)记 , , , ,对数列 (;若 , , , ,定义∈ )和 的子集 ,若 ∅,定义.例如: , , 时, .现设 ( ∈ )是公比为 的等比数列,且当 , 时, .( )求数列 的通项公式;( )对任意正整数 ( ≤ ≤ ),若 ⊆ , , , ,求证: < ; ( )设 ⊆ , ⊆ , ≥ ,求证: ≥ .附加题【选做题】本题包括 、 、 、 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤 .【选修 几何证明选讲】.( 分)( 江苏)如图,在△ 中,∠ , ⊥ , 为垂足, 为 的中点,求证:∠ ∠ .【选修 :矩阵与变换】.( 分)( 江苏)已知矩阵 ,矩阵 的逆矩阵 ﹣,求矩阵 .【选修 :坐标系与参数方程】.( 江苏)在平面直角坐标系 中,已知直线 的参数方程为( 为参数),椭圆 的参数方程为( 为参数),设直线 与椭圆 相交于 , 两点,求线段 的长..( 江苏)设 > , ﹣ <, ﹣ <,求证: ﹣ < .附加题【必做题】.( 分)( 江苏)如图,在平面直角坐标系 中,已知直线 : ﹣ ﹣ ,抛物线 : ( > ).( )若直线 过抛物线 的焦点,求抛物线 的方程;( )已知抛物线 上存在关于直线 对称的相异两点 和 .求证:线段 的中点坐标为( ﹣ ,﹣ );求 的取值范围..( 分)( 江苏)( )求 ﹣ 的值;( )设 , ∈ , ≥ ,求证:( ) ( ) ( ) ( ) ( ) .年江苏省高考数学试卷参考答案与试题解析一、填空题(共 小题,每小题 分,满分 分).( 分)( 江苏)已知集合 ﹣ , , , , ﹣ < < ,则 ﹣ , .【分析】根据已知中集合 ﹣ , , , , ﹣ < < ,结合集合交集的定义可得答案.【解答】解:∵集合 ﹣ , , , , ﹣ < < ,∴ ﹣ , ,故答案为: ﹣ ,【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题..( 分)( 江苏)复数 ( )( ﹣ ),其中 为虚数单位,则 的实部是 .【分析】利用复数的运算法则即可得出.【解答】解: ( )( ﹣ ) ,则 的实部是 ,故答案为: .【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题. .( 分)( 江苏)在平面直角坐标系 中,双曲线﹣ 的焦距是 .【分析】确定双曲线的几何量,即可求出双曲线﹣ 的焦距.【解答】解:双曲线﹣ 中, , ,∴ ,∴双曲线﹣ 的焦距是 .故答案为: .【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础..( 分)( 江苏)已知一组数据 , , , , ,则该组数据的方差是 .【分析】先求出数据 , , , , 的平均数,由此能求出该组数据的方差.【解答】解:∵数据 , , , , 的平均数为:( ) ,∴该组数据的方差:( ﹣ ) ( ﹣ ) ( ﹣ ) ( ﹣ ) ( ﹣ ) .故答案为: .【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用..( 分)( 江苏)函数 的定义域是 ﹣ , .【分析】根据被开方数不小于 ,构造不等式,解得答案.【解答】解:由 ﹣ ﹣ ≥ 得: ﹣ ≤ ,解得: ∈ ﹣ , ,故答案为: ﹣ ,【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题..( 分)( 江苏)如图是一个算法的流程图,则输出的 的值是 .【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量 的值,模拟程序的运行过程,可得答案.【解答】解:当 , 时,不满足 > ,故 , ,当 , 时,不满足 > ,故 ,当 , 时,满足 > ,故输出的 值为 ,故答案为:【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答..( 分)( 江苏)将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,则出现向上的点数之和小于 的概率是.【分析】出现向上的点数之和小于 的对立事件是出现向上的点数之和不小于 ,由此利用对立事件概率计算公式能求出出现向上的点数之和小于 的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有 , , , , , 个点的正方体玩具)先后抛掷 次,基本事件总数为 × ,出现向上的点数之和小于 的对立事件是出现向上的点数之和不小于 ,出现向上的点数之和不小于 包含的基本事件有:( , ),( , ),( , ),( , ),( , ),( , ),共 个,∴出现向上的点数之和小于 的概率:﹣ .故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用..( 分)( 江苏)已知 是等差数列, 是其前 项和,若 ,则 的值是 .﹣ ,【分析】利用等差数列的通项公式和前 项和公式列出方程组,求出首项和公差,由此能求出的值.是等差数列, 是其前 项和, ﹣ , ,【解答】解:∵∴,﹣ , ,解得﹣ × .∴故答案为: .【点评】本题考查等差数列的第 项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用..( 分)( 江苏)定义在区间 , 上的函数 的图象与 的图象的交点个数是 .【分析】画出函数 与 在区间 , 上的图象即可得到答案.【解答】解:画出函数 与 在区间 , 上的图象如下:由图可知,共 个交点.故答案为: .【点评】本题考查正弦函数与余弦函数的图象,作出函数 与 在区间 , 上的图象是关键,属于中档题..( 分)( 江苏)如图,在平面直角坐标系 中, 是椭圆 ( > > )的右焦点,直线 与椭圆交于 , 两点,且∠ ,则该椭圆的离心率是.【分析】设右焦点 ( , ),将 代入椭圆方程求得 , 的坐标,运用两直线垂直的条件:斜率之积为﹣ ,结合离心率公式,计算即可得到所求值.【解答】解:设右焦点 ( , ),将 代入椭圆方程可得 ± ± ,可得 (﹣ ,), ( ,),﹣ ,由∠ ,可得即有 ﹣ ,化简为 ﹣ ,由 ﹣ ,即有 ,由 ,可得 ,可得 ,故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣ ,考查化简整理的运算能力,属于中档题..( 分)( 江苏)设 ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,其中 ∈ ,若 (﹣) (),则 ( )的值是﹣.【分析】根据已知中函数的周期性,结合 (﹣) (),可得 值,进而得到 ( )的值.【解答】解: ( )是定义在 上且周期为 的函数,在区间 ﹣ , )上, ( ) ,∴ (﹣) (﹣) ﹣ ,() () ﹣ ,∴ ,∴ ( ) ( ) (﹣ ) ﹣ ﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出 值,是解答的关键..( 分)( 江苏)已知实数 , 满足,则 的取值范围是 , .【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设 ,则 的几何意义是区域内的点到原点距离的平方,由图象知 到原点的距离最大,点 到直线 : ﹣ 的距离最小,由得,即 ( , ),此时 ,点 到直线 : ﹣ 的距离 ,则 () ,故 的取值范围是 , ,故答案为: , .【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键..( 分)( 江苏)如图,在△ 中, 是 的中点, , 是 上的两个三等分点, , ﹣ ,则 的值是.【分析】由已知可得 , ﹣ , , ﹣ , , ﹣ ,结合已知求出 , ,可得答案.【解答】解:∵ 是 的中点, , 是 上的两个三等分点,∴ , ﹣ ,, ﹣ ,∴ ﹣ ﹣ ,﹣ ,∴ , ,又∵ , ﹣ ,∴ ﹣ ,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档. .( 分)( 江苏)在锐角三角形 中,若 ,则的最小值是 .【分析】结合三角形关系和式子 可推出,进而得到 ,结合函数特性可求得最小值.【解答】解:由 ( ﹣ ) ( ) ,,可得 ,由三角形 为锐角三角形,则 > , > ,在 式两侧同时除以 可得 ,又 ﹣ ( ﹣ ) ﹣ ( ) ﹣ ,则 ﹣ ,由 可得 ﹣,令 ,由 , , 为锐角可得 > , > , > ,由 式得 ﹣ < ,解得 > ,﹣ ﹣,() ﹣,由 > 得,﹣≤< ,因此 的最小值为 ,当且仅当 时取到等号,此时 , ,解得 , ﹣, ,(或 , 互换),此时 , , 均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共 小题,满分 分).( 分)( 江苏)在△ 中, , , .( )求 的长;( )求 ( ﹣)的值.【分析】( )利用正弦定理,即可求 的长;( )求出 、 ,利用两角差的余弦公式求 ( ﹣)的值.【解答】解:( )∵△ 中, ,∴ ,∵,∴ ;( ) ﹣ ( ) ﹣ ﹣.∵ 为三角形的内角,∴ ,∴ ( ﹣) .【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题..( 分)( 江苏)如图,在直三棱柱 ﹣ 中, , 分别为 , 的中点,点 在侧棱 上,且 ⊥ , ⊥ .求证:;( )直线 ∥平面⊥平面 .( )平面【分析】( )通过证明 ∥ ,进而 ∥ ,据此可得直线 ∥平面 ; ( )通过证明 ⊥ 结合题目已知条件 ⊥ ,进而可得平面 ⊥平面 .【解答】解:( )∵ , 分别为 , 的中点,∴ 为△ 的中位线, ∴ ∥ ,∵ ﹣ 为棱柱, ∴ ∥ , ∴ ∥ ,∵ ⊂平面 ,且 ⊄平面 , ∴ ∥ ;( )∵ ﹣ 为直棱柱, ∴ ⊥平面 , ∴ ⊥ ,又∵ ⊥ ,且 , 、 ⊂平面 , ∴ ⊥平面 , ∵ ∥ ,,∴ ⊥平面⊂平面 ,又∵,∴ ⊥⊥ , ,且 、 ⊂平面 ,又∵⊥平面 ,∴⊂平面 ,又∵⊥平面 .∴平面【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大..( 分)( 江苏)现需要设计一个仓库,它由上下两部分组成,上部,下部的形状是正四棱柱 ﹣ (如图所示),的形状是正四棱锥 ﹣是正四棱锥的高 的 倍.并要求正四棱柱的高,则仓库的容积是多少?( )若 ,为多少时,仓库的容积最大?( )若正四棱锥的侧棱长为 ,则当是正四棱锥的高 的 倍,可得 时,【分析】( )由正四棱柱的高,进而可得仓库的容积;,则 , , ,( )设代入体积公式,求出容积的表达式,利用导数法,可得最大值.,正四棱柱的高 是正四棱锥的高 的 倍.【解答】解:( )∵,∴∴仓库的容积 × × × ,( )若正四棱锥的侧棱长为 ,,设, , ,则则仓库的容积 ×( ) ( ),( < < ),∴ ﹣ ,( < < ),当 < < 时, > , ( )单调递增;当 < < 时, < , ( )单调递减;故当 时, ( )取最大值;时,仓库的容积最大.即当【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档. .( 分)( 江苏)如图,在平面直角坐标系 中,已知以 为圆心的圆 : ﹣ ﹣ 及其上一点 ( , ).( )设圆 与 轴相切,与圆 外切,且圆心 在直线 上,求圆 的标准方程;( )设平行于 的直线 与圆 相交于 、 两点,且 ,求直线 的方程;( )设点 ( , )满足:存在圆 上的两点 和 ,使得 ,求实数 的取值范围.【分析】( )设 ( , ),则圆 为:( ﹣ ) ( ﹣ ) , > ,从而得到 ﹣ ,由此能求出圆 的标准方程.,设 : ,则圆心 到直线 的距离:( )由题意得 ,,由此能求出直线 的方程.( ) ,即 ,又 ≤ ,得 ∈ ﹣ , ,对于任意 ∈ ﹣ , ,欲使,只需要作直线 的平行线,使圆心到直线的距离为,由此能求出实数 的取值范围.【解答】解:( )∵ 在直线 上,∴设 ( , ),∵圆 与 轴相切,∴圆 为:( ﹣ ) ( ﹣ ) , > ,又圆 与圆 外切,圆 : ﹣ ﹣ ,即圆 :(( ﹣ ) ( ﹣ ) ,∴ ﹣ ,解得 ,∴圆 的标准方程为( ﹣ ) ( ﹣ ) .,设 : ,( )由题意得 ,则圆心 到直线 的距离: ,则 , ,即,解得 或 ﹣ ,∴直线 的方程为: 或 ﹣ .( ) ,即,即 ,,又 ≤ ,即≤ ,解得 ∈ ﹣ , ,对于任意 ∈ ﹣ , ,欲使,此时, ≤ ,只需要作直线 的平行线,使圆心到直线的距离为,必然与圆交于 、 两点,此时 ,即,因此实数 的取值范围为 ∈ ﹣ , ,.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用..( 分)( 江苏)已知函数 ( ) ( > , > , ≠ , ≠ ).( )设 , .求方程 ( ) 的根;若对于任意 ∈ ,不等式 ( )≥ ( )﹣ 恒成立,求实数 的最大值;( )若 < < , > ,函数 ( ) ( )﹣ 有且只有 个零点,求 的值.【分析】( ) 利用方程,直接求解即可. 列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.( )求出 ( ) ( )﹣ ﹣ ,求出函数的导数,构造函数 ( ),求出 ( )的最小值为: ( ).同理 若 ( )< , ( )至少有两个)> ,利用函数 ( ) ( )﹣ 有且只有 个零点,推零点,与条件矛盾. 若 (出 () ,然后求解 .【解答】解:函数 ( ) ( > , > , ≠ , ≠ ).( )设 , . 方程 ( ) ;即:,可得 .不等式 ( )≥ ( )﹣ 恒成立,即≥ ()﹣ 恒成立.令, ≥ .不等式化为: ﹣ ≥ 在 ≥ 时,恒成立.可得:△≤ 或即: ﹣ ≤ 或 ≤ , ∴ ∈(﹣ , . 实数 的最大值为: .( ) ( ) ( )﹣ ﹣ , ( ),< < , > 可得,令 ( ),则 ( )是递增函数,而, < , > ,因此,时, ( ) ,因此 ∈(﹣ , )时, ( )< , > ,则 ( )< . ∈( , )时, ( )> , > ,则 ( )> ,则 ( )在(﹣ , )递减,( , )递增,因此 ( )的最小值为: ( ). 若 ( )< , < 时, >, > ,则 ( )> ,因此 < ,且 < 时, ( )> ,因此 ( )在( , )有零点, 则 ( )至少有两个零点,与条件矛盾.若 ( )> ,函数 ( ) ( )﹣ 有且只有 个零点, ( )的最小值为 ( ),可得 ( ) ,由 ( ) ﹣ , 因此 ,因此,﹣,即 , ( ),则 .可得 .【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力..( 分)( 江苏)记 , , , ,对数列 ( ∈ )和 的子集 ,若 ∅,定义 ;若 , , , ,定义.例如: , , 时, .现设 ( ∈ )是公比为 的等比数列,且当 , 时, .( )求数列 的通项公式;( )对任意正整数 ( ≤ ≤ ),若 ⊆ , , , ,求证: < ; ( )设 ⊆ , ⊆ , ≥ ,求证: ≥ .【分析】( )根据题意,由 的定义,分析可得 ,计算可得 ,进而可得 的值,由等比数列通项公式即可得答案;( )根据题意,由 的定义,分析可得 ≤﹣,由等比数列的前 项和公式计算可得证明;( )设 ∁ ( ), ∁ ( ),则 ∅,进而分析可以将原命题转化为证明 ≥ ,分 种情况进行讨论: 、若 ∅, 、若 ≠∅,可以证明得到 ≥ ,即可得证明.【解答】解:( )当 , 时, , 因此 ,从而 ,故﹣,( ) ≤ ﹣< ,( )设 ∁ ( ), ∁ ( ),则 ∅,分析可得 , ,则 ﹣ ﹣ , 因此原命题的等价于证明 ≥ , 由条件 ≥ ,可得 ≥ , 、若 ∅,则 ,故 ≥ ,、若 ≠∅,由 ≥ 可得 ≠∅,设 中最大元素为 , 中最大元素为 , 若 ≥ ,则其与 < ≤ ≤ 相矛盾, 因为 ∅,所以 ≠ ,则 ≥ ,≤ ﹣≤,即 ≥,综上所述, ≥ , 故 ≥ .【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括 、 、 、 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤 .【选修 几何证明选讲】.( 分)( 江苏)如图,在△ 中,∠ , ⊥ , 为垂足, 为 的中点,求证:∠ ∠ .【分析】依题意,知∠ ,∠ ∠ ,利用∠ ∠ ∠ ∠,可得∠ ∠ ,从而可证得结论.【解答】解:由 ⊥ 可得∠ ,因为 为 的中点,所以 ,则:∠ ∠ ,由∠ ,可得∠ ∠ ,由∠ ,可得∠ ∠ ,因此∠ ∠ ,而∠ ∠ ,所以,∠ ∠ .【点评】本题考查三角形的性质应用,利用∠ ∠ ∠ ∠ ,证得∠ ∠ 是关键,属于中档题.【选修 :矩阵与变换】.( 分)( 江苏)已知矩阵 ,矩阵 的逆矩阵 ﹣,求矩阵 .【分析】依题意,利用矩阵变换求得 ( ﹣ )﹣ ,再利用矩阵乘法的性质可求得答案.【解答】解:∵ ﹣ ,∴ ( ﹣ )﹣ ,又 ,∴ .【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.【选修 :坐标系与参数方程】.( 江苏)在平面直角坐标系 中,已知直线 的参数方程为( 为参数),椭圆 的参数方程为( 为参数),设直线 与椭圆 相交于 , 两点,求线段 的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由 得,代入 并整理得,.由,得,两式平方相加得.联立,解得或.∴ .【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题..( 江苏)设 > , ﹣ <, ﹣ <,求证:﹣ < .【分析】运用绝对值不等式的性质: ≤ ,结合不等式的基本性质,即可得证.【解答】证明:由 > , ﹣ <, ﹣ <,可得 ﹣ ( ﹣ ) ( ﹣ )≤ ﹣ ﹣ < ,则 ﹣ < 成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】.( 分)( 江苏)如图,在平面直角坐标系 中,已知直线 :﹣ ﹣ ,抛物线 : ( > ).( )若直线 过抛物线 的焦点,求抛物线 的方程;( )已知抛物线 上存在关于直线 对称的相异两点 和 .求证:线段 的中点坐标为( ﹣ ,﹣ );求 的取值范围.【分析】( )求出抛物线的焦点坐标,然后求解抛物线方程.( ): 设点 ( , ), ( , ),通过抛物线方程,求解 ,通过 , 关于直线 对称,点的 ﹣ ,推出, 的中点在直线 上,推出 ﹣,即可证明线段 的中点坐标为( ﹣ ,﹣ );利用线段 中点坐标( ﹣ ,﹣ ).推出,得到关于﹣ ,有两个不相等的实数根,列出不等式即可求出 的范围.【解答】解:( )∵ : ﹣ ﹣ ,∴ 与 轴的交点坐标( , ), 即抛物线的焦点坐标( , ). ∴,∴抛物线 : .( )证明: 设点 ( , ), ( , ),则:,即:,,又∵ , 关于直线 对称,∴ ﹣ ,即 ﹣ ,∴,又 的中点在直线 上,∴ ﹣ ,∴线段 的中点坐标为( ﹣ ,﹣ ); 因为 中点坐标( ﹣ ,﹣ ).∴,即∴,即关于 ﹣ ,有两个不相等的实数根,∴△> ,( ) ﹣ ( ﹣ )> ,∴ ∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力..( 分)( 江苏)( )求 ﹣ 的值;( )设 , ∈ , ≥ ,求证:( ) ( ) ( )( ) ( ) .【分析】( )由已知直接利用组合公式能求出 的值.( )对任意 ∈ ,当 时,验证等式成立;再假设 ( ≥ )时命题成立,推导出当 时,命题也成立,由此利用数学归纳法能证明( ) ( ) ( ) ( ) ( ) .【解答】解:( )﹣ ×× ﹣ × .证明:( )对任意 ∈ ,当 时,左边 ( ) ,右边 ( ) ,等式成立.假设 ( ≥ )时命题成立,即( ) ( ) ( ) ( ) ( ),当 时,左边 ( ) ( ) ( ) ( ) ( ),右边∵( ) ﹣( )× ﹣( ﹣ )( )( ),∴ ( ),∴左边 右边,∴ 时,命题也成立,∴ , ∈ , ≥ ,( ) ( ) ( )( ) ( ) .【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.剑影实验学校名师高中部 高一化学第二次月考试卷。
2016年江苏省高考数学试题含答案
绝密★启用前2016年普通高等学校招生全国统一考试(江苏卷)数 学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1. 本试卷共4页,均为非选择题(第1题—第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一并交回。
2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡上的制定位置作答,在其他位置作答一律无效。
5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:样本数据12,,,n x x x ⋅⋅⋅的方差()2211ni i s x x n ==-∑,其中11n i i x x n ==∑棱柱的体积公式: V =Sh ,其中S 是棱柱的底面积,h 为高. 棱锥的体积公式:V13Sh ,其中S 是棱锥的底面积,h 为高. 一、填空题:本大题共14个小题,每小题5分,共70分.请把答案写在答题卡相应位置上。
1.已知集合{1,2,3,6},{|23},A B x x =-=-<< 则=A B ________▲________. 2.复数(12i)(3i),z =+- 其中i 为虚数单位,则z 的实部是________▲________.3.在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是________▲________. 5.函数y =232x x -- 的定义域是 ▲ .6.如图是一个算法的流程图,则输出的a 的值是 ▲ .7.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 ▲ .8.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 ▲ . 9.定义在区间[0,3π]上的函数y =sin2x 的图象与y =cos x 的图象的交点个数是 ▲ .10.如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是 ▲.(第10题)11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则f (5a )的值是 ▲ .12. 已知实数x ,y 满足240220330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围是 ▲ .13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BA CA ⋅= ,1BF CF ⋅=-,则BE CE ⋅的值是 ▲ .14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是 ▲ .二、解答题 (本大题共6小题,共90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.) 15.(本小题满分14分) 在ABC △中,AC =6,4πcos .54B C ==, (1)求AB 的长; (2)求πcos(6A -)的值.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且11B D A F ⊥ ,1111AC A B ⊥ .求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .17.(本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A BC D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1OO 是正四棱锥的高1PO 的四倍. (1) 若16m,2m,AB PO ==则仓库的容积是多少?(2) 若正四棱锥的侧棱长为6 m,则当1PO 为多少时,仓库的容积最大?18. (本小题满分16分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+=及其上一点A (2,4)(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B 、C 两点,且BC =OA ,求直线l 的方程;(3) 设点T (t ,0)满足:存在圆M 上的两点P 和Q ,使得,TA TP TQ +=,求实数t 的取值范围。
2016年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)-推荐下载
x 2y 4 0 12. 已知实数 x,y 满足 2x y 2 0 ,则 x2+y2 的取值范围是 ▲ .
3x y 3 0
13.如图,在△ABC 中,D 是 BC 的中点,E,F 是 AD 上的两个三等分点, BC CA 4 ,
证明过程或演算步骤.)
15.(本小题满分 14 分)
在 △ABC 中,AC=6, cos B = 4,C = π .
(1)求 AB 的长;
(2)求 cos( A - π ) 的值. 6
5
4
·2·
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要写5卷求、重保技电要护术气设装交设备置底备高4动。调、中作管试电资,线高气料并敷中课试3且设资件、卷拒技料中管试绝术试调路验动中卷试敷方作包技设案,含术技以来线术及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2016届江苏省高考数学试卷 解析版
2016年江苏省高考数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2016•江苏)已知集合A={﹣1,2,3,6},B={x|﹣2<x <3},则A∩B=______.2.(5分)(2016•江苏)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z 的实部是______.3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的焦距是______.4.(5分)(2016•江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是______.5.(5分)(2016•江苏)函数y=的定义域是______.6.(5分)(2016•江苏)如图是一个算法的流程图,则输出的a的值是______.7.(5分)(2016•江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是______.8.(5分)(2016•江苏)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是______.9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是______.10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是______.11.(5分)(2016•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是______.12.(5分)(2016•江苏)已知实数x,y满足,则x2+y2的取值范围是______.13.(5分)(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是______.14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是______.二、解答题(共6小题,满分90分)15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.16.(14分)(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.17.(14分)(2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?18.(16分)(2016•江苏)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.19.(16分)(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a ≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.20.(16分)(2016•江苏)记U={1,2,…,100},对数列{a n}(n ∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)(2016•江苏)如图,在△ABC中,∠ABC=90°,BD ⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.B.【选修4—2:矩阵与变换】22.(10分)(2016•江苏)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.C.【选修4—4:坐标系与参数方程】23.(2016•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.24.(2016•江苏)设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.附加题【必做题】25.(10分)(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.26.(10分)(2016•江苏)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.2016年江苏省高考数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)(2016•江苏)已知集合A={﹣1,2,3,6},B={x|﹣2<x <3},则A∩B={﹣1,2}.【分析】根据已知中集合A={﹣1,2,3,6},B={x|﹣2<x<3},结合集合交集的定义可得答案.【解答】解:∵集合A={﹣1,2,3,6},B={x|﹣2<x<3},∴A∩B={﹣1,2},故答案为:{﹣1,2}【点评】本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.2.(5分)(2016•江苏)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z 的实部是5.【分析】利用复数的运算法则即可得出.【解答】解:z=(1+2i)(3﹣i)=5+5i,则z的实部是5,故答案为:5.【点评】本题考查了复数的运算性质,考查了推理能力与计算能力,属于基础题.3.(5分)(2016•江苏)在平面直角坐标系xOy中,双曲线﹣=1的焦距是2.【分析】确定双曲线的几何量,即可求出双曲线﹣=1的焦距.【解答】解:双曲线﹣=1中,a=,b=,∴c==,∴双曲线﹣=1的焦距是2.故答案为:2.【点评】本题重点考查了双曲线的简单几何性质,考查学生的计算能力,比较基础.4.(5分)(2016•江苏)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是0.1.【分析】先求出数据4.7,4.8,5.1,5.4,5.5的平均数,由此能求出该组数据的方差.【解答】解:∵数据4.7,4.8,5.1,5.4,5.5的平均数为:=(4.7+4.8+5.1+5.4+5.5)=5.1,∴该组数据的方差:S2=[(4.7﹣5.1)2+(4.8﹣5.1)2+(5.1﹣5.1)2+(5.4﹣5.1)2+(5.5﹣5.1)2]=0.1.故答案为:0.1.【点评】本题考查方差的求法,是基础题,解题时要认真审题,注意方差计算公式的合理运用.5.(5分)(2016•江苏)函数y=的定义域是[﹣3,1].【分析】根据被开方数不小于0,构造不等式,解得答案.【解答】解:由3﹣2x﹣x2≥0得:x2+2x﹣3≤0,解得:x∈[﹣3,1],故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域,二次不等式的解法,难度不大,属于基础题.6.(5分)(2016•江苏)如图是一个算法的流程图,则输出的a的值是9.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量a的值,模拟程序的运行过程,可得答案.【解答】解:当a=1,b=9时,不满足a>b,故a=5,b=7,当a=5,b=7时,不满足a>b,故a=9,b=5当a=9,b=5时,满足a>b,故输出的a值为9,故答案为:9【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.7.(5分)(2016•江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.【分析】出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,由此利用对立事件概率计算公式能求出出现向上的点数之和小于10的概率.【解答】解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数为n=6×6=36,出现向上的点数之和小于10的对立事件是出现向上的点数之和不小于10,出现向上的点数之和不小于10包含的基本事件有:(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6个,∴出现向上的点数之和小于10的概率:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.8.(5分)(2016•江苏)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是20.【分析】利用等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出a9的值.【解答】解:∵{a n}是等差数列,S n是其前n项和,a1+a22=﹣3,S5=10,∴,解得a1=﹣4,d=3,∴a9=﹣4+8×3=20.故答案为:20.【点评】本题考查等差数列的第9项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.9.(5分)(2016•江苏)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是7.【分析】画出函数y=sin2x与y=cosx在区间[0,3π]上的图象即可得到答案.【解答】解:画出函数y=sin2x与y=cosx在区间[0,3π]上的图象如下:由图可知,共7个交点.故答案为:7.【点评】本题考查正弦函数与余弦函数的图象,作出函数y=sin2x与y=cosx在区间[0,3π]上的图象是关键,属于中档题.10.(5分)(2016•江苏)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.【分析】设右焦点F(c,0),将y=代入椭圆方程求得B,C的坐标,运用两直线垂直的条件:斜率之积为﹣1,结合离心率公式,计算即可得到所求值.【解答】解:设右焦点F(c,0),将y=代入椭圆方程可得x=±a=±a,可得B(﹣a,),C(a,),由∠BFC=90°,可得k BF•k CF=﹣1,即有•=﹣1,化简为b2=3a2﹣4c2,由b2=a2﹣c2,即有3c2=2a2,由e=,可得e2==,可得e=,故答案为:.【点评】本题考查椭圆的离心率的求法,注意运用两直线垂直的条件:斜率之积为﹣1,考查化简整理的运算能力,属于中档题.11.(5分)(2016•江苏)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是﹣.【分析】根据已知中函数的周期性,结合f(﹣)=f(),可得a值,进而得到f(5a)的值.【解答】解:f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,∴f(﹣)=f(﹣)=﹣+a,f()=f()=|﹣|=,∴a=,∴f(5a)=f(3)=f(﹣1)=﹣1+=﹣,故答案为:﹣【点评】本题考查的知识点是分段函数的应用,函数的周期性,根据已知求出a值,是解答的关键.12.(5分)(2016•江苏)已知实数x,y满足,则x2+y2的取值范围是[,13].【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,结合两点间的距离公式以及点到直线的距离公式进行求解即可.【解答】解:作出不等式组对应的平面区域,设z=x2+y2,则z的几何意义是区域内的点到原点距离的平方,由图象知A到原点的距离最大,点O到直线BC:2x+y﹣2=0的距离最小,由得,即A(2,3),此时z=22+32=4+9=13,点O到直线BC:2x+y﹣2=0的距离d==,则z=d2=()2=,故z的取值范围是[,13],故答案为:[,13].【点评】本题主要考查线性规划的应用,涉及距离的计算,利用数形结合是解决本题的关键.13.(5分)(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:【点评】本题考查的知识是平面向量的数量积运算,平面向量的线性运算,难度中档.14.(5分)(2016•江苏)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是8.【分析】结合三角形关系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,进而得到tanB+tanC=2tanBtanC,结合函数特性可求得最小值.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,可得sinBcosC+cosBsinC=2sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=2tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=2tanBtanC可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,=()2﹣,由t>1得,﹣≤<0,因此tanAtanBtanC的最小值为8,当且仅当t=2时取到等号,此时tanB+tanC=4,tanBtanC=2,解得tanB=2+,tanC=2﹣,tanA=4,(或tanB,tanC互换),此时A,B,C均为锐角.【点评】本题考查了三角恒等式的变化技巧和函数单调性知识,有一定灵活性.二、解答题(共6小题,满分90分)15.(14分)(2016•江苏)在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.【点评】本题考查正弦定理,考查两角和差的余弦公式,考查学生的计算能力,属于基础题.16.(14分)(2016•江苏)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【分析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.【解答】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC﹣A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)∵ABC﹣A1B1C1为直棱柱,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【点评】本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.17.(14分)(2016•江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P﹣A1B1C1D1,下部的形状是正四棱柱ABCD﹣A1B1C1D1(如图所示),并要求正四棱柱的高O1O是正四棱锥的高PO1的4倍.(1)若AB=6m,PO1=2m,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m,则当PO1为多少时,仓库的容积最大?(1)由正四棱柱的高O1O是正四棱锥的高PO1的4倍,可得PO1=2m 【分析】时,O1O=8m,进而可得仓库的容积;(2)设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,代入体积公式,求出容积的表达式,利用导数法,可得最大值.【解答】解:(1)∵PO1=2m,正四棱柱的高O1O是正四棱锥的高PO1的4倍.∴O1O=8m,∴仓库的容积V=×62×2+62×8=312m3,(2)若正四棱锥的侧棱长为6m,设PO1=xm,则O1O=4xm,A1O1=m,A1B1=•m,则仓库的容积V=×(•)2•x+(•)2•4x=x3+312x,(0<x<6),∴V′=﹣26x2+312,(0<x<6),当0<x<2时,V′>0,V(x)单调递增;当2<x<6时,V′<0,V(x)单调递减;故当x=2时,V(x)取最大值;即当PO1=2m时,仓库的容积最大.【点评】本题考查的知识点是棱锥和棱柱的体积,导数法求函数的最大值,难度中档.18.(16分)(2016•江苏)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【分析】(1)设N(6,n),则圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,从而得到|7﹣n|=|n|+5,由此能求出圆N的标准方程.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d=,由此能求出直线l的方程.(3)=,即||=,又||≤10,得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,只需要作直线TA 的平行线,使圆心到直线的距离为,由此能求出实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:((x ﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)=,即,即||=||,||=,又||≤10,即≤10,解得t∈[2﹣2,2+2],对于任意t∈[2﹣2,2+2],欲使,此时,||≤10,只需要作直线TA的平行线,使圆心到直线的距离为,必然与圆交于P、Q两点,此时||=||,即,因此实数t的取值范围为t∈[2﹣2,2+2],.【点评】本题考查圆的标准方程的求法,考查直线方程的求法,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.19.(16分)(2016•江苏)已知函数f(x)=a x+b x(a>0,b>0,a ≠1,b≠1).(1)设a=2,b=.①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.【分析】(1)①利用方程,直接求解即可.②列出不等式,利用二次函数的性质以及函数的最值,转化求解即可.(2)求出g(x)=f(x)﹣2=a x+b x﹣2,求出函数的导数,构造函数h(x)=+,求出g(x)的最小值为:g(x0).同理①若g(x0)<0,g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,利用函数g(x)=f(x)﹣2有且只有1个零点,推出g(x0)=0,然后求解ab=1.【解答】解:函数f(x)=a x+b x(a>0,b>0,a≠1,b≠1).(1)设a=2,b=.①方程f(x)=2;即:=2,可得x=0.②不等式f(2x)≥mf(x)﹣6恒成立,即≥m()﹣6恒成立.令t=,t≥2.不等式化为:t2﹣mt+4≥0在t≥2时,恒成立.可得:△≤0或即:m2﹣16≤0或m≤4,∴m∈(﹣∞,4].实数m的最大值为:4.(2)g(x)=f(x)﹣2=a x+b x﹣2,g′(x)=a x lna+b x lnb=a x[+]lnb,0<a<1,b>1可得,令h(x)=+,则h(x)是递增函数,而,lna<0,lnb>0,因此,x0=时,h(x0)=0,因此x∈(﹣∞,x0)时,h(x)<0,a x lnb>0,则g′(x)<0.x∈(x0,+∞)时,h(x)>0,a x lnb>0,则g′(x)>0,则g(x)在(﹣∞,x0)递减,(x0,+∞)递增,因此g(x)的最小值为:g(x0).①若g(x0)<0,x<log a2时,a x>=2,b x>0,则g(x)>0,因此x1<log a2,且x1<x0时,g(x1)>0,因此g(x)在(x1,x0)有零点,则g(x)至少有两个零点,与条件矛盾.②若g(x0)>0,函数g(x)=f(x)﹣2有且只有1个零点,g(x)的最小值为g(x0),可得g(x0)=0,由g(0)=a0+b0﹣2=0,因此x0=0,因此=0,﹣=1,即lna+lnb=0,ln(ab)=0,则ab=1.可得ab=1.【点评】本题考查函数与方程的综合应用,函数的导数的应用,基本不等式的应用,函数恒成立的应用,考查分析问题解决问题的能力.20.(16分)(2016•江苏)记U={1,2,…,100},对数列{a n}(n ∈N*)和U的子集T,若T=∅,定义S T=0;若T={t1,t2,…,t k},定义S T=++…+.例如:T={1,3,66}时,S T=a1+a3+a66.现设{a n}(n∈N*)是公比为3的等比数列,且当T={2,4}时,S T=30.(1)求数列{a n}的通项公式;(2)对任意正整数k(1≤k≤100),若T⊆{1,2,…,k},求证:S T<a k+1;(3)设C⊆U,D⊆U,S C≥S D,求证:S C+S C∩D≥2S D.【分析】(1)根据题意,由S T的定义,分析可得S T=a2+a4=a2+9a2=30,计算可得a2=3,进而可得a1的值,由等比数列通项公式即可得答案;(2)根据题意,由S T的定义,分析可得S T≤a1+a2+…a k=1+3+32+…+3k﹣1,由等比数列的前n项和公式计算可得证明;(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,进而分析可以将原命题转化为证明S C≥2S B,分2种情况进行讨论:①、若B=∅,②、若B≠∅,可以证明得到S A≥2S B,即可得证明.【解答】解:(1)当T={2,4}时,S T=a2+a4=a2+9a2=30,因此a2=3,从而a1==1,故a n=3n﹣1,(2)S T≤a1+a2+…a k=1+3+32+…+3k﹣1=<3k=a k+1,(3)设A=∁C(C∩D),B=∁D(C∩D),则A∩B=∅,分析可得S C=S A+S C∩D,S D=S B+S C∩D,则S C+S C∩D﹣2S D=S A﹣2S B,因此原命题的等价于证明S C≥2S B,由条件S C≥S D,可得S A≥S B,①、若B=∅,则S B=0,故S A≥2S B,②、若B≠∅,由S A≥S B可得A≠∅,设A中最大元素为l,B中最大元素为m,若m≥l+1,则其与S A<a i+1≤a m≤S B相矛盾,因为A∩B=∅,所以l≠m,则l≥m+1,S B≤a1+a2+…a m=1+3+32+…+3m﹣1=≤=,即S A≥2S B,综上所述,S A≥2S B,故S C+S C∩D≥2S D.【点评】本题考查数列的应用,涉及新定义的内容,解题的关键是正确理解题目中对于新定义的描述.附加题【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A.【选修4—1几何证明选讲】21.(10分)(2016•江苏)如图,在△ABC中,∠ABC=90°,BD ⊥AC,D为垂足,E为BC的中点,求证:∠EDC=∠ABD.【分析】依题意,知∠BDC=90°,∠EDC=∠C,利用∠C+∠DBC=∠ABD+∠DBC=90°,可得∠ABD=∠C,从而可证得结论.【解答】解:由BD⊥AC可得∠BDC=90°,因为E为BC的中点,所以DE=CE=BC,则:∠EDC=∠C,由∠BDC=90°,可得∠C+∠DBC=90°,由∠ABC=90°,可得∠ABD+∠DBC=90°,因此∠ABD=∠C,而∠EDC=∠C,所以,∠EDC=∠ABD.【点评】本题考查三角形的性质应用,利用∠C+∠DBC=∠ABD+∠DBC=90°,证得∠ABD=∠C是关键,属于中档题.B.【选修4—2:矩阵与变换】22.(10分)(2016•江苏)已知矩阵A=,矩阵B的逆矩阵B﹣1=,求矩阵AB.【分析】依题意,利用矩阵变换求得B=(B﹣1)﹣1==,再利用矩阵乘法的性质可求得答案.【解答】解:∵B﹣1=,∴B=(B﹣1)﹣1==,又A=,∴AB==.【点评】本题考查逆变换与逆矩阵,考查矩阵乘法的性质,属于中档题.C.【选修4—4:坐标系与参数方程】23.(2016•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),椭圆C的参数方程为(θ为参数),设直线l与椭圆C相交于A,B两点,求线段AB的长.【分析】分别化直线与椭圆的参数方程为普通方程,然后联立方程组,求出直线与椭圆的交点坐标,代入两点间的距离公式求得答案.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.【点评】本题考查直线与椭圆的参数方程,考查了参数方程化普通方程,考查直线与椭圆位置关系的应用,是基础题.24.(2016•江苏)设a>0,|x﹣1|<,|y﹣2|<,求证:|2x+y﹣4|<a.【分析】运用绝对值不等式的性质:|a+b|≤|a|+|b|,结合不等式的基本性质,即可得证.【解答】证明:由a>0,|x﹣1|<,|y﹣2|<,可得|2x+y﹣4|=|2(x﹣1)+(y﹣2)|≤2|x﹣1|+|y﹣2|<+=a,则|2x+y﹣4|<a成立.【点评】本题考查绝对值不等式的证明,注意运用绝对值不等式的性质,以及不等式的简单性质,考查运算能力,属于基础题.附加题【必做题】25.(10分)(2016•江苏)如图,在平面直角坐标系xOy中,已知直线l:x﹣y﹣2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2﹣p,﹣p);②求p的取值范围.【分析】(1)求出抛物线的焦点坐标,然后求解抛物线方程.(2):①设点P(x1,y1),Q(x2,y2),通过抛物线方程,求解k PQ,通过P,Q关于直线l对称,点的k PQ=﹣1,推出,PQ的中点在直线l 上,推出=2﹣p,即可证明线段PQ的中点坐标为(2﹣p,﹣p);②利用线段PQ中点坐标(2﹣p,﹣p).推出,得到关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,列出不等式即可求出p的范围.【解答】解:(1)∵l:x﹣y﹣2=0,∴l与x轴的交点坐标(2,0),即抛物线的焦点坐标(2,0).∴,∴抛物线C:y2=8x.(2)证明:①设点P(x1,y1),Q(x2,y2),则:,即:,k PQ==,又∵P,Q关于直线l对称,∴k PQ=﹣1,即y1+y2=﹣2p,∴,又PQ的中点在直线l上,∴==2﹣p,∴线段PQ的中点坐标为(2﹣p,﹣p);②因为Q中点坐标(2﹣p,﹣p).∴,即∴,即关于y2+2py+4p2﹣4p=0,有两个不相等的实数根,∴△>0,(2p)2﹣4(4p2﹣4p)>0,∴p∈.【点评】本题考查抛物线方程的求法,直线与抛物线的位置关系的应用,考查转化思想以及计算能力.26.(10分)(2016•江苏)(1)求7C﹣4C的值;(2)设m,n∈N*,n≥m,求证:(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【分析】(1)由已知直接利用组合公式能求出7的值.(2)对任意m∈N*,当n=m时,验证等式成立;再假设n=k(k≥m)时命题成立,推导出当n=k+1时,命题也成立,由此利用数学归纳法能证明(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【解答】解:(1)7=﹣4×=7×20﹣4×35=0.证明:(2)对任意m∈N*,①当n=m时,左边=(m+1)=m+1,右边=(m+1)=m+1,等式成立.②假设n=k(k≥m)时命题成立,即(m+1)C+(m+2)C+(m+3)C+…+k+(k+1)=(m+1),当n=k+1时,左边=(m+1)+(m+2)+(m+3)++(k+1)+(k+2)=,右边=∵=(m+1)[﹣]=(m+1)×[k+3﹣(k﹣m+1)]=(k+2)=(k+2),∴=(m+1),∴左边=右边,∴n=k+1时,命题也成立,∴m,n∈N*,n≥m,(m+1)C+(m+2)C+(m+3)C+…+nC+(n+1)C=(m+1)C.【点评】本题考查组合数的计算与证明,是中档题,解题时要认真审题,注意组合数公式和数学归纳法的合理运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5.考点:并集及其运算.专题:集合.分析:求出A∪B,再明确元素个数解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5};所以A∪B中元素的个数为5;故答案为:5点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6.考点:众数、中位数、平均数.专题:概率与统计.分析:直接求解数据的平均数即可.解答:解:数据4,6,5,8,7,6,那么这组数据的平均数为:=6.故答案为:6.点评:本题考查数据的均值的求法,基本知识的考查.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.考点:复数求模.专题:数系的扩充和复数.分析:直接利用复数的模的求解法则,化简求解即可.解答:解:复数z满足z2=3+4i,可得|z||z|=|3+4i|==5,∴|z|=.故答案为:.点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为7.考点:伪代码.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7.解答:解:模拟执行程序,可得S=1,I=1满足条件I<8,S=3,I=4满足条件I<8,S=5,I=7满足条件I<8,S=7,I=10不满足条件I<8,退出循环,输出S的值为7.故答案为:7.点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.考点:古典概型及其概率计算公式.专题:概率与统计.分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P=.故答案为:.点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为﹣3.考点:平面向量的基本定理及其意义.专题:平面向量及应用.分析:直接利用向量的坐标运算,求解即可.解答:解:向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)可得,解得m=2,n=5,∴m﹣n=﹣3.故答案为:﹣3.点评:本题考查向量的坐标运算,向量相等条件的应用,考查计算能力.7.(5分)(2015•江苏)不等式2<4的解集为(﹣1,2).考点:指、对数不等式的解法.专题:函数的性质及应用;不等式的解法及应用.分析:利用指数函数的单调性转化为x2﹣x<2,求解即可.解答:解;∵2<4,∴x2﹣x<2,即x2﹣x﹣2<0,解得:﹣1<x<2故答案为:(﹣1,2)点评:本题考查了指数函数的性质,二次不等式的求解,属于简单的综合题目,难度不大.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为3.考点:两角和与差的正切函数.专题:三角函数的求值.分析:直接利用两角和的正切函数,求解即可.解答:解:tanα=﹣2,tan(α+β)=,可知tan(α+β)==,即=,解得tanβ=3.故答案为:3.点评:本题考查两角和的正切函数,基本知识的考查.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.考点:棱柱、棱锥、棱台的体积.专题:计算题;空间位置关系与距离.分析:由题意求出原来圆柱和圆锥的体积,设出新的圆柱和圆锥的底面半径r,求出体积,由前后体积相等列式求得r.解答:解:由题意可知,原来圆锥和圆柱的体积和为:.设新圆锥和圆柱的底面半径为r,则新圆锥和圆柱的体积和为:.∴,解得:.故答案为:.点评:本题考查了圆柱与圆锥的体积公式,是基础的计算题.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.考点:圆的标准方程;圆的切线方程.专题:计算题;直线与圆.分析:求出圆心到直线的距离d的最大值,即可求出所求圆的标准方程.解答:解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.点评:本题考查所圆的标准方程,考查点到直线的距离公式,考查学生的计算能力,比较基础.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.考点:数列的求和;数列递推式.专题:等差数列与等比数列.分析:数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),利用“累加求和”可得a n=.再利用“裂项求和”即可得出.解答:解:∵数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),∴当n≥2时,a n=(a n﹣a n﹣1)+…+(a2﹣a1)+a1=+n+…+2+1=.当n=1时,上式也成立,∴a n=.∴=2.∴数列{}的前n项的和S n===.∴数列{}的前10项的和为.故答案为:.点评:本题考查了数列的“累加求和”方法、“裂项求和”方法、等差数列的前n项和公式,考查了推理能力与计算能力,属于中档题.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:双曲线x2﹣y2=1的渐近线方程为x±y=0,c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离.解答:解:由题意,双曲线x2﹣y2=1的渐近线方程为x±y=0,因为点P到直线x﹣y+1=0的距离大于c恒成立,所以c的最大值为直线x﹣y+1=0与直线x﹣y=0的距离,即.故答案为:.点评:本题考查双曲线的性质,考查学生的计算能力,比较基础.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为4.考点:根的存在性及根的个数判断.专题:综合题;函数的性质及应用.分析::由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1,分别作出函数的图象,即可得出结论.解答:解:由|f(x)+g(x)|=1可得g(x)=﹣f(x)±1.g(x)与h(x)=﹣f(x)+1的图象如图所示,图象有两个交点;g(x)与φ(x)=﹣f(x)﹣1的图象如图所示,图象有两个交点;所以方程|f(x)+g(x)|=1实根的个数为4.故答案为:4.点评:本题考查求方程|f(x)+g(x)|=1实根的个数,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.考点:数列的求和.专题:等差数列与等比数列;平面向量及应用.分析:利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.解答:解:=+=++++=++=++,∴(a k•a k+1)=+++++++…+++++++…+=+0+0=.故答案为:9.点评:本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.考点:余弦定理的应用;二倍角的正弦.专题:解三角形.分析:(1)直接利用余弦定理求解即可.(2)利用正弦定理求出C的正弦函数值,然后利用二倍角公式求解即可.解答:解:(1)由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcosA=4+8﹣2×2×3×=7,所以BC=.(2)由正弦定理可得:,则sinC===,∵AB<BC,∴C为锐角,则cosC===.因此sin2C=2sinCcosC=2×=.点评:本题考查余弦定理的应用,正弦定理的应用,二倍角的三角函数,注意角的范围的解题的关键.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.考点:直线与平面平行的判定;直线与平面垂直的性质.专题:证明题;空间位置关系与距离.分析:(1)根据中位线定理得DE∥AC,即证DE∥平面AA1C1C;(2)先由直三棱柱得出CC1⊥平面ABC,即证AC⊥CC1;再证明AC⊥平面BCC1B1,即证BC1⊥AC;最后证明BC1⊥平面B1AC,即可证出BC1⊥AB1.解答:证明:(1)根据题意,得;E为B1C的中点,D为AB1的中点,所以DE∥AC;又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C;(2)因为棱柱ABC﹣A1B1C1是直三棱柱,所以CC1⊥平面ABC,因为AC⊂平面ABC,所以AC⊥CC1;又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1;又因为BC1⊂平面平面BCC1B1,所以BC1⊥AC;因为BC=CC1,所以矩形BCC1B1是正方形,所以BC1⊥平面B1AC;又因为AB1⊂平面B1AC,所以BC1⊥AB1.点评:本题考查了直线与直线,直线与平面以及平面与平面的位置关系,也考查了空间想象能力和推理论证能力的应用问题,是基础题目.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.考点:函数与方程的综合运用.专题:综合题;导数的综合应用.分析:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,建立方程组,即可求a,b的值;(2)①求出切线l的方程,可得A,B的坐标,即可写出公路l长度的函数解析式f(t),并写出其定义域;②设g(t)=,利用导数,确定单调性,即可求出当t为何值时,公路l的长度最短,并求出最短长度.解答:解:(1)由题意知,点M,N的坐标分别为(5,40),(20,2.5),将其分别代入y=,得,解得,(2)①由(1)y=(5≤x≤20),P(t,),∴y′=﹣,∴切线l的方程为y﹣=﹣(x﹣t)设在点P处的切线l交x,y轴分别于A,B点,则A(,0),B(0,),∴f(t)==,t∈[5,20];②设g(t)=,则g′(t)=2t﹣=0,解得t=10,t∈(5,10)时,g′(t)<0,g(t)是减函数;t∈(10,20)时,g′(t)>0,g(t)是增函数,从而t=10时,函数g(t)有极小值也是最小值,∴g(t)min=300,∴f(t)min=15,答:t=10时,公路l的长度最短,最短长度为15千米.点评:本题考查利用数学知识解决实际问题,考查导数知识的综合运用,确定函数关系,正确求导是关键.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:(1)运用离心率公式和准线方程,可得a,c的方程,解得a,c,再由a,b,c 的关系,可得b,进而得到椭圆方程;(2)讨论直线AB的斜率不存在和存在,设出直线方程,代入椭圆方程,运用韦达定理和弦长公式,以及两直线垂直的条件和中点坐标公式,即可得到所求直线的方程.解答:解:(1)由题意可得,e==,且c+=3,解得c=1,a=,则b=1,即有椭圆方程为+y2=1;(2)当AB⊥x轴,AB=,CP=3,不合题意;当AB与x轴不垂直,设直线AB:y=k(x﹣1),A(x1,y1),B(x2,y2),将AB方程代入椭圆方程可得(1+2k2)x2﹣4k2x+2(k2﹣1)=0,则x1+x2=,x1x2=,则C(,),且|AB|=•=,若k=0,则AB的垂直平分线为y轴,与左准线平行,不合题意;则k≠0,故PC:y+=﹣(x﹣),P(﹣2,),从而|PC|=,由|PC|=2|AB|,可得=,解得k=±1,此时AB的方程为y=x﹣1或y=﹣x+1.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和弦长公式,同时考查两直线垂直和中点坐标公式的运用,属于中档题.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.考点:利用导数研究函数的单调性;函数零点的判定定理.专题:综合题;导数的综合应用.分析:(1)求导数,分类讨论,利用导数的正负,即可得出f(x)的单调性;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,进一步转化为a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,利用条件即可求c的值.解答:解:(1)∵f(x)=x3+ax2+b,∴f′(x)=3x2+2ax,令f′(x)=0,可得x=0或﹣.a=0时,f′(x)>0,∴f(x)在(﹣∞,+∞)上单调递增;a>0时,x∈(﹣∞,﹣)∪(0,+∞)时,f′(x)>0,x∈(﹣,0)时,f′(x)<0,∴函数f(x)在(﹣∞,﹣),(0,+∞)上单调递增,在(﹣,0)上单调递减;a<0时,x∈(﹣∞,0)∪(﹣,+∞)时,f′(x)>0,x∈(0,﹣)时,f′(x)<0,∴函数f(x)在(﹣∞,0),(﹣,+∞)上单调递增,在(0,﹣)上单调递减;(2)由(1)知,函数f(x)的两个极值为f(0)=b,f(﹣)=+b,则函数f(x)有三个不同的零点等价于f(0)f(﹣)=b(+b)<0,∵b=c﹣a,∴a>0时,﹣a+c>0或a<0时,﹣a+c<0.设g(a)=﹣a+c,∵函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),∴在(﹣∞,﹣3)上,g(a)<0且在(1,)∪(,+∞)上g(a)>0均恒成立,∴g(﹣3)=c﹣1≤0,且g()=c﹣1≥0,∴c=1,此时f(x)=x3+ax2+1﹣a=(x+1)[x2+(a﹣1)x+1﹣a],∵函数有三个零点,∴x2+(a﹣1)x+1﹣a=0有两个异于﹣1的不等实根,∴△=(a﹣1)2﹣4(1﹣a)>0,且(﹣1)2﹣(a﹣1)+1﹣a≠0,解得a∈(﹣∞,﹣3)∪(1,)∪(,+∞),综上c=1.点评:本题考查导数知识的综合运用,考查函数的单调性,考查函数的零点,考查分类讨论的数学思想,难度大.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.考点:等比关系的确定;等比数列的性质.专题:等差数列与等比数列.分析:(1)根据等比数列和等差数列的定义即可证明;(2)利用反证法,假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,推出矛盾,否定假设,得到结论;(3)利用反证法,假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,得到a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)2(n+2k),利用等式以及对数的性质化简整理得到ln(1+3t)ln(1+2t)n+3k=(a1+2d)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**),多次构造函数,多次求导,利用零点存在定理,推出假设不成立.解答:解:(1)证明:∵==2d,(n=1,2,3,)是同一个常数,∴2,2,2,2依次构成等比数列;(2)令a1+d=a,则a1,a2,a3,a4分别为a﹣d,a,a+d,a+2d(a>d,a>﹣2d,d≠0)假设存在a1,d使得a1,a22,a33,a44依次构成等比数列,则a4=(a﹣d)(a+d)3,且(a+d)6=a2(a+2d)4,令t=,则1=(1﹣t)(1+t)3,且(1+t)6=(1+2t)4,(﹣<t<1,t≠0),化简得t3+2t2﹣2=0(*),且t2=t+1,将t2=t+1代入(*)式,t(t+1)+2(t+1)﹣2=t2+3t=t+1+3t=4t+1=0,则t=﹣,显然t=﹣不是上面方程的解,矛盾,所以假设不成立,因此不存在a1,d,使得a1,a22,a33,a44依次构成等比数列.(3)假设存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列,则a1n(a1+2d)n+2k=(a1+2d)2(n+k),且(a1+d)n+k(a1+3d)n+3k=(a1+2d)2(n+2k),分别在两个等式的两边同除以=a12(n+k),a12(n+2k),并令t=,(t>,t≠0),则(1+2t)n+2k=(1+t)2(n+k),且(1+t)n+k(1+3t)n+3k=(1+2t)2(n+2k),将上述两个等式取对数,得(n+2k)ln(1+2t)=2(n+k)ln(1+t),且(n+k)ln(1+t)+(n+3k)ln(1+3t)=2(n+2k)ln(1+2t),化简得,2k[ln(1+2t)﹣ln(1+t)]=n[2ln(1+t)﹣ln(1+2t)],且3k[ln(1+3t)﹣ln(1+t)]=n[3ln(1+t)﹣ln(1+3t)],再将这两式相除,化简得,ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t)=4ln(1+3t)ln(1+t),(**)令g(t)=4ln(1+3t)ln(1+t)﹣ln(1+3t)ln(1+2t)+3ln(1+2t)ln(1+t),则g′(t)=[(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t)],令φ(t)=(1+3t)2ln(1+3t)﹣3(1+2t)2ln(1+2t)+3(1+t)2ln(1+t),则φ′(t)=6[(1+3t)ln(1+3t)﹣2(1+2t)ln(1+2t)+3(1+t)ln(1+t)],令φ1(t)=φ′(t),则φ1′(t)=6[3ln(1+3t)﹣4ln(1+2t)+ln(1+t)],令φ2(t)=φ1′(t),则φ2′(t)=>0,由g(0)=φ(0)=φ1(0)=φ2(0)=0,φ2′(t)>0,知g(t),φ(t),φ1(t),φ2(t)在(﹣,0)和(0,+∞)上均单调,故g(t)只有唯一的零点t=0,即方程(**)只有唯一解t=0,故假设不成立,所以不存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列.点评:本题主要考查等差数列、等比数列的定义和性质,函数与方程等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力,属于难题.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.考点:相似三角形的判定.专题:推理和证明.分析:直接利用已知条件,推出两个三角形的三个角对应相等,即可证明三角形相似.解答:证明:∵AB=AC,∴∠ABD=∠C,又∵∠C=∠E,∴∠ABD=∠E,又∠BAE是公共角,可知:△ABD∽△AEB.点评:本题考查圆的基本性质与相似三角形等基础知识,考查逻辑推理能力.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.考特征值与特征向量的计算.点:矩阵和变换.专题:分利用A=﹣2,可得A=,通过令矩阵A的特征多项式为0即得结论.析:解答:解:由已知,可得A=﹣2,即==,则,即,∴矩阵A=,从而矩阵A的特征多项式f(λ)=(λ+2)(λ﹣1),∴矩阵A的另一个特征值为1.本题考查求矩阵及其特征值,注意解题方法的积累,属于中档题.点评:【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.考点:简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:先根据x=ρcosθ,y=ρsinθ,求出圆的直角坐标方程,求出半径.解答:解:圆的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,可得ρ2﹣2ρcosθ+2ρsinθ﹣4=0,化为直角坐标方程为x2+y2﹣2x+2y﹣4=0,化为标准方程为(x﹣1)2+(y+1)2=6,圆的半径r=.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,以及求点的极坐标的方法,关键是利用公式x=ρcosθ,y=ρsinθ,比较基础,[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.考点:绝对值不等式的解法.专题:不等式.分析:思路1(公式法):利用|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);思路2(零点分段法):对x的值分“x≥”“x<”进行讨论求解.解答:解法1:x+|2x+3|≥2变形为|2x+3|≥2﹣x,得2x+3≥2﹣x,或2x+3≥﹣(2﹣x),即x≥,或x≤﹣5,即原不等式的解集为{x|x≥,或x≤﹣5}.解法2:令|2x+3|=0,得x=.①当x≥时,原不等式化为x+(2x+3)≥2,即x≥,所以x≥;②x<时,原不等式化为x﹣(2x+3)≥2,即x≤﹣5,所以x≤﹣5.综上,原不等式的解集为{x|x≥,或x≤﹣5}.点评:本题考查了含绝对值不等式的解法.本解答给出的两种方法是常见的方法,不管用哪种方法,其目的是去绝对值符号.若含有一个绝对值符号,利用公式法要快捷一些,其套路为:|f(x)|≥g(x)⇔f(x)≥g(x),或f(x)≤﹣g(x);|f(x)|≤g(x)⇔﹣g(x)≤f(x)≤g(x).可简记为:大于号取两边,小于号取中间.使用零点分段法时,应注意:同一类中取交集,类与类之间取并集.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.考点:二面角的平面角及求法;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz.(1)所求值即为平面PAB的一个法向量与平面PCD的法向量的夹角的余弦值的绝对值,计算即可;(2)利用换元法可得cos2<,>≤,结合函数y=cosx在(0,)上的单调性,计算即得结论.解答:解:以A为坐标原点,以AB、AD、AP所在直线分别为x、y、z轴建系A﹣xyz如图,由题可知B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)∵AD⊥平面PAB,∴=(0,2,0),是平面PAB的一个法向量,∵=(1,1,﹣2),=(0,2,﹣2),设平面PCD的法向量为=(x,y,z),由,得,取y=1,得=(1,1,1),∴cos<,>==,∴平面PAB与平面PCD所成两面角的余弦值为;(2)∵=(﹣1,0,2),设=λ=(﹣λ,0,2λ)(0≤λ≤1),又=(0,﹣1,0),则=+=(﹣λ,﹣1,2λ),又=(0,﹣2,2),从而cos<,>==,设1+2λ=t,t∈[1,3],则cos2<,>==≤,当且仅当t=,即λ=时,|cos<,>|的最大值为,因为y=cosx在(0,)上是减函数,此时直线CQ与DP所成角取得最小值.又∵BP==,∴BQ=BP=.点评:本题考查求二面角的三角函数值,考查用空间向量解决问题的能力,注意解题方法的积累,属于中档题.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.考点:数学归纳法.专题:综合题;点列、递归数列与数学归纳法.分析:(1)f(6)=6+2++=13;(2)根据数学归纳法的证明步骤,分类讨论,即可证明结论.解答:解:(1)f(6)=6+2++=13;(2)当n≥6时,f(n)=.下面用数学归纳法证明:①n=6时,f(6)=6+2++=13,结论成立;②假设n=k(k≥6)时,结论成立,那么n=k+1时,S k+1在S k的基础上新增加的元素在(1,k+1),(2,k+1),(3,k+1)中产生,分以下情形讨论:1)若k+1=6t,则k=6(t﹣1)+5,此时有f(k+1)=f(k)+3=(k+1)+2++,结论成立;2)若k+1=6t+1,则k=6t+1,此时有f(k+1)=f(k)+1=k+2+++1=(k+1)+2++,结论成立;3)若k+1=6t+2,则k=6t+1,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;4)若k+1=6t+3,则k=6t+2,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;5)若k+1=6t+4,则k=6t+3,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立;6)若k+1=6t+5,则k=6t+4,此时有f(k+1)=f(k)+2=k+2+++2=(k+1)+2++,结论成立.综上所述,结论对满足n≥6的自然数n均成立.点评:本题考查数学归纳法,考查学生分析解决问题的能力,正确归纳是关键.2015年江苏省高考数学试卷一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2015•江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为.2.(5分)(2015•江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为.3.(5分)(2015•江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为.4.(5分)(2015•江苏)根据如图所示的伪代码,可知输出的结果S为.5.(5分)(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.6.(5分)(2015•江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m,n∈R),则m﹣n的值为.7.(5分)(2015•江苏)不等式2<4的解集为.8.(5分)(2015•江苏)已知tanα=﹣2,tan(α+β)=,则tanβ的值为.9.(5分)(2015•江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.10.(5分)(2015•江苏)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y ﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.11.(5分)(2015•江苏)设数列{a n}满足a1=1,且a n+1﹣a n=n+1(n∈N*),则数列{}的前10项的和为.12.(5分)(2015•江苏)在平面直角坐标系xOy中,P为双曲线x2﹣y2=1右支上的一个动点,若点P到直线x﹣y+1=0的距离大于c恒成立,则实数c的最大值为.13.(5分)(2015•江苏)已知函数f(x)=|lnx|,g(x)=,则方程|f(x)+g(x)|=1实根的个数为.14.(5分)(2015•江苏)设向量=(cos,sin+cos)(k=0,1,2,…,12),则(a k•a k+1)的值为.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明过程或演算步骤)15.(14分)(2015•江苏)在△ABC中,已知AB=2,AC=3,A=60°.(1)求BC的长;(2)求sin2C的值.16.(14分)(2015•江苏)如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.17.(14分)(2015•江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为l,如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和40千米,点N到l1,l2的距离分别为20千米和2.5千米,以l2,l1在的直线分别为x,y轴,建立平面直角坐标系xOy,假设曲线C符合函数y=(其中a,b为常数)模型.(1)求a,b的值;(2)设公路l与曲线C相切于P点,P的横坐标为t.①请写出公路l长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路l的长度最短?求出最短长度.18.(16分)(2015•江苏)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.19.(16分)(2015•江苏)已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.20.(16分)(2015•江苏)设a1,a2,a3.a4是各项为正数且公差为d(d≠0)的等差数列.(1)证明:2,2,2,2依次构成等比数列;(2)是否存在a1,d,使得a1,a22,a33,a44依次构成等比数列?并说明理由;(3)是否存在a1,d及正整数n,k,使得a1n,a2n+k,a3n+2k,a4n+3k依次构成等比数列?并说明理由.三、附加题(本大题包括选做题和必做题两部分)【选做题】本题包括21-24题,请选定其中两小题作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤【选修4-1:几何证明选讲】21.(10分)(2015•江苏)如图,在△ABC中,AB=AC,△ABC的外接圆⊙O的弦AE交BC于点D.求证:△ABD∽△AEB.【选修4-2:矩阵与变换】22.(10分)(2015•江苏)已知x,y∈R,向量=是矩阵的属于特征值﹣2的一个特征向量,求矩阵A以及它的另一个特征值.【选修4-4:坐标系与参数方程】23.(2015•江苏)已知圆C的极坐标方程为ρ2+2ρsin(θ﹣)﹣4=0,求圆C的半径.[选修4-5:不等式选讲】24.(2015•江苏)解不等式x+|2x+3|≥2.【必做题】每题10分,共计20分,解答时写出文字说明、证明过程或演算步骤25.(10分)(2015•江苏)如图,在四棱锥P﹣ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.26.(10分)(2015•江苏)已知集合X={1,2,3},Y n={1,2,3,…,n)(n∈N*),设S n={(a,b)|a整除b或整除a,a∈X,B∈Y n},令f(n)表示集合S n所含元素的个数.(1)写出f(6)的值;(2)当n≥6时,写出f(n)的表达式,并用数学归纳法证明.。