最新53完全互溶双液系统
完全互溶双液系统气 液平衡相图的绘制2误差分析
大学化学实验□实验报告(物理化学部分)(贵州大学化学与化工学院——大学化学教学与示范中心)班级专业:_________ 环境科学091姓名:__________ 岳凡耀学号:_________ 0908100121指导教师:_____________ 谭蕾实验成绩:_____________________________实验编号:十四实验项目名称:完全互溶双液系统气-液平衡相图的绘制报告人:岳凡耀同组人:赵安娜、赵芳、吴红、陈彦霖、孙腾实验时间:2011年4月28日一、实验目的:1.掌握阿贝折射仪的使用方法通过测定混合物的折射率确定其组成。
2.学习常压下完全互溶双液系统气-液平衡相图的测绘方法,加深对相律、恒沸点的理解。
二、实验原理:相图是描述相平衡系统温度、压力、组成之间关系的图形,可以通过实验测定相平衡系统的组成来绘制。
两种液体物质混合而成的两组分体系称为双液系。
若两液体能以任意比例互溶,称其为完全互溶双液系统;若两液体只能部分互溶,称其为部分互溶双液系统。
当纯液体或液态混合物的蒸气压与外压相等时,液体就会沸腾,此时气-液两相呈平衡,所对应的温度就是沸点。
双液系统的沸点不仅取决于压力,还与液体的组成有关。
表示定压下双液系统气-液两相平衡时温度与组成关系的图称为T-X B图或沸点-组成图。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-X),根据体系对乌拉尔定律的偏差情况,可分为三类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1 ( a ) 所示。
(2)最大负偏差:混合物存在着最高沸点,如盐酸-水体系,如图1 ( b)所示。
(3 )最大正偏差:混合物存在着最低沸点,如正丙醇-水体系,如图1 (c)所示。
图1完全互溶双液系统的气-液平衡相图在最高沸点和最低沸点处,气相线与液相线相交,对应于此点组成的溶液,达到气-液两相平衡时,气相与液相组成相同,沸腾的结果只使气相量增加、液相量减少,沸腾过程中温度保持不变,这时的温度叫恒沸点,相应的组成叫恒沸组成。
完全互溶双液系相图
4.3 完全互溶的双夜系相图4.3.1 二组分系统的相律的应用最多可有四相平衡共存,是无变量系统。
最多可有三个自由度-T ,p ,x 均可变,属三变量系统。
因此,要完整的描述二组分系统相平衡状态,需要三维坐标的立体图。
但为了方便,往往指定一个变量固定不变,观察另外两个变量之间的关系,这样就得到一个平面图。
如: 保持温度不变,得 p-x 图 较常用 保持压力不变,得 T-x 图 常用 保持组成不变,得 T-p 图 不常用。
若保持一个变量为常量,从立体图上得到平面图。
相律 单相,两个自由度。
最多三相共存。
二组分系统相图种类很多,以物态来区分,大致分为: 完全互溶双液系 气-液平衡相图 部分互溶双液系 完全不互溶双液系具有简单低共熔混合物 稳定化合物有化合物生成 不稳定化合物 固-液平衡相图 固相完全互溶 固相部分互溶固相部分互溶 等C 2C 24= f Φ+=Φ=--min max 1 3Φf ==min max 0 4f Φ==213f ΦΦ*=-+=-*min max1 2Φf ==*max min 3 0Φf ==4.3.2 理想的完全互溶双液系相图若A 、B 两种液体均能以任意比例相互混容形成均匀单一的液相,则该系统称为完全互溶双液系。
根据相似相容原理,它可以分为:理想的完全互溶双液系 和非理想的完全互溶双液系。
首先学习理想液态混合物的相图。
4.3.2.1. 理想溶液p-x 图设A 、B 形成理想溶液,其饱和蒸气压分别为P A * 和P B *,P 为体系的总蒸气压。
以x A 为横坐标,以P 蒸气压为纵坐标,在p-x 图上分别表示出P A 、P B 、P 与x A l 的关系。
p-x-y 图 同压下 , 之间的关系若知道一定温度下的P A *、P B *,就可据液相组成(x A /x B )求其气相组成(y A /y B )px p p p y A A A A *==BAB A B A x x p p y y **=若 则 此时 即蒸气压大的组分在气相中浓度更大。
4.3完全互溶双液系统讲解
T x1
x2
x3 x4
A
xB
B
一、理想的完全互溶的双液系统
T-p-x图
T
液 pA*
TA*
液
A
xB
pB* 气
气 气
TB* B
一、理想的完全互溶的双液系统
T-p-x图
二、杠杆规则
T g
TB*
DC E
l TA*
B
x1
xA x2
A
xA
物系点:系统物质的总组成点(不管相的存在状态)
二、杠杆规则
假设某压力下液态混合物沸腾时气液平衡的物系点为C点,那 么有: n总 nA nB nl ng
三、非理想的完全互溶双液系统
1. 正负偏差不大的体系
气液相图与理想液态混合物气液相图基本类似
p
p
T
A
xB
(a) p-x图
BA
xB
BA
xB
B
(b) p-x-y图
(c) T-x-y图
三、非理想的完全互溶双液系统
2. 正偏差很大的体系 有最高点
p-液相组成线
p
p
p-气相组成线
A
xB
B
(a) p-x图
A
xB
B
(b) p-x-y图
pA、pB偏离拉乌尔定律都很大,p-x图上形成最高点。
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
g
T lg lg
(c) T-x-y图
l
l
A
x1
B
xB
在p-x图上有最高点,在T-x图上就有最低点,称最低恒沸点。 最低恒沸点对应的组成称最低恒沸组成。在此组成下蒸馏双 液系:yA = xA , yB= xB,A与B达不到分离目的,类似蒸馏 具有恒定沸点的纯物质,所以此点上混合物称恒沸混合物。
完全互溶双液系气液平衡相图的绘制
完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法及原理。
4.了解和掌握沸点仪的测定原理及方法。
5.加深对完全互溶双液系气液平衡相图的理解和增强个人动手能力。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x图),根据体系对拉乌尔定律的偏差情况,可分为三类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a)所示。
(2)最大负偏差:存在一个最小蒸气压值,比两个纯液体的蒸气压都小,混合物存在着最高沸点,如盐酸-水体系,如图1 (b)所示。
(3)最大正偏差:存在一个最大蒸气压值,比两个纯液体的蒸气压都大,混合物存在图1 二组分真实液态混合物气-液平衡相图(T-x图)着最低沸点,如正丙醇—水体系,如图1(c))所示。
对于后两种情况,为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了绘制双液系的T -x 相图,需测定几组原始组成不同的双液系在气-液两相平衡后的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型。
在沸点仪(如图2所示)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。
本实验中气液两相的组成均采用折光率法测定。
折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。
完全互溶双液系的平衡相图
7-目镜;
8-望远镜筒;
9-示值调节螺钉;
10-阿米西棱镜手轮;
11-色散值刻度圈;
12-棱镜锁紧扳手;
13-棱镜组;
14-温度计座;
15-恒温器接头;
16-保护罩;
17-主轴;
18-反光镜
阿贝折射仪是一种精密的
光学仪器,使用时注意以下几点:
☻使用时要注意保护棱镜,清洗时只能用擦镜纸而不 能用滤纸等。加 试样时不能将滴管口触及镜面。对于酸碱等腐蚀性液体不得用阿贝折射 仪。 ☻每次测定时,试样不可加地太多,一般加需加2-3滴即可。
在每一份样品的蒸馏过程中,正常回流1~2min后,即可 取样测定,不宜等待时间过长。
每次取样量不宜过多,取样时毛细滴管一定要干燥,不能 留有上次的残液,并且气相部分的样品要取干净。
使用阿贝折光仪时,棱镜上不能触及硬物(如滴管)。
六 数据处理
1. 将测得的折射率-组成数据列表,并绘 制成工作曲线。
恒温槽1台;阿贝折射仪1台;沸点仪1 套; 移液管(1mL2支、10mL1支);具塞小 试管9支。 环己烷(A.R.);无水乙醇(A.R.)
沸点仪原理图
1-温度计; 2-进样口; 3-加热丝; 4-气相冷凝液取样口 5-气相冷凝液
四 实验步骤
1. 调节恒温槽温度比室温高5℃,通恒温水于阿贝折射仪中。 2. 测定折射率与组成的关系,绘制工作曲线。
物化实验课件-实验十四-完全互溶双液系气液平衡相图.docx
完全互溶双液系气液平衡相图的绘制一. 实验目的1. 测定常压下坏己烷一乙醇二元系统的气液平衡数据,绘制沸点一组成相图。
2. 学握双组分沸点的测定方法,通过实验进一步理解分憎原理。
3. 掌握阿贝折射仪的使用方法。
二. 实验原理完全互溶双液系:两液体能按任意比例相互溶解的体系。
依据相律:J' = C + 2・0,当和数①二1, >ar=3,系统的状态需用三维图描述。
如果固定一个变量,f*max-2,系统的状态川二维图描述。
通常周定压力,当固定系统的压力为大气压时,气-液两相平衡温度为沸点温度。
恒压下将完全互溶双 液体系蒸饴,测定饰出物(气相)和蒸馄液(液相)的组成,就能找出平衡时气、液两相的成分并绘l\\ T-x 图。
恒定压力下,真实的完全互溶双液系的气一液平衡相图(厂一力,根据体系对拉乌尔定律的偏差情况, 可分为3类:(1) -般偏差:混合物的沸点介丁-两种纯组分之间,如甲苯一苯体系,如图1(a )所示。
(2) 最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如图 1(b )所示。
(3) 最大正偏差:存在一个鮫大蒸汽压值,比两个纯液体的蒸汽压都犬,混合物存在着最低沸点,如图1 (c ))所示。
后两种情况在T-x 图上有最窩或最低点,这些点称为恒沸点,相应的溶液称为恒沸点混介物。
恒沸点 混合物蒸饰时,所得的气相与液相组成和同,因此通过蒸憎无法改变其组成,精係只能分离出一种纯物质 和另--种恒沸混合物。
本实验的原理:1. 木实验是用冋流冷凝法测定坏己烷〜乙醉体系的沸点~组成图。
2. 在恒压下将溶液蒸饰,测定气相绸出液和液相蒸徭液的组成就能绘出其八兀图。
3. 用阿贝折射仪测定不同组成的体系,在沸点温度时气、液相的折射率,再从折射率~组成工作曲线上 査得相应的组成,然后绘制T_x 图三. 仪器与试剂(1) 仪器:恒温槽1台;阿贝折射仪1台;沸点仪1套;移液管(lml 2支、10ml 1支);具塞小试管9X B(a)(b) (c)图1二组分真实液态混合物气一液平衡相图 (T-x 图)支(2)试剂:环己烷(A.R.):无水乙醇(A.R.)图2 图3(1).沸点仪结构(图2)1 •温度计;2•进样口:3■加热丝;4•气相冷凝液取样口5-气相冷凝液(2)阿贝折射仪(图3)1 •底座;2-棱镜转动手轮;3•圆盘组(内有刻度板);4-小反光镜;5-支架;6-读数镜筒;7■•目镜;8■■望远镜筒;9-示值调节螺钉;10-阿米西棱镜手轮;11-色散值刻度圈;12-棱镜锁紧扳手;13-棱镜组;14 •温度计座;15-恒温器接头:16-保护罩:17•主轴:18 •反光镜四.实验步骤:1.调节恒温桝温度,通恒温水丁-阿贝折射仪中。
理想的完全互溶双液系
5.1 5.2
5.3 5.4
引言 几个基本概念
相律 单组分体系的相图
5.5
5.6
二组分体系的相图及其应用
三组分体系的相图及其应用
2019/1/13
5.1 引言
1.内容
(1)相律:讨论平衡体系中相数、独立组分数与描述 该平衡体系的变数之间的关系。
(2)相图:表达多相体系的状态随温度、压力、组成 等强度性质变化而变化的图形,称为相图。
pA yA p
p A x A p B xB
* * * *
*
pB yB p
p B xB
y A pA pA xA * y B pB pB xB
* *
*
*
如果 p A pB ,则 y A x A
*
pB p A pB
2019/1/13
,即易挥发的组分在 x A 气相中的成分大于液相中的 组分,反之亦然。
2019/1/13
理想的完全互溶双液系
立体图中,与最前面 的平面平行的所有垂直截 面是等压面,可获得T-x图;
与最上面的平面平行
的所有水平截面为等温面, 得p-x图。
2019/1/13
杠杆规则
在T-x图的两相区,物系点C代表了体系总的组成 和温度。 通过C点作平行于横坐标 的等温线,与液相和气相线 分别交于D点和E点。DE线称 为等温连结线(tie line)。
pA 用 yA 的方 p
法求出对应的气相组 成线。 在T-x图上,气
相线在上,液相线在
下,上面是气相区, 下面是液相区,梭形 区是气-液两相区。
2019/1/13
理想的完全互溶双液系
(5) T-p-x图
完全互溶双液系相图的绘制
完全互溶双液系相图的绘制
(1 ) 编号
(2)依次移入0 、 1.00 、 2.00 、 … 9.00 、10 .00mL环 己烷
标准 溶液
(4)轻轻摇动, 混合均匀(公用)
(3)依前次顺序移0 、 1.00 、 2.00 、 … 9.00 、10 .00mL乙醇
3.真实液态混合物的气液平衡相图—温度组成图
(1)一般正 偏差不一般负偏差 系统的温度 - 组成 图不理想系统的类 似。如:右图
完全互溶双液系相图的绘制
(2)最大正偏差系统
温度 - 组成图上出现最低点。
该点,气相线不液相线相切。
对应亍此点组成的液相在该
指定压力下沸腾时产生的气相不
液相组成相同,故沸腾时温度恒
氯仿 - 丙酮系统的 温度 - 组成图(具有最大负偏差)
完全互溶双液系相图的绘制
4.乙醇-环己烷系统的气液平衡相图—T-x-y
恒沸点 恒沸混合物组成
5.测定方法—回流冷凝法
完全互溶双液系相图的绘制
(1)分别测定乙醇、环己烷的沸点 (2)测定混合系统的气液平衡温度; 并测定气、液两相的折射率;
(3)根据折射率确定相组成;
(2)丌必拘泥亍以 坐标的原点作为 分度的零点。
八. 思考题
完全互溶双液系相图的绘制
1. 本实验所用环己烷中混有少量乙醇, 对实验结果有何影响?为什么?。
2. 沸点仪中加沸石的目的是什么? 3. 绘制标准工作曲线的目的是什么?
4. 本实验中,样品的加入量是否必须 十分精确?为什么?
5. 测工作曲线不测样品时折射仪恒温 温度是否必须一致?为什么?
1
完全互溶双液系气液平衡相图的绘制。实验报告
完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图(a)所示。
(2)最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—水体系,如图(b)所示。
(3)最大正偏差:存在一个最大蒸汽压值,比两个纯液体的蒸汽压都大,混合物存在着最低沸点如图(c))所示。
图 二组分真实液态混合物气—液平衡相图(T-x 图)后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。
本实验中两相的成分分析均采用折光率法测定。
折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。
溶液的浓度不同、组成不同,折光率也不同。
因此可先配制一系列已知组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折光率的大小在工作曲线上找出未知溶液的组成。
完全互溶双液系气液平衡相图相关知识
实验一 完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T -x ),根据体系对拉乌尔定律的偏差情况,可分为三类:(1)一般偏差:混合物的沸点介于两种纯组分之间,如甲苯-苯体系,如图1(a)所示。
(2)最大负偏差:混合物存在着最高沸点,如盐酸-水体系,如图1 (b)所示。
(3)最大正偏差:混合物存在着最低沸点,如正丙醇—水体系,如图1(c))所示。
t AtAt At Bt B t Bt / o Ct / o t / o x Bx Bx BABAABB(a)(b)(c)x 'x '图1 完全互溶双液系的相图 对于后两种情况,为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互分离,而只能采取精馏等方法分离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2)中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。
本实验中两相的成分分析均采用折光率法。
图2折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。
溶液的浓度不同、组成不同,折光率也不同。
完全互溶双液系气液平衡相图的绘制。实验报告
完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、部分互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,则混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图(T-x),根据体系对拉乌尔定律的偏差情况,可分为3类:(1)一在工作曲线上找出未知溶液的组成。
三.仪器与试剂沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长短取样管。
环己烷物质的量分数x环己烷为0、0.2、0.4、0.6、0.8、1.0的环己烷-乙醇标准溶液,已知101.325kPa下,纯环己烷的沸点为80.1℃,乙醇的沸点为78.4℃。
25℃时,纯环己烷的折光率为1.4264,乙醇的折光率为1.3593。
四.实验步骤:1.环己烷-乙醇溶液折光率与组成工作曲线的测定调节恒温槽温度并使其稳定,阿贝折射仪上的温度稳定在某一定值,测量环己烷-乙醇标准溶液的折光率。
为了适应季节的变化,可选择若干温度测量,一般可选25℃、30℃、35℃三个温度。
2. 无水乙醇沸点的测定将干燥的沸点仪安装好。
从侧管加入约20mL无水乙醇于蒸馏瓶内,并使传感器(温度计)浸入液体内。
冷凝管接通冷凝水。
按恒流源操作使用说明,将稳流电源调至1.8-2.0A,使加热丝将液体加热至缓慢沸腾。
液体沸腾后,待测温温度计的读数稳定后应再维持3~5min以使体系达到平衡。
在这过程中,不时将小球中凝聚的液体倾入烧瓶。
记下温度计的读数,即为无水乙醇的沸点,同时记录大气压力。
3. 环己烷沸点的测定同2步操作,测定环己烷的沸点。
完全互溶双液系气液平衡相图的绘制实验报告
完全互溶双液系气液平衡相图得绘制。
一.实验目得1。
测定常压下环己烷一乙醉二元系统得气液平衡数据,绘制沸点一组成相图。
2。
掌握双组分沸点得测定方法,通过实验进一步理解分镉原理。
3。
堂握阿贝折射仪得使用方法。
二.实验原理两种液体物质混合而成得两组分体系称为双液系、根据两组分间溶解度得不同,可分为完全互溶、部分互溶与完全不互溶三种情况、两种挥发性液体混合形成完全互溶体系时,如果该两组分得蒸气压不同,则混合物得组成与平衡时气相得组成不同。
出压力保持一定,混合物沸点与两组分得相对含量有关。
恒定压力下,真实得完全互溶双液系得气一液平衡相图(r-x),根据体系对拉乌尔定律得偏差情况,可分为3类:(1)一般偏差:混合物得沸点介于两种纯组分之间,如甲苯一苯体系,如图2 o 7(a)所示。
(2 )垠大负偏差:存在一个最小蒸汽压值,比两个纯液体得蒸汽压都小,混合物存在着最髙沸点,如盐酸-水体系,如图2.7(b)所示。
(3 )最大正偏差:存在一个战大蒸汽压值,比两个纯液体得蒸汽圧都大,混合物存在着最低沸点如图2、7 (c)) 所示。
X B(a)(b)图2。
7二组分真实液态混合物气一液平衡相图(Tn图)后两种情况为具有恒沸点得双液系相图、它们在昴低或最岛恒沸点时得气相与液相组成相同,因而不能象第一类那样通过反复蒸馆得方法而使双液系得两个组分相互分离,而只能采取精懾等方法分离出一种纯物质与另一种恒沸混合物、为了测定双液系得T—x相图,需在气一液平衡后,同时测定双液系得沸点与液相、气相得平衡组成、木实验以环己烷■乙醇为体系,该体系属于上述第三种类型,在沸点仪(如图2、8 )中蒸锚不同组成得混合物,测定其沸点及相应得气、液二相得组成, 即可作出T—x相图。
木实验中两相得成分分析均采用折光率法测定。
折光率就是物质得一个持征数值,它与物质得浓度及温度有关,因此在测虽物质得折光率时耍求温度恒定、溶液得浓度不同、组成不同,折光率也不同、因此可先配制一系列已知组成得溶液,在恒定温度下测其折光率,作岀折光率 -组成匸作曲线,便可通过测折光率得大小在匸作曲线上找出未知溶液得组三.仪器与试剂沸点仪,阿贝折射仪,调斥变斥器,超级恒温水浴,溫度测定仪,长短取样管。
物理化学 第四章 第三节 完全互溶双液体系
(2)若组分A原为缔合分子,在形成溶液 过程中A的缔合体发生解离,使A分子个数 增多,从而蒸气压增加,产生正偏差。
(3)如果二组分混合后A-B分子间能形成结合 较弱的化合物或者氢键,这就会A分子个数减 少,从而蒸气压减小,产生负偏差。 一般说来,凡是组分A发生正或负偏差,则 组分B亦发生相同类型的偏差。 当正负偏差较小时,溶液的总蒸气 压还介于两个纯组分蒸气压之间(见下图)。
在T-X图上P恒定,
f
ƒ* = K-Φ+1=1-2+1=0
即P恒定时,恒沸点的温度和组成都固定不变.
2 .恒沸物的沸点和组成随外压改变--恒沸物 不是化合物,而是混合物 同上, K=2-0-1=1 当外压P不恒定,则 f = K-Φ+2=1-2+2=1 f 不为零,则恒沸点可随外压改变而移动,这表 明恒沸物的沸点和组成可随外压改变而改变, 所以恒沸物不是化合物而是混合物.
pB p xB yB p p
若纯液体B比纯液体A易挥发,亦即pB*> pA*,则
y y
因为: 所以: 则
A B
XA XB
xA + xB=1
yA + yB=1 <
1 xB xB
1 yB yB
xB < yB
结论说明,在相同温度下有较高蒸气压的易挥发 组分B,在气相中的浓度要大于在液相中的浓度, 对于有较低蒸气压的难挥发组分A则相反,这个规 律称为柯诺瓦洛夫(konowalov)第一定律
物系点--表示体系的温度、压力及 总组成在相图中的状态点称为物系 点。 相点--表示某个相状态(如相态,组 成,T,P等)的点称为相点。
当体系处于单相区 时,体系的总组成与 该相的组成是相同的 (即物系点与相点重合 为一点D);当物系点出 现在两相区时,体系 呈两相平衡形成两个 相点,它们的组成可 由通过物系点O的水 平连结线在气、液二 线上的交点决定(如上 图M、N点所示)。
完全互溶双液系气液平衡相图的绘制。实验报告e
完全互溶双液系气液平衡相图的绘制一.实验目的1.测定常压下环己烷-乙醇二元系统的气液平衡数据,绘制沸点-组成相图。
2.掌握双组分沸点的测定方法,通过实验进一步理解分馏原理。
3.掌握阿贝折射仪的使用方法。
二.实验原理两种液体物质混合而成的两组分体系称为双液系。
根据两组分间溶解度的不同,可分为完全互溶、局部互溶和完全不互溶三种情况。
两种挥发性液体混合形成完全互溶体系时,如果该两组分的蒸气压不同,那么混合物的组成与平衡时气相的组成不同。
当压力保持一定,混合物沸点与两组分的相对含量有关。
恒定压力下,真实的完全互溶双液系的气-液平衡相图〔T -x 〕,根据体系对拉乌尔定律的偏差情况,可分为3类: 〔1(a)所示。
〔2〕最大负偏差:存在一个最小蒸汽压值,比两个纯液体的蒸汽压都小,混合物存在着最高沸点,如盐酸—(b)所示。
〔3(c)〕所示。
图2.7 二组分真实液态混合物气—液平衡相图〔T-x 图〕后两种情况为具有恒沸点的双液系相图。
它们在最低或最高恒沸点时的气相和液相组成相同,因而不能象第一类那样通过反复蒸馏的方法而使双液系的两个组分相互别离,而只能采取精馏等方法别离出一种纯物质和另一种恒沸混合物。
为了测定双液系的T -x 相图,需在气-液平衡后,同时测定双液系的沸点和液相、气相的平衡组成。
本实验以环己烷-乙醇为体系,该体系属于上述第三种类型,在沸点仪〔如图2.8〕中蒸馏不同组成的混合物,测定其沸点及相应的气、液二相的组成,即可作出T -x 相图。
本实验中两相的成分分析均采用折光率法测定。
折光率是物质的一个特征数值,它与物质的浓度及温度有关,因此在测量物质的折光率时要求温度恒定。
溶液的浓度不同、组成不同,折光率也不同。
因此可先配制一系列组成的溶液,在恒定温度下测其折光率,作出折光率-组成工作曲线,便可通过测折光率的大小在工作曲线上找出未知溶液的组成。
三.仪器与试剂t At At At Bt B t Bt / o Ct / o Ct / o Cx Bx Bx BABAABB(a)(b)(c)x 'x '沸点仪,阿贝折射仪,调压变压器,超级恒温水浴,温度测定仪,长短取样管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
具有最低恒沸点的相图可以看作 由两个简单的T-x(y)图的组合。 在组成处于恒沸点之左,精馏结果 只能得到纯B和恒沸混合物。组成 处于恒沸点之右,精馏结果只能得 到恒沸混合物和纯A 。
对于 H2O-C2H5OH 体系,若乙醇的含量小于95.57,无 论如何精馏,都得不到无水乙醇。只有加入 CaC2l ,分子筛 等吸水剂,使乙醇含量超过95.57,再精馏可得无水乙醇。
推广到任意相图的两相平衡区(液-气、液-固、固-固平 衡),杠杆规则都适用。如横坐标为重量百分数,ng、nl 改为wg、wl(摩尔数改为重量)。
三、非理想的完全互溶双液系统
正偏差 和负偏差
A:对拉乌尔定律发生正偏差 pA> pA*xA B:对拉乌尔定律亦发生正偏差 pB> pB*xA A:对拉乌尔定律发生负偏差 pA< pA*xA B:对拉乌尔定律亦发生负偏差 pB< pB*xA
三、非理想的完全互溶双液系统
3. 负偏差很大的体系
p
有最低点
p
p-液相组成线
p-气相组成线
A
xB
B
(a) p-x图
A
xB
B
(b) p-x图
负偏差很大的体系在p-x图上形成最低点。与正偏差体系 相反,体系蒸气压p低,其沸点Tb升高,在T-x图上有最高 点,称最高恒沸点。此组成混合物称最高恒沸物。
三、非理想的完全互溶双液系统
一、理想的完全互溶的双液系统
1. 理想液态混合物的蒸气压(定T下,p-x图)
p
l
pB*
p1
p2
l=g
pA*
g
A
xA
B
在对气体的恒温加压过程中,随着压力的增加,气体将逐渐液化
一、理想的完全互溶的双液系统
2. 理想液态混合物在定压下的T-x图(沸点组成图)
蒸馏、精馏一般在恒压下进行,利用T-x图可讨论蒸馏问题。 当液态混合物蒸气压等于外压时,液态混合物开始沸腾,此 时系统的温度即为该组成下液态混合物的沸点。下图为恒定p 下,T-x-y图(沸点组成图)
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
形成恒沸混合物的系统的 分馏: xB=0- x1 范围内,得纯A和最低恒沸物 xB= x1 -1范围内,得纯B和最低恒沸物
例:p下,H2O-CH3CH2OH体系, Tb最低= 78.13 0C,恒沸物组成:x乙醇 = 95.57% 若想将恒沸物中A、B分开,可通过改变外压条件来蒸馏。
三、非理想的完全互溶双液系统
2. 正偏差很大的体系
最低恒沸混合物
在T-x(y)图上,处在最低恒沸 点时的混合物称为最低恒沸混合物 (Low-boiling azeotrope)。它是 混合物而不是化合物,它的组成在 定压下有定值。改变压力,最低恒 沸点的温度也改变,它的组成也随 之改变。
属于此类的体系有:H 2 O - C 2 H 5 O H ,C H 3 O H - C 6 H 6 ,C 2H 5O-H C 6H 6 等。在标准压力下, H2O-C2H5OH 的最低恒沸点温度为 351.28K,含乙醇95.57 。
53完全互溶双液系统
二组分系统的相律
二组分相律
f=K– + 2 = 2– + 2 = 4–
最多自由度 f = 4–1=3(T、p、x)
最多相数 =4
相图 T-p-x 三维相图
p-x 通常固定一个变量,平面图
T-x
分类 气(g)–液(l)平衡系统 固(s )–液(l)平衡系统 固(s )–气(g)平衡系统
n总 x A
nl x1
ng x2
物系点中 分配在液相 分配在气相
A的 总 量 A的 量 A的 量
(nl ng)x A nl x1 ng x2
n( l x A x1) ng(x2 x A)
nl CD ng CE
此等式称杠杆规则
三、非理想的完全互溶双液系统
1. 正负偏差不大的体系
气液相图与理想液态混合物气液相图基本类似
p
p
T
A
xB
(a) p-x图
T-x
BA
xB
BA
xB
B
(b) p-x-y图
(c) T-x-y图
三、非理想的完全互溶双液系统
2. 正偏差很大的体系 有最高点
p-液相组成线
p
p
p-气相组成线
A
xB
B
(a) p-x图
A
xB
B
(b) p-x-y图
pA、pB偏离拉乌尔定律都很大,p-x图上形成最高点。
三、非理想的完全互溶双液系统
2. 正偏差很大的体系 T
g
T-y
lg
T-y
lg
(c) T-x-y图
l
l
A
x1
B
xB
在p-x图上有最高点,在T-x图上就有最低点,称最低恒沸点。 最低恒沸点对应的组成称最低恒沸组成。在此组成下蒸馏双 液系:yA = xA , yB= xB,A与B达不到分离目的,类似蒸馏 具有恒定沸点的纯物质,所以此点上混合物称恒沸混合物。
p
T
p 理想活塞
加热器
TA*
t3 x3 t2 t1
y3 x2
x1 液相
A
xB
气相
y2 y1 TB* B
在T-x图上,气相线在液相线之上。混合物的沸点不是单 一的温度点,而是沸程.
一、理想的完全互溶的双液系统
2. 理想液态混合物在定压下的T-x图(沸点pB组*(成T图)) p
p
x1
x2
x3 x4
A
B
T
Tb(A) x3 x2
液相
A
气相
y3 gl y2 x1
xB
y1
Tb(B) B
一、理想的完全互溶的双液系统
2. 理想液态混合物在定压下的T-x图(沸点组成图)
T
气相
Tb(A) x3 x2
液相
y3 gl
x1
A
xBБайду номын сангаас
y2 y1
Tb(B) B
理想液态混合物的T-x图
一、理想的完全互溶的双液系统
2. 理想液态混合物在定压下的T-x图(沸点组成图)
3. 负偏差很大的体系
三、非理想的完全互溶双液系统
T x1
x2
x3 x4
A
xB
B
一、理想的完全互溶的双液系统
T-p-x图
T
液 pA*
TA*
液
A
xB
pB* 气
气 气
TB* B
一、理想的完全互溶的双液系统
T-p-x图
二、杠杆规则
T g
TB*
DC E
l TA*
B
x1
xA x2
A
xA
物系点:系统物质的总组成点(不管相的存在状态)
二、杠杆规则
假设某压力下液态混合物沸腾时气液平衡的物系点为C点,那 么有: n总 nA nB nl ng