基于stm32的温度控制
单片机基于stm32的数字温度计设计
单片机基于stm32的数字温度计设计
数字温度计是一种用于测量环境温度的设备。
在这个问题中,我们将使用基于STM32的单片机来设计一个数字温度计。
为了设计这个温度计,我们需要以下组件和步骤:
1. STM32单片机:STM32是一种基于ARM架构的单片机,它具有强大的计算能力和丰富的外设接口,适用于各种应用。
2. 温度传感器:我们需要选择一种适合的温度传感器,常用的有数字式温度传感器,如DS18B20。
3. 连接电路:将温度传感器连接到STM32单片机。
这通常需要使用一些电子元件,如电阻、电容和连接线等来建立电路连接。
4. 编程:使用适合STM32单片机的编程语言,如C语言,来编写程序。
程序将读取温度传感器的数据,并将其转换为数字值。
5. 温度显示:将温度数据显示在合适的显示设备上,如LCD显示屏或七段数码管。
可以使用STM32单片机的GPIO口控制这些显示设备。
6. 数据处理:可以对温度数据进行进一步处理,如计算平均温度、设定警报阈值等。
以上是一个基本的数字温度计设计的流程。
具体的实现细节和代码编写可能需要根据具体的硬件和软件平台进行调整。
基于STM32单片机的温度控制系统设计
基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
基于STM32和增量PID算法的温度控制系统设计说明书
5th International Conference on Advanced Materials and Computer Science (ICAMCS 2016)The constant temperature control system design based on STM32 andPID algorithmZhao Xuyang1,a and Yang Hao2,b1School of Zhao Xuyang,,China Jiliang University,Hangzhou 310000,China2School of Yang Hao,China Jiliang University,Hangzhou 310000,Chinaa ,b****************.cnKeywords: PID Algorithm;STM32;semiconductor temperature regulator;constant temperatureAbstract. Time—varying, nonlinear and multivariable coupling are characteristics of temperature. In the temperature control process, the detected temperature is often lags behind the regulation of temperature, which will cause the phenomenon such as the temperature of the controlling system overshoot and temperature oscillation. Temperature control is proposed based on incremental PID algorithm model in this paper, the system uses low-power STM32 as the main chip, DS18B20 digital temperature sensor and semiconductor temperature regulator. Experimental results show that the system can effectively maintain the temperature of the system constant.IntroductionIn natural environment, the system will generate a heat exchange which is difficult to control with the outside world, and produce unpredictable interference.During this situation it will be difficult to achieve in precise temperature controlling. When performing high-precision temperature control, temperature tends to produce overshoot phenomenon [1].Temperature control system with a lag, nonlinear and time-varying characteristics, can not establish a precise mathematical model, therefore, the use of conventional linear control theory can not achieve satisfactory control effect. semiconductor temperature controller working condition have a relationship with heat conditions and the environment factors. its work process is a non-steady state process, it needs to be addressed precisely controlled .PID control theory has a characteristic of convenient parameter setting, flexible structural change, robust and easy to implement [1,2]. the system design using incremental PID algorithm can not only solve the above problems, but also in the unsupervised, for a long time temperature will be automatically collected, automatic controlling of the semiconductor temperature controller achieves heating or cooling function, the system temperature will always be maintained constantly.Using a master chip STM32 and digital temperature sensor DS18B20 design a constant temperature system, the advantages consist of anti-interference digital signal, high sensitivity, fast response, and reasonable controlling of semiconductor temperature regulator,through the whole system design can effectively realize a special case temperature stable. within the setting temperature model of a small area in the design of a system with the column a special case. the result shows that the temperature controlling system of constant small area with very good results after analysis.System hardware designHardware System features modular designDS18B20 digital temperature sensor is placed on both sides of a special case, the datas are directly send to the master chip STM32 so that microchip could obtain temperature value, According to the requirements of the system setting temperature judgment mainly adopts the cooling method in the operation of the semiconductor temperature regulator in regulating or adjust temperature with heating methods . adjusting the way through the PID control algorithm of thetemperature read by the line processing, while the master semiconductor chip STM32 control thermostat-off, so that a special case temperature maintained at a stetted temperature. this system without manual monitoring, and data can be collected via the RS232 serial port and then the observed system temperature curve plotted, by autonomous control system effectively maintained aThe hardware system module functional designSystem functional hardware modules include temperature acquisition module, data display and export module, fan power switch module, semiconductor temperature controller module five modules.Temperature acquisition moduleTemperature acquisition module uses a digital temperature sensor DS18B20, the sensor has high measurement accuracy, the output signal is digital with anti-jamming performance, no front-end data processing module, direct access to the STM32's I / O port , the master chip can directly read data.Data display and export moduleTaking the versatility of the system into account, used in the design is one of the communication interfaces RS232 computer data communication channel, data communication is actually using a USB data format. In this communication stepper can get higher data transfer speeds, true plug and play, it can also make it easy to connect the communication between different devices.When data is displayed using USB to serial cable to the PC, using serial debugging assistant can easily read the temperature data acquisition, and also can import the data into a computer terminal for data storage. Therefore, the use of a standard interface technology can effectively solve the problem of inconsistent communication protocols [4].Fan power switch moduleWhen the semiconductor thermostat is in the cooling operation state, it is important to timely dissipate the heat, otherwise it will make semiconductor refrigeration unnormal. According to the determination of the fan work condition, by the cathode of high and low level control fan switch, the anode is normal power supply connection.This module is controlled by the master chip I / O port output level to control the fan switch purposes.Semiconductor temperature regulator moduleThe core of the temperature control system is semiconductor temperature regulator. The semiconductor temperature regulator reliability is relatively high, while the power supply terminal through the access of different polarity power supply, it can absorb heat and release heat so as to achieve the effect of refrigeration and heating. using this module is characterized by the use of a device can replace separate heating and cooling systems. precise temperature control thermostat semiconductor characteristics to facilitate the composition of automated control systems [1,2]. Figure 2 is a semiconductor temperature control circuit diagram of a switching regulator.Figure 2 Diagram of semiconductor thermostat switch control circuitSoftware system and algorithm designThe system software design process includes temperature digital signal acquisition, temperature display、PID algorithm temperature control 、temperature feedback components. The main part of the PID control algorithm is changing the value of the ambient temperature and after the feedback the temperature regulation value, it ultimately achieve the effect of Steady-State accuracy.PID algorithm designPID algorithm has a simple structure, the robust performance is good, high reliability, easy parameter setting features .P, I, D control law have their own separate areas, performing linear combination constitutes control amount, then the control amount will control objects [5,6].In the control system, a system based on real-time temperature and the set threshold value increment controls semiconductor temperature regulator operation. Therefore, the output portion of the controller is required to control the amount of incremental, in the design of the system is used incremental PID algorithm [7,8]. equation for the incremental PID algorithm is as follows.△u = A • e (k) + B •e (k-1) + C • e (k-2) (1) Where: △u increment control quantity; ratio of A, B, C as PID control, differentiation, integration coefficients; e (k), e (k-1), e (k-2) before and after the three measurements the temperature difference .Precision of the digital temperature sensor DS18B20 can reach ± 0.5 ℃, when setting the thermostat system temperature threshold, typically the change of temperature thermostat system is set within ± 0.5 ℃, partly because the system itself and the temperature sensor error performance limits; on the other hand with a time-varying temperature, constant temperature control need to constantly switch control semiconductor thermostat and fan control to a large extent, this will reduce the life of the instrument, and even burn the instrument.The main process of PID algorithm controller is parameter tuning, tuning in essence is through changing the regulator parameters to match the characteristics of properties and processes in order to improve the dynamic and static index system, so as to achieve the best control effect parameters. in tuning process, the first controller is as a pure proportional controller, form a closed loop, changing the coefficients, so that the coefficient corresponding to the input reaches a critical state (oscillation amplitude). Last in turn introduced differential and integral parameters according to attenuation 1 / 4 obtained, this attenuation can take into account the stability and rapidity.The result of the experiment and analysisReal entire test system shown in Figure 3, including the serial communication section, column oven, control panel and temperature control systems DS18B20, fans, and other semiconductor temperature regulator.Figure 3 System schematic diagramFirst obtaining room temperature, setting the thermostat system defined temperature less than room temperature, then connecting to the PC serial display interface, running the system, it will be observed that the fan is running, the positive power semiconductor thermostat is in cooling state, when the temperature is close to the serial display system the lower limit set temperature, the fan and the temperature of the semiconductor regulators are turned off, followed by heat exchange with the outside of the system will cause the temperature to rise, when the temperature rises to the set temperature limit, the fan is turning and positive power semiconductor in the temperature regulator cooling state, repeating the cooling state maintains the temperature at the set range. Column Compartment closed box is a small area, gathering room temperature is 25.4 ℃, the set temperature for the system is 20 ℃, when the permissible error set upper and lower threshold values were 20.5 ℃ and 19.5 ℃, the temperature control results shown in Figure 4Figure 4 Diagram of temperature controlling effectThe collected data of constant temperature system threshold below room temperature is as table 1. Table 1 Thermostatic system threshold below room temperature data collection formTime Left of box Middle of box Right of box0min 25.2℃ 25.4℃ 25.4℃5min 21.3℃ 20.6℃ 20.9℃10min 19.8℃ 20.1℃ 19.6℃ 20.3℃ 19.8℃ 20.1℃column oven PowersupplyDS18B20theoretical temperature, the blue curve represents the set temperature threshold. The data of Table 1 is collected at the different parts of the column oven temperature on a fixed time interval ,by this set of data can provide data support for the precise control of various parts of the column oven . variation tendency from the red curve show the actual temperature drop is divided into stages and temperature stabilization phase, after 225 seconds the system enter into the temperature stabilization phase. under the control of the incremental PID algorithm, the value of a small area of the temperature and the temperature of the theory has a good agreement, because of the exchange principle of the temperature of the nature result that the actual temperature are some errors in the data, but in the end the system could be stabilized, error is within a controllable range .by the ratio of the critical ratio method tuning PID proportion P, the integral I, differential D parameters, ideal set of data is debugged within surplus overshoot, it will be saw that the overshoot of the actual temperature curve is reduced to 17.5 % .this control process reduces the overshoot and maintain a constant temperature system efficiently and quickly.SummarySmall regional integrated climate control system is made up of a dual data collection, synchronous dual refrigeration heating control systems and incremental PID control algorithm. The algorithm combined with semiconductor temperature controller provides a set of high-precision temperature control system. solutions can effectively reduce outside interference, maintaining the temperature of the entire area of constant temperature changes in real-time monitoring system. this system temperature control effect is obvious, the structure has small size, and is suitable for most stringent temperature requirements systems, as well as the instrument cooling system, can effectively improve the instrument of practical life.AcknowledgmentsThanks to the teacher's guidance and let me join the related projects include science and technology plan projects in Zhejiang province (2015C33009), science and technology plan projects in Jiaxing (2015 AY11008)References[1] Wang Hongjie,Du Jialian,Chen Jincan,Optimization on the Performa-nce Characteristics of a Semiconductor Refrigeration System, J. R-efrigeration,1999,18(4):54-58.[2]Fan Hanbai,Xie hanhua,Semiconductor Refrigerator Temperature Con-trol System with High-precision Based on Thyristor Phase-shifted Control, J. Instrument Technique and Sensor,2012,5:103-105.[3] Cai Jinping,Li Li,The Small Area Temperature Control Model Based on Improved PID Algorithm Simulat, J. Computer Simulation,2015,32(6) :237-240.[4] Ge Leijiao,Mao Yizhi,Li Qi et al,RS232 Serial Interface Communic-ation with the C Language, J. Journal of Hebei University of Tech-nology,2008,37(6):11-16.[5] Xiao Wenjian,Li yongke,Design of Intelligent Vehicle Based on In-cremental PID Control Algorithm, J. Information technology,2012, 10:125-127.[6] Yan Xiaozhao,Zhang Xingguo,Application of Increasing PID Contro-lling Method in Temperature Controlling System, J. Journal of Nan-tong University,2006,5(4):48-51.[7] Wang Shuyan,Shi Yu,Feng Zhongxu et al ,A Method for Controlling a Loading System Based on a Fuzzy PID Controller, J. Mechanical S-cience and Technology for Aerospace Engineering,2011,30(1):166-169.[8] LI Fengman.,The Research of Controlling Arithmetic for Figure PID, J. Journal of Liaoning University,2005,32(4):367-370.。
基于stm32电烤炉控制电路设计
基于stm32电烤炉控制电路设计摘要:温度控制是电烤炉设计的重要内容,尤其是对于开放式电烤炉,如何实现精确、快速温度控制是电烤炉控制系统设计的重点和难点,本文对电烤炉的精确、快速温度控制问题进行了研究,基于stm32单片机,设计了完整的实现方案与策略,并制作了印刷电路板,对各功能模块功能进行了验证,达到了预期的控制效果。
关键词:温度控制;可控硅控制;固态继电器控制;电路设计1 电烤炉温度控制方案现状食品烤炉是目前烘焙食品加工必备的设备,从热源来分类,食品烤炉可以分为明火烤炉和电烤炉。
电烤炉是指利用电热管作为热源的烤炉,有普通电烤炉、微波烤炉和远红外烤炉等[1]。
电烤炉控制的重点是对电加热管发热状态的控制,当前常见的家用电烤炉控制方式有机械式温控开关控制、继电器控制、可控硅控制等。
图1 机械式温控开关及其应用原理图其中机械式温控开关如图1所示,这种控制方式比较简单,图中接线端子用于连接总开关和电热管,调节旋钮可以用于设定温度上限,当温度传感器检测到温度超过所设定上限时,温控开关动作,断开加热管的电源;而随着热量的流失,当温度传感器检测到温度低于设定温度一定范围时,温控开关恢复闭合状态,进而再次对加热管进行通电加热,从而实现温度控制。
该控制方案的优点是成本低、结构简单,缺点是响应速度慢、控制惯性大、精度低,难以实现精确控制[2]。
继电器控制是指使用继电器开关代替机械式温控开关来控制电热管的一种控制方式。
这种方式要实现恒温控制一般需要配合温度传感器和控制器。
与机械式温控开关相比,继电器控制更加灵活,响应速度受程序设定,可以更快,但其由于只能通过控制电热管的通电和断电两种状态来实现对温度的调节,因此其也有控制惯性大、精度较低的缺点。
可控硅控制是指使用可控硅作为开关控制电热管发热状态的一种控制方式。
与机械式温控开关和继电器不同的是,其可以对流过其中的电流大小进行控制,从而可以精确控制发热管发热量的大小。
2 开关与控制电路实现方案2.1 开关方案选定通过对以上三种控制开关的优缺点进行分析,本文选用了固态继电器与可控硅相结合的开关方案。
基于stm32的控温水壶的设计
基于stm32的控温水壶的设计摘要:本文设计了一款基于STM32单片机的控温水壶,该设计采用STM32单片机作为主控制器,用于获取温度信息进行处理,采用增量式PID控制水温,通过液晶屏显示预设温度和当前温度。
用户可以利用按键或者蓝牙来完成温度范围的设置。
当水已烧开或干烧时,蜂鸣器发出响声,提示用户。
经实验测试,温度的控制误差在0.4%左右,恒温效果可以长时间保持,满足用户多样的饮水需求。
关键词:STM32;控温水壶;增量式PIDDesign of a thermostat based on STM32WEI Chuan-ke(Wuzhou University Guangxi 543002,China )Abstract:This paper designs a temperature control kettle based on STM32 microcomputer, which uses STM32 microcomputer as the main controller to obtain temperature information for processing, adopts incremental PID to control water temperature, and displays the preset temperature and current temperature through the LCD screen. The user can set the temperature range using the button or Bluetooth. When the water has boiled or dried up, the buzzer sounds to alert the user. After experimental tests, the temperature control error is about 0.4%, and the constant temperature effect can be maintained for a long time to meet the perse drinking water needs of users.Keywords: STM32;temperature control kettle; incremental PID0引言近年来,随着生活水平的提高和科学技术的不断发展,电热水壶进入了每家每户,成为了我们生活中随处可见的家用电器。
基于stm32温控风扇系统实践总结
基于stm32温控风扇系统实践总结在基于STM32温控风扇系统的实践中,我收获了很多经验和教训。
这个项目的主要目标是根据环境温度自动调节风扇的转速,以实现高效且静音的散热效果。
以下是我在实践中的总结:首先,我学会了如何使用STM32开发板和相应的软件工具。
我学习了如何使用STM32CubeMX来配置GPIO、定时器和中断等功能,以及如何使用Keil MDK进行代码编译和调试。
这些工具对于开发嵌入式系统非常重要,因此熟练掌握它们很有必要。
其次,我深入了解了PWM技术的原理和应用。
PWM(脉冲宽度调制)是一种通过控制电压的占空比来控制电机转速的方法。
我使用STM32的定时器功能生成PWM信号,并根据环境温度的变化调整占空比。
这样,当温度较高时,风扇转速会增加,从而提供更好的散热效果,当温度较低时,风扇转速会减小,从而降低功耗和噪音。
另外,我遇到了一些问题,例如传感器精度和噪声滤波。
在实践中,我发现温度传感器的精度对于系统的稳定性至关重要。
我尝试了不同类型的传感器,并通过校准和滤波算法来提高精度。
此外,由于环境中可能存在的噪声和干扰,我还需要使用滤波器来平滑传感器数据,以获得更准确的温度值。
此外,考虑到电路的稳定性和防止温度传感器故障,我还添加了一些保护功能。
例如,我设置了温度上限和下限,当温度超过上限或低于下限时,系统会自动关闭风扇并发出警报。
这能够保护电路和其他电子设备免受过高的温度损害。
最后,我还了解了如何使用串口通信将系统连接到上位机。
通过串口通信,我可以通过上位机监视和控制温控风扇系统。
这种连接方式为系统的调试和监控提供了便捷性。
总的来说,基于STM32的温控风扇系统的实践使我掌握了嵌入式系统开发的基本技能,并且对温控系统设计和实现有了更深入的理解。
通过这个项目,我还发现了一些问题并找到了解决方案,这对我的技术积累和职业发展都具有重要意义。
“基于单片机STM32的锅炉水温控制系统的设计与实现”
在单 片机 作用 下 的工作 原理 。基 于单 片机 的温度 控制 系统设
计 不仅 大大 提升 了温度 测量 的准 确性 ,同时也使 得温 度采 样
的过程 可 以通过信 号过 滤 的形式 得 以呈 现 ,在通 过数 字滤 波 信 号 的传输 将最 终 的温度 指数展 示到 L E D 显 示屏 上 。这时 我 们 可 以对 比这一 时段 的温度值 与 之前设 定好 的温 度值 ,通 过 积 分分 离 的方式来 对其 中的偏差 进行 准确计 算 ,这就 得到 了 最终 的温 度输 出控制 值 。这一控 制量 的数 值还 可用 于对导 通 时 间的计 算方 面 ,通 过对 加热 功率 的核算 来实 现合理 调节 温
AC ADE MI C R E S E AR C H 学术研 究
水温 “ 基于单片t 1 [ S T M 3 2 的锅炉
控制系统的设计与实现"
◆连 迅
摘 要 :锅 炉是 一种 广泛应 用 于化 工、 冶金 、 医药等领 域 的重要 设备 ,锅 炉水 温的控 制 与调 节 对 于 确 保锅 炉 正常 工作有 着至 关重要 的意 义 。基 于单 片机 的 温度控 制 系统相较 于数 字调 节仪 表有 着更 高的 灵 活性和 稳定性 。本 文就基 于单片机S T M3 2 的锅 炉水温控 制 系统设计进 行 了细致分析 。 关键 词 :单 片机 ;温度控 制 系统 ;原理 ; 系统设计
角 度分 析 , 基 于单 片 机的 温度控 制 系统有 着更 强 的扩展性 ,
这对于生产效率而言也是极其重要的保障。
参考 文献
脚
[ 1 ] 刘攀 , 俞 杰. 基 于 单 片机 的 温度 测 控 系统 U ] . 兰 州交 通 大 学学
基于STM32智能温控箱控制系统的设计
基于STM32智能温控箱控制系统的设计智能温控箱控制系统是一种常见的应用于工业控制领域的智能化控制系统。
本文基于STM32单片机,对智能温控箱控制系统进行设计和实现。
一、系统需求分析智能温控箱控制系统需要实现以下功能:1.对温度进行精确测量和控制;2.实时监测温度,并显示在控制面板上;3.能够根据设定的温度进行自动控制,实现温度稳定在设定值附近;4.通过人机界面(HMI)使用者可以对温度设定值、报警温度等进行设置和调整;5.当温度超过设定的报警温度时,能够及时报警;6.提供通讯接口,与上位机或其他设备进行通信,实现远程监控和控制。
二、系统硬件设计1.采用STM32单片机作为主控芯片,具有强大的计算和处理能力;2.温度传感器使用DS18B20数字温度传感器,可以实现对温度的高精度测量;3.控制面板采用LCD显示屏,用于显示温度和参数设置,并提供操作按键;4.报警部分使用蜂鸣器进行报警,并可以通过控制面板上的开关进行开启或关闭。
三、系统软件设计1.硬件初始化:初始化STM32芯片、温度传感器和控制面板;2.温度测量:通过DS18B20传感器读取温度值,并进行数字转换,得到实际温度值;3.温度控制:根据设定的温度值进行控制,通过PID算法控制温度稳定在设定范围内;4.参数设置:通过控制面板上的键盘输入,可以设置温度设定值、报警温度等参数;5.报警检测:检测当前温度是否超过设定的报警温度,若超过则触发报警;6.通讯接口:通过串口或其他通讯方式,实现与上位机或其他设备的数据传输和控制。
四、系统测试和验证搭建好硬件系统后,使用示波器等设备对系统进行测试和验证。
首先测试温度测量功能,将温度传感器放置在不同温度环境下,通过控制面板上的显示屏观察温度值是否准确。
然后测试温度控制功能,设定不同的温度值,观察系统是否能够控制温度稳定在设定范围内。
接着测试参数设置功能,通过控制面板上的键盘输入不同的参数值,并观察系统是否能够正确设置参数。
基于stm32的智能温湿度控制系统的设计与实现主要内容
基于stm32的智能温湿度控制系统的设计与实现主要内容基于STM32的智能温湿度控制系统的设计与实现主要涉及以下几个关键部分:1. 硬件设计:选择STM32作为主控制器,因为它具有强大的处理能力和丰富的外设接口。
温度传感器:例如DS18B20或LM35,用于测量环境温度。
湿度传感器:例如DHT11或SHT20,用于测量环境湿度。
微控制器与传感器的接口设计。
可能的输出设备:如LED、LCD或蜂鸣器。
电源管理:为系统提供稳定的电源。
2. 软件设计:使用C语言为STM32编写代码。
驱动程序:为传感器和输出设备编写驱动程序。
主程序:管理系统的整体运行,包括数据采集、处理和输出控制。
通信协议:如果系统需要与其他设备或网络通信,应实现相应的通信协议。
3. 数据处理:读取传感器数据并进行必要的处理。
根据温度和湿度设定值,决定是否进行控制动作。
4. 控制策略:根据采集的温度和湿度值,决定如何调整环境(例如,通过加热器、风扇或湿度发生器)。
控制策略可以根据应用的需要进行调整。
5. 系统测试与优化:在实际环境中测试系统的性能。
根据测试结果进行必要的优化和调整。
6. 安全与稳定性考虑:考虑系统的安全性,防止过热、过湿或其他可能的故障情况。
实现故障检测和安全关闭机制。
7. 用户界面与交互:如果需要,设计用户界面(如LCD显示、图形用户界面或手机APP)。
允许用户设置温度和湿度的阈值。
8. 系统集成与调试:将所有硬件和软件组件集成到一起。
进行系统调试,确保所有功能正常运行。
9. 文档与项目报告:编写详细的项目文档,包括设计说明、电路图、软件代码注释等。
编写项目报告,总结实现过程和结果。
10. 可能的扩展与改进:根据应用需求,添加更多的传感器或执行器。
使用WiFi或蓝牙技术实现远程控制。
集成AI或机器学习算法以优化控制策略。
基于STM32的智能温湿度控制系统是一个综合性的项目,涉及多个领域的知识和技术。
在设计过程中,需要综合考虑硬件、软件、传感器选择和控制策略等多个方面,以确保系统的稳定性和性能。
基于stm32的温度控制毕业论文
摘要当前快速成形(RP)技术领域,基于喷射技术的“新一代RP技术”已经取代基于激光技术的“传统的RP技术”成为了主流;快速制造的概念已经提出并得到了广泛地使用。
熔融沉积成型(FDM)就是当前使用最广泛的一种基于喷射技术的RP技术。
本文主要对FDM温度控制系统进行了深入的分析和研究。
温度测控在食品卫生、医疗化工等工业领域具有广泛的应用。
随着传感器技术、微电子技术、单片机技术的不断发展,为智能温度测控系统测控功能的完善、测控精度的提高和抗干扰能力的增强等提供了条件。
本系统采用的STM32F103C8T6单片机是一高性能的32位机,具有丰富的硬件资源和非常强的抗干扰能力,特别适合构成智能测控仪表和工业测控系统。
本系统对STM32F103C8T6单片机硬件资源进行了开发,采用K型热敏电阻实现对温度信号的检测,充分利用单片机的硬件资源,以非常小的硬件投入,实现了对温度信号的精确检测与控制。
文中首先阐述了温度控制的必要性,温度是工业对象中的主要被控参数之一,在冶金、化工、机械、食品等各类工业中,广泛使用各种加热炉、烘箱、恒温箱等,它们均需对温度进行控制,成型室及喷头温度对成型件精度都有很大影响。
然后详细讲解了所设计的可控硅调功温度控制系统,系统采用STM32F103C8T6单片机作微控制器构建数字温度控制器,调节双向可控硅的导通角,控制电压波形,实现负载两端有效电压可变,以控制加热棒的加热功率,使温度保持在设定值。
系统主要包括:数据的采集,处理,输出,系统和上位机的通讯,人机交互部分。
该系统成本低,精度高,实现方便。
该系统加热器温度控制采用模糊PID控制。
模糊PID控制的采用能够在控制过程中根据预先设定好的控制规律不停地自动调整控制量以使被控系统朝着设定的平衡状态过渡。
关键词:熔融沉积成型(FDM);STM32;温度控制;TCA785AbstractIn the present field of Rapid Prototyping,the "New RP Technology" based on jetting technology is replacing the "Conventional RP Technology" based on laser technology as the mainstream of the Rapid Prototyping Technology.Fused Deposition Modeling(FDM) is the most popular Rapid Prototyping technology based on jetting technology.This paper mainly does research deeply on the temperature control system of FDM system.Temperature controlling is widely to food,sanitation,medical treatment,chemistry and industry.Along with the development of sensor technology,micro-electronics technology andsinglechip technolog,brainpower temperature controlling system is perfected,precision of measurement and controlling is enhanced and the ability of anti-jamming is swelled.Singlechip STM32F103C8T6 in this paper is a high-powered 32-bit chip.It has plenty of hardware resource and strong ability foranti-jamming.It is specially suitable for making brainpower measurement instrumentand industry controlling system.The hardware resource of singlechip STM32F103C8T6 is fully exploited in this paper.The tool of temperature test is thermocouple of K style.This system realizes precise measurement and controlling of temperature signal with a little hardware resource.First,the need of temperature control is expounded.Temperature is a main controlparameter in industrial object.Various calefaction stoves,ovens and constant temperature boxes which all need control temperature are widely used in many industry such as metallurgy,chemistry,mechanism and foodstuff.Moulding room and spout temperatureawfully affect the precision of moulding pieces.Then the temperature control systemusing controllable silicon is explain in detail.This system adopts singlechip STM32F103C8T6 which acts as microcontroller.It can regulate the angle of double-direction controllable silicon and control voltage wave shape.So the virtual voltage of load can be changed and the calefaction power of calefaction stick can be controlled.Therefore the temperature canretain the enactmentvalue.This system mainly consists of collection of data,disposal,output,communication of system and computer and communication of human and machine.This system has some advantages such as low cost,high precision andconvenience realization.This system adopts blury PID control.The adoption of blury PID control canceaselessly autoregulates basing initialized control rule,thus the controlled system willmove to the initialized balance state.Key words:Fused Deposition Modeling, STM32, temperature control, TCA785毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
基于STM32单片机PID温控学习系统设计
• 155•本设计采用STM32F103单片机为主控芯片,采用数字型温度传感器DS18B20为温度检测器,采用3.5寸触摸液晶屏显示温度变化曲线以及PID相关参数设置,采用半导体制冷片对散热片加热,散热风扇对散热片散热,系统会根据所设参数控制半导体制冷片和散热风扇的运作。
前言:在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID 控制,又称PID 调节。
它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
温度控制在生活以及工业制造中都发挥着必不可少的作用,工业需要温度测控系统来监控温度,生活中也离不开温度测控系统为我们及时提供温度信息。
虽然只是一个简单的温度控制,却包含了许多知识的运用。
PID 实指“比例proportional ”、“积分integral ”、“微分derivative ”,这三项构成PID 基本要素。
P 代表控制系统的响应速度,越大,响应越快;I 用来积累过去时间内的误差,修正P 无法达到的期望姿态值(静差);D 加强对机体变化的快速响应。
对P 有抑制作用。
PID 各参数的整定需要综合考虑控制系统的各个方面,才能达到最佳效果。
1.总体方案设计图1 系统总体功能框图系统主要功能:(1)触摸液晶屏一方面用于温度恒定值、散热系数、PID 相关参数、温度曲线显示精度的输入;另一方面用于显示所设置的参数、被加热元件散热片的温度随时间变化曲线、当前时间等。
(2)单片机根据设置的参数通过12V 驱动模块控制半导体制冷片实际功率,达到控制半导体制冷片散热片的加热快慢。
(3)单片机根据设置的散热系数通过12V 驱动模块控制散热风扇转速,从而模拟不同情形的降温速度。
(4)单片机通过串口实时发送温度、半导体制冷片加热系数、散热风扇转速。
便于上位机对数据保存和处理。
2.硬件部分2.1 主控芯片单片机作为整个系统的核心部件,决定整个系统的性能。
单片机需要完成的主要功能有:(1)读取温度传感器所采集的温度值。
基于STM32单片机的智能温度控制系统的设计
0 引言温度是表征物体冷热程度的物理量,是工农业生产过程中一个普遍应用的参数。
因此,温度控制是提高生产效率和产品质量的重要保证。
温度控制的发展引入单片机后,可以降低对某些硬件电路的要求,实现对温度的精确控制。
本文设计的温度控制系统主要目标是实现温度的设定值显示、实际值实时测量及显示,通过单片机连接的温度调节装置由软件与硬件电路配合来实现温度实时控制;显示可由软件控制在LCD1602中实现;比较采集温度与设定阈值的大小,然后进行循环控制调控,做出降温或升温处理;同时也可根据判断发出警报,用以提高系统的安全性[1-5]。
图1 系统总体框图 1 系统总体设计本设计以STM32F103RTC6单片机为核心对温度进行控制,使被控对象的温度应稳定在指定数值上,允许有1℃的误差,按键输入设定温度值,LCD1602显示实际温度值和设定温度值。
2 系统硬件设计图2 系统硬件电路图display , PTC heater and semiconductor cooler, and realizes the temperature control on the hardware equipment of the self-made analog small constant temperature box� Experimental results show that the design has the advantages of convenient operation, accurate temperature control and intelligence�Keywords: Temperature control ; STM32;Intelligent基金项目:湖北省教育厅科学技术研究项目(B2018448)。
之间有一个点距的间隔,两行之间也有间隔,起到了字符间距和行间距的作用。
由于LCD1602所需电压为5V,因此它与3.3V 的单片机连接需要将STM32设置为开漏输出,且连接5V 的上拉电阻提高电平。
基于STM32单片机的智能温度控制系统的设计
01 引言
03 系统设计
目录
02 研究现状 04 (请在此处插入系统
整体架构设计图)
目录
05 实验结果
07 结论与展望
06
(请在此处插入实验 数据记录表)
基于STM32单片机的智能温度控 制系统设计
引言
随着科技的不断发展,智能化和精准化成为现代控制系统的两大发展趋势。其 中,智能温度控制系统在工业、农业、医疗等领域具有广泛的应用前景。 STM32单片机作为一种先进的微控制器,具有处理能力强、功耗低、集成度高 等特点,适用于各种控制系统的开发。因此,本次演示旨在基于STM32单片机 设计一种智能温度控制系统,以提高温度控制的精度和稳定性。
实验结果
为验证本系统的性能,我们进行了以下实验:
1、实验设计
选用一款典型的目标物体,设定不同期望温度值,通过本系统对其进行智能温 度控制,记录实验数据。
2、实验结果及分析
下表为实验数据记录表,展示了不同期望温度值下系统的实际控制精度和稳定 性:
(请在此处插入实验数据记录表)
通过分析实验数据,我们发现本系统在智能温度控制方面具有较高的精度和稳 定性,能够满足大多数应用场景的需求。
结论与展望
本次演示成功设计了一种基于STM32单片机的智能温度控制系统,实现了对环 境温度的实时监测与精确控制。通过实验验证,本系统在智能温度控制方面具 有一定的优势和创新点,如高精度、低功耗、良好的稳定性等。然而,系统仍 存在一些不足之处,需在后续研究中继续优化和改进。
展望未来,我们将深入研究先进的控制算法和其他传感技术,以提高系统的性 能和适应各种复杂环境的能力。我们将拓展系统的应用领域,如医疗、农业等, 为推动智能温度控制技术的发展贡献力量。
《2024年基于Stm32的温湿度检测系统》范文
《基于Stm32的温湿度检测系统》篇一一、引言随着科技的进步,智能家居系统的出现与发展成为了我们日常生活的一部分。
在这个系统中,温湿度检测是非常重要的环节,尤其在智能家居和物联网应用中,准确的温湿度数据可以为我们的生活提供更多便利和舒适度。
STM32微控制器作为高性能、低功耗的处理器,其强大的计算能力和灵活性为温湿度检测系统提供了可能。
本文将探讨基于STM32的温湿度检测系统的设计原理和应用实践。
二、系统概述基于STM32的温湿度检测系统主要包括硬件和软件两个部分。
硬件部分主要由STM32微控制器、温湿度传感器以及电源模块等组成;软件部分则包括系统架构设计、数据处理以及用户界面等。
三、硬件设计1. STM32微控制器:作为系统的核心,STM32微控制器负责接收和处理来自温湿度传感器的数据,同时负责与用户界面进行交互。
2. 温湿度传感器:选用高精度的温湿度传感器,如DHT11或DHT22,将温度和湿度的数据转换成电信号,便于STM32微控制器进行读取和处理。
3. 电源模块:为系统提供稳定的电源,包括锂电池或外接电源等。
四、软件设计1. 系统架构设计:采用模块化设计思想,将系统分为数据采集模块、数据处理模块、用户界面模块等。
每个模块具有独立的功能,便于维护和升级。
2. 数据处理:STM32微控制器通过与温湿度传感器进行通信,读取温度和湿度的原始数据。
然后通过算法处理,将原始数据转换成可用的温度和湿度值。
3. 用户界面:通过液晶显示屏或手机APP等方式,将温度和湿度的数据展示给用户。
同时,用户还可以通过用户界面对系统进行设置和控制。
五、系统实现1. 温湿度传感器的选择与配置:根据实际需求选择合适的温湿度传感器,并配置相应的通信接口。
2. STM32微控制器的编程:使用C语言或汇编语言编写程序,实现数据的采集、处理和传输等功能。
3. 系统调试与优化:通过调试工具对系统进行调试,确保各个模块能够正常工作。
《2024年一种基于STM32单片机的多功能智能家居控制系统》范文
《一种基于STM32单片机的多功能智能家居控制系统》篇一一、引言随着科技的不断进步和人们对生活品质要求的提高,智能家居控制系统越来越受到人们的关注。
本文介绍了一种基于STM32单片机的多功能智能家居控制系统,该系统集成了多种功能,可实现对家庭环境的智能控制和管理。
二、系统概述本系统以STM32单片机为核心,通过与各种传感器、执行器等设备的连接,实现对家庭环境的实时监测和控制。
系统具有以下功能:1. 温度控制:通过与温度传感器连接,实现对家庭温度的实时监测和调节。
2. 照明控制:通过与照明设备连接,实现对家庭照明的智能控制。
3. 安全监控:通过与烟雾传感器、门禁等设备连接,实现对家庭安全的实时监测和警报。
4. 智能家居控制:可通过手机App、智能遥控器等实现家庭电器的远程控制和语音控制。
三、系统硬件设计本系统的硬件设计主要包括STM32单片机、传感器、执行器等设备的连接和控制电路的设计。
1. STM32单片机:作为系统的核心控制器,负责接收传感器数据、控制执行器等设备的运行。
2. 传感器:包括温度传感器、烟雾传感器等,用于实时监测家庭环境的状态。
3. 执行器:包括空调、照明设备等,根据传感器的数据和用户的指令进行相应的操作。
4. 控制电路:负责将STM32单片机的控制信号传递给执行器等设备,并实现电路的稳定性和安全性。
四、系统软件设计本系统的软件设计主要包括STM32单片机的程序设计和手机App的开发。
1. STM32单片机程序设计:包括初始化程序、传感器数据处理程序、执行器控制程序等。
通过程序实现系统对家庭环境的实时监测和控制。
2. 手机App开发:用户可以通过手机App实现对家庭环境的远程控制和语音控制。
App具有界面友好、操作简便的特点。
五、系统实现与应用本系统的实现与应用主要包括系统的安装与调试、用户界面的设计以及系统的实际应用等方面。
1. 安装与调试:将系统硬件设备安装到家庭环境中,并进行调试,确保系统能够正常工作。
基于STM32的温湿度检测系统设计及实现
基于STM32的温湿度检测系统设计及实现一、本文概述本文旨在探讨基于STM32的温湿度检测系统的设计与实现。
我们将详细介绍整个系统的硬件组成、软件设计以及实现方法,并通过实验验证其性能和可靠性。
我们将概述STM32微控制器的特点和优势,以及为什么选择它作为温湿度检测系统的核心。
然后,我们将详细介绍系统的硬件设计,包括温湿度传感器的选择、电路设计和搭建等。
接下来,我们将阐述软件设计思路,包括传感器数据的读取、处理、显示以及传输等关键问题的解决方案。
我们将通过实验数据来验证系统的性能和可靠性,并讨论可能存在的改进和优化方案。
通过本文的阐述,读者可以对基于STM32的温湿度检测系统有一个全面而深入的了解,为相关研究和应用提供参考和借鉴。
二、系统总体设计本设计旨在开发一个基于STM32的温湿度检测系统,该系统能够实现环境温湿度的实时监测,并将数据通过适当的接口进行传输,以便进行后续的数据处理和分析。
设计目标包括高精度测量、低功耗运行、良好的用户界面以及易于扩展和集成。
系统的硬件架构主要由STM32微控制器、温湿度传感器、电源管理模块、通信接口以及显示模块组成。
STM32微控制器作为核心处理器,负责数据的采集、处理和控制逻辑的实现。
温湿度传感器用于实时采集环境中的温度和湿度信息。
电源管理模块负责为系统提供稳定的电源供应,保证系统的稳定运行。
通信接口用于将采集到的数据传输到外部设备或网络,实现远程监控和数据分析。
显示模块则提供用户友好的界面,展示当前的温湿度信息。
软件架构的设计主要包括操作系统选择、任务划分、数据处理流程以及通信协议等方面。
考虑到STM32的性能和功耗要求,我们选择使用嵌入式实时操作系统(RTOS)进行任务管理和调度。
任务划分上,我们将系统划分为数据采集任务、数据处理任务、通信任务和显示任务等,确保各个任务之间的独立性和实时性。
数据处理流程上,我们采用中断驱动的方式,当传感器数据采集完成后,通过中断触发数据处理任务,确保数据的及时处理。
《2024年基于Stm32的温湿度检测系统》范文
《基于Stm32的温湿度检测系统》篇一一、引言随着物联网技术的发展,智能家居逐渐普及。
为了实现更加智能化的环境控制,温湿度检测系统显得尤为重要。
STM32系列微控制器以其高性能、低功耗的特点,广泛应用于各种嵌入式系统中。
本文将介绍一种基于STM32的温湿度检测系统,该系统能够实时监测环境中的温湿度变化,为智能家居、工业控制等领域提供可靠的温湿度数据。
二、系统概述本系统以STM32微控制器为核心,搭配温湿度传感器DHT11,实现对环境温湿度的实时检测。
系统包括硬件电路和软件程序两部分,通过传感器采集温湿度数据,经过STM32微控制器处理后,可通过串口或网络等方式传输到上位机进行显示或存储。
三、硬件电路设计1. 微控制器:本系统选用STM32系列微控制器,具有高性能、低功耗的特点,适用于各种嵌入式系统。
2. 温湿度传感器:选用DHT11温湿度传感器,该传感器具有高精度、低功耗的特点,能够实时采集环境中的温湿度数据。
3. 电路设计:将STM32微控制器与DHT11温湿度传感器进行电路连接,通过GPIO口读取传感器的数据。
同时,为系统添加电源电路、复位电路等,保证系统的稳定运行。
四、软件程序设计1. 初始化程序:对STM32微控制器进行初始化设置,包括时钟配置、GPIO口配置等。
2. 数据采集程序:通过GPIO口读取DHT11温湿度传感器的数据,包括温度值和湿度值。
3. 数据处理程序:对采集到的数据进行处理,包括数据格式转换、数据滤波等,以保证数据的准确性和可靠性。
4. 数据传输程序:将处理后的数据通过串口或网络等方式传输到上位机进行显示或存储。
五、系统实现1. 温湿度检测:系统通过DHT11温湿度传感器实时检测环境中的温湿度变化,并将数据传输到STM32微控制器进行处理。
2. 数据处理与显示:STM32微控制器对采集到的数据进行处理后,可通过串口或网络等方式传输到上位机进行显示或存储。
同时,也可在本地通过LCD等显示屏进行实时显示。
基于STM32的温室大棚温度控制系统
电子技术与软件工程Electronic Technology & Software Engineering自动化控制Automatic Control基于STM32的温室大棚温度控制系统张宪阳谢邵春丁黎明’舒薇张宇凡(怀化学院湖南省怀化市418000 )摘要:本文研究了一款由单片机STM32F103为系统核心的控制系统,采用PID算法实现对温室大棚的温度无级连续调节,解决了温 室大棚温度控制不够精准的问题,实现了对温室大棚的控制,为用户高效地生产农副产品提供有力保障。
关键词:PID;STM32;无级连续;功率控制1前言现阶段的菜园信息管理技术还很不完善,特别是温度控制上普遍采用位置式的非连续调节。
为发掘更优质的温度控制系统,我们研发了一套成本低、小巧、平稳的基于单片机的温室大棚温度控制系统,此系统采用了增量式P I D连续控制设备功率的方法,克服了传统温控以时间为变量的温控时间滞后性,完成了温控的在标准误差下的温度连续稳定动态调节[2]。
2控制系统设计2.1大棚控制系统设计要求(1) 超调量小于等于10%;(2) 温度连续柔性可调,范围为20〜30摄氏度;(3) 稳定时温度误差小于等于±3%;(4) 上升时间20s;(5) 调节时间40s。
图1:控制系统总体设计结构图2. 2控制系统总体设计控制系统总体设计本设计如图1分为三个部分:单片机处理单 元,可控硅功率控制单元,温度传感器单元。
单片机处理单元主要 进行对输入与输出量进行处理,包括温度读取,增量式P I D数据处油温、转速差等条件,当条件不满足时,立刻退出自学习。
进入自学习状态后,控制上先给比例阀一个初始电流,此电流 根据经验设定,既满足离合器在此电流下没有滑磨接触,又保证电 磁阀的能正常开启。
然后再每隔时间t给电磁阀增加电流r,实时 监控离合器输出扭矩值,当离合器传递扭矩值大于等于其粘性扭矩 的最大值时,记录此时充油压力,并同上一次学习值进行比较,当差值在预设公差范围内时,保存此充油压力。
基于STM32的PID和PWM温度控制系统研究
精度电压稳压芯片 R F和电路调整 , E 使测温分辨率
能 够提 高到 0 1 0 0 C。 .0— .1o
集选用温度传感器 P 10 , T 00 好处为可做到高精度 ,
图 2 温度 采集 电路
2 1 年 3月 1 01 1日收 到
30 86
科
学
技
术
与
工
程
1 卷 1
1 2 升 温控 制 电路 .
@
2 1 SiT c. nn. 0 c. ehE g g 1
动 力 技 术
基 ቤተ መጻሕፍቲ ባይዱ
和P WM 温度控制系统研究
郭智源 韩 建 张 西鹏 张彦龙
( 东北石 油大学 电子科学学 院 , 大庆 13 1 ) 6 3 8
摘
要
研究基于 S M 2单片机控制的水温高精度智能控制系统。采用分段 PD控制和 PD参数整定相结合算法及控制可控硅导 T3 I I S M3 T 2 智能控制 PD算法 I P WM
采 用 MO 3 2 C 0 1和可控 硅 的功率 控制 电路 , 中 图 MO 32 C 0 1是 可控硅 输 出 的光 电耦 合 器 ,T 4 60 B A 10 B 是 双 向 可控 硅 , 热 设 备采 用 2 0V交 流供 电。在 加 2 MO 32 C 0 1内部 不 仅有 发光 二 极管 , 且 还 有 一个 小 而 功 率 双 向可控 硅 。控制 驱动 电路 如 图 3所 示 。
第 1卷 1
第 1 6期
2 1 年 6月 01
科
学
技
术
与
工
程
Vo. 1 N . 6 J n 0 1 1 1 o 1 u e2 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要当前快速成形(RP)技术领域,基于喷射技术的“新一代RP技术”已经取代基于激光技术的“传统的RP技术”成为了主流;快速制造的概念已经提出并得到了广泛地使用。
熔融沉积成型(FDM)就是当前使用最广泛的一种基于喷射技术的RP 技术。
本文主要对FDM温度控制系统进行了深入的分析和研究。
温度测控在食品卫生、医疗化工等工业领域具有广泛的应用。
随着传感器技术、微电子技术、单片机技术的不断发展,为智能温度测控系统测控功能的完善、测控精度的提高和抗干扰能力的增强等提供了条件。
本系统采用的STM32F103C8T6单片机是一高性能的32位机,具有丰富的硬件资源和非常强的抗干扰能力,特别适合构成智能测控仪表和工业测控系统。
本系统对STM32F103C8T6单片机硬件资源进行了开发,采用K型热敏电阻实现对温度信号的检测,充分利用单片机的硬件资源,以非常小的硬件投入,实现了对温度信号的精确检测与控制。
文中首先阐述了温度控制的必要性,温度是工业对象中的主要被控参数之一,在冶金、化工、机械、食品等各类工业中,广泛使用各种加热炉、烘箱、恒温箱等,它们均需对温度进行控制,成型室及喷头温度对成型件精度都有很大影响。
然后详细讲解了所设计的可控硅调功温度控制系统,系统采用STM32F103C8T6单片机作微控制器构建数字温度控制器,调节双向可控硅的导通角,控制电压波形,实现负载两端有效电压可变,以控制加热棒的加热功率,使温度保持在设定值。
系统主要包括:数据的采集,处理,输出,系统和上位机的通讯,人机交互部分。
该系统成本低,精度高,实现方便。
该系统加热器温度控制采用模糊PID控制。
模糊PID控制的采用能够在控制过程中根据预先设定好的控制规律不停地自动调整控制量以使被控系统朝着设定的平衡状态过渡。
关键词:熔融沉积成型(FDM);STM32;温度控制;TCA785AbstractIn the present field of Rapid Prototyping,the "New RP Technology" based on jetting technology is replacing the "Conventional RP Technology" based on laser technology as the mainstream of the Rapid Prototyping Technology.Fused Deposition Modeling(FDM) is the most popular Rapid Prototyping technology based on jetting technology.This paper mainly does research deeply on the temperature control system of FDM system.Temperature controlling is widely to food,sanitation,medical treatment,chemistry and industry.Along with the development of sensor technology,micro-electronics technology and singlechip technolog,brainpower temperature controlling system is perfected,precision of measurement and controlling is enhanced and the ability of anti-jamming is swelled.Singlechip STM32F103C8T6 in this paper is a high-powered 32-bit chip.It has plenty of hardware resource and strong ability foranti-jamming.It is specially suitable for making brainpower measurement instrumentand industry controlling system.The hardware resource of singlechip STM32F103C8T6 is fully exploited in this paper.The tool of temperature test is thermocouple of K style.This system realizes precise measurement and controlling of temperature signal with a little hardware resource.First,the need of temperature control is expounded.Temperature is a main controlparameter in industrial object.Various calefaction stoves,ovens and constant temperature boxes which all need control temperature are widely used in many industry such as metallurgy,chemistry,mechanism and foodstuff.Moulding room and spout temperatureawfully affect the precision of moulding pieces.Then the temperature control systemusing controllable silicon is explain in detail.This system adopts singlechip STM32F103C8T6 which acts as microcontroller.It can regulate the angle of double-direction controllable silicon and control voltage wave shape.So the virtual voltage of load can be changed and the calefaction power of calefaction stick can be controlled.Therefore the temperature canretain the enactment value.This system mainly consists of collection of data,disposal,output,communication of system and computer and communication of human and machine.This system has some advantages such as low cost,high precision andconvenience realization.This system adopts blury PID control.The adoption of blury PID control canceaselessly autoregulates basing initialized control rule,thus the controlled system willmove to the initialized balance state.Key words:Fused Deposition Modeling, STM32, temperature control, TCA785目录摘要.................................................................................................................................. Abstract (I)1 绪论 01.1 FDM工艺原理及应用 01.2 FDM国内外基本研究概况 (1)1.3 课题目的及意义 (2)2 温度控制系统方案分析 (4)2.1 温度控制的必要性 (4)2.2 温度控制系统的理论构成 (4)2.3 STM32和ADC (6)2.4温度控制系统的实现 (8)3 温度控制电路各部分的实现 (10)3.1温度检测电路 (10)3.2加热部分 (16)3.3键盘显示部分 (20)3.4软件部分 (20)3.5通讯总线的研究 (21)4 总结与展望 (23)4.1全文总结 (23)4.2研究展望 (23)致谢 (26)参考文献 (27)1 绪论1.1 FDM工艺原理及应用1.1.1 熔丝沉积技术原理早在十九世纪80年代末,美国学者Scott Crump博士第一次提出一种新的思想,该思想就是熔丝沉积技术的原型。
该思想舍弃了激光器,提出了利用喷头的技术,其基本工作原理是:在控制系统作用下喷头进行两轴半运动,包括X-Y联动以及Z向运动,选取特殊材料可以在喷头中被加热接近流体状;处于熔融状态下的材料在喷头扫描过程中被喷出,并急速冷却形成一层加工面,层与层直接不断的叠加连接在一起制作成一个空间实体。
图1-1FDM的工作原理1.1.2 熔丝沉积技术的应用FDM采用降维制造原理,将原本很复杂的三维模型根据一定的层厚分解为多个二维图形,然后采用叠层办法还原制造出三维实体样件。
由于整个过程不需要模具,所以大量应用于产品开发,功能测试,无模制造,小批量制造方面。
主要应用在汽车,航空航天,家用电器,电动工具,院校,模具制造,玩具制造,手版设计等领域[1-2]。
FDM技术可在产品开发过程中的提供设计验证与功能验证,检验产品可制造性、可装配性,通过各种转换技术,可将RP模型快速转换成各种模具,大幅度地缩短产品更新换代的周期。
快速成型机能为看样定货、供货询价、市场宣传等方面及时提供精确的样品,大大提高企业的营销效率。
快速成型技术问世不到十年,已实现了相当大的市场,发展非常迅速,已成为现代工业设计、模型、模具和零件制造强有力手段,在轻工、汽车摩托车领域得到了越来越广泛的应用。