压实度、相对密度计算

合集下载

土石坝的压实标准及应用中存在的问题.

土石坝的压实标准及应用中存在的问题.

土石坝的压实标准及应用中存在的问题郭庆国(国家电力公司西北勘测设计研究院工程科研实验院,西安710043)李鹏徐彦文(陕西省水电工程局,西安710068)关键词:土石坝;土石料;压实标准;压实度;相对压实度摘要:土石坝施工的核心是土石料的填筑压实,压实质量的好坏,关键在于能否正确执行压实标准。

本文基于某些工程在执行压实标准中存在一些问题,对此作了简略的分析,以引起注意外,着重对压实标准的定义、条件、相互关系作了较全面的阐述,其目的旨在正确的应用压实标准,确保工程质量。

1 压实标准及有关指标碾压式土石坝的施工,关键工序是对坝体土石料的分层填筑压实,压实效果,用测得的干密度反映出来,所以干密度是设计和施工质控的主要指标。

一般当填筑的土石料较为均匀时,性质比较稳定,在同一压实条件下,干密度接近常数值,这时可用某一干密度作为设计和施工质控标准。

但天然土石料往往是不均匀的,在同一压实条件下,干密度指标是不同的,若仍用某一干密度作为设计和施工质控标准,必然出现对易于压实的土石料,压实后的干密度值容易达到,而压实结果是偏松的,对不易压实的土石料,压实干密度不易达到,而压实结果是偏紧密的,这样形成不均匀土石料在同一压实条件下,紧密程度不同,容易发生不均匀变形,危及坝体安全。

鉴于此种情况,在坝体设计中对不均匀土石料,不用某一固定干密度值作为设计和施工质控指标,而是对粘性土用压实度(见(1)式),对无粘性粗粒土用相对压实度(见(3)(4)式)作为设计标准和施工质控的依据。

式中:D为压实度;ρd 为干密度;ρdmax为最大干密度。

由(1)式看出,D为压实度,是干密度与最大干密度比值,反映相对紧密度的一个无量纲标准值,值的大小,是依据土石坝工程的规模(坝高、工程量、库容等)、重要性(地理位置、效益、作用等),工程等级由规范确定,对某一工程而言,它是一个固定值,代表该土石坝的设计标准;ρd是土料压实后测出的干密度,反映了压实效果的指标值,ρdmax是对该土料用标准压实方法(如ASTMD698方法)[5]测得最优含水量的干密度值,亦称标准压实条件下的最大干密度指标,反映土料的压实特性指标值,ρd 和ρdm ax为同一种土料在两种压实条件下的两个密度指标值。

相对密度和压实度对应表_概述说明以及解释

相对密度和压实度对应表_概述说明以及解释

相对密度和压实度对应表概述说明以及解释1. 引言1.1 概述相对密度和压实度是土壤力学中重要的指标,用于描述土壤颗粒之间的紧密程度和固结状态。

相对密度可以通过比较实际密度与最大单一颗粒密度之间的差异来计算,而压实度则是指土壤在经历了一定程度的压实过程后所达到的密实程度。

1.2 文章结构本文将从以下几个方面对相对密度和压实度进行探讨:概念解释与定义、相对密度与压实度之间的关系、测量方法、影响因素以及应用和意义。

1.3 目的本文旨在全面介绍相对密度和压实度这两个关键概念,深入理解它们在土壤工程中的作用与应用。

通过研究相关测量方法和影响因素,以及分析工程中的实际案例,我们可以更好地把握相对密度和压实度在工程设计和施工过程中的重要性,并展望未来在该领域可能出现的发展趋势与研究方向。

2. 相对密度和压实度2.1 相对密度的概念相对密度是土壤颗粒间隙中固体颗粒占据的比例,是衡量土壤密实程度的指标。

通常用无因次数值表示,范围在0到1之间。

相对密度越高,表示土壤的颗粒排列更加紧密,空隙较少。

2.2 压实度的定义压实度是指土壤在施加压力时经过振实或压实处理后的变形性质。

它衡量了土壤抵押能力以及抵押后恢复能力的能力。

压实度越高,表示土壤越具有抵押和承载荷载能力。

2.3 相对密度与压实度之间的关系相对密度和压实度有着一定的相关性。

当土壤处于低相对密度状态时,颗粒之间存在大量空隙,容易被振碎或受到外部荷载影响而发生变形。

而当土壤处于高相对密度状态时,颗粒之间紧密排列,空隙减少,导致较好的抵押和承载能力。

因此,可以认为相对密度越高,压实度也会相应提高。

然而,相对密度和压实度并非完全一致。

相对密度主要考虑土壤颗粒之间的排列紧密程度,而压实度则同时考虑了土壤的变形性质,在施工过程中经历振实或压实处理。

因此,在具体的工程应用中,需要综合考虑两者指标,并根据具体情况进行分析和判断。

以上是关于相对密度和压实度的基本概念和关系介绍。

干密度、压实度[整理]

干密度、压实度[整理]

干密度干密度(dry density)土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。

干密度反映了土的孔隙比,因而可用以计算土的孔隙率,它往往通过土的密度及含水率计算得来,但也可以实测。

土的干密度一般常在1.4~1.7 g/cm3。

在工程上常把干密度作为评定土体紧密程度的标准,以控制填土工程的施工质量。

在土方填筑时,常以土的(干密度)来控制土的夯实标准。

干密度的计算方式先算出土的湿密度,然后除以(1+w)其中w是含水率比如通过计算土的含水率是8%,那么就用湿密度除以(1+0.08)压实度压实度(degree of compaction) (原:指的是土或其他筑路材料压实后的干密度与标准最大干密度之比,以百分率表示。

)压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。

对于路基本、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。

压实度简介压实度又称夯实度。

压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。

(选于《路基路面试验检测技术》交通部基本建设质量监督总站组织编写)压实度是填土工程的质量控制指标。

先取压实前的土样送试验室测定其最佳含水量时的干密度,此为试样干密度。

再取由击打实试验后所得的试样最大干密度,用实际干密度除以最大干密度即是土的实际压实度。

用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。

影响路基压实度的主要因素包括:填料(填料的粒径)、含水量、每层压实厚度、压实机具、碾压遍数等。

压实度检测方法通过试验比较,压实后采用常规的检测方法——灌砂法,饱水时用环刀法是可行的,但如何获得砂的最大干密度ρdmax,即检测标准是关键。

公路路基路面压实度评定方法讲解

公路路基路面压实度评定方法讲解

公路路基路面压实度评定方法压实度是施工质量控制的一个重要质量指标,压实度不够成为高速公路发生早期损坏原因之一。

1、现场测定(或计算)基层(或底基层)、砂石路面及路基土的各种材料的施工压实度常用挖坑灌砂法、环刀法等。

施工压实度按下式计算:式中:K——测定地点的施工压实度,%;——试样的干密度,;——由击实试验得到的试样的最大干密度,。

2、对沥青路面的压实度,新的施工规范已经明确地转变对压实度的观念,即由原来采用的钻孔密度控制压实度转变为重点以压实工艺为主,钻孔作为辅助性检验。

钻孔取样应在路面完全冷却后进行,对普通沥青路面通常在第二天取样,对改性沥青及SMA路面宜在第三天以后取样。

沥青面层的压实度按下式计算:式中:K—沥青层某一测定部位的压实度,%;D—由试验测定的压实沥青混合料试件实际密度,;D0—沥青混合料的标准密度,。

沥青路面的压实度,采取重点控制碾压工艺过程,适度钻孔抽检压实度校核的方法。

对于碾压工艺的控制包括压路机的配置(台数、吨位及机型)、排列和碾压方式、压路机与摊铺机的距离、碾压温度、碾压速度、碾压路段长度等。

钻孔作为压实度辅助性检验,可以根据需要选择实验室标准密度、最大理论密度、试验路密度中的1~2中作为钻孔法检验评定的标准密度计算压实度。

施工中采用核子密度仪等无损检测设备进行压实度控制时,宜以试验路密度作为标准密度。

施工及验收过程中的压实度不得采用配合比设计时的标准密度,应按如下方法逐日检测确定标准密度:(1)以实验室密度作为标准密度,即沥青拌合厂每天取样1~2次实测的马歇尔试件密度,取平均值作为该批混合料铺筑路段压实度的标准密度。

其试件成型温度与路面复压温度一致。

当采用配合比设计方法时,也可采用其他相同的成型方法的实验室密度作为标准密度。

(2)以每天实测的最大理论密度作为标准密度。

对普通混合料,沥青拌合厂在取样进行马歇尔试验的同时以真空法实测最大理论密度,平行试验的试样数不少于2个,以平均值作为该批混合料铺筑路段压实度的标准密度;但对改性沥青混合料、SMA混合料以每天总量检验的结果及油石比平均值计算的最大理论密度为准,也可采用抽提筛分的结果及油石比计算最大理论密度。

压实度和相对密度的关系_概述及解释说明

压实度和相对密度的关系_概述及解释说明

压实度和相对密度的关系概述及解释说明1. 引言1.1 概述压实度和相对密度是土壤力学性质中的两个重要参数,它们对于土壤的工程行为和工程设计具有重要的影响。

压实度是指土壤颗粒之间充填和紧密程度的度量,相对密度则是指土壤实际密度与最大可能密度之间的比值。

研究压实度和相对密度之间的关系可以帮助我们更好地理解土壤的结构、变形特性以及在工程应用中的行为。

1.2 文章结构本文将从以下几个方面介绍压实度和相对密度的关系:首先,我们将解释压实度和相对密度的概念及其定义;然后,我们将讨论影响压实度和相对密度的因素,包括土壤类型、水含量和含水率以及施工方法和设备选择;接着,我们将详细介绍测量压实度和相对密度的方法,并探讨它们在土壤工程中的应用范围与意义;最后,我们将总结文章主要内容,并分析压实度和相对密度关系,并展望未来研究方向或提出问题等。

1.3 目的本文的目的在于全面阐述压实度和相对密度之间的关系,并探讨其对土壤工程行为和设计的影响。

通过深入了解和分析压实度和相对密度,我们可以提高土壤工程设计的准确性和可靠性,为工程实践提供科学依据。

同时,本文还旨在引起读者的兴趣,并促使更多的研究者在这一领域开展深入研究,推动相关理论和技术的进一步发展。

2. 压实度和相对密度的概念解释:2.1 压实度的定义:压实度是指土壤在施加一定荷载后,由于颗粒间接触而产生互相排斥和变形的能力。

它是衡量土壤工程性质的重要指标之一,通常用在土壤基础工程、道路工程和地基处理等领域。

压实度可以描述土壤的密实程度,是通过比较原始松散状态下的体积与经过压实处理后体积之间的差异来评估。

2.2 相对密度的定义:相对密度也被称为容重或坚固性指标,是指土壤颗粒之间空隙占总体积的比例。

相对密度主要反映了土壤颗粒排列紧密程度的一个参数。

它可以直接测量或通过计算得到,是评估土壤压缩性、承载力等性质的重要依据。

2.3 压实度和相对密度之间的关系:压实度和相对密度都是衡量土壤工程性质的重要指标,并且两者之间存在着紧密关系。

相对密度 压实度记录表

相对密度 压实度记录表

9000 815
灌砂入试洞后剩余砂质量(g)
4610
4579Байду номын сангаас
4578
4600
试洞内砂质量(g)
3586
3601
3606
3585
试洞内湿试样质量(g) 试样的湿密度(g/cm3 )
5796 2.279
5816 2.277
5815 2.274
5773 2.271
盒号
1
2
3
4
5
6
7
8
盒+湿试样质量 (g) 538.0 539.8 535.1 522.5 534.9 538.3 531.3 526.0
干试样质量 (g) 374.9 365.5 348.6 353.1 359.8 350.0 362.0 358.7
含水量
% 6.20 7.01 6.10 5.45 4.53 7.03 4.69 6.15
平均含水量

试样干密度(g/cm3)
6.6 2.138
5.8 2.153
5.8 2.149
5.4 2.154
试样中>mm颗粒质量(g)
>mm颗粒占干试样总量(g) 校正后的标准密度(g/cm3)
压实度(%)
97.6
98.3
98.1
98.4
相对密度
0.83
0.88
0.87
0.88
旁站监理意见
盒+干试样质量 (g) 514.7 514.1 513.9 503.3 518.6 513.7 514.4 503.9
含 水
盒质量
(g) 139.8 148.6 165.3 150.2 158.8 163.7 152.4 145.2

压实沥青混合料密度 表干法 自动计算

压实沥青混合料密度 表干法 自动计算

2.322
2.35
98.8
36.4 671.46 390.39
682.76
1.68
2.297
2.290
2.35
97.4
45.6 840.90 496.71
856.95
1.91
2.334
2.327
2.35
99.0
52.2 963.45 560.05
980.66
1.79
2.291
2.284
2.35
97.2
压实沥青混合料密度试验记录(表干法)
建设项目: 合同号: 施工路段:
施工单位: 监理单位:
设计厚度:
40
mm
D-24.1 (自/抽)检:
结构层名称:
试验日期:
路面桩号
试件的吸水率(%) Sa=(mf-ma)/(mf-mω)×100
25℃ρω=1.026
试件厚度 (mm)
干燥试件 空中质量
ma(g)
试件的 水中质量
备注:试验规程T0705-2000(表干法)适用于吸水率不大于2%的各种沥青混合料(密实型沥青砼面层)。 表中理想最大相对密度rt—由T0711(D-24.4)或T0712(D-24.5)测定。 标准密度ρ0—由沥青混合料实测最大密度ρm计算压实度时,应进行孔隙率折算,作为标准密度ρ0=ρm×[(100-VV)/100]。
试验:
计算:
复核:
mω(g)
试件的 表干质量
mf(g)
吸水率 Sa(%)
相对密度 rf=
ma/(mf-mω)
密度 ρf= rf×ρω
沥青混合 料的标准
密度 ρo= (g/cm3)
压实度K(%) (ρf/ρo)×100

简述沥青混合料理论最大相对密度的确定方法

简述沥青混合料理论最大相对密度的确定方法

简述沥青混合料理论最大相对密度的确定方法张宿峰;齐辉【摘要】对沥青混合料理论最大相对密度的两种测试方法(计算法和实测法)进行了介绍,并对两种方法进行了比较,将两种方法的不同点和区别进行了分析,并通过实例对两种方法的试验结果进行了对比,当两者误差在0.02的范围之内时对于使用改性沥青的混合料仍采用实测法测定最大相对理论密度.【期刊名称】《黑龙江交通科技》【年(卷),期】2012(035)012【总页数】2页(P1,3)【关键词】改性沥青混合料;理论最大相对密度;误差【作者】张宿峰;齐辉【作者单位】绥满高速公路牡丹江至哈尔滨段大修工程建设指挥部;中咨公路养护检测技术有限公司【正文语种】中文【中图分类】TU4161 前言沥青混合料理论最大相对密度是计算现场压实度、空隙率的一个非常重要的基准,规范规定将每天实测的最大理论密度作为标准密度。

对普通沥青混合料,沥青拌和厂在取样进行马歇尔试验的同时以真空法实测最大理论密度,平行试验的试样数不少于2个,以平均值作为该批混合料铺筑路段压实度的标准密度;但对改性沥青混合料、SMA混合料以每天总量检验的平均筛分结果及油石比平均值计算的最大理论密度为准,也可采用抽提筛分的配合比及油石比计算最大理论密度。

2 真空法试验步骤(1)将沥青混合料试样装入干燥的负压容器中,称容器及沥青混合料总质量,得到试样的净质量。

试样质量应不小于上述规定的最小数量。

(2)在负压容器中注入25±0.5℃的水,将混合料全部浸没,并较混合料顶面高出约2 cm。

(3)将负压容器放到试验仪器上,与真空泵、压力表等连接,开动真空泵,使负压容器内负压在2 min中内达到3.7 kPa±0.3 kPa(27.5 mm ±2.5 mmHg)时,开始计时,同时开动振动装置和抽真空,持续15 min±2 min。

为使气泡容易除去,试验前可在水中加0.01%浓度的表面活性剂(如在100 mL水中加0.01 g洗涤灵)。

第一章 建筑材料的基本性质

第一章 建筑材料的基本性质

第一章 建筑材料的基本性质 土木工程材料的基本性质,是指材料处于不同的使用条件和使用环境时,通常必须考虑的最基本的、共有的性质。

(1)材料的基本物理性质 1 密度材料在绝对密实状态下单位体积的质量用ρ表示。

按下式计算:V m=ρ材料的绝对密实体积是指不包括材料孔隙在内的体积。

钢材、玻璃等少数密实材料可根据外形尺寸求得体积。

大多数有孔隙的材料,在测定材料的密度时,应把材料磨成细粉,干燥后用李氏瓶测定其体积。

材料磨得越细,测得的密度数值就越精确。

2 表观密度材料在自然状态下单位体积的质量称为表观密度,用ρ 表示。

按下式计算:00V m=ρ材料在自然状态下的体积是指包含材料内部孔隙的体积。

当材料孔隙内含有水分时,其质量和体积(可以忽略)均有所变化,故测定表观密度时,须注明其含水情况。

按照含水状态分为:干表观密度、气干表观密度和饱和表观密度。

孔隙的分类 ①按尺寸大小:微细孔隙(D <0.01mm)细小孔隙( 0.01mm < D < 1mm)粗大孔隙(D>1mm)②孔隙的构造:开口孔隙 闭口孔隙干表观密度(干燥状态) 气干表观密度 (与空气湿度有关 平衡时的状态)00V m =ρoV m m 水+=0ρ 饱和表观密度(吸水饱和状态)饱和表观密度(吸水饱和状态)0V m m 饱和水+=ρ3 孔隙率在材料自然体积内孔隙体积所占的比例,称为材料的孔隙率,用Ρ表示。

按下式计算:%100)1(1%1000000⨯-=-=⨯-=ρρV V V V V P bk p p p +=孔隙率=开口孔隙率+闭口孔隙率开口孔隙率Pk=%1000⨯V V 开口孔隙闭口孔隙率Pb=%1000⨯V V 闭口孔隙4堆积密度散粒或粉状材料,如砂、石子、水泥等,在自然堆积状态下单位体积的质量称为堆积密度,用ρ' 表示。

按下式计算:00V m '='ρ由于散粒材料堆积的紧密程度不同,堆积密度可分为疏松堆积密度、振实堆积密度和紧密堆积密度。

干密度压实度

干密度压实度

干密度压实度Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】干密度干密度(dry density)土的孔隙中完全没有水时的密度,称干密度;是指土单位体积中土粒的重量,即:固体颗粒的质量与土的总体积之比值。

干密度反映了土的孔隙比,因而可用以计算土的孔隙率,它往往通过土的密度及含水率计算得来,但也可以实测。

土的干密度一般常在~ g/cm3。

在工程上常把干密度作为评定土体紧密程度的标准,以控制填土工程的施工质量。

在土方填筑时,常以土的(干密度)来控制土的夯实标准。

干密度的计算方式先算出土的湿密度,然后除以(1+w)其中w是含水率通过计算土的含水率是8%,那么就用湿密度除以(1+)压实度压实度(degree of compaction) (原:指的是土或其他筑路材料压实后的干密度与之比,以百分率表示。

)压实度是路基路面施工质量检测的关键指标之一,表征现场压实后的密度状况,压实度越高,密度越大,材料整体性能越好。

对于路基本、路面半刚性基层及粒料类柔性基层而言,压实度是指工地上实际达到的干密度与室内标准击实实验所得最大干密度的比值;对沥青面层、沥青稳定基层而言,压实度是指现场达到的密度与室内标准密度的比值。

压实度简介压实度又称夯实度。

压实度的测定主要包括室内标准密度(最大干密度)确定和现场密度试验。

(选于《路基路面试验检测技术》交通部基本建设质量监督总站组织编写)压实度是填土工程的质量控制指标。

先取压实前的土样送试验室测定其最佳含水量时的干密度,此为试样干密度。

再取由击打实试验后所得的试样最大干密度,用实际干密度除以最大干密度即是土的实际压实度。

用此数与标准规定的压实度比较,即可知道土的压实程度是否达到了质量标准。

影响路基压实度的主要因素包括:填料(填料的粒径)、含水量、每层压实厚度、压实机具、碾压遍数等。

压实度检测方法通过试验比较,压实后采用常规的检测方法——灌砂法,饱水时用环刀法是可行的,但如何获得砂的最大干密度ρdmax,即检测标准是关键。

公路路基路面压实度评定方法

公路路基路面压实度评定方法

公路路基路面压实度评定方法压实度是施工质量控制的一个重要质量指标,压实度不够成为高速公路发生早期损坏原因之一。

1、现场测定(或计算)基层(或底基层)、砂石路面及路基土的各种材料的施工压实度常用挖坑灌砂法、环刀法等。

施工压实度按下式计算:K=ρdc×100 (1)式中:K——测定地点的施工压实度,%;ρd——试样的干密度,g cm3;ρc——由击实试验得到的试样的最大干密度,g cm3。

2、对沥青路面的压实度,新的施工规范已经明确地转变对压实度的观念,即由原来采用的钻孔密度控制压实度转变为重点以压实工艺为主,钻孔作为辅助性检验。

钻孔取样应在路面完全冷却后进行,对普通沥青路面通常在第二天取样,对改性沥青及SMA路面宜在第三天以后取样。

沥青面层的压实度按下式计算:K=D×100 (2)式中:K—沥青层某一测定部位的压实度,%;D—由试验测定的压实沥青混合料试件实际密度,g cm3;D0—沥青混合料的标准密度,g cm3。

沥青路面的压实度,采取重点控制碾压工艺过程,适度钻孔抽检压实度校核的方法。

对于碾压工艺的控制包括压路机的配置(台数、吨位及机型)、排列和碾压方式、压路机与摊铺机的距离、碾压温度、碾压速度、碾压路段长度等。

钻孔作为压实度辅助性检验,可以根据需要选择实验室标准密度、最大理论密度、试验路密度中的1~2中作为钻孔法检验评定的标准密度计算压实度。

施工中采用核子密度仪等无损检测设备进行压实度控制时,宜以试验路密度作为标准密度。

施工及验收过程中的压实度不得采用配合比设计时的标准密度,应按如下方法逐日检测确定标准密度:(1)以实验室密度作为标准密度,即沥青拌合厂每天取样1~2次实测的马歇尔试件密度,取平均值作为该批混合料铺筑路段压实度的标准密度。

其试件成型温度与路面复压温度一致。

当采用配合比设计方法时,也可采用其他相同的成型方法的实验室密度作为标准密度。

(2)以每天实测的最大理论密度作为标准密度。

沥青混合料的密度与压实度标准

沥青混合料的密度与压实度标准

沥青混合料的密度与压实度标准摘要:简要介绍了沥青混合料的最大理论相对密度与压实度对沥青路面质量评价的影响,文中列举了若干工程实例,说明实际工程中的压实度标准可以高于规范的规定值。

关键词:沥青混合料密度压实度一、前言高速公路的沥青路面需要满足大量交通高速、安全、舒适地通行,因此,所用的沥青路面必须具有良好的抗滑性能、优良的平整度。

为了提高沥青路面的使用性能,首先应从原材料和混合料的级配上加以选择,再进行沥青混合料配合比的设计与优化,而在配合比的设计中,确定沥青混合料最大理论相对密度尤为关键。

二、沥青混合料密度1.最大理论相对密度的确定沥青混合料的最大理论相对密度是指没有孔隙的或没有空气的理想沥青混合料的密度,它是确定沥青混合料空隙率的依据,也是确定沥青混凝土现场压实度(以空隙率表示)的依据。

目前有2种方法用于确定沥青混合料的最大密度:一是真空法;二是溶剂法。

最常用的是第一种方法。

矿料经过烘干与热沥青一起在少于1min时间里拌成混合料。

因此在沥青混合料中集料可能处于两种极端状态,一种是沥青不能溶入矿料颗粒的开口孔隙中,则矿料以其毛体积出现在沥青混合料中,这种情况下,计算沥青混合料毛体积密度。

一种是矿料颗粒的开口孔隙全部被沥青充满,则矿料颗粒带着被其吸收的沥青在混合料中占有体积,也就是矿料以其体积(即扣除开口孔隙的体积)出现在沥青混合料中,这种情况下,计算沥青混合料的最大密度时,应该采用矿料颗粒的表观相对密度。

而实际上,混合料中的集料常处于一种中间状态,即吸收了部分沥青,或沥青进入部分开口空隙中。

在不同情况下,沥青占有多少开口孔隙是个难以解答的问题。

《公路沥青路面施工技术规范》JTG F40-2004规定,在计算沥青矿料混合料的最大密度时,对非改性的普通沥青混合料,在成型马歇尔试件的同时,用真空法实测各组沥青混合料的最大理论相对密度。

当只对其中一组油石比测定最大理论相对密度时,可按式(1-1)或(1-2)计算其他不同油石比(沥青用量)的最大理论相对密度;对该改性沥青或SMA混合料宜按式(1-1)或(1-2)计算各个不同沥青用量混合料的最大理论相对密度。

浅谈公路路基压实度检测方法

浅谈公路路基压实度检测方法

浅谈公路路基压实度检测方法随着社会对公路工程质量要求的提高,公路建设项目管理水平、质量监控体系、监管办法和机械化施工水平也随之提升。

路基、路面压实质量是道路工程施工质量管理最重要的内在指标之一,只有对路基、路面结构层进行充分压实,才能保证路基、路面的强度、刚度及路面的平整度,并可以保证及延长路基、路面工程的使用寿命。

公路路基压实质量,主要是靠具体的检测方法和检测数据来评定的,这些质量检测方法和检测数据是否科学、真实、有效,直接影响着路基质量评定是否准确。

现场压实质量用压实度表示,对于路基土及路面基层,压实度是指工地实际达到的干密度与实试验所得的最大干密度的比值;对沥青路面,压实度是指现场实际达到的密度与室内标准密度的比值。

1、标准密度(最大干密度)和最佳含水量的确定方法所谓压实度,是指土被压实后的干容重与该土的标准干密度之比。

在压实过程中,土颗粒间的引力和斥力的相对大小决定了压实土的结构。

当土样的含水量较小时,粒间引力较大,在一定的外部压实功能作用下,还不能有效地克服引力而使土颗粒相对移动,这时压实效果较差;增大含水量后,结合水膜逐渐增厚,引力减小,土颗粒在相同功能条件下易于移动而挤密,所以压实效果较好;当含水量增大到一定程度后,孔隙中已出现了自由水,结合水膜的扩大作用不再显著,因而引力的减少也不是十分显著,同时自由水填充在孔隙中阻止土颗粒移动的作用却随着含水量的增加而渐渐显著起来,所以此时压实效果反而下降。

所以,通过检测土壤的干密度能有效评判路基压实度的质量。

由于筑路材料结构层次等因素的不同,确定室内标准密度的方法也多样化,有些方法需在实践中进一步完善。

最大干密度是指在标准击实曲线(驼峰曲线)上最大的干密度值,该值对应的含水量即为最佳含水量。

1.1路基土的最大子密度和最佳含水量确定方法根据路基受到的荷载应力不同,路基压实度要求也不同。

公路等级高,对路基强度的要求则相应提高,对路基压实度的要求也应高一些。

汇总沥青压实度计算公式

汇总沥青压实度计算公式

文件编号: 25-2C -CF -73-8F整理人 尼克沥青压实度计算公式ICS XXXX XXDB61陕西省地方标准DB61/T ×××—2017岩改性沥青路面施工技术规范Technical Specifications for Construction ofRock Asphalt Pavements(送审稿)2017—××—××发布2017—××—××实施陕西省质量技术监督局发布目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 材料 (2)5 混合料组成设计 (4)6 施工工艺 (6)7 施工质量检查及验收 (7)前言本标准由陕西省交通运输厅提出并归口。

本标准起草单位:中交第一公路勘察设计研究院有限公司和山东高速物资集团总公司。

本标准主要起草人:陈团结、李刚、雷宇、张涛、曹海波、柯文豪、王争军、李永翔。

本标准由陕西省交通运输厅负责解释。

本标准为首次发布。

岩改性沥青路面施工技术规范1 范围本标准规定了岩沥青及岩改性沥青的技术指标、岩改性沥青混合料的配合比设计、施工工艺、质量控制与检查验收要求。

本标准适用于各等级公路沥青路面工程中岩改性沥青混合料的设计和施工。

2 规范性引用文件下列文件对于本文件的应用是必不可少的。

凡是注日期的引用文件,仅注日期的版本适用于本文件。

凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

JTG E 20-2011 公路工程沥青及沥青混合料试验规程JTG F 40-2004 公路沥青路面施工技术规范GB/T 208-1994 水泥密度测定方法3 术语和定义下列术语和定义适用于本标准。

3.1岩沥青 Rock asphalt岩沥青是石油经过亿万年的沉积、变化,在热、压力、氧化、触媒、细菌等的综合作用下天然生成的存在于山体、岩石裂隙中的沥青类物质,属于天然沥青的一种。

沥青面层压实度与密实性关系的探讨

沥青面层压实度与密实性关系的探讨

( ) A T 2 1真空法 ) 3按 S M D 0 ( 4 测定 的沥青混含料 的最大相对
密 度 为 24 8 3。
( )计 算 沥 青 混 合 料 的最 大 相对 密 度 G 10 74 ) 4 =(0 + . / 8
( 5 026 2+ 6 0 . 8 + . /. 7 7 81 1 )24 9 。 5 . /. 5 3 . / 8 0 79 26 + . /. 0 = . 6 3 8 820 0 9 4 0 3

式中 : o s路面交工时实际的空隙率 , Vi : d %; K: 以马歇尔密度为标准密度时的压实度 , %。 从式( ) 2 可以看 出, 压实度 K越高 , 实际的空隙率 V i 就越 os d 小, 沥青混合料 的抗拉强度和稳定度就越大 , 抗车辙能力和密水
果。
12 标 准密度选取对压实度计算结果的影响 .
就是要把空隙率控制在 8 %以下 , 以减少路面水损害的发生。 空隙率反映了沥青混合料内部的各种空隙 , 既有开空 隙, 又 有闭空隙 。 而渗水与开空隙的关 系最大。路面交工时实际的空隙 率、 马歇尔试验测定 的空隙率与压实度的关 系为 :
11 压实度的计算 . 《 规范》 附录 E规定 , 沥青面层 的压实度计算公式 :
D 0 xl0 () 1
实测法 2 3 .8 4
9 .4 61
计算法 2 36 . 9 4
9 .8 6O
差值 - . l 0 06 0
OO .6
式 巾: 沥青层某一测定部位的压实度 , K: %; D: 由试验测定的压实沥青混合料试件实际密度 ,/ gm; c
是主 要 原 因 。
表 1 各种材料的相对密度
材料

2012水运检测地基与基础考试复习题(相当给力省去你翻厚书的烦恼)

2012水运检测地基与基础考试复习题(相当给力省去你翻厚书的烦恼)

2007新大纲规定1.考试题型共有四种形式:单选题、判断题、多选题和问答题。

多选题选项全部正确得满分,选项部分正确按比例得分,出现错误选项该题不得分。

2.《地基与基础》考试包括:土工试验基础知识35%、土工试验25%、土工合成材料15%、现场测试25%。

第一章土工基础知识1、土的形成我国的土大部分形成于第四纪或是新第三纪时期,按照地质营力和沉积条件可分为残积土(风化后在原处)和运积土。

当土中有机质含量大于5%-10%时会对工程产生不利影响。

岩石可分为:岩浆岩、沉积岩、变质岩2、土的组成土由固相、液相和气相三相部分组成。

固相:土由原生矿物(石英云母长石等)和次生矿物(高岭石蒙脱石等)组成,通过颗粒分析试验可以对土的级配进行确定,级配好的土压实度高、渗透性小、强度高。

液相:分为结合水(吸附在颗粒表面)和自由水两种。

结合水:物理化学作用,对细粒土的影响大。

自由水:分为毛细管水和重力水。

毛细管水的作用是表面张力和重力。

重力水可以传递动水和静水压力,但不能承受剪力。

含水率测得是两者含量之和。

气相:开口和闭口气泡。

闭口气泡使得土的渗透性减小,弹性增大,承载力降低,密度减小,变形缓慢。

3、国家标准《土的工程分类》规定:采用粗细粒统一体系分类法。

工程用土主要是按照土的工程性质(如粒径、级配、塑性、有机质/压缩性等)进行分类。

其中主要性质有:(1)颗粒粒径工程上将相近粒径的土合成一组叫粒组,其中大于0.075 mm的叫粗粒,其性质主要取决于粒径大小和级配。

小于0.075 mm的叫细粒,其性质主要取决于矿物组成。

(2)塑性指数(Ip=Wl-Wp)塑性指数相同,土的性质不一定相同,因为随着液限的变化土的性质变化也很大。

作为建筑地基的土,其分类可见教材第6页,要注意粒径和塑性指数对土分类的影响。

如细粒土分类的依据有粒径、塑性指数、稠度。

《港口工程地质勘察规范》(JTJ240-97)规定:按颗粒级配或塑性指数分为碎石土、砂土、粉土和粘塑性图(细粒土分类):液限为横坐标,塑性指数为纵坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档