小学奥数:几何中的重叠问题.专项练习及答案解析
小学奥数 容斥原理之重叠问题(一) 精选练习例题 含答案解析(附知识点拨及考点)
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集AB 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:教学目标知识要点7-7-1.容斥原理之重叠问题(一)1.先包含——A B +重叠部分AB 计算了2次,多加了1次; 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.例题精讲两量重叠问题【例 1】小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
小学奥数——重叠问题
小学奥数——重叠问题1.如图,一张长为8厘米、宽为6厘米的长方形纸和一张边长为5厘米的正方形纸,放在桌上,问:如此放置的图形总面积是多少平方厘米?2. 五年级(1)班全体同学暑假游览上海世博会,在中国馆与美国馆中至少参观一个,已知有28人观看了中国馆,26人游览了美国馆,两馆都欣赏过的有12人,全班共有多少人?3. 某班42名学生都订了报纸,订《世博会专刊》的有32人,订《低碳生活报》的有27人,问订了两种报纸的有多少人?4. 世博澳门馆100万名旅客中,若每人至少懂中文和英语两种语种之一,其中懂中文的有58万人,懂英语的有50万人。
只懂中文和只懂英语的各有多少人?5. 六年级100名学生中,15人既不会骑自行车也不会游泳,有62人会骑自行车,75人会游泳。
问既会自行车又会游泳的有多少人?6. 某班46个同学,在一次数学测验中,答对第一题的有33人,答对第二题的有38人,两题都答错的有5人。
问:两题都答对的有多少人?7. 在1到500的自然数中,能被3或5整除的数共有多少个?8. 在1到1000的自然数中,能被4或6整除的数共有多少个?9. 在1到1000的自然数中,不是6的倍数,但是9的倍数的整数共有多少个?10. 在1到1000的自然数中,既不能被5整除又不能被7整除的数共有多少?11.如右图,在一个边长为90厘米的正方形桌面上,放上两张边长分别为20厘米和45厘米的正方形纸,中间重叠的部分是边长为5厘米的正方形。
如下图,求桌面上没被纸盖住的面积是多少平方厘米?12.二年级一班有50名学生参加语文和数学的考试,其中语文得100分的有10人,数学得100分的有26人,两门都没有得100分的有20人。
问两门都得100分的有多少人?13. 四年级三班学生除3人没有订报纸外,其余每人都订有报纸。
订《语文报》的有25人,订《数学报》的有30人,两种都订的有10人,全班共有多少人?14.某校一次运动会中,某班参加60米跑的有15人,参加跳远的有17人,既参加60米跑,又参加跳远的有9人,没有参加比赛的有23人,这个班共有多少学生?15.世博云南馆90万名旅客中,若每人至少懂中文和英语两种语种之一,其中懂中文的有50万人,懂英语的有54万人。
小学三年级奥数第19讲 重叠问题(含答案分析)
3、三年级有107个小朋友去春游,带矿泉水的有78人,带水果的有77人,每人至少带一种。三年级既带矿泉水又带水果的小朋友有多少人?
4、三(4)班排成每行人数相同的队伍入场参加校运动会,梅梅的位置从前数是第6个,从后数是第5个;从左数、从右数都是第3个。三(4)班共有学生多少人?
【思路导航】把等长的两块木板的一端钉起来,钉在一起的长度就是重叠部分,重叠的部分是16厘米,所以这两块木板的总长度是120+16=136厘米,每块木板的长度是136÷2=68厘米。
练习3:
1.把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
【思路导航】根据题意,画出下图:
图中间重叠部分表示两道题都做对的人数,把做第一道题和做对第二道题的人数加起来得21+18=39人,这39人比全班总人数36多出了39-36=3人,这多出的3人既在做对第一题的人数中算过,也在做对第二道题的人数中算过,即表示两道题都做对的人数。
练习4:
1.三(1)班有学生55人,每人至少参加赛跑和跳绳比赛中的一种。已知参加赛跑的有36人,参加跳绳的有38人。两项比赛都参加的有几人?
2、为庆祝“六一”,同学们排成每行人数相同的鲜花队,小华的位置从左数第2个,从右数第4个;从前数第3个,从后数第5个。鲜花队共多少人?
【例题3】把两块一样长的木板像下图这样钉在一起成了一块木板。如果这块钉在一起的木板长120厘米,中间重叠部分是16厘米,这两块木板各长多少厘米?
练习3:
1、把两段一样长的纸条粘合在一起,形成一段更长的纸条。这段更长的纸条长30厘米,中间重叠部分是6厘米,原来两段纸条各长多少厘米?
小学奥数7-7-1 容斥原理之重叠问题(一).专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:7-7-1.容斥原理之重叠问题(一)知识要点教学目标1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.两量重叠问题【例 1】 小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳绳。
(小学奥数)几何中的重叠问题
1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-3.幾何中的重疊問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 把長38釐米和53釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長4釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 因為焊接部分為兩根鐵條的重合部分,所以,由包含排除法知,焊接後這根鐵條長3853487+-=(釐米).【答案】87釐米【巩固】 把長23釐米和37釐米的兩根鐵條焊接成一根鐵條.已知焊接部分長3釐米,焊接後這根鐵條有多長?【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 焊接部分為兩根鐵條的重合部分,由包含排除法知,焊接後這根鐵條長:2337357+-=(釐米).【答案】57釐米【例 2】 兩張長4釐米,寬2釐米的長方形紙擺放成如圖所示形狀.把它放在桌面上,覆蓋面積有多少平方釐米?【考點】幾何中的重疊問題 【難度】1星 【題型】解答例題精講圖中小圓表示A 的元素的個數,中圓表示B 的元素的個數,大圓表示C 的元素的個數.1.先包含:A B C ++ 重疊部分A B 、B C 、C A 重疊了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重疊部分A B C 重疊了3次,但是在進行A B C ++- A B B C A C --計算時都被減掉了. 3.再包含:A B C A B B C A C A B C ++---+.图32厘米4厘米【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為2釐米的正方形,如果利用兩個42⨯的長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,被覆蓋面積=長方形面積之和-重疊部分.於是,被覆蓋面積4222212=⨯⨯-⨯=(平方釐米).【答案】12釐米【巩固】 如圖3,一張長8釐米,寬6釐米,另一個正方形邊長為6釐米,它們中間重疊的部分是一個邊長為4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答图3【解析】 兩個圖形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用長方形和正方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在長方形和正方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積+正方形面積-重疊部分.於是,組合圖形的面積:86664468⨯+⨯-⨯=(平方釐米).【答案】68平方釐米【巩固】 一個長方形長12釐米,寬8釐米,另一個長方形長10釐米,寬6釐米,它們中間重疊的部分是一個邊長4釐米的正方形,求這個組合圖形的面積.【考點】幾何中的重疊問題 【難度】1星 【題型】解答【解析】 兩個長方形如圖擺放時出現了重疊(見圖中的陰影部分),重疊部分恰好是邊長為4釐米的正方形,如果利用兩個長方形面積之和來計算被覆蓋桌面的面積,那麼重疊部分在兩個長方形面積中各被計算了一次,而實際上這部分只需計算一次就可以了.所以,組合圖形的面積=長方形面積之和-重疊部分.於是,組合圖形的面積12810644140=⨯+⨯-⨯=(平方釐米).【答案】140平方釐米【例 3】三個面積均為50平方釐米的圓紙片放在桌面上(如圖),三個紙片共同重疊的面積是10平方釐米.三個紙片蓋住桌面的總面積是100釐米.問:圖中陰影部分面積之和是多少?【考點】幾何中的重疊問題【難度】2星【題型】解答C BA10【解析】將圖中的三個圓標上A、B、C.根據包含排除法,三個紙片蓋住桌面的總面積=(A圓面積B+圓面積C+圓面積-)(A與B重合部分面積A+與C重合部分面積B+與C重合部分面積+)三個紙片共同重疊的面積,得:100505050A=++-()(與B重合部分面積A+與C重合部分面積B+與C重合部分面積10+),得到A、B、C三個圓兩兩重合面積之和為:16010060-=平方釐米,而這個面積對應於圓上的那三個紙片共同重疊的面積的三倍與陰影部分面積的和,即:60103=⨯+陰影部分面積,則陰影部分面積為:603030-=(平方釐米).【答案】30平方釐米【巩固】如圖,已知甲、乙、丙3個圓的面積均為30,甲與乙、乙與丙、甲與丙重合部分的面積分別為6,8,5,而3個圓覆蓋的總面積為73.求陰影部分的面積.【考點】幾何中的重疊問題【難度】2星【題型】解答【解析】設甲圓組成集合A,乙圓組成集合B,丙圓組成集合C.A B C===30,A B=6,B C=8,A C=5,A B C=73,而A B C=A B C+--A B B C A C A B C--+.有73=30×3-6-8-5+A B C,即A B C=2,即甲、乙、丙三者的公共面積(⑧部分面積)為2.那麼只是甲與乙(④),乙與丙(⑥),甲與丙(⑤)的公共的面積依次為6-2=4,8-2=6,5-2=3,所以有陰影部分(①、②、③部分之和)的面積為73-4-6-3-2=58.【答案】58【例 4】如圖,三角形紙板、正方形紙板、圓形紙板的面積相等,都等於60平方釐米.陰影部分的面積總和是40平方釐米,3張板蓋住的總面積是100平方釐米,3張紙板重疊部分的面積是多少平方釐米?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】了三次.所以三張紙重疊部分的面積60310040220()(平方釐米).=⨯--÷=【答案】20平方釐米【巩固】如圖所示,A、B、C分別是面積為12、28、16的三張不同形狀的紙片,它們重疊在一起,露在外面的總面積為38.若A與B、B與C的公共部分的面積分別為8、7,A、B、C這三張紙片的公共部分為3.求A與C公共部分的面積是多少?【考點】幾何中的重疊問題【難度】3星【題型】解答【解析】設A與C公共部分的面積為x,由包含與排除原理可得:⑴先“包含”:把圖形A、B、C的面積相加:12281656++=,那麼每兩個圖形的公共部分的面積都重複計算了1次,因此要排除掉.⑵再“排除”:5687x---,這樣一來,三個圖形的公共部分被全部減掉,因此還要再補回.⑶再“包含”:56873x---+,這就是三張紙片覆蓋的面積.根據上面的分析得:5687338x=.x---+=,解得:6【答案】6。
2019年小升初数学复习资料-几何重叠问题
2019年小升初数学复习资料-几何重叠问题重叠问题【知识点归纳】重叠即有相同特征,重复出现的,在数学问题上,常常要考虑这种情况的影响【命题方向】常考题型:例1:如图∠1=30°,∠2=75°.分析:由图可以看出∠1和2个∠2构成了一个平角,即180°,便可求出∠2.解:因为∠1+2∠2=180°,∠=30°,所以30°+2∠2=180°,∠2=75°;故答案为:75°.点评:解这一题重点是看出∠1和2个∠2构成了一个180°的难题:例2:有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是51.2.分析:黄色的长边=绿色的长边=红色的边长,黄色的边长+绿色短边=正方形边长,红色的边长+绿色短边=正方形边长,所以,绿色短边=黄色短边,将绿色进行平移构成一个由两个相同的长方形和两个大小不同的正方形组成的图形.两个长方形的面积都是:(14+10)÷2=12;然后就可以算出小正方形的面积是:12÷20×12=7.2;就得到了正方形盒底的面积为20+14+10+7.2=51.2;解:把绿色部分进行平移,构成一个由两个相同的长方形和两个大小不同的正方形组成的图形.两个长方形的面积都是:(14+10)÷2=12;然后就可以算出小正方形的面积是:12÷20×12=7.2;正方形盒底的面积:20+14+10+7.2=51.2;故答案为:51.2.点评:解答此题的关键是让黄色纸片移动,使复杂的图形变为基本图形.例题精讲一.选择题(共2小题)1.三角形内部有2008个点,将这2008个点与三角形的三个顶点连接,将三角形分割成互不重叠的三角形共()个.A.4017B.2008C.4016D.6024【分析】因为此题点数较多,这就要求我们寻找规律,可以通过画图来寻找规律:通过画图发现,当点数为1时,三角形的个数为3;当点数为2时,三角形的个数为5;当点数为3时,三角形的个数为7,⋯,当点数为n时,三角形的个数为21n+.【解答】解:画图如下:(1)图①中,当ABC∆内只有1个点时,可分割成3个互不重叠的小三角形.(2)图②中,当ABC∆内只有2个点时,可分割成5个互不重叠的小三角形.(3)图③中,当ABC∆内只有3个点时,可分割成7个互不重叠的小三角形.(4)根据以上规律,当ABCn+个∆分割成(21)∆内有(n n为正整数)个点时,可以把ABC 互不重叠的三角形.因此三角形内部有2008个点,将三角形分割成互不重叠的三角形个数为:n+=⨯+=(个).212200814017故选:A.【点评】在解答探索规律问题时,至少应举出三个特例,寻找出规律后,按照此规律做题.2.将两张长方形纸片交叉摆放,或将长方形和三角形纸片随意交叉摆放,重叠部分不是四边形的是()A.B.C.D.【分析】四边形的特点:四边形就是四条线段围成的图形,有四条边,四个角,据此结合阴影部分(重叠部分)看是否是四边形即可选择.【解答】解:选项ABC中的阴影部分都是四边形,而选项D中的阴影部分不是四边形,是五边形;故选:D.【点评】利用画图的方法及长方形、三角形和四边形的特征进行解答.二.填空题(共16小题)3.一根木棒长50厘米,从木棒左端开始每隔3厘米画一条红线,每隔5厘米画一条黄线,最后沿线锯开后.这个木棒被分成了23段.【分析】根据两端不画,得出所画的线的条数比分成的段数少1;分别计算出每隔3厘米画一条线,共画几条;然后求出每隔5厘米画的条数,共画几条,相加后减去重合的(即3和5的公倍数),解答即可.【解答】解:(5031)(5051)÷-+÷-≈+169=(条)25因为在50内,3和5公倍数有15,30,45即3条重合,所以应为:253123-+=(段);答:这个木棒被分成了23段.故答案为:23.【点评】解答此题的关键:先明确两端不画,得出所画的条数比分成的段数少1;然后分别求出两种情况共画出的线的条数,然后减去重合的条数即可.4.如图,平面上叠放着正方形A,B,C,边长分别是3cm,4cm,5cm,B的一个顶点在A的中心处,C的一个顶点在B的中心处,这3个正方形盖住的平面的面积最少是37 2cm.cm,最多是2【分析】很明显,这3个正方形盖住的平面的面积是这三个正方形面积减去两个重叠部分面积.3个正方形的边长已知,根据正方形面积计算公式“2S a =”即可求得面积.由于B 的一个顶点在A 的中心,所以A 、B 重合部分面积是A 面积的14,同理,B 、C 重合部分的面积是B 面积的14.当如图时面积最大;当C 盖住A 时,面积最小. 【解答】解:如图(最少面积):22214544+-⨯ 11625164=+-⨯ 16254=+-237()cm =如图(最大面积)22222113435444+-⨯+-⨯ 119169251644=+-⨯+-⨯ 916 2.25254=+-+-243.75()cm =答:这3个正方形盖住的平面的面积最少是237cm ,最多是243.75cm .故答案为:37,43.75.【点评】题先找出面积最大的情况,并求出这时A、B、C的面积是怎样重叠的,并由此求解.5.一张长方形纸翻折后,如图:135∠=︒,2∠=110︒.【分析】根据图形由折叠的性质和平角的定义可知,重叠部分的度数相当于两个1∠的度数和,由此可得221180∠+∠=︒,将数值代入计算即可求解.【解答】解:由分析可知,∠=︒-∠⨯218012=︒-︒⨯18035218070=︒-︒=︒110答:2∠的度数是110︒.故答案为:110.【点评】考查了简单图形的折叠问题,解决本题的关键在于明白21∠和2∠组成一个平角.6.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是51.2.【分析】先作辅助线,在黄色纸片中截出面积为a的部分,又因为红色部分是正方形,所以+,由此列方程求出a的面积;再由红黄绿的可得等量关系式:黄色面积a-=绿色面积a比例关系列出比例式解答即可.【解答】解:作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以1410a a-=+解得:2a=设空白部分面积为x,将上图转化为,14212-=10212+=所以,12 1220 x=解得:7.2x=正方形盒子的面积为:1220127.251.2+++=答:正方形盒子的面积是51.2.故答案为:51.2.【点评】本题考查了比较复杂的重叠问题,关键是求出中间黄与绿的重叠部分.7.如图130∠=︒,2∠=75︒.【分析】由图可以看出1∠和2个2∠构成了一个平角,即180︒,便可求出2∠.【解答】解:因为122180∠+∠=︒,30∠=︒,所以3022180︒+∠=︒,275∠=︒;故答案为:75︒.【点评】解这一题重点是看出1∠和2个2∠构成了一个180︒的角.8.如右图,四边形中阴影部分面积占圆面积的16,占四边形面积的15;三角形中阴影部分的面积占三角形面积的19,占圆面积的18.圆、四边形、三角形面积的最简整数比是24:20:27.【分析】把圆的面积看作单位“1”,则四边形面积是圆的面积的115656÷=;同理,三角形的面积占圆面积的119898÷=,那么圆、四边形、三角形面积的最简整数比是:591::68,然后化简比即可.【解答】解:四边形面积是圆的面积的:115 656÷=,三角形的面积占圆面积的:119 898÷=,圆、四边形、三角形面积的最简整数比是:591::24:20:2768=,故答案为:24:20:27.【点评】本题关键是统一单位“1”,以中间量“圆的面积”为单位“1”,然后根据分数除法的意义求出另外部分的分率,再解答求比就比较容易了.9.如图,有两个等腰直角三角形,则阴影部分的面积是24.【分析】因为ABC和EDF是等腰三角形,1CF=,所以1CQ=,所以三角形CQF的面积是11122⨯÷=,因为7ED=,所以7DF=,由此求出三角形DEF的面积,所以阴影部分的面积是三角形DEF的面积减去三角形CQF的面积.【解答】解:因为ABC和EDF是等腰三角形,1CF=,所以1CQ=,所以三角形CQF的面积是1 1122⨯÷=,因为7ED=,所以7DF=,所以阴影部分的面积是:1 772242⨯÷-=.答:阴影部分的面积是24.【点评】本题主要的利用三角形的面积公式求出三角形EPS的面积是解答此题的关键.10.如图,矩形ABCD 被分成六个正方形,其中最小正方形的面积等于1,矩形ABCD 的面积是 143 .【分析】可设右下角的正方形的边长为未知数,表示出其余正方形的边长,根据最大正方形边长的两种表示方法相等可得未知数的值,进而得到矩形的边长,相乘即可.【解答】解:因为,最小正方形的面积等于1,所以,最小正方形的边长为1,设右下角的正方形的边长为x .所以,1(2)23AB x x x =+++=+,2(1)31BC x x x =++=+,因为,最大正方形的边长可表示为21x -,也可表示为3x +,所以,213x x -=+,解得:4x =,所以,11AB =,13BC =,所以,矩形的面积为:1113143⨯=,故答案为:143.【点评】得到最大正方形的两种表达形式是解决本题的突破点.11.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了 27 角 分.【分析】按照这样收费标准,如果两人在同一标准下(例如都在24度以下,或都在24度以上),那么交的钱数应该是9分或者是2角的倍数,甲比乙多交了9.6角,显然甲用电在24度以上,乙用电在24度以下.【解答】解:9分0.9=角,2角20=分;设甲用电(24)X +度,乙用电(24)Y -度,由题意得:20.99.6X Y +=;根据本题实际情况把9.6分成两部分一部分能被0.9整除,一部分被2整除,只能是6 3.6+; 所以此方程的整数解:3X =,4Y =;则甲共交了:24932021660276⨯+⨯=+=(分)27=角6分;故答案为:27,6.【点评】这题是利用数学知识结合实际情况解答身边的问题.12.如图,将两个正三角形重叠作出一个星形,在重叠的图形中再作出一个小星形,即阴影部分,已知大星形的面积是240cm ,那么小星形的面积是 210cm .【分析】把大星形和小星形都平均分成12个相等的正三角形,通过计算推理得出三角形DEF 的面积是三角形AOC 的面积的14,所以,同理可以得出结论:每一个小阴影部分的三角形的面积都等于每一个大一些的三角形面积的14,即12个小正三角形(阴影部分)等于12个大一些正三角形面积的14;从而可以求出阴影部分的面积,列式为:2140104cm ⨯=;问题得解. 【解答】解:把大星形和小星形都平均分成12个相等的正三角形,如图所示:在12个相等的正三角形中,我们先研究其中两个大小正三角形的面积关系,大正三角形AOC 被平均分成了4个小正三角形,每一个小正三角形的面积都相等,所以可以得出:4S AOC S DEF ∆=∆;同理,12个小正三角形(阴影部分)的面积和等于12个大一些正三角形面积和的14; 所以:阴影部分的面积为:214010()4cm ⨯=; 答:小星形的面积是210cm .故答案为:210cm .【点评】本题需要利用分割法把大星形和小星形都平均分成12个相等的正三角形,然后先研究其中两个大小正三角形的面积关系,从而得出大小星形的面积关系.13.有20张长为4厘米,宽为3厘米的纸片,将他们按下图的方式摆放在桌面上:那么这20张纸片所覆盖住的面积是69平方厘米,它们外边缘周长是厘米.【分析】(1)第一张纸盖住的面积是4312⨯-=⨯=平方厘米,第二张纸盖住的就是3(43)3平方厘米,第三张纸盖住的也是3(43)3⨯-=平方厘米,以后每张纸盖住的都是3平方厘米,由此即可得出这20张纸所覆盖的面积为:第一张纸覆盖的面积19+个3平方厘米的面积;(2)外边缘周长就是求这20个图形覆盖在一起的图形的周长:观察题干中的图形不难发现:除了第一个和第20个露出的周长是43119+++=厘米之外,中间有17个长方形纸片露出部分的周长都是11114+++=厘米,(第19个露出的2厘米在第20个长方形中计算)由此即可求出20张纸片覆盖后的图的周长.【解答】解:根据题干分析可得:(1)433(201)⨯+⨯-=+1257=(平方厘米)69(2)(4311)2(1111)17+++⨯++++⨯=+186886=(厘米)答:这20张纸片所覆盖住的面积是69平方厘米,它们外边缘周长是86厘米.故答案为:69;86.【点评】根据题干得出每增加一个纸片所增加的面积和周长是多少,从而得出增加的规律,这是解决本题的关键.14.右图是由7个正方形重叠起来的,连接点正好是正方形的中点,若正方形边长是a,则下图的周长是16a.【分析】通过观察可以看出每两个正方形重叠就相当于减少了2条正方形的边长,共重叠了6次,减少了12条边,7个正方形共有28条边,还剩下281216-=条边,这16条边长度即是图形的周长.【解答】解:每两个正方形重叠就相当于减少了2条正方形的边长,图形的周长:(4726)a⨯⨯-⨯,(2812)a=⨯-,16a=;答:图形的周长是16a.故答案为:16a.【点评】本题的关键是得出重叠规律:每重叠1次就相当于减少了2条正方形的边长;本题要注意理解周长的含义是指沿封闭图形外缘一周的长度.15.如图,平行四边形A的面积和圆形B重叠在一起,重叠部分的面积是A的14,是B的16.已知A的面积是20平方厘米,则B的面积比A的面积多10平方厘米.【分析】14的单位“1”是A的面积,是20平方厘米,根据分数乘法的意义,可以求出重叠部分的面积;16的单位“1”是B的面积,根据分数除法的意义,求出B的面积,用B的面积减去A的面积,就是要求的答案.【解答】解:B的面积是:11 2046⨯÷,156=÷,56=⨯,30=(平方厘米),B的面积比A的面积多的面积是:302010-=(平方厘米),答:B的面积比A的面积多10平方厘米,故答案为:10.【点评】解答此题的关键是,弄清题意,找准单位“1”,再根据分数乘除法的意义,即可解答.16.甲、乙、丙三个班共有学生161人,甲比乙班多2人,乙班比丙班多6人,乙班有55人.【分析】根据题意可先画出线段图,然后可用方程解答,设乙班有X人,甲班有2X+人,丙班有6X-人.【解答】解:设乙班有X人,则甲班有2X-人.X+人,丙班有6X X X+++-=26161X+-=326161X+=32167X=-31672X=3165X=55故答案为:55.【点评】此题重点是甲班,丙班怎样用未知数表示.17.如图,奥运五环的每个圆环的内、外直径分别为8和10,每两个圆环相交成的小曲边四边形(黑色部分)的面积相等.已知图中五个圆环覆盖的总面积是122.5平方单位.请你计算出每个小曲四边形的面积为 2.35平方单位(π取3.14)【分析】先算出每个圆环的面积,5个圆环的面积即可求出,然后用5个圆环的面积减去五个圆环覆盖的总面积,得出的结果就是小曲边四边形的总面积,一共是8个小曲边四边形,除以8就是要求的答案. 【解答】解:每个圆环面积是:221083.14(()())22⨯-, 3.14(2516)=⨯-,3.149=⨯,28.26=(平方单位); 小曲四边形面积为:(28.265122.5)8⨯-÷,(141.3122.5)8=-÷,18.88=÷,2.35=(平方单位); 答:每个小曲四边形的面积为2.35平方单位,故答案为:2.35.【点评】解答此题的关键是,利用圆的面积公式,求出圆环的面积,进一步求出重叠的面积.18.六个正方形(如图)重叠,连接点正好是正方形的中点,正方形边长是a ,则图的周长是 14a .【分析】因为重叠在中间的正方形,只剩下两条边的长度是2a ,两端的剩下三条边就是3a .据此求得周长即可.【解答】解:中间的四个正方形,只剩下两条边,它们的周长为:(62)2a -⨯,42a =⨯,8a =;两端的两个正方形的周长是:326a a ⨯=.图的周长是:8614a a a +=.故答案为:14a .【点评】此题考查了学生分析图形的能力,以及对周长的计算方法.三.解答题(共22小题)19.下面是五个大小相同的铁环连在一起的图形.它的长度是多少?【分析】五个连在一起,重叠了514-=个铁坏的厚度,先求出5个铁环的长度,然后减去重叠部分的长度就是铁环连在一起的长度;据此解答.【解答】解:4厘米40=毫米⨯-⨯-,4056(51)=-,20024176=(毫米);答:5个大小相同的铁链连在一起的图形.它的长度是176毫米.【点评】本题要考虑实际情况,属于两端都不栽的植树问题;知识链接(沿直线上栽):栽树的棵数=间隔数1+(两端都栽),植树的棵数-(两端都不栽),植树的棵数=间隔数1=间隔数(只栽一端).20.如图,两扇推拉窗,重合的部分是多少厘米?【分析】用50加上50就是两扇推拉窗与重合部分的和,然后减去总长度94厘米,就是重合的部分是多少厘米.【解答】解:505094+-=-10094=(厘米)6答:重合的部分是6厘米.【点评】解答本题关键是找到重合部分与各部分之间的关系.21.两个相同的直角三角形如图所示(单位:厘米)重叠在一起,求阴影部分的面积.【分析】由图意可知:两个三角形都去掉公共部分(三角形)DOC,则剩余部分的面积仍然相等,即阴影部分的面积=梯形OEFC的面积,先求出梯形的上底,进而利用梯形的面积公式即可求解.【解答】解:如图,阴影部分面积:-+⨯÷(10310)22=⨯171=(平方厘米);17答:阴影部分的面积是17平方厘米.【点评】解答此题的关键是明白:阴影部分的面积=梯形OEFC的面积.22.正方形ABCD边长8厘米,等腰直角三角形EFG的斜边GF长26厘米.正方形和三角形放在同一直线上如图,10CF=厘米.正方形以每秒2厘米的速度向右沿直线运动.(1)第6秒时,三角形和正方形重叠的面积是多少平方厘米?(2)第几秒时,三角形和正方形重叠的面积是62平方厘米?【分析】(1)根据题意画图如下,正方形6秒钟移动的距离2612(⨯=厘米),正方形与三角形EFG重叠的一条边长12102-=(厘米),进而根据三角形的面积解答;(2)正方形的面积是8864⨯=平方厘米,要使三角形和正方形重叠的面积是62平方厘米,那么有两种情况,第一种两个图形重叠后正方形的左上角还漏在外面,漏出的部分是一个面积是2平方厘米的小直角三角形;第二种情况是正方形开始离开三角形,已经漏出了正方形的右上角,漏出部分是一个面积是2平方厘米的直角三角形;求出这两种情况三角形的直角边的长度,进而求出正方形移动的距离,再根据时间=路程÷速度求解.【解答】解:(1)如上图:正方形6秒钟移动的距离2612(⨯=厘米),正方形与三角形EFG重叠的一条边长-=(厘米),12102由于三角形FEG是等腰直角三角形,所以角EFG是45度角,所以,重叠的小三角形也是一个等腰的直角三角形,即它的高也是2厘米(如图)所以重叠部份的面积:2222⨯÷=(平方厘米);答:第6秒时,三角形与正方形的重叠部分面积是2平方厘米.(2)8864⨯=(平方厘米)-=(平方厘米)6422存在如下两种情况,正方形漏出部分的面积都是2平方厘米;因为2222⨯÷=,所以漏出部分三角形的边长是2厘米;第一种情况:-=(厘米)826正方形一共走了:106824++=(厘米)24212÷=(秒);第二种情况:正方形一共走了:10(266)30+-=(厘米)30215÷=(秒)答:第12秒和15秒时,三角形和正方形重叠的面积是62平方厘米.【点评】只要详细分析图形就能得出结论,注意三角形面积是底乘高除2,重合部分面积或者是三角形,或者是正方形减去三角形.23.底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离;(2)三个三角形重迭(两次)部分的面积之和;(3)只有两个三角形重迭(一次)部分的面积之和;(4)迭到一起的总面积.【分析】(1)因为20个三角形迭放,有(201)-个间隔,用(446)(201)-÷-就是要求的答案;(2)因为每三个连着的三角形重迭产生这样的一个符合条件的小三角形,每增加一个大三角形,就多产生一个三次重迭的三角形,而且与前一个不重迭,因此这样的小三角形共有(202)-个,三次重迭的三角形的底是原来三角形底的13,高是原来三角形高的13,由此即可解答;(3)每两个连着的三角形重迭部分,也是原来的三角形一般模样的三角形,每增加一个大三角形,就产生一个小三角形,共产生(201)-个,由此符合条件面积即可求出;(4)20个三角形的面积之和减去重迭部分,其中120平方厘米重迭一次,54平方厘米重迭两次,由此问题即可解决.【解答】解:(1)(446)(201)2-÷-=(厘米),(2)11169(202) 332⨯⨯⨯⨯⨯-,318 =⨯,54=(平方厘米);(3)221(69)(201)542332⨯⨯⨯⨯⨯--⨯,1219108=⨯-,228108=-,120=(平方厘米);(4)169201205422⨯⨯⨯--⨯,540120108=--,420108=-,312=(平方厘米),答:(1)两个三角形的间隔距离是2厘米;(2)三个三角形重迭(两次)部分的面积之和是54平方厘米;(3)只有两个三角形重迭(一次)部分的面积之和是120平方厘米;(4)迭到一起的总面积是312平方厘米.【点评】解答此题的关键是,找出三个三角形重迭(两次)部分的面积与只有两个三角形重迭(一次)部分的面积各是哪部分,利用三角形的面积比与高与底的关系,即可解答.24.如图1,一个长方体从正方形的左边平移到右边,每秒平移2厘米,如图2是长方形平移过程中与正方形重叠的关系图.(1)平移4秒和6秒重叠面积各是多少?把上图补充完整(2)正方形的边长是多少厘米?【分析】①每秒移2厘米,所以4秒移了428⨯=(厘米),因为右图中4秒时长方形的右边还未超过正方形,所以:重叠的面积=移动距离⨯长方形的宽8216=⨯=(平方厘米);同样可算出2秒移了4厘米,6秒移了12厘米;这时重叠的面积分别是428⨯=平方厘米,6212⨯=平方厘米.②由右图可看出在6秒以后重叠面积不变了,也就是长方形的右边开始超过正方形,这时的时间是6秒,也就是平移了6212⨯=(厘米),所以正方形的边长是12厘米.【解答】解:(1)因为每秒移2厘米,所以平移4秒后长为248⨯=(厘米),所以重叠面积为:2816⨯=(平方厘米),补充上图,从上往下依次为:(24),(16),(8).(2)由图可知平移6秒后长方形的宽刚和正方形的边重叠,所以正方形的边长为长方形平移的长度,6212⨯=(厘米).答:正方形的边长是12厘米.【点评】认真观察图形,关键是理清关系:重叠的面积=移动距离⨯长方形的宽.25.将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地面上,摆的时候,要求后摆的纸片必须有一个顶点与前一张纸片的中心重合(图表示已经摆好的5张).求地板被20张纸片所覆盖的面积是多少?【分析】20张纸片放在地上,因为有了重叠,所以就不能简单地求20张正方形纸片的面积,而是首先要计算出一处重叠部分的面积,以及20张纸片有多少处重叠.我们只要作出两条辅助线,如图(虚线),从图上可以看出,三角形a是由三角形b旋转90︒得到的,推知图中两个正方形重叠部分面积占正方形面积的14.5个正方形有4处重叠,那么20个正方形有19处重叠.利用总面积减去重叠的面积即可.【解答】解:1010201010419⨯⨯-⨯÷⨯2000475=-1525=(平方厘米);答:地板被20张纸片所覆盖的面积是1525平方厘米.【点评】解决此题的关键是求出每一部分重叠部分面积占正方形面积的14.26.如图示,A,B,C的面积分别为8、9和11.它们重迭后,所覆盖的面积是18.如果A与B,B与C,C与A公有部分的面积分别是5、3和4.那么A,B,C三个图形共有部分(即阴影部分)的面积是多少?【分析】首先根据题目说明,根据8A=,9B=,11C=.根据容斥定理代入计算,即可求得A、B、C的公共部分面积.【解答】解:设阴影部分的面积是x,由容斥原理知:(8911)(534)18x++-+++=281218x-+=2x=答:A、B、C三个图形公共部分(阴影部分)的面积为2.【点评】本题考查了容斥定理.解决本题的关键是熟练掌握容斥定理的公式运算,及其含义.27.ABCD为边长4cm的正方形,O点刚好位于ABCD的正中央,三角形OEF为一等腰三角形,若3OE cm=,求图形重叠的面积?【分析】图形重叠的面积等于直角边为3cm的等腰三角形的面积2-个直角边为-÷=的等腰三角形的面积,依此列式计算即可求解.3421cm【解答】解:342-÷=-32=,cm1()⨯÷-⨯÷⨯33211224.51=-2=.3.5()cm答:图形重叠的面积是23.5cm.【点评】考查了重叠问题,本题关键是将图形重叠的面积转化为规则图形的面积进行计算.28.如图:两个半径相等的圆A和圆B相交,三角形DBC是等腰直角三角形,面积是24平方厘米,ABDC是平行四边形.图中阴影部分的面积是13.68平方厘米.【分析】ABDC是平行四边形,三角形DBC是等腰直角三角形,所以三角形CAB也是等腰直角三角形,它的面积也是24平方厘米,由此可以求出每个圆半径的平方是多少;阴影部分的面积是两圆重合部分面积的一半,而重合部分由两个相等的弓形组成,我们只需要求出一个弓形面积,就是要求的阴影面积了.连接圆心A和另一个两圆的交点E,以及连接C和E,组成一个扇形;三角形CAB也是等腰直角三角形,那么CAB∠就是45︒,一个弓形的圆心角就是90︒,再求出圆心角是90︒的扇形的面积减去三角形CAE的面积就是一个弓形的面积,也就是阴影部分的面积.【解答】解:连接圆心A和另一个两圆的交点E,以及连接C和E,如图:阴影部分的面积是一个弓形的面积;三角形DBC 是等腰直角三角形,所以三角形CAB 也是等腰直角三角形,它的面积也是24平方厘米,圆的半径AC 的平方就是24248⨯=(平方厘米);45CAB ∠=︒,那么90CAE ∠=︒;三角形CAE 也是一个等腰直角三角形;弓形CE 的面积=扇形CAE 的面积-三角形CAE 的面积,22901()3602AC AC π︒⨯⨯-⨯︒, 11(3.1448)4842=⨯⨯-⨯, 37.6824=-,13.68=(平方厘米); 答:阴影部分的面积是13.68平方厘米. 故答案为:13.68.【点评】连接圆心线,与图中的半径组成了等腰直角三角形,从而得出弓形所对的圆心角的度数是解决此类问题的关键.29.四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?【分析】由于每只瓶都称了三次,因此记录数之和是4瓶油(连瓶)重量之和的3倍,即4瓶油(加瓶)共重(8910111213)321+++++÷=(千克),而油重之和及瓶重之和均为质数,所以它们必为一奇一偶,而质数中是偶数的质数只有2,故有(1)油重之和为19千克,瓶重之和为2千克,每只瓶重12千克,最重的两瓶内的油为1132122-⨯=(千克).(2)油重之和为2千克,瓶重之和为19千克,每只瓶重194千克,最重的两瓶内的油为。
小学奥数:几何中的重叠问题.专项练习及答案解析
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去.在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米).【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米例题精讲图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3 【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B I =6,B C I =8,A C I =5,A B C U U =73,而A B C U U =A B C +--A B B C A C A B C --+I I I I I .有73=30×3-6-8-5+A B C I I ,即A B C I I =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 阴而三张纸重叠部分是被计算了三次.所以三张纸重叠部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?【考点】几何中的重叠问题 【难度】3星 【题型】解答【解析】 设A 与C 公共部分的面积为x ,由包含与排除原理可得:⑴ 先“包含”:把图形A 、B 、C 的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵ 再“排除”:5687x ---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶ 再“包含”:56873x ---+,这就是三张纸片覆盖的面积.根据上面的分析得:5687338x ---+=,解得:6x =.【答案】6。
小学奥数7 7 1 容斥原理之重叠问题一专项练习及答案解析
(一)7-7-1.容斥原理之重叠问题教学目标1.了解容斥原理二量重叠和三量重叠的内容;掌握容斥原理的在组合计数等各个方面的应用.2.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个(,相当于中文“和”或者“或”的数,用式子可表示成:”读作“并”其中符号“BAB?A?B?A则称这一公式为包含与排除原理,简称容斥原”读作“交”,相当于中文“且”的意思.)意思;符号“,即阴影表示大圆部分,表示大圆与小圆的公共部分,记为:理.图示如下:表示小圆部分,BACBA,即阴表示大圆与小圆的公共部分,记为:表示小圆部分,表示大圆部分,:面积.图示如下BACBA影面积.1.先包含——B?A重叠部分计算了次,多加了次;1BA2.再排除——2B?A?AB次的重叠部分减去.把多加了1BA的元素的个数,可分以下两步进行:包含与排除原理告诉我们,要计算两个集合的并集BABA、的一切元素都“包含”意思是把(第一步:分别计算集合的元素个数,然后加起来,即先求B、BA、AB?A );进来,加在一起.(第二步:从上面的和中减去交集的元素个数,即减去意思是“排除”了重复计算的元素个数)BAC?二、三量重叠问题类又是既是类元素的个数类元素个数类元素个数类与类、类元素个数的总和?CC?BB?B?AAA类类、同时是类、类的元素个数既是类又是类的元素个数既是类又是类的元素个数??CCCBABA?.图示如下:的元素个数.用符号表示为:CBAC?A?C?AB?BC??ABC?AB的元素的个数,图中小圆表示的元素的个数,中圆表示BA大圆表示的元素的个数.C1.先包含:C?A?B次.次,、重叠了多加了重叠部分、1ACBCBA2.再排除:2C?A??ABBCA?B?C次,但是在进行重叠部分重叠了CAB?CBA??3计算时都被减掉了.CC?ABAB?.3.再包含:CCA?ABB??AB?CAB?C?来帮助分析思考.(在解答有关包含排除问题时,我们常常利用圆圈图韦恩图)1ofpage8 教师版题库.容斥原理之重叠问题(一)1-7-7.例题精讲两量重叠问题小明喜欢:踢足球、上网、游泳、音乐、语文、数学;小英喜欢:数学、英语、音乐、陶艺、跳】【例1BA ________、圆。
小学奥数ABC试卷—重叠问题练习答案
DAANA卷1.2.左图阴影部分表示等腰直角三角形右图阴影部分表示正方形3.82+62-42=84(cm2)4.16+23-30=9(人)5.17+13-8=22(人)40-22=18(人)6.42-32=10(人)7.设中间圈内的数为x,一直线上三个数的和为K,(1+2+……+7)+2x=3k28+2x=3kx=1时k=10x=4时k=12x=7时k=14其中一种解如左图8.(1)15+14-(32-8)=5(人)(2)15-5=10(人)注:[]表示取商的整数部分的值。
11.π×102÷2-102=50π-100(cm2)12.300×2-(300-250)=550(毫升)13.14.35+31-(50-7)=23(人)B卷1.104+101-106=99(人)2.(75+80-55)÷2=50(幅)3.72+53-100=25(人)若爱好音乐的人都爱好数学,则两样都爱好的人数取得最大值是53人。
4.(38+41+27-32-21-20+1)=50(人)5.(11+15)×4-30=74(千米)6.58+10+14+4-32-27-20=7=233+140+100-46-33-20+6=3808.100-10=90(人)75+83+65-90-50-50=33(人)9.喜欢看球赛和电影(但不喜欢看戏剧)人数:58+38+52-(6+12)-(4+12)+12-100=26(人)26-12=14(人)只喜欢看电影的人数:52-26-4=22(人)10.17,71。
11.857612.90×3-150-28×2=64(cm2)13.4人(提示:三个部分都重叠的人数是零。
设所求人数为x,则(11-x)+2+x+5+2+(10-x)=26)14.1人(提示:先求出吃冷饮的总人数)C卷1.(102-82)×4-12×6=138(cm2)2.50-8=42爱好多于一样的人数是:22×3-42-6=18(人)只爱好一样的人数:42-18=243.4.因为褐色眼睛女孩是18人,所以蓝色眼睛女孩是:50-18=32人。
五年级奥数题及答案:重叠问题
15.如果买 3 盒水彩笔和 5 个书包,需要 259 元,如果买 2 盒水彩笔和 3 个书包,需要 161 元, 2 个书包和 2 盒水彩笔共要多少元?
16.一个两位数, 十位数字与个位数字之和是 这个两数是多少?
10,数字之差是 4,且个位数字小于十位数字,
17.一群公猴、母猴、小猴共 38 只,每天摘桃 266 个.已知 1 只公猴每天摘桃 10 个, 1 只 母猴每天摘桃 8 个, 1 只小猴每天摘桃 5 个.又知公猴比母猴少 4 只,那么这群猴子中,小 猴有多少只?
4.一个水池,单开进水管, 6 分钟可将空水池注满,单开出水管 若同时打开进、出水管,多少分钟可将水池注满?
8 分钟可将满池水放完,
5.甲、乙两人修路队共有 76 人,甲队增加本队人数的 两队共增加了 384 人,求甲、乙两队原有各有多少人?
4 倍,乙队增加本队人数的
6 倍后,
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
6.一个食堂买来面粉是大米的 2 倍,每天吃 30 千克大米, 40 千克面粉,几天后大米全部 吃完,面粉还剩余 160 千克,这个食堂买来大米和面粉各多少千克?
考点 :列 方程解含有两个未知数的应用题。 分析:由 题意得出:大米吃的总天数和减去 160 千克之后的面粉吃的天数相等,即等量关系
式:(面粉的重量﹣ 160)÷40=大米的重量 ÷30,设出买来大米 x 千克,则买来面粉 2x 千克,据此列出方程并解方程即可. 解答:解 :设买来大米 x 千克,则面粉为 2x 千克, ( 2x﹣ 160) ÷40=x ÷30,
考 差倍问题。 点: 分 从 “如果从甲筐中拿出 18 个放进乙筐,两筐的苹果就同样多 ”,可知甲筐比乙筐多 析: 18×2=36 个, 先设乙筐有 x 个,则甲筐有 x+36 个, 再根据如果从乙筐拿出 13 个放进甲
(完整版)小学奥数重叠问题1
知识要点:前面已学过排队问题,从前面数,从后面数,丽丽都排第6,这一排共有几个人?这里丽丽被重复数了两次,有时我们也把这类问题叫重叠问题。
[ 例1 ] 洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?分析:由图知道,两块手帕有一边重叠,用3个夹子。
三块手帕有两边重叠,用4个夹子,我们发现夹子数总比手帕数多1,因此8块手帕就要用9个夹子。
[ 例2 ] 把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?分析:每排两张画要6个图钉,每排三张画要8个图钉,每排四张画要10个图钉。
可以看出,图画每增加一张,图钉就要增加2颗,那么5张画要12个图钉。
[ 例3 ] 有两块一样长的木板,钉在一起,如果每块木板长25厘米,中间钉在一起的长5厘米,现在长木板有多长?分析:把两块木板钉起来,钉在一起的地方的长度就是重叠的部分。
现在的总长就是原来两个总长的和减去重叠的部分。
算式:25+25-5=45(厘米)所以现在木板长45厘米。
[ 例4 ] 张老师出了两道题,做对第一题的有13人,做对第二题的有22人,两道题都做对的有8人,这个班一共有多少人?22人8人分析:做对第一题的13个人里,有8个人也做对第二题,那么做对第二题的22个人里这8个人就又重复数了一次,因此把做对第一题的人数和做对第二题的人数和起来,再减去重复数的这8个人。
算式:13+22-8=27(人)所以这个班一共有27人。
[ 例5 ] 四根长都是8厘米的绳子,把它们打结连在一起,成为一根长绳,打结处每根绳用去1厘米,绳结长度不计,现在这根长绳长多少厘米?分析:两根绳有一个结,三根绳有两个结,那么四根绳有三个结。
一个结用去1+1=2厘米,那么三个结用去2+2+2=6厘米,绳子总长8+8+8+8=32厘米,减去打结的6厘米,32-6=26,现在这根长绳是26厘米。
小学奥数容斥原理之重叠问题(二)精选练习例题含答案解析(附知识点拨及考点)
教学目标1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.知识要点一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成: A B A B A B (其中符号“ ”读作“并”,相当于中文“和”或者“或”的意思;符号“ 读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为: A B ,即阴影面积.图示如下: A表示小圆部分,B表示大圆部分,C表示大圆与小圆的公共部分,记为: A B ,即阴影面积.第一步:分别计算集合A、B的元素个数,然后加起来,即先1求A B (意思A是B把A、B 的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去 C A B (意思是“排除”了重复计算的元素个数).、三量重叠问题A类、B 类与C 类元素个数的总和A类元素的个数B类元素个数C 类元素个数既是A类又是B类的元素个数既是B类又是C类的元素个数既是A类又是C类的元素个数同时是A类、B类、C类的元素个数.用符号表示为:A B C A B C A B B C A C A B C .图示如下:ABAB 包含与排除原理告诉我们,要计算两个集合A、B的并集 A B 的元素的个数,可分以下两步进行:ABC3ABC在解答有关包含排除问题时,我们常常利用圆圈图 (韦恩图 )来帮助分析思考.例题精讲模块一、三量重叠问题例 1】 一栋居民楼里的住户每户都订了 2 份不同的报纸。
如果该居民楼的住户只订了甲、乙、丙三种报 纸,其中甲报 30 份,乙报 34 份,丙报 40份,那么既订乙报又订丙报的有 __________________ 户。
20181213小学奥数练习卷(知识点:重叠问题)含答案解析
题号
一
二
三
总分
得分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人 得 分
第Ⅰ卷(选择题)
一.选择题(共 2 小题)
1.如图,边长分别为 10 厘米和 7 厘米的正方形部分重叠,重叠部分的面积是 9
平方厘米,图中两个阴影部分的面积相差(
方式对折,如果下右图中①号点和③号点之间的距离为 30 厘米,那么这根绳
子的总长度是
厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略
不计).
13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将
它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按
下右图方式对折,如果右图中②号点和③号点之间的距离为 20 厘米,那么这
S=
平方厘米.
9.两幅图表示两个箭头画在不同的 4 厘米× 4 厘米方格内的情况.现在将这两
个箭头画在同一副 4 厘米× 4 厘米的方格内,则这两个箭头的重叠部分的面积
为
平方厘米.
10.如图,在一个长、宽分别为 19 厘米和 11 厘米的大长方形内放了四个正方形,
那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是
)平方厘米.
A.51
B.60
C.42
D.9
2.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是
a,这
个图形的周长是(
)
A.24a
B.14a
C.12a
第Ⅱ卷(非选择题)
D.18a
评卷人 得 分
二.填空题(共 29 小题) 3.如图的三张正方形的纸, 铺在桌面上一共遮盖的面积是
第20讲重叠问题含解题思路和参考答案
第20讲重叠问题仁解题思路与参考答案)一、解题方法1 .解答重叠问题,要用到数学中一个重要原理一一包含与排除原理,即当 两个计数部分有重复包含时,为了不重复计算,应从他们的和中排除重复部分。
2 .解答重叠问题的应用题,必须从条入手进行认真的分析,有时还要画出 图示,借助图形进行思考,找出哪些是重复的,重复了几次,明确要求的是哪一 部分,从而找出解答方法。
3 .在数学中,我们经常用平面上封闭曲线的内部代表集合与集合之间的关 系,这种图称为韦恩图(也叫文氏图)。
例题1.两块一样长的木板搭在一起共长160厘米,中间重叠部分是20厘米, 如图,这两块木板各长多少厘米?解题思路: 把等长的两块木板的一端搭起来,搭 在一起的长度就是重叠部分,重叠部分20 厘米,所以这两块木板的总长度是160+20 = 180 (厘米),每块木板的长度是180-2 =90 (厘米) 答:这两块木板各长90厘米。
巩固练习1.把两根同样长的绳子的一端捆绑在一起,共长120厘米,两根 绳子捆在一起的重叠部分长12厘米,原来两根绳子各长多少厘米?4 .两块一样长的红条幅缝在一起,变成一块长条幅,现在这两块条幅共长 22米,中间重叠部分长6分米,原来两块条幅各长多少分米?5 . 一根长80厘米的木棍,不小心被折成了长短不一的两段,现在把两段接 起来,其中重叠部分长6厘米,两根木棍接起来后共长多少厘米? 解题过程:解:(160+20)-2= 180-2 =90 (厘米)例题2.三(2)班同学排队做操,每行人数相同,亮亮的位置从左数起是第5 个,巩固练习1.同学们排队表演节目,每行人数同样多,小林的位置从左数是 第6个,从右数是第1个,从前数是第3个,从后数狮第2个。
表演的同学共有 多少人?2 .小红在一张方格纸上练字,它每行、每列写的同样多,“国"字的位置从上是第4个,从下数第5个,从左数、右数都是第3个。
小红一共写了多少个 字?3 .同学们排队做操,每行、每列人数同样多,小兰的位置无论从前数,从 后数,从左数、从右数都是第5个,做操的共有多少人?例题3.三(4)班有学生48人,写完语文作业的有23人,写完数学作业的有 29巩固练习1.三(1)班有60人,每人都参加了航模或书法课外兴趣小组,参 加航模小组的有34人,参加书法小组的有40人。
20181213小学奥数练习卷(知识点:重叠问题)含答案解析
小学奥数练习卷(知识点:重叠问题)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.92.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a第Ⅱ卷(非选择题)二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是平方厘米.(单位:厘米)4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长厘米.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=平方厘米.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为平方厘米.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是平方厘米.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为平方厘米.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是平方厘米.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长厘米.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是平方厘米.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是千克,小红体重是千克,小敏体重是千克.19.两个长方形如图叠放,图上已标出一些线段的长.EF=.20.图中,三张大小一样的等边三角形透明玻璃纸,各被分为49个大小相同的小等边三角形,每张玻璃纸上都各有16个小等边三角形涂上了阴影,如果把这三张玻璃纸重叠在一起,看到的阴影小等边三角形共有个.21.如图所示,两个形状和大小都相同的直角△ACB和△EDF的面积都是10cm2,每个直角的直角顶点都恰好落在另一个直角三角形斜边上,这两个直角三角形的重叠部分是一个长方形.那么四边形ABEF的面积是cm2.22.如图,有6个边长是1的小正方形,一个压着一个,上面的正方形的一个顶点恰好是下一个正方形的中心,上面正方形的中心的下面恰好是下面正方形的一个顶点,那么这个图形最后所形成的多边形的周长是;如果一共有20个边长是1的正方形按上述方法叠在一起,那么最后形成的多边形的周长是.23.如图,两个正方形的边长分别为10厘米和7厘米,甲、乙两块空白区域的面积之和为87平方厘米,那么阴影部分的面积是平方厘米.24.5个相同正方形纸片按相同的方向叠放在一起(如图),相邻两个正方形的一个角都与另一个正方形的中心点重合,如果所构成图形的周长是120厘米,那么这个图形覆盖的面积是平方厘米.25.今天是12月19日,我们将由边长为1的阴影小正方形组成的数字1、2、1、9放在8×5的大长方形中,将大长方形旋转180°,就变成了“6121”,如果将这两个8×5的大长方形重叠放置.那么重叠的阴影格子共有个.26.今天是12月19日,我们将电子数字1、2、1、9放在如图中8×5的长方形中,每个阴影小格子都是边长为1的正方形,将它旋转180°,就变成了“6121”,如果将这两个8×5的长方形重叠放置,那么重叠的1×1的阴影格子共有个.27.3个相同的正方形纸片按相同的方向叠放在一起(如图),顶点A和B分别与正方形中心点重合,如果所构成图形的周长是48厘米,那么这个图形覆盖的面积是平方厘米.28.将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图3中的图形外轮廓(图中粗线条)的周长为厘米.29.如图,五个圆相交后被分成了九个区域,现在两个区域里已分别填上数字15、16,请在另外七个区域里分别填进2,3,4,5,7,8,9这七个数字,使每个圆内的数字和是20.30.如图所示,一个正方形和一个长方形有一部分重叠,阴影部分甲比阴影部分乙的面积大6平方厘米,正方形的面积是10平方厘米,长方形的长为8厘米,则长方形的宽是厘米.31.如图是同一个等腰三角形的螺旋.这个等腰三角形中的最大角是100°.灰色三角形的编号是0,余下的三角形编号分别1、2、3、4、…,后一个三角形分别与前一个三角形有一条边重合,如图所示.从图中可以看出3号三角形只是部分地覆盖了0号三角形.请问第一个完全覆盖0号三角形的是号三角形.三.解答题(共19小题)32.某校四年级四个班总共有176名学生,其中一班和二班共有87名,一班和三班共有82名,二班和三班共有85名,那么,四班有多少名学生?33.两个相同的正方形重合在一起,将上层的正方形向右移动3厘米,再向下移动5厘米,得到如图所示的图形,已知阴影部分的面积是57平方厘米,求正方形的边长.34.小丽把两根长1米的纸条粘在一起,成为一根长170厘米的纸条,中间粘贴起来的纸条长度是厘米.35.如图1,从边长是6厘米的正方形纸片的正中间挖去一个正方形,得到一个宽为1厘米的方框,将四个这样的方框如图6所示依次垂直交叉放在桌面上,求桌面被这些方框盖住的面积(图2中阴影部分的面积).36.两个相同的长方形纸片,每块面积为48平方厘米.如图所示叠放在一起盖住的面积为72平方厘米.已知重叠部分的四边形ABCD的一条对角线BD为6厘米,则每张长方形纸片的长是多少厘米?37.如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形重叠部分,C,D,E是空出的部分,这些部分都是长方形,它们的面积比是A:B:C:D:E=1:2:3:4:5.那么这个长方形的长与宽之比是多少?38.三条边长分别为5厘米、12厘米、13厘米的直角三角形,如图1,将它的短直角边对折到斜边上去与斜边重合,如图2.那么图2中阴影部分(即未被盖住部分)的面积是多少平方米?39.(如图)五环图由内径为4分米,外径为5分米的5个圆环组成,其中相交的小曲边四边形的面积都相等,已知5个圆环盖住的总面积是122.5平方分米.每个小曲边四边形的面积是.40.如图,小正方形的被阴影部分覆盖,大正方形的被阴影覆盖,那么,小正方形的阴影部分与大正方形阴影部分面积之比是.41.桌子上放有甲、乙、丙三个正方形,甲、丙有部分重叠,乙、丙有部分重叠.甲、丙重叠部分占甲正方形面积的;乙、丙重叠部分占乙正方形面积的.丙正方形与甲、乙正方形重叠部分占丙正方形面积的.甲正方形和乙正方形面积的和是丙正方形面积的求:甲正方形面积与乙正方形面积的比.(要求化为最简整数比)42.桌面上放有四张大小不同的正方形纸片边长分别为2,3,4,5,若分别取走边长为2,3,4,5的正方形纸片中的一个,则剩下的三张纸片覆盖的面积分别减少2,3,4,5,那么四张纸片覆盖的面积是多少?43.城中小学四年级有四个班.已知四(1)班、四(2)班共81人,四(2)班、四(3)班共83人,四(3)班、四(4)班共86人,四(1)班比四(4)班多2人,问四个班各有多少人?(只写答案,不列式)44.将同样大小的长方形纸像如图那样重叠在一起,每个长方形的长是12厘米,每个重叠部分是2厘米.那么,10张这样的纸连接起来的长度是多少厘米?45.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是46.长度为L的一条木棍,分别用红、蓝、黑线将它等分为8,12和18段,在各划分线处将木棍锯开,问一共可以得到多少段?其中最短的一段的长是多少?47.如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分.则两个正方形的空白部分的面积相差多少平方厘米?48.五个大球与三个小球共重42克,五个小球与三个大球共重38克,则大球与小球各重多少克?49.阿明在喝茶的时候做了一个小实验.他把一根筷子笔直的插到杯底,他量了一下被水浸湿部分的长度是10厘米.他把筷子掉个头,将另一端笔直的插到杯底,这时候他发现,筷子干的部分比湿的部分短10厘米.那麽这根筷子长多少厘米?50.两块大小不同的等腰直角三角板,直角边分别是10厘米和6厘米,如图那样重合,求重合部分(阴影部分)的面积.参考答案与试题解析一.选择题(共2小题)1.如图,边长分别为10厘米和7厘米的正方形部分重叠,重叠部分的面积是9平方厘米,图中两个阴影部分的面积相差()平方厘米.A.51B.60C.42D.9【分析】大正方形的面积是10×10=100平方厘米,它的阴影部分的面积是100﹣9=91平方厘米;同理,小正方形的面积是7×7=49平方厘米,它的阴影部分的面积是49﹣9=50平方厘米;然后求两个阴影部分的面积差即可.【解答】解:(10×10﹣9)﹣(7×7﹣9)=91﹣40=51(平方厘米)答:图中两个阴影部分的面积相差51平方厘米.故选:A.【点评】本题考查了重叠问题,本题还可以这样解答:因为重叠部分的面积是9平方厘米,所以两个阴影部分的面积差,就等于两个正方形的面积差,即10×10﹣7×7=51平方厘米.2.六个正方形重叠(如图)连接点正好是正方形的中心.正方形边长是a,这个图形的周长是()A.24a B.14a C.12a D.18a【分析】这六个正方形重叠在一起,第一个和最后一个正方形的长度为3a+3a,中间4个正方形的长度是2a×4=8a,把这些长度加起来就是这个图形的周长.【解答】解:3a+3a+2a×4=14a,答:这个图形的周长是14a;故选:B.【点评】此题考查了学生空间想象力以及分析图形的能力,同时考查了图形周长的计算方法.二.填空题(共29小题)3.如图的三张正方形的纸,铺在桌面上一共遮盖的面积是14.25平方厘米.(单位:厘米)【分析】要求一共遮盖的面积,把正个图行补全为一个长1.5+2+1=4.5厘米、宽为3+1=4厘米的大长方形的面积,减去左上角、右上角、右下角的长方形的面积,长和宽的数据已经算出标在图上,然后求出面积差即可.【解答】解:1.5+2+1=4.5(厘米)3+1=4(厘米)4×4.5﹣1.5×1﹣1.5×1﹣0.5×1.5=18﹣3﹣0.75=14.25(平方厘米)故答案为:14.25.【点评】此题属于重叠问题,重点搞清重叠的是哪一部分,是解决本题的关键.4.有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间互相叠合,如图所示,已知露在外的部分中,红色面积是20,黄色面积是14,绿色面积是10,那么正方形盒子的面积是51.2.【分析】先作辅助线,在黄色纸片中截出面积为a的部分,又因为红色部分是正方形,所以可得等量关系式:黄色面积﹣a=绿色面积+a,由此列方程求出a 的面积;再由红黄绿的比例关系列出比例式解答即可.【解答】解:作辅助线,在黄色纸片中截出面积为a的部分,如图所示.所以14﹣a=10+a解得:a=2设空白部分面积为x,将上图转化为,14﹣2=1210+2=12所以,=解得:x=7.2正方形盒子的面积为:12+20+12+7.2=51.2答:正方形盒子的面积是51.2.故答案为:51.2.【点评】本题考查了比较复杂的重叠问题,关键是求出中间黄与绿的重叠部分.5.将4个边长为2的正方形如图放置在桌面上,则它们在桌面上所能覆盖的面积是13.【分析】重叠部分是一个边长是1小正方形,用4个大正方形的面积和减去3个小正方形的面积,就是被盖住桌面的面积.【解答】解:2×2×4﹣1×1×3=16﹣3=13答:它们在桌面上所能覆盖的面积是13.故答案为:13.【点评】本题的重点是求出每张纸覆盖的面积,再求覆盖的总面积.6.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=30度.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,得出△OCD是等边三角形,折叠前后角相等以及三角形的内角和定理,求出∠BFC的度数,再根据平角是180度求得∠EFO的度数.【解答】解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称.7.用10张同样长度的纸条粘接成一条长41厘米的纸带,如果每个接头处都重叠1厘米,那么原来的每张纸条都长5厘米.【分析】由于最后一张的末尾没有粘接,所以10张纸条粘接在一起共有9处重叠,所以用现在的总长度41厘米,加上9个1厘米求出没重叠前的总长度和,然后再除以10即可解决问题.【解答】解:(41+1×9)÷10=50÷10=5(厘米)答:原来的每张纸条都长5厘米;故答案为:5.【点评】明确10张纸条粘接在一起共有9处重叠,是解答此题的关键.8.如图,把三个面积同是S平方厘米的圆放置在桌面上,桌面被圆覆盖的面积是2S+10平方厘米,图中两圆重叠的两块(有阴影部分)的面积相等,有一直线L过A、B两圆的圆心.直线L下方被覆盖的面积是25平方厘米,那么,S=14平方厘米.【分析】由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解方程可得S.【解答】解:由题意,3S﹣2S阴影=2S+10,2S﹣1.5S阴影=25,解得S=14.故答案为14.【点评】本题考查重叠问题,考查方程思想,正确建立方程是关键.9.两幅图表示两个箭头画在不同的4厘米×4厘米方格内的情况.现在将这两个箭头画在同一副4厘米×4厘米的方格内,则这两个箭头的重叠部分的面积为6平方厘米.【分析】将两个图形重合,可得重叠部分,即可求出重叠部分的面积.【解答】解:重叠部分如图所示,重叠部分的面积为6平方厘米.故答案为6.【点评】本题考查重叠问题,考查数形结合的数学思想,正确作出重叠部分是关键.10.如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.【分析】最大的正方形的边长是长方形的宽,也就是11厘米,次大的正方形的边长是19﹣11=8厘米,再小一点的正方形的边长是11﹣8=3厘米,最后剩余小长方形的长是3厘米,宽是8﹣3﹣3=2厘米,再根据长方形的面积公式求解即可.【解答】解:最大正方形的边长是11厘米,次大正方形的边长:19﹣11=8(厘米)最小正方形的边长是:11﹣8=3(厘米)阴影长方形的长是3厘米,宽是8﹣3﹣3=2(厘米)3×2=6(平方厘米)答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是6平方厘米.故答案为:6.【点评】首先根据最大的正方形的边长是长方形的宽确定出最大正方形的边长,再依次找出其它正方形的边长,最后得出阴影部分的长和宽,再根据长方形的面积=长×宽求解.11.如图,正方形ABCD的面积为196平方厘米,它包含了两个有部分重叠的小正方形.其中,较大的那个小正方形面积是较小的那个小正方形面积的4倍,而且两个正方形的重叠部分面积为1平方厘米.那么,阴影部分面积为72平方厘米.【分析】求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米,可得小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.进而小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),即可求出两个小长方形的面积.【解答】解:正方形的面积为196平方厘米,所以边长为14厘米.重叠面积为1平方厘米,所以边长为1厘米;较大正方形是较小正方形面积的4倍,因此大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米所以小正方形的边长为15÷3=5厘米,大正方形的边长为5×2=10厘米.小长方形的面积为(5﹣1 )×(10﹣1)=36(cm2),所以两个小长方形的面积为36×2=72(cm2)故答案为72.【点评】本题考查面积的计算,考查重叠问题,考查学生分析解决问题的能力,求出大正方形的边长是小正方形边长的2倍,并且大正方形和小正方形的边长之和是14+1=15厘米是关键.12.有一根绳子第一次把它按下左图方式对折,在对折处标记①;第二次我们将它按下中图方式对折,在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果下右图中①号点和③号点之间的距离为30厘米,那么这根绳子的总长度是360厘米.(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计).【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于①到②,③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90厘米,绳子的全长是90×4=360厘米.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,由于:①到②、③到端点的距离相等,所以每一份的距离是30厘米,则②到端点的绳长是30×3=90(厘米),绳子的全长是90×4=360(厘米).答:这根绳子的总长度是360厘米.故答案为:360.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.13.有一根绳子,第一次把它按左图方式对折,在对折处标记①,第二次我们将它按中图方式对折,在对折处在对折处分别标记②、③;第三次我们将它按下右图方式对折,如果右图中②号点和③号点之间的距离为20厘米,那么这根绳子的总长度是120厘米(绳子之间无缝隙,绳粗以及转弯处损耗都忽略不计)【分析】由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份,设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,进而可求出x,从而求得绳子的全长.【解答】解:由第二幅图可知:①到②、①到③、②到端点,③到端点的距离全相等;由第三幅图可知,②到端点的绳子被平均分成3份设每一份为x,则③到绳子末端的距离=20+x,那么3x=20+x,x=10(厘米),则③到绳子末端的距离为30厘米,绳子的全长是30×4=120(厘米).故答案为:120.【点评】解决本题注意观察图,找清楚各部分长度之间的关系是解决本题的关键.14.如图,已知正方形ABCD面积为2520;E、F、G、H为边上的靠近正方形顶点的四等分点,连AG、EC、HB、DF.那么图中“X”部分的面积是1155.【分析】将阴影部分看成两个平行四边形重叠在一起,重叠部分是一个菱形,菱形的两条对角线长度分别是AE和,所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,所以一共是正方形面积的,再根据分数乘法的意义求出阴影部分的面积.【解答】解:如图:中间菱形的两条对角线长度分别是AE和,AE=AD×÷2=所以重叠面积是正方形面积的,两个平行四边形的面积都是正方形面积的,+﹣=2520×=1155答:图中“X”部分的面积是1155.故答案为:1155.【点评】解决本题关键是得出重叠的菱形部分的面积与正方形面积的关系,从而得出阴影部分是正方形面积的几分之几,再根据分数乘法的意义求解.15.一个长方形的相框长为40厘米,宽为32厘米,放入一张长为32厘米宽为28厘米的相片,则相框中没有被照片覆盖的部分的面积是384平方厘米.【分析】放入一张长为32厘米宽为28厘米的相片,则被照片覆盖的部分的面积是这张相片的面积,分别求出相框和相片的面积,然后用相框的面积减去相片的面积即可.【解答】解:40×32﹣32×28=32×(40﹣28)=32×12=384(平方厘米)答:相框中没有被照片覆盖的部分的面积是384平方厘米.故答案为:384.【点评】此题考查了长方形面积公式的灵活运用.16.有六根木条,各长50厘米.现要将它们依次首尾相接钉在一起,每两根木条中间钉在一起的部分长10厘米.钉好后木条总长250厘米.【分析】六根木条依次首尾相接钉在一起,重叠部分有6﹣1=5(次);要减少10×5=50(厘米);所以钉好后木条总长是:50×6﹣50=250(厘米);据此解答.【解答】解:根据分析可得,50×6﹣10×5,=300﹣50,=250(厘米);答:钉好后木条总长250厘米.故答案为:250.【点评】本题可以按植树问题解答,先求出间隔数也就是重叠的次数,知识点:重叠的次数=段数﹣1.17.如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是20平方厘米.【分析】60×3=180,此时未重叠面积计算了一次,阴影部分面积计算了两次,3张纸板重叠部分的面积计算了三次,180﹣100=80,此时减去了3张板盖住的总面积,则阴影部分面积计算了一次,3张纸板重叠部分的面积计算了两次;80﹣40,此时减去了阴影面积,则3张纸板重叠部分的面积计算了两次;所以,三张纸板重叠部分的面积为40÷2=20平方厘米;由此解答即可.【解答】解:(60×3﹣100﹣40)÷2=40÷2=20(平方厘米);答:3张纸板重叠部分的面积是20平方厘米.故答案为:20.【点评】此题属于重叠问题,比较复杂,应认真分析题意,看清要求的是什么,必须求出什么,重叠的部分是多少,进而解答得出结论.18.小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克.小芳体重是38千克,小红体重是34千克,小敏体重是31千克.【分析】把小芳和小红共重72千克,小敏和小芳共重69千克,小敏和小红共重65千克,这三部分体重和相加,就是这个三个小朋友体重的2倍,再除以2,求出3个小朋友的体重,然后减去72千克,就是小敏的体重,同理求出其它小朋友的体重.【解答】解:三人的体重和;(72+69+65)÷2=206÷2=103(千克)小敏:103﹣72=31(千克)小红:103﹣69=34(千克)小芳:103﹣65=38(千克)答:小芳体重是38千克,小红体重是34千克,小敏体重是31千克.故答案为:38,34,31.【点评】解决本题关键是求出这三个人体重和的2倍.19.两个长方形如图叠放,图上已标出一些线段的长.EF=32.【分析】连接ED,三角形AED的面积是:(15+25)×20÷2=400,又因为三角形AED的面积是长方形AEDG的面积的一半,所以长方形AEDG的面积是:400×2=800,所以,EF的长:800÷25=32,据此解答.。
小学数学竞赛 几何中的重叠问题.解析版
1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:AB ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.教学目标知识要点7-7-3.几何中的重叠问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次; 2.再排除——A B A B +-把多加了1次的重叠部分A B 减去.图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长3853487+-=(厘米).【答案】87厘米【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接后这根铁条有多长?【考点】几何中的重叠问题 【难度】1星 【题型】解答 【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:2337357+-=(厘米). 【答案】57厘米【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆盖面积有多少平方厘米?【考点】几何中的重叠问题 【难度】1星 【题型】解答图32厘米4厘米【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).【答案】12厘米【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的部分是一个边长为4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答图3468【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).【答案】68平方厘米【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.【考点】几何中的重叠问题 【难度】1星 【题型】解答例题精讲12【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).【答案】140平方厘米【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积之和是多少?【考点】几何中的重叠问题 【难度】2星 【题型】解答CBA10【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积+)三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+),得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).【答案】30平方厘米【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.【考点】几何中的重叠问题 【难度】2星 【题型】解答 【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .A B C ===30,A B =6,B C =8,A C =5,A B C =73,而AB C =A B C +--A B B C A C A B C --+.有73=30×3-6-8-5+AB C ,即A B C =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.【答案】58【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸板重叠部分的面积是多少平方厘米?【考点】几何中的重叠问题 【难度】3星【题型】解答【解析】 阴部分的面积60310040220=⨯--÷=()(平方厘米).【答案】20平方厘米【巩固】如图所示,A、B、C分别是面积为12、28、16的三张不同形状的纸片,它们重叠在一起,露在外面的总面积为38.若A与B、B与C的公共部分的面积分别为8、7,A、B、C这三张纸片的公共部分为3.求A与C公共部分的面积是多少?【考点】几何中的重叠问题【难度】3星【题型】解答【解析】设A与C公共部分的面积为x,由包含与排除原理可得:⑴先“包含”:把图形A、B、C的面积相加:12281656++=,那么每两个图形的公共部分的面积都重复计算了1次,因此要排除掉.⑵再“排除”:5687x---,这样一来,三个图形的公共部分被全部减掉,因此还要再补回.⑶再“包含”:56873---+,这就是三张纸片覆盖的面积.x根据上面的分析得:5687338x=.---+=,解得:6x【答案】6一年级(上)一.准备课1.数一数2.比多少二.位置1.上、下、前、后2.左、右三.1—5的认识和加减法1.1—5的认识2.比多少3.第几4.分和合5.加法6.减法7.0四.认识图形(一)认识图形五.6—10的认识和加减法1.6和72.8和93.104.连加、连减、加减混合六.11—20各数的认识1.11—20各数的认识2.10加几、十几加几和相应的减法七.认识钟表认识钟表八.20以内的进位加法2.8、7、9加几3.5、4、3、2加几4.解决问题一年级(下)一.认识图形(二)认识图形二.20以内的退位减法1.十几减92.十几减8、7、63.十几减5、4、3、24.解决问题三.分类与整理分类与整理四.100以内数的认识1.数数、数的组成2.数的顺序、比较大小3.解决问题4.整十数加一位数及相应的减法五.认识人民币1.认识人民币2.简单的计算六.100以内的加法和减法(一)1.整十数加、减整十数2.两位数加一位数、整十数3.两位数减一位数、整十数4.解决问题七.找规律1.找规律(一)2.找规律(二)二年级(上)一.长度单位1.厘米和米2.线段二.100以内的加法和减法(二)1.加法3.连加、连减和加减混合三.角的初步认识1.认识角2.认识直角3.认识钝角和锐角四.表内乘法(一)1.乘法的初步认识2.5的乘法口诀3.2、3、4的乘法口诀4.6的乘法口诀五.观察物体(一)观察物体(一)六.表内乘法(二)7、8、9的乘法口诀七.认识时间认识时间八.数学广角—搭配(一)数学广角—搭配(一)二年级(下)一.数据收集整理数据收集整理二.表内除法(一)1.除法的初步认识2.用2-6的乘法口诀求商3.解决问题三.图形的运动(一)1.轴对称图形2.平移和旋转四.表内除法(二)1.用7、8、9的乘法口诀求商2.解决问题五.混合运算混合运算六.有余数的除法1.有余数的除法的意义和计算2.解决问题七.万以内数的认识1.1000以内数的识2 .10000以内数的认识3 .整百、整千数加减法八.克和千克克和千克九.数学广角—推理生活中的推理三年级(上)一.时、分、秒1.秒的认识2.时间的计算二.万以内的加法和减法(一)1.口算两位数加减两位数2.几百几十加减几百几十3.三位数加减三位数的估算三.测量1.毫米、分米的认识2.千米的认识3.吨的认识四.万以内的加法和减法(二)1.加法2.减法五.倍的认识倍的认识六.多位数乘一位数1.口算乘法2.笔算乘法3.含0的乘法4.估算与解决问题七.长方形和正方形1.四边形2.周长、长方形和正方形周长八.分数的初步认识1.分数的初步认识(一)2.分数的初步认识(二)3.分数的简单计算4.分数的简单应用九.数学广角——集合集合思想三年级(下)一位置与方向(一)1 认识东、南、西、北四个方向2 认识东北、东南、西北、西南四个方向二除数是一位数的除法1 口算除法2 一位数出两、三位数的笔算除法3 商的中间或末尾有0的笔算除法4 用估算解决问题三复式统计表复式统计表四两位数乘两位数1 口算乘法2 笔算乘法五面积1 面积和面积单位2 长方形、正方形面积的计算3 面积单位间的进率六.年、月、日1 年、月、日2 24时计时法七小数的初步认识1 认识小数2 简单的小数加、减法八数学广角——搭配(二)数学广角——搭配(二)四年级(上)一大数的认识1 亿以内数的认识(一)2 亿以内数的认识(二)3 数的产生、十进制计数法和亿以上数的认识4 计算工具的认识、算盘和计算器5 1亿有多大二公顷和平方千米2 认识平方千米三角的度量1 线段、直线、射线和角2 角的度量3 角的分类4 画角四三位数乘两位数1 笔算乘法(一)2 笔算乘法(二)五平行四边形和梯形1 平行与垂直2平行四边形和梯形六除数是两位数的除法1 口算除法2 笔算除法(一)3 笔算除法(二)4 笔算除法(三)5 笔算除法(四)6 商的变化规律七条形统计图条形统计图八数学广角——优化数学广角——优化四年级(下)一四则运算1 加减法的意义和各部分间的关系2 乘除法的意义和各部分间的关系3 括号二观察物体(二)观察物体(二)三运算定律1 加法运算定律2 乘法运算定律四小数的意义和性质1 小数的意义和读写法2 小数的性质和大小比较3 小数点移动引起小数大小的变化4 小数与单位换算5 小数的近似数五三角形1 三角形的特性2 三角形的分类3 三角形的内角和六小数的加法和减法2 小数加减混合运算3 整数加法运算定律推广到小数七图形的运动(二)1 轴对称2 平移八平均数与条形统计图1 平均数2 复式条形统计图九数学广角——鸡兔同笼数学广角——鸡兔同笼五年级(上)一小数乘法1 小数乘整数2 小数乘小数3 积的近似数4 整数乘法二位置位置三小数除法1 除数是整数的小数除法2 一个数除以小数3 商的近似数4 循环小数5 用计算器探索规律6 解决问题四可能性事件发生的可能性五简易方程1 用字母表示数2 方程的意义及等式的性质3 解方程4 实际问题与方法六多边形的面积1 平行四边形的面积2 三角形的面积3 梯形的面积4 组合图形的面积七数学广角——植树问题数学广角——植树问题五年级(下)一观察物体(三)观察物体(三)二因数与倍数1 因数和倍数2 2、5、3的倍数的特征3 质数和合数三长方体和正方体1 长方体和正方体的认识2 长方体和正方体的表面积3 长方体和正方体的体积4 体积单位间的进率5 容积和容积单位四分数的意义和性质1 分数的意义2 真分数和假分数3 分数的基本性质4 约分5 通分6 分数和小数的互化五图形的运动(三)图形的运动(三)六分数的加法和减法1 同分母分数加减法2 异分母分数加减法3 分数加减混合运算七折线统计图折线统计图八数学广角——找次品数学广角——找次品六年级(上)一分数乘法1 分数乘法2 小数乘分数与分数混合运算3 解决问题二位置与方向(二)位置与方向三分数除法1 倒数的认识2 分数除法3 分数四则混合运算4 分数应用题四比1 比的意义2 比的基本性质3 比的应用五圆1 圆的认识2 圆的周长3 圆的面积4 扇形六百分数(一)1 百分数的意义和写法2 百分数与小数、分数的互化3 用百分数解决问题七扇形统计图扇形统计图八数学广角——数与形六年级(下)一负数负数二百分数(二)1 折扣2 成数3 税率4 利率三圆柱与圆锥1 圆柱2 圆锥四比例1 比例的意义和基本性质2 正比例和反比例的意义3 比例的应用五数学广角——鸽巢问题数学广角——鸽巢问题小学五年级数学上册复习教学知识点归纳总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。
五年级奥数题及答案:重叠问题
五年级奥数题:重叠问题1.甲、乙两队合修一条水渠,甲队每天修14.5米,乙队3天修46.5米,照这样计算,两队合修6天,共修水渠多少米?2.用绳子测一口井的深度.绳子两折时,多余60厘米;绳子三折时,还差40厘米.求绳长和井深.3.甲、乙两筐苹果,如果从甲筐中拿出18个放进乙筐,两筐的苹果就同样多,如果从乙筐拿出13个放进甲筐,甲筐里的苹果就是乙筐的3倍.甲、乙两筐原来各有苹果多少个?4.一个水池,单开进水管,6分钟可将空水池注满,单开出水管8分钟可将满池水放完,若同时打开进、出水管,多少分钟可将水池注满?5.甲、乙两人修路队共有76人,甲队增加本队人数的4倍,乙队增加本队人数的6倍后,两队共增加了384人,求甲、乙两队原有各有多少人?6.一个食堂买来面粉是大米的2倍,每天吃30千克大米,40千克面粉,几天后大米全部吃完,面粉还剩余160千克,这个食堂买来大米和面粉各多少千克?7.甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元?8.10年前母亲的年龄是女儿的7倍,10年后母亲的年龄是女儿的2倍.现在母亲的年龄是多少岁?9.甲、乙两车同时从A、B两地相向而行,第一次两车在距B地64千米外相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后立即沿原路返回,途中两车在距A地48千米处第二次相遇,两次相遇后之间相距多少千米?10.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要_________秒钟?11.买来5角、2角、1角5分三种邮票,共20张,总值5元5角,其中5角和1角5分的邮票张数相等,问三种邮票各购几张?.12.客车从甲地开往开乙地,货车从乙地开往甲地,每小时客车比货车多得12千米,经过4小时相遇.相遇后,两车继续按原方向前进,又经过3小时客车到达乙地,这时货车离乙地多少米?13.仓库里原有化肥若干吨,第一天取出全部的一半多30吨,第二次取出余下的一半少100吨,第三次取出150吨,最后还剩下70吨,这批化肥原有多少吨?14.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?15.如果买3盒水彩笔和5个书包,需要259元,如果买2盒水彩笔和3个书包,需要161元,2个书包和2盒水彩笔共要多少元?16.一个两位数,十位数字与个位数字之和是10,数字之差是4,且个位数字小于十位数字,这个两数是多少?17.一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?18.有鸡蛋16箩,每只大箩可容180个,每只小箩可容120个,共值570元.若将每个鸡蛋便宜5分出售,则可得款456元,大箩、小箩各多少只?五年级奥数题:重叠问题参考答案与试题解析1.甲、乙两队合修一条水渠,甲队每天修14.5米,乙队3天修46.5米,照这样计算,两队合修6天,共修水渠多少米?2.用绳子测一口井的深度.绳子两折时,多余60厘米;绳子三折时,还差40厘米.求绳长和井深.,折三折时,每段就是全长的,全长的()就÷,,本题的关键是绳长一定,折二折每段是全长的,折三折每段是全长的3.甲、乙两筐苹果,如果从甲筐中拿出18个放进乙筐,两筐的苹果就同样多,如果从乙筐拿出13个放进甲筐,甲筐里的苹果就是乙筐的3倍.甲、乙两筐原来各有苹果多少个?4.一个水池,单开进水管,6分钟可将空水池注满,单开出水管8分钟可将满池水放完,若同时打开进、出水管,多少分钟可将水池注满?;单开出分钟可将满池水放完,每分钟,同时打开进、出水管,每分钟进水﹣﹣(﹣÷,5.甲、乙两人修路队共有76人,甲队增加本队人数的4倍,乙队增加本队人数的6倍后,两队共增加了384人,求甲、乙两队原有各有多少人?6.一个食堂买来面粉是大米的2倍,每天吃30千克大米,40千克面粉,几天后大米全部吃完,面粉还剩余160千克,这个食堂买来大米和面粉各多少千克?x﹣)÷,7.甲的存款是乙的5倍,如果甲取出60元,乙存入60元,那么乙的存款是甲的2倍.甲、乙原有存款各有多少元?8.10年前母亲的年龄是女儿的7倍,10年后母亲的年龄是女儿的2倍.现在母亲的年龄是多少岁?x+10=9.甲、乙两车同时从A、B两地相向而行,第一次两车在距B地64千米外相遇,相遇后两车仍以原速度继续行驶,并在到达对方车站后立即沿原路返回,途中两车在距A地48千米处第二次相遇,两次相遇后之间相距多少千米?10.某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列车长150米,时速为72千米的列车相遇,错车而过需要10秒钟?11.买来5角、2角、1角5分三种邮票,共20张,总值5元5角,其中5角和1角5分的邮票张数相等,问三种邮票各购几张?.12.客车从甲地开往开乙地,货车从乙地开往甲地,每小时客车比货车多得12千米,经过4小时相遇.相遇后,两车继续按原方向前进,又经过3小时客车到达乙地,这时货车离乙地多少米?13.仓库里原有化肥若干吨,第一天取出全部的一半多30吨,第二次取出余下的一半少100吨,第三次取出150吨,最后还剩下70吨,这批化肥原有多少吨?14.三个植树队共植树1800棵,甲队植树的棵数是乙队的2倍,乙队植树的棵数比丙队少200棵,三队各植树多少棵?15.如果买3盒水彩笔和5个书包,需要259元,如果买2盒水彩笔和3个书包,需要161元,2个书包和2盒水彩笔共要多少元?16.一个两位数,十位数字与个位数字之和是10,数字之差是4,且个位数字小于十位数字,这个两数是多少?17.一群公猴、母猴、小猴共38只,每天摘桃266个.已知1只公猴每天摘桃10个,1只母猴每天摘桃8个,1只小猴每天摘桃5个.又知公猴比母猴少4只,那么这群猴子中,小猴有多少只?18.有鸡蛋16箩,每只大箩可容180个,每只小箩可容120个,共值570元.若将每个鸡蛋便宜5分出售,则可得款456元,大箩、小箩各多少只?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 了解容斥原理二量重叠和三量重叠的内容;
2. 掌握容斥原理的在组合计数等各个方面的应用.
一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.
包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行:
第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一
切元素都“包含”进来,加在一起);
第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数).
二、三量重叠问题
A 类、
B 类与
C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:
教学目标
知识要点
7-7-3.几何中的重叠问题
1.先包含——A B +
重叠部分A B I 计算了2次,多加了1次;
2.再排除——A B A B +-I
把多加了1次的重叠部分A B I 减去.
在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.
【例 1】 把长38厘米和53厘米的两根铁条焊接成一根铁条.已知焊接部分长4厘米,焊
接后这根铁条有多长?
【考点】几何中的重叠问题 【难度】1星 【题型】解答
【解析】 因为焊接部分为两根铁条的重合部分,所以,由包含排除法知,焊接后这根铁条长
3853487+-=(厘米).
【答案】87厘米
【巩固】 把长23厘米和37厘米的两根铁条焊接成一根铁条.已知焊接部分长3厘米,焊接
后这根铁条有多长?
【考点】几何中的重叠问题 【难度】1星 【题型】解答
【解析】 焊接部分为两根铁条的重合部分,由包含排除法知,焊接后这根铁条长:
2337357+-=(厘米).
【答案】57厘米
【例 2】 两张长4厘米,宽2厘米的长方形纸摆放成如图所示形状.把它放在桌面上,覆
盖面积有多少平方厘米?
【考点】几何中的重叠问题 【难度】1星 【题型】解答
图32厘米4
厘
米
【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为2
厘米的正方形,如果利用两个42⨯的长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,被覆盖面积=长方形面积之和-重叠部分.于是,被覆盖面积4222212=⨯⨯-⨯=(平方厘米).
【答案】12厘米
例题精讲
图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,
大圆表示C 的元素的个数.
1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .
【巩固】 如图3,一张长8厘米,宽6厘米,另一个正方形边长为6厘米,它们中间重叠的
部分是一个边长为4厘米的正方形,求这个组合图形的面积.
【考点】几何中的重叠问题 【难度】1星 【题型】解答
图3 【解析】 两个图形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4厘
米的正方形,如果利用长方形和正方形面积之和来计算被覆盖桌面的面积,那么重叠部分在长方形和正方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积+正方形面积-重叠部分.于是,组合图形的面积:86664468⨯+⨯-⨯=(平方厘米).
【答案】68平方厘米
【巩固】 一个长方形长12厘米,宽8厘米,另一个长方形长10厘米,宽6厘米,它们中间
重叠的部分是一个边长4厘米的正方形,求这个组合图形的面积.
【考点】几何中的重叠问题 【难度】1星 【题型】解答
【解析】 两个长方形如图摆放时出现了重叠(见图中的阴影部分),重叠部分恰好是边长为4
厘米的正方形,如果利用两个长方形面积之和来计算被覆盖桌面的面积,那么重叠部分在两个长方形面积中各被计算了一次,而实际上这部分只需计算一次就可以了.所以,组合图形的面积=长方形面积之和-重叠部分.于是,组合图形的面积12810644140=⨯+⨯-⨯=(平方厘米).
【答案】140平方厘米
【例 3】 三个面积均为50平方厘米的圆纸片放在桌面上(如图),三个纸片共同重叠的面积
是10平方厘米.三个纸片盖住桌面的总面积是100厘米.问:图中阴影部分面积
之和是多少?
【考点】几何中的重叠问题 【难度】2星 【题型】解答
C
B
A
10
【解析】 将图中的三个圆标上A 、B 、C .根据包含排除法,三个纸片盖住桌面的总面积
=(A 圆面积B +圆面积C +圆面积-)(A 与B 重合部分面积A +与C 重合部分面积
B +与
C 重合部分面积+)
三个纸片共同重叠的面积,得:100505050A =++-()(与B 重合部分面积A +与C 重合部分面积B +与C 重合部分面积10+)
,得到A 、B 、C 三个圆两两重合面积之和为:16010060-=平方厘米,而这个面积对应于圆上的那三个纸片共同重叠的面积的三倍与阴影部分面积的和,即:60103=⨯+阴影部分面积,则阴影部分面积为:603030-=(平方厘米).
【答案】30平方厘米
【巩固】 如图,已知甲、乙、丙3个圆的面积均为30,甲与乙、乙与丙、甲与丙重合部分
的面积分别为6,8,5,而3个圆覆盖的总面积为73.求阴影部分的面积.
【考点】几何中的重叠问题 【难度】2星 【题型】解答
【解析】 设甲圆组成集合A ,乙圆组成集合B ,丙圆组成集合C .
A B C ===30,A B I =6,B C I =8,A C I =5,A B C U U =73,
而A B C U U =A B C +--A B B C A C A B C --+I I I I I .
有73=30×3-6-8-5+A B C I I ,即A B C I I =2,即甲、乙、丙三者的公共面积(⑧部分面积)为2.那么只是甲与乙(④),乙与丙(⑥),甲与丙(⑤)的公共的面积依次为6-2=4,8-2=6,5-2=3,所以有阴影部分(①、②、③部分之和)的面积为73-4-6-3-2=58.
【答案】58
【例 4】 如图,三角形纸板、正方形纸板、圆形纸板的面积相等,都等于60平方厘米.阴
影部分的面积总和是40平方厘米,3张板盖住的总面积是100平方厘米,3张纸
板重叠部分的面积是多少平方厘米?
【考点】几何中的重叠问题 【难度】3星 【题型】解答
【解析】 阴而三张纸重叠部分是被计算了三次.所
以三张纸重叠部分的面积60310040220=⨯--÷=()(平方厘米).
【答案】20平方厘米
【巩固】 如图所示,A 、B 、C 分别是面积为12、28、16的三张不同形状的纸片,它们
重叠在一起,露在外面的总面积为38.若A 与B 、B 与C 的公共部分的面积分别为8、7,A 、B 、C 这三张纸片的公共部分为3.求A 与C 公共部分的面积是多少?
【考点】几何中的重叠问题 【难度】3星 【题型】解答
【解析】 设A 与C 公共部分的面积为x ,由包含与排除原理可得:
⑴ 先“包含”:把图形A 、B 、C 的面积相加:12281656++=,那么每两个图形的公共
部分的面积都重复计算了1次,因此要排除掉.
⑵ 再“排除”:5687x ---,这样一来,三个图形的公共部分被全部减掉,因此还要再补
回.
⑶ 再“包含”:56873x ---+,这就是三张纸片覆盖的面积.
根据上面的分析得:5687338x ---+=,解得:6x =.
【答案】6。