5.2平行关系的性质
北师大版必修2数学5.2平行关系的性质2
安边中学高一年级上学期数学学科导学稿执笔人:王广青总第课时备课组长签字:包级领导签字:学生:上课时间: 14 周集体备课一、课题: 5.2平行关系的性质(2)二、学习目标1、掌握平面与平面平行的性质定理。
2、能用文字语言、符号语言、图形语言准确地描述面面平行的性质定理。
3、能用性质定理证明一些空间面面平行的简单问题。
三、落实目标【自主预习】问题1、平面与平面平行的判定定理:文字语言图形语言符号语言【合作探究】问题1:如图,平面α∥平面β,它们分别a,,那么a b。
与平面γ交于直线b问题2:当一个平面与另一个平面平行时,那么在什么条件下,一个平面内的直线与另一个平面内的直线平行?问题3:平面与平面平行的性质定理:____________________________________________________________________________________________________ ______符号表示:____________________________ ________________。
问题4、求证:如图,夹在两个平行平面间的平行线段相等。
问题6:见课本P33页例5。
问题7:已知a 、b 表示直线,α、β、γ表示平面,则下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥β:D .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b【检测反馈】1、判断下列结论是否成立:① 过平面外一点,有且仅有一个平面与已知平面平行;( )② αββγαγ若∥,∥,则∥;( )③ 平行于同一个平面的两条直线平行;( )④ 两个平面都与一条直线平行,则这两个平面平行;( )⑤ 一条直线与两个平行平面中的一个相交,则必与另一个相交。
( )反思栏D CB A βα。
人教版数学七年级下册5.3.1 第1课时 平行线的性质 -课件
4
b
2
∴ 2+ 4=180°
线被第三条直线所截,同旁内角互补. 简单说成:两直线平行,同旁内角互补.
应用格式:
∵a∥b(已知)
∴∠2+∠4=180 °
a
1
4
b
2
(两直线平行,内错角相等)
c
典例精析
例 如图,是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角分别是多少度?
解:因为梯形上、下底互相平行,所以
∠A与∠D互补, ∠B与∠C互补. D
C
于是∠D=180 °-∠A=180°-
100°=80°
A
B
∠所C以=梯18形0的°另-∠外B两=1个80角°分-1别15是°8=06°5°、 65°.
四、平行线的判定与性质 讨论:平行线三个性质的条件是什么?结论是
什么?它与判定有什么区别?(分组讨论)
如图,已知a//b,那么2与3相等吗?为什么?
解 ∵ a∥b(已知),
∴∠1=∠2(两直线平行,同位角相等).
a
1
又∵ ∠1=∠3(对顶角相等),
3
b
2
∴ ∠2=∠3(等量代换).
c
总结归纳
性质2:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.
应用格式:
∵a∥b(已知)
解: ∠A =∠D.理由:
∵ AB∥DE( 已知 )
D
∴∠A=_∠__C_P_E__ ( 两直线平行,同位角相等)
A
∵AC∥DF( 已知 )
F C
P E
图1 B
∴∠D=_∠__C_P_E_ ( 两直线平行,同位角相等 )
七年级数学上册第5章相交线与平行线5.2平行线3平行线的性质说课稿新版华东师大版
平行线的性质一、教材分析1、教材的地位与作用《行线的性质》是华东师大版七年级数学上册的内容,本节课是在学生已经学习了并了解了平行线的概念,经历了两条直线被第三条直线所截同位角相等、内错角相等、同旁内角互补可以判定两条直线平行的判定及性质的基础上进行教学的。
这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。
它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
2、教学重点、难点教学重点:平行的三个性质特征。
教学难点:怎样区分性质和判定。
3、学生情况分析七年级的学生刚正式接触几何知识,对平行线的性质和判定定理仅仅记住、理解而已,中等生对该部分的综合应用很不熟练,整个推理过程很难独自完成,很难做到有理有据的推理,这一方面与学生的接受能力有关,对新知识接受快的同学能够模仿书写推理过程;另一方面与学生的思维阶段有关,七年级学生的抽象的逻辑推理能力发展刚刚起步,所以对平行线的推理过程很难规范。
二、教学目标分析根据数学课程标准的要求和教学内容的特点,以及学生的实际情况制定如下目标:知识与技能:探索平行线的性质和判定定理,会用平行线的性质和判定定理进行简单的计算、证明了解平行线的性质和判定的区别。
过程与方法:通过学生观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。
通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、说教法、学法新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。
为了让学生真正成为课堂的主人,这节课我选用下面教学方法:小组合作法和自主探究法,作为复习课,平行线的性质及判定定理学生已经记住了,但是不能综合应用,所以在本节课上多强调小组合作和自主探究,希望学生能在合作好探究中有所收获,掌握平行线的判断和平行线性质的综合运用来解决几何问题的推理过程。
七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )
七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。
《5.2.2平行线的判定》教案
课题《5.2.2平行线的判定》教案【教案背景】1、教学对象:七年级学生2、学科:七年级数学下册(新人教版)3、课时:第1课时4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。
本学期学生初步接触推理证明,逐步养成言之有据的习惯。
【教学课题】数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。
本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。
一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。
在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程(一)复习旧知,引入新课1.如图,已知四条直线AB、AC、DE、FG,(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。
5.2平行关系的性质导学案
5.2平行关系的性质自主备课 学习目标1. 掌握直线与平面平行的性质定理及其应用;2.掌握两个平面平行的性质定理及其应用。
学习重点:两个性质定理学习难点:性质定理的证明;性质定理的正确运用。
自主学习阅读课本,回答以下问题1、如果一条直线与一个平面平行,那么这条直线是否与这个平面内所有直线平行吗?2、分别位于两个平行平面内的直线有什么位置关系?3、两个平面互相平行,其中一个平面内的直线与另一个平面有什么位置关系?4、若一个平面与两个平行平面同时相交,则交线有什么位置关系?41-65,,,////,,,.A B C D AB AC BD AC BD C D AC BDαα=例题如图在同一平面内,面, 且与面分别交于点求证: A BC Dα12..//..//b a b b A B b C b D b b αααααααα≠≠≠⊂⊂⊂课本练习、如果直线a//平面,直线,那么与一定平行吗?为什么?、如果直线a//直线b,且a//平面,那么与的位置关系是()相交 或5-l ,,,,623A B C D E F AB BC EF αβγαβγαβγ===例题 如图168,平面,,两两平行,且直线与,, 分别交于点。
直线m 与,,分别交于, ,,,求DE 的长αβγ1,2ααααααααα课本练习题、已知两条直线m,n 及平面,判定下面四个命题是否正确:(1)若m//,n//,则m//n(2)若m//,m//n 则n// (3)若m//,则m 平行于内的所有直线(4)若m 平行于内无数条直线,则m//、如果一条直线与两个平行平面中的一个平行,那么这条 直线与另一个平面的位置关系是()A.平行B.相交C.在平面内D.平行或在平面内3、如果3个平面把空间分成4个部分,那么这3个平面有怎样 的位置关系?分成6部分呢?G F D E CB A l m自学检测1、已知直线L∥平面α,直线m在平面α内,则直线L和m的位置关系是()A.相交B.平行C.平行或异面D.异面⊂α,点B∈β,则在β内过点B 2、若平面α∥平面β,直线a≠的所有直线中()A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线3、如果一条直线和一个平面平行,则这条直线()A 只和这个平面内一条直线平行;B 只和这个平面内两条相交直线不相交;C 和这个平面内的任意直线都平行;D 和这个平面内的任意直线都不相交。
空间几何中的平行关系
空间几何中的平行关系在空间几何中,平行关系是一种重要而基础的数学概念。
平行关系常常出现在我们的日常生活和工作中,例如平行线、平行四边形等。
本文旨在介绍空间几何中平行关系的定义和性质,并探讨平行关系在实际问题中的应用。
一、平行关系的定义在空间几何中,平行关系是指两条或多条线段或线的方向相同,永不相交的关系。
给定两条直线l1和l2,在平面上,如果l1和l2除了一个公共点之外,其他点都不相交,那么我们就说l1和l2平行。
同样地,在空间中,如果两条直线l1和l2除了一个公共点之外,其他点都不相交,那么我们就说l1和l2平行。
二、平行关系的性质1. 平行关系是传递的。
如果直线l1与直线l2平行,直线l2与直线l3平行,则直线l1与直线l3也平行。
2. 平行关系是对称的。
如果直线l1与直线l2平行,则直线l2与直线l1平行。
3. 平行关系是自反的。
任意一条直线与自身平行。
4. 如果两个平行线分别与一条横截线相交,那么所得的对应角相等。
基于以上性质,我们可以利用平行关系进行推理和证明。
在解决几何问题时,通过判断线段或线的平行关系,我们可以简化问题,找到更加简洁和优雅的解决方法。
三、平行关系在实际问题中的应用在日常生活和工作中,平行关系的应用广泛而深入。
以下是一些平行关系的典型应用示例:1. 建筑工程:在建筑设计和施工中,平行关系的应用非常常见。
例如,在设计一座桥梁时,需要确保桥墩和主梁是平行的,以保证结构的稳定性和美观性。
2. 路网规划:在城市交通规划中,平行道路的设计可以提高交通效率和道路利用率。
平行的道路可以更好地满足不同方向的交通需求,减少交通堵塞和拥堵。
3. 平行投影:在工程和科学领域中,平行投影广泛应用于制图和测量中。
通过选择适当的平行方向,我们可以更准确地表达三维物体的形状和大小。
4. 机械设计:在机械设计中,平行关系的应用可以确保机器部件的精确安装和运动。
例如,在设计一台车床时,需要保证主轴和工作台的平行关系,以确保加工的精度和质量。
空间中的平行关系
(1)试确定F的位置;
(2)求三棱锥A-CDF的体积.
解 (1)连接BE交AD于点O,连接OF,因为CE∥平面ADF,CE⊂平面BEC,平面
ADF∩平面BEC=OF,
所以CE∥OF.
因为O是BE的中点,所以F是BC的中点.
(2)因为 BC 与平面 ABD 所成角为 30°,BC=AB=1,
D.既不充分也不必要条件
答案 B
解析 因为直线a,b,平面α,β,a⊂α,b⊂α,由a∥β,b∥β,得α,β平行或相交;
由α∥β,得a∥β,b∥β,
所以a∥β,b∥β是α∥β的必要不充分条件.故选B.
3.(多选)在正方体ABCD-A1B1C1D1中,下列结论正确的是有(
A.AD1∥BC1
B.平面AB1D1∥平面BDC1
所以 C 到平面 ABD 的距离为 h=BC·
sin
1
30°= .
2
因为 AE=2,F 是 BC 的中点,
所以
1
1
1
VA-CDF=VF-ACD= VB-ACD= VC-ABD=
2
2
2
1
3
× ×
1
1
×1×2×
2
2
=
1
.
12
解题心得在应用线面平行的性质定理进行平行转化时,一定注意定理成立
的条件,通常应严格按照定理成立的条件规范书写步骤,如:把线面平行转
α,β相交于点A,B,C,D,若PA=4,PB=5,PC=3,则
PD=
答案
.
15
4
解析 由题意,平面 α∥平面 β,则
Hale Waihona Puke 所以·PD=
=
3×5
1.5.2 平行关系的性质 课件(北师大必修2)
PM PE QN BQ 又∵PM∥AB∥QN,∴ AB =AE,DC =BD, ∴PM綊QN,即四边形PMNQ为平行四边形. ∴PQ∥MN. 又MN平面BCE,PQ ∴PQ∥平面BCE. 平面BCE,
法二:如图,连接AQ,并延长交BC于 K,连接EK. ∵AE=BD,AP=DQ, AP DQ ∴PE=BQ,∴PE= BQ. DQ AQ 又∵AD∥BK,∴BQ=QK. AP AQ 由①②得PE=QK,∴PQ∥EK. 又PQ 平面BEC,EK平面BEC,∴PQ∥平面BEC. ① ②
写出已知和求证,利用直线和平面平行的性质定理来证 明.
[精解详析] 已知a∥α,a∥β,α∩β=b.
求证:a∥b. 证明:过a作平面δ,δ∩β=c, ∵a∥β,∴a∥c. 过a作平面γ,
γ∩α=d,∵a∥α,∴a∥d.
由公理4得c∥d.
∵dα,c
α,∴c∥α.
又∵cβ,α∩β=b, ∴c∥b,又c∥a,∴a∥b.
则得BC∥l.
②利用线面平行,面面平行得MN∥平面PAD.
[精解详析]
法一:(1)证明:因为
BC∥AD,
BC
平面PAD,AD平面PAD,
所以BC∥平面PAD. 又因为BC平面PBC,平面PBC∩平面PAD=
l,所以BC∥l.
(2)平行.取PD的中点E,连接AE,NE,可以 证得NE∥AM且NE=AM. 可知四边形AMNE为平行四边形. 所以MN∥AE,MN 平面APD,AE平面
4.若平面α∥平面β,直线aα,点B∈β,则在β内过 点B的所有直线中 ( )
A.不一定存在与a平行的直线
B.只有两条与a平行的直线 C.存在无数条与a平行的直线 D.存在唯一一条与a平行的直线 解析:利用面面平行的性质可知,a和B确定一个平面,
2024秋七年级数学上册第五章相交线与平行线5.2平行线1平行线说课稿(新版)华东师大版
①平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
②平行线的性质:
a.平行线互相平行,不会相交。
b.平行线之间的距离相等。
c.平行线上的对应角相等。
d.平行线上的内错角相等。
e.平行线上的同位角相等。
③平行线的判定方法:
a.同位角相等,两直线平行。
b.内错角相等,两直线平行。
c.外角和相等,两直线平行。
4.学生作业和练习:学生的作业和练习是评估他们对平行线知识的掌握程度的重要依据。通过批改学生的作业和练习,可以了解他们对平行线性质、判定方法和应用的理解和掌握程度,以及他们在实际问题中的应用能力。
5.教师评价与反馈:教师对学生进行评价和反馈是提高学生学习效果的重要环节。教师应及时给予学生积极的反馈和鼓励,以提高他们的学习兴趣和自信心。同时,教师也应指出学生的不足之处,并提出改进的建议和指导,以帮助学生提高学习效果。
最后,我注意到在课堂讨论环节,有些学生表现出较强的积极主动性,但也有一些学生较为沉默。为了激发所有学生的学习兴趣,我计划在未来的教学中,设计一些更具互动性和趣味性的活动,如数学游戏、角色扮演等,让每个学生都能参与到课堂中来,享受学习的乐趣。
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的表现,可以发现他们对平行线概念的理解和掌握程度。重点关注学生的参与度、提问和回答问题的能力,以及他们在实践活动中的表现。
3.学生可能遇到的困难和挑战:在本节课中,学生可能对平行线的概念和性质感到困惑,特别是对于如何判断两条直线是否平行。此外,学生可能对平行线的判定方法难以理解,特别是当涉及到斜率的概念时。在应用方面,学生可能不知道如何将所学的平行线知识应用到实际问题中,解决生活中的问题。因此,在教学过程中,需要关注这些学生的需求,通过提供适当的辅导和示例,帮助他们克服这些困难。同时,要鼓励学生积极参与课堂讨论和实践活动,以提高他们的理解和应用能力。
专题5.2平行线及其判定讲练简单数学之七年级下册同步讲练解析版人教版
专题5.2平行线及其判定典例体系(本专题共49题30页)一、知识点平行线定义;平行公理:同一平面内,经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
平行线的判定1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.二、考点点拨与训练考点1:平面内两直线位置关系典例:(2020·石家庄市第四十一中学九年级期中)下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)内错角相等;(3)对顶角相等;(4)过一点有且只有一条直线与已知直线平行;(5)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.(6)点到直线的垂线段叫做点到直线的距离A.1个B.2个C.3个D.4个【答案】B【详解】(1)点到直线的距离,垂线段最短:直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(2)两直线平行,内错角相等,错误;(3)对顶角相等,正确;(4)过直线外一点有且只有一条直线与已知直线平行,错误;(5)当这两条直线平行时:如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直,错误;(6)点到直线的垂线段的长度叫做点到直线的距离,错误故答案选:B方法或规律点拨本题考查了对顶角、内错角、点到直线的距离,点与线、线与线等的关系,掌握相关的定义与性质是解题关键.巩固练习1.(2020·浙江金华市·七年级期中)下列说法正确的是()A.没交点的两直线一定平行B.两直线平行一定没交点C.没交点的线段一定平行D.相交的两直线可能平行【答案】B【详解】解:A、应为在同一平面内,没有交点的两条直线一定平行,故本选项不符合题意;B、两直线平行一定没交点,故本选项符合题意;C、没交点的线段不一定平行,故本选项不符合题意;D、相交的两直线不可能平行,故本选项不符合题意;故选:B2.(2020·河南省淮滨县第一中学七年级期末)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【答案】C【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.3.(2020·忠县乌杨初级中学校七年级月考)在同一平面内,两条直线的位置关系可能是()A.相交或平行B.相交或垂直C.平行或垂直D.不能确定【答案】A【详解】解:在同一平面内,两条直线只有两种位置关系:相交或平行,故选:A.Ð内部有一点M,过点M画OA的平行线,这样的直线()4.(2019·山西七年级月考)已知AOBA.有且只有一条B.有两条C.有三条D.有无数条【答案】A【详解】根据过直线外一点有且仅有一条直线与已知直线平行,故选A.5.(2020·山东省昌乐第一中学七年级月考)下列说法正确的有( )①两点之间的所有连线中,线段最短②相等的角叫对顶角③过一点有且只有一条直线与已知直线平行④不相交的两条直线叫做平行线⑤直线外一点到该直线的所有线段中垂线最短⑥在同一平面内,过一点有且只有一条直线与已知直线垂直A.1个B.2个C.3个D.4个【答案】B【详解】①两点之间的所有连线中,线段最短,正确;②相等的角叫对顶角,错误,应该是对顶角相等;③过一点有且只有一条直线与已知直线平行,错误,应该强调在直线外一点;④不相交的两条直线叫做平行线,错误,应该强调在同一平面内;⑤直线外一点到该直线的所有线段中垂线最短,错误,应该是垂线段最短;⑥在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,正确的有2个,故选:B .6.(2020·嘉峪关市第六中学七年级月考)同一平面内,两条直线的位置关系有()A .相交、垂直B .相交、平行C .垂直、平行D .相交、垂直、平行【答案】B【详解】解:同一平面内的两直线只有相交于平行两种位置关系.故选:B .7.(2020·河南省淮滨县第一中学七年级期末)如果//a c ,a 与b 相交,//b d ,那么d 与c 的关系为________.【答案】相交【详解】解:d 和c 的关系是:相交.故答案为:相交.8.(2019·山西七年级月考)如图所示,直线a ,b 被直线c 所截,∠1=∠2,则直线a ,b 的位置关系为______(用符号表示).【答案】//a b【详解】如图所示,可得23ÐÐ=,又∵∠1=∠2,∴13Ð=Ð,∴//a b .故答案是//a b .9.(2020·广东广州市·绿翠现代实验学校七年级月考)同一平面内,两条直线的位置关系有_____________________ .【答案】相交或平行【详解】解:在同一平面内,两条直线有2种位置关系,它们是相交或平行.故答案为:相交或平行.考点2:平行公理及应用典例:(2020·江苏南京市·七年级期中)下列命题中的真命题是( )A .在同一平面内,a 、b 、c 是直线,如果a ∥b ,b ⊥c ,则a ∥cB .在同一平面内,a 、b 、c 是直线,如果a ⊥b ,b ⊥c ,则a ⊥cC .在同一平面内,a 、b 、c 是直线,如果a ∥b ,b ∥c ,则a ∥cD .在同一平面内,a 、b 、c 是直线,如果a ∥b ,b ∥c ,则a ⊥c【答案】C【详解】解:A 、在同一平面内,a 、b 、c 是直线,如果a //b ,b ⊥c ,则a ⊥c ,原命题是假命题;B 、在同一平面内,a 、b 、c 是直线,如果a ⊥b ,b ⊥c ,则a //c ,原命题是假命题;C 、在同一平面内,a 、b 、c 是直线,如果a //b ,b //c ,则a //c ,是真命题;D 、在同一平面内,a 、b 、c 是直线,如果a //b ,b //c ,则a //c ,原命题是假命题;故选:C .方法或规律点拨本题主要考查平行线和垂直的判定,掌握平行线和垂直的判定方法是解题的关键.巩固练习1.(2020·湖南永州市·七年级期末)下列说法中不正确的是 ()A .三条直线a ,b ,c 若//a b ,//b c ,则//a cB .在同一平面内,若直线//a b ,c a ^,则c b^C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,过一点有且只有一条直线与已知直线平行【答案】D【详解】A .三条直线a ,b ,c 若//a b ,//b c ,则//a c ,即平行于同一条直线的两条直线平行,故正确;B .在同一平面内,若直线//a b ,c a ^,则c b ^,根据平行线的性质可确定正确;C .在同一平面内,过一点有且只有一条直线与已知直线垂直,根据垂线的性质可确定正确;D .在同一平面内,过一点有且只有一条直线与已知直线平行,不正确,应为过直线外一点有且只有一条直线与已知直线平行.故选:D .2.(2019·四川绵阳市·七年级期末)已知,,a b c 是同一平面内的不同直线,下列说法正确的是( )A .若a 与b 相交,b 与c 相交,则a 与c 相交B .若//a b ,//b c ,则//a cC .若a b ^r r ,b c ^,则a c^D .若,,a b c 两两相交,有三个交点【答案】B【详解】解:A .若a 与b 相交,b 与c 相交,则a 与c 平行或相交,该项不符合题意;B .若//a b ,//b c ,则//a c ,该项符合题意;C .在同一平面内,若a b ^r r,b c ^,则//a c ,该项不符合题意;D .若,,a b c 两两相交,有一个交点或三个交点,该项不符合题意;3.(2020·凉州区洪祥乡洪祥中学七年级期末)下列说法错误的是()A .过任意一点P 可作已知直线m 的一条平行线B .同一平面内的两条不相交的直线是平行线C .过直线外一点只能画一条直线与已知直线平行D .平行于同一条直线的两条直线平行【答案】A【详解】解:选项A :当点P 在直线m 上时则不可以作出已知直线的平行线,而是与已知直线重合,故选项A 错误,选项B 、C 、D 显然正确,故选:A .4.(2020·河南许昌市·七年级期末)在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ^r r ,b c ^,则a c ^,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确【答案】A【详解】解:①若a ∥b ,b ∥c ,则a ∥c ,说法正确;②若a ⊥b ,b ⊥c ,则a ⊥c ,说法错误,应为同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ;故选:A .5.(2020·江苏淮安市·七年级期末)下列命题中,是真命题的有( )①同位角相等;②对顶角相等;③同一平面内,如果直线l 1∥l 2,直线l 2∥l 3,那么l 1∥l 3;④同一平面内,如果直线l 1⊥l 2,直线l 2⊥l 3,那么l 1∥l 3.A .0个B .1个C .2个D .3个【答案】D【详解】解:①两直线平行,同位角相等,原命题是假命题;②对顶角相等,是真命题;③同一平面内,如果直线l 1∥l 2,直线l 2∥l 3,那么l 1∥l 3;是真命题;④同一平面内,如果直线l 1⊥l 2,直线l 2⊥l 3,那么l 1∥l 3,是真命题;故选:D.6.(2021·全国九年级专题练习)如图,工人师傅用角尺画出工件边缘AB 的垂线a 和b ,得到a ∥b ,理由A .连结直线外一点与直线上各点的所有线段中,垂线段最短B .在同一平面内,垂直于同一条直线的两条直线互相平行C .在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D .经过直线外一点,有且只有一条直线与这条直线平行【答案】B【详解】解:∵由题意a ⊥AB ,b ⊥AB ,∴∠1=∠2∴a ∥b所以本题利用的是:同一平面内,垂直于同一条直线的两条直线平行,故选:B .考点3:平行线的判定典例:(2020·河南新乡市·七年级期末)如图,点E 在AC 的延长线上,给出的五个条件:①34Ð=Ð;②12Ð=Ð;③A DCE Ð=Ð;④D DCE Ð=Ð;⑤0180D ABD Ð+Ð=.能判断//AB CD 的有___________.【答案】②③⑤【详解】∵∠3=∠4,∴BD ∥AC ,不符合题意;∵∠1=∠2,∴AB∥CD,符合题意;∠A=∠DCE,∴AB∥CD,符合题意;∠D=∠DCE,∴BD∥AC,不符合题意;∠D+∠ABD=180°,∴AB∥CD,符合题意;故答案为:②③⑤方法或规律点拨本题主要考查平行线的判定定理,掌握“内错角相等,两直线平行”,“同位角相等,两直线平行”,“同旁内角互补,两直线平行”,是解题的关键.巩固练习1.(2021·广东佛山市·八年级期末)如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4D.∠1+∠4=180°【答案】D【详解】解:A.由∠1=∠3,可得直线a与b平行,故A能判定;B. 如下图,由∠2+∠4=180°,∠5+∠4=180°,可得∠2=∠5,故直线a与b平行,故B能判定;C.由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;D.由∠1+∠4=180°,不能判定直线a与b平行,故选:D.2.(2021·福建三明市·七年级期末)如图是利用直尺和三角板过直线l外一点P作直线l的平行线的方法,这样做的依据是()A.同位角相等,两直线平行B.两直线平行,同位角相等C.两直线平行,内错角相等D.内错角相等,两直线平行【答案】A【详解】解:如图:∵∠BAC=∠EDC,∴AB∥DE.故选:A.DF AB的是( )3.(2020·珠海市紫荆中学七年级期中)如图,在下列给出的条件中,能判定//A.∠4=∠3B.∠1=∠A C.∠1=∠4D.∠4+∠2=180°【答案】C【详解】解:A、∵∠4=∠3,∴DE∥AC,不符合题意;B、∵∠1=∠A,∴DE∥AC,不符合题意;C、∵∠1=∠3,∴DF∥AB,符合题意;D、∵∠4+∠2=180°,∴DE∥AC,不符合题意;故选:C .4.(2021·长沙市开福区青竹湖湘一外国语学校七年级期末)如图,能判定//DE AC 的条件是( )A .13Ð=ÐB .3C Ð=ÐC .24ÐÐ=D .12180Ð+Ð=°【答案】B【详解】解:A 、当∠1=∠3时,EF ∥BC ,此选项不符合题意;B 、当∠3=∠C 时,DE ∥AC ,此选项符合题意;C 、当∠2=∠4时,无法得到DE ∥AC ,此选项不符合题意;D 、当∠1+∠2=180°时,EF ∥BC ,此选项不符合题意;故选:B .5.(2020·浙江金华市·七年级期中)如图,点E 在BC 的延长线上,则下列条件中,不能判定//AB CD 的是( )A .12Ð=ÐB .34Ð=ÐC .B DCE Ð=ÐD .13180D °Ð+Ð+Ð=【答案】B【详解】A 、如果12Ð=Ð,那么//AB CD ,故该项不符合题意;B 、如果34Ð=Ð,那么AD ∥BC ,故该项符合题意;C 、如果B DCE Ð=Ð,那么//AB CD ,故该项不符合题意;D 、如果13180D °Ð+Ð+Ð=,那么//AB CD ,故该项不符合题意;故选:B .6.(2020·黑龙江哈尔滨市·七年级期末)如图,下列条件:①15Ð=Ð;②26Ð=Ð;③ 37Ð=Ð;④48Ð=Ð,其中能判定//AB CD 的是( )A .①②B .②③C .①④D .②④【答案】C【详解】解:①∵15Ð=Ð,∴AB//CD ,故符合题意;②∵26Ð=Ð,∴AD//BC ,故不符合题意;③∵ 37Ð=Ð,∴AD//BC ,故不符合题意;④∵48Ð=Ð,∴AB//CD ,故符合题意;故选C .7.(2020·福建福州市·七年级期末)如图,能判断直线AB ∥CD 的条件是( )A .34180Ð+Ð=°B .34Ð=ÐC .13180Ð+Ð=°D .12Ð=Ð【答案】A【详解】A 选项中∠3和∠4的对顶角是一组同旁内角,所以当∠3+∠4=180°时AB ∥CD ;B 选项中∠3和∠4的对顶角是一组同旁内角,所以当∠3=∠4时AB 与CD 不一定平行;C 选项中∠1和∠3的对顶角是一组同旁内角,所以当∠1+∠3=180°时,AB 与CD 不一定平行;D 选项中∠1和∠2的对顶角是一组同旁内角,所以当∠1=∠2时AB 与CD 不一定平行.故选:A .8.(2020·上海同济大学实验学校七年级期中)如图,已知直线a 、b 、c ,若∠1=∠2=60°,且∠2=∠3,则图中平行线组数为( )A.0B.1C.2D.3【答案】D【详解】解:∵∠1=∠2=60°,∴a∥b,∵∠2=∠3,∴b∥c,∴a∥c,故选:D.9.(2020·吉林长春市·七年级期末)如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④∠AB CD的是()B+∠BAD=180°,其中能推出//A.①②B.①③C.②③D.②④【答案】B【详解】①∵∠1=∠2,∴AB∥CD;②∵∠3=∠4,∴AD∥BC;③∵∠B=∠DCE ,∴AB ∥CD ;④∵∠B+∠BAD=180°,∴AD ∥BC ;∴能得到AB ∥CD 的条件是①③.故选择:B10.(2021·全国七年级)如图,已知下列条件不能判定直线//a b 的是( )A .12Ð=ÐB .34Ð=ÐC .14Ð=ÐD .45180°Ð+Ð=【答案】C【详解】A 选项:12Ð=Ð,内错角相等,两直线平行,可以判定直线//a b ,故A 不符合题意;B 选项:34Ð=Ð,同位角相等,两直线平行,可以判定直线//a b ,故B 不符合题意;C 选项:∠1与∠4不存在同位角,内错角,同旁内角关系,故无法判定直线//a bD 选项:54180°Ð+Ð=,同旁内角互补,两直线平行,可以判定直线//a b ,故D 不符合题意.故选C .11.(2020·浙江杭州市·七年级其他模拟)如图,直线a ,b 被直线c 所截,现给出下列四个条件:(1)15Ð=Ð;(2)17Ð=Ð;(3)23180Ð+Ð=°;(4)47Ð=Ð,其中能判定//a b 的条件的序号是( )A .(1),(2)B .(1),(3)C .(1),(4)D .(3),(4)【答案】A【详解】解:1=5ÐÐQ ,//,a b \ 故(1)可判定;1=31=7,ÐÐÐÐQ ,3=7\ÐÐ,//,a b \ 故(2)可判定;23180Ð+Ð=°,不能判定//,a b 故(3)不能判定;47Ð=Ð,不能判定//,a b 故(4)不能判定.故选:.A 12.(2020·浙江金华市·七年级期末)如图,点E 在AB 的延长线上,下列四个条件:①13Ð=Ð;②24ÐÐ=;③DAB CBE Ð=Ð;④180D BCD Ð+Ð=°.其中能判断//AD CB 的是__________________(填写正确的序号即可).【答案】②③④【详解】解:①∵13Ð=Ð,∴AB ∥CD ;故①错误;②∵24ÐÐ=,∴//AD CB ;故②正确;③∵DAB CBE Ð=Ð,∴//AD CB ;故③正确;④∵180D BCD Ð+Ð=°,∴//AD CB ;故④正确;故答案为:②③④;13.(2020·浙江金华市·七年级期末)下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.【答案】(4)【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).14.(2021·全国七年级)如图,已知∠1=∠3,∠2+∠3=180°,请说明AB 与DE 平行的理由.解:将∠2的邻补角记作∠4,则∠2+∠4= °( )因为∠2+∠3=180° ( )所以∠3=∠4( )因为 ( )所以∠1=∠4( )所以AB //DE ( )【答案】180,邻补角的意义;已知;同角的补角相等;∠1=∠3,已知;等量代换;同位角相等,两直线平行.【详解】解:将∠2的邻补角记作∠4,则∠2+∠4=180° (邻补角的意义)因为∠2+∠3=180° (已知)所以∠3=∠4 (同角的补角相等)因为∠1=∠3(已知)所以∠1=∠4 (等量代换)所以AB //DE (同位角相等,两直线平行)故答案为:180,邻补角的意义;已知;同角的补角相等;∠1=∠3,已知;等量代换;同位角相等,两直线平行.15.(2020·陕西宝鸡市·七年级期中)数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点C ,E ,F ,B 在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.【答案】//AB CD ,理由:内错角相等,两直线平行【详解】//AB CD ,理由:内错角相等,两直线平行【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定定理是解题的关键.16.(2020·甘肃张掖市·张掖四中八年级期末)已知:如图,1C Ð=Ð,2Ð和D Ð互余,1Ð和D Ð互余,求证://AB CD .【答案】证明见详解【详解】解:证明:∵∠1和∠D 互余,∠2和∠D 互余,∴∠1=∠2,∵∠C=∠1,∴∠C=∠2,∴AB ∥CD .考点4:与平行线有关的作图问题典例:.(2021·南京外国语学校七年级期末)如图,所有小正方形的边长都是1个单位,A、B、C均在格点上仅用无刻度直尺画图:(1)过点A画线段BC的平行线AD;(2)过点B画线段BC的垂线,垂足为B;(3)过点C画线段AB的垂线,垂足为E;(4)线段CE的长度是点C到直线________的距离;(5)线段CA、CE的大小关系是_________(用“<”连接),理由是__________________.<;垂线段最短.【答案】(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CA方法或规律点拨本题考查了垂线段最短和点到直线的距离的知识,解题的关键是理解有关垂线段的性质及能进行简单的基本作图.巩固练习1.(2018·山东济南市·七年级期中)如图所示的方格纸中,每个方格均为边长为1的正方形,我们把每个小正方形的顶点称为格点,已知、、A B C 都是格点.请按以下要求作图(注:下列求作的点均是格点)(1)过点C 作一条线段CD ,使CD 平行且等于AB ;(2)过点B 作线段AB 的垂线段BE ;(3)过点C 作线段AB 的垂线段CF ,并判断CF 与BE 的位置关系;(4)求ABC V 的面积.【答案】(1)作图见解析;(2)作图见解析;(3)作图见解析,//CF BE ;(4)4【详解】(1)每个方格均为边长为1的正方形,结合题意,作图如下:(2)如图,∵AM BM ^,3MB =,1MA =使3NE MB ==,1NB MA ==,连接BE ,线段BE 即为所求;(3)如图,连接CQ ,直线CQ 与AB 相交于点FCF 即为线段AB 的垂线段;∵CF AB ^,且BE AB ^∴//CF BE(4)如图∵每个方格均为边长为1的正方形∴ABC S =V 正方形ANPQ 面积-ACQ ANB CBP S S S --△△△ ∴111331313224222ABC S =´-´´-´´-´´=△.2.(2021·北京通州区·首师大附中通州校区七年级期末)如图,点P 是AOB Ð的边OB 上的一点.(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)若每个小正方形的边长是1,则点P到OA的距离是___________;PE PH OE的大小关系是_____________________(用“<”连接).(5)线段,,<<【答案】(1)见解析;(2)见解析;(3)见解析;(4)1;(5)PH PE OE【详解】Ð的边OB上的一点.如图,点P是AOB(1)过点P画OB的垂线,交OA于点E;(2)过点P画OA的垂线,垂足为H;(3)过点P画OA的平行线PC;(4)由题意PH即点P到OA的距离,且PH=1,∴答案为1;(5)∵在RT△PHE中,PH是直角边,PE是斜边,∴PH<PE,同理在RT△POE中,PE是直角边,OE是斜边,∴PE<OE,<<.∴线段PE,PH,OE的大小关系是PH PE OE故答案为PH<PE<OE.3.(2020·射阳县实验初级中学七年级期末)利用网格画图,每个小正方形边长均为1(1)过点C画AB的平行线CD;(2)仅用直尺,过点C画AB的垂线,垂足为E;(3)连接CA、CB,在线段CA、CB、CE中,线段______最短,理由___________.(4)直接写出△ABC的面积为_________.【答案】(1)见详解;(2)见详解;(3)CE,垂线段最短;(4)8.【详解】解:(1)直线CD即为所求;(2)直线CE即为所求;(3)在线段CA、CB、CE中,线段CE最短,理由:垂线段最短;故答案为CE,垂线段最短;(4)S△ABC=18﹣12×1×5﹣12×1×3﹣12×2×6=8,∴△ABC的面积为8.4.(2021·南京外国语学校七年级期末)如图,所有小正方形的边长都是1个单位,A、B、C均在格点上仅用无刻度直尺画图:(1)过点A画线段BC的平行线AD;(2)过点B画线段BC的垂线,垂足为B;(3)过点C画线段AB的垂线,垂足为E;(4)线段CE的长度是点C到直线________的距离;(5)线段CA、CE的大小关系是_________(用“<”连接),理由是__________________.<;垂线段最短.【答案】(1)见解析;(2)见解析;(3)见解析;(4)AB;(5)CE CA【详解】(1)如图,直线AD即为所求;(2)如图,直线BF即为所求(3)如图,直线CE即为所求;(4)AB<;垂线段最短.(5)CE CAA B C都5.(2021·江苏苏州市·七年级期末)在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,在格点上.()1找一格点D,使得直线//CD AB,画出直线CD;()2找一格点E,使得直线AE BC^于点F,画出直线AE,并注明垂足F;()3找一格点G,使得直线BG AB^,画出直线BG;()4连接AG,则线段,,AB AF AG的大小关系是(用“<”连接).【答案】(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG<<【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF V 中,AB AF >;在Rt ABG V 中,AG AB >,故答案为:AF AB AG <<.6.(2020·南平市建阳第三中学七年级开学考试)已知方格纸上点O 和线段AB ,根据下列要求画图:(1)画直线OA;(2)过B点画直线OA的垂线,垂足为D;(3)取线段AB的中点E,过点E画BD的平行线,交AO于点F.【答案】见解析.【详解】解:(1)作法:①连接OA,②作直线AO;(2)作法:连接正方形AHGB的对角线BH交AG于点D;(3)作法:①取线段AD的中点F,连接EF.7.(2020·上饶市实验中学七年级期末)如图,平面上有一条直线AB以及AB外一点P,请你只用一块含30°角的三角板经过P点画直线CD使CD∥AB,简单说明你的画法.【答案】见解析【详解】解:如下图所示,将三角板30°角的一边与直线AB重合,另一边过点P,沿着这边作直线EF,平移三角板,当30°角的顶点与点P重合时,沿着30°角的另一边画直线CD,根据同位角相等,两直线平行可得CD∥AB,∴直线CD 即为所求.8.(2020·广西钦州市·七年级期末)如图,,,CA AB CD 都是射线,且//AB CD .(1)按要求画图:过A 画CD 的垂线,垂足为E ,过E 画AC 的平行线交AB 于F ;(2)在(1)画出的图形中,比较AC 与AE 的大小,并写出理由.【答案】(1)见解析;(2)AC AE >,理由见解析.【详解】(1)如图所示;(2)AC AE>理由:垂线段最短.9.(2019·广东广州市·七年级期末)如图,直线CD 与直线AB 相交于C ,解答下列问题.(1)过点P 画PQ ∥CD ,交AB 于点Q ;(2)过点P 画PR ⊥CD ,垂足为R ,连接PC ,判断PC 与PR 的大小,并说明理由【答案】(1)见解析;(2)作图见解析;PC >PR ;垂线段最短【详解】解:(1)如图,PQ ∥CD ,交AB 于点Q ;(2)如图PR ⊥CD ,PC 与PR 的大小为:PC >PR ,理由是:垂线段最短.10.(2019·天津和平区·七年级期中)阅读材料后完成.有这样一个游戏,游戏规则如下所述:如图①—图④,都是边 长为1的55´网格图,其中每条实线称为格线,格线与格线的交 点称为格点.在图①和图②中,可知,EF EH LM AB ^^.在图③ 和图④中,可知//CD AB . 根据上面的游戏规则,同学们开始闯关吧! 第一关:在图⑤的66´网格图中,所给各点均为格点,经过 给定的一点(不包括边框上的点),在图中画出一条与线段AB 垂直 的线段(或者直线)BC ,再画出与线段AB 平行的一条线段(或者 直线)EF . 第二关:在图⑥的66´网格图中,所给各点均为格点,经过 两对给定的点,构造两条互相垂直的直线.(在图中直接画出)【答案】详见解析【详解】´网格图中,根据图②画出AB垂直的线段BC,根据图③和图④可画出与线段AB 第一关:在图⑤的66平行的线段EF,如图所示.第二关:结合题中所给图形,画出两条垂直的直线,如图所示.11.(2019·陕西西安市·七年级期中)如图,由相同边长的小正方形组成的网格图形,A、B、C都在格点上,利用网格画图.(1)过点C画AB的平行线CF,标出F点;(2)过点B画AC的垂线BG,垂足为点G,标出G点;(3)点B到AC的距离是线段的长度;(4)线段BG、AB的大小关系为:BG AB(填“>”、“<”或“=”).【答案】(1)见解析;(2)见解析;(3)BG;(4)<.【详解】解:(1)如图,CF即为所求;(2)如图所示,BG即为所求;(3)点B到AC的距离是线段BG的长度,故答案为:BG;<,理由是:直线外一点与直线上各点连接的所有线段中,垂(4)线段BG、AB的大小关系为:BG AB线段最短.故答案为:<.12.(2019·山西七年级月考)(1)如图,点M代表某个公园,直线l代表公园M附近的一条公路.根据实际需要,计划在公路l上某处设置一个公交站点,并使其距离公园M最近,请在公路l上画出公交站点的位置,并写出画图依据(不需要尺规作图);(2)将一副透明的直角三角尺,按如图所示的位置摆放.如果把三角尺的每条边看成线段,线段AB分别和DE,CE相交于点F和点G,请根据图形回答下列问题.①找出图中两条互相垂直的线段,并用符号表示出来(写出一对即可);②找出图中两条互相平行的线段,并用符号表示出来(写出一对即可).【答案】(1)见解析;(2)见解析。
2020年新课标高中数学北师大版必修2课件1.5.2
求证:AP∥GH.
数
学
必 修
[思路分析] 欲证线线平行,往往先证线面平行,再由线面平行的性质定理
·
② 可证得线线平行.
北
师
大
版
返回导航
第一章 立体几何初步
[解析] 连接 AC 交 BD 于 O,连接 MO ∵四边形 ABCD 是平行四边形 ∴O 是 AC 的中点.又 M 是 PC 的中点,∴AP∥OM.
②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;
③过直线外一点,有且仅有一个平面和已知直线平行;
④如果直线l和平面α平行,那么过平面α内一点和直线l平行的直线在α内.
A.①②③④
B.①②③
C.②④
D.①②④
数
[解析] 由线面平行的性质定理知①④正确;由直线与平面平行的定义知②
学 必
正确.因为经过一点可作一直线与已知直线平行,而经过这条直线可作无数个
返回导航
·
第一章 立体几何初步
(2)符号表示 a__∥____α a______ β⇒a∥b. α∩β=b
(3)图形表示
数 学 必
(4)简记为:线面平行⇒线线平行.
修
②
·
北 师 大 版
返回导航
第一章 立体几何初步
2.平面与平面平行的性质定理
(1)定理内容 如果两个__平__行____平面同时与第三个平面相交,那么它们的__交__线____平行.
大
版
返回导航
第一章 立体几何初步
(2)若 AB、CD 不共面,如图,过 A 作 AE∥CD 交 α 于 E,取 AE 中点 P,连
接 MP、PN、BE、ED.
∵AE∥CD,∴AE、CD 确定平面 AEDC.
§5.2.1 线面平行的性质定理【2】
如果一条直线和一个平面平行,则过这条直线的 任一平面与此平面的交线与该直线平行.
随堂练习-判断
已知m,n两条直线及平面,判断下列命题是否正确
1.若m// ,n// , 则m//n 2.若m// , m//n,则n// 3.若m// , 则m平行于内的所有直线 4.m平行于内的无数条直线,则m//
思考 (1)如果一条直线和一个平面平行,那么这条 直线和这个平面内的直线有怎样的位置关系?
a a b b
α
平行
α
(2)什么条件下,平面内的直线与直线a平行呢?
若“共面”必平行,换 句话说,若过直线 a的某一 平面与平面相交,则直线 a就和这条交线平行 .
异面
线面平行的性质定理 一条直线和一个平面平行,则过这条直线的 任一平面与此平面的交线与该直线平行.
随堂练习-选择 1.下面给出四个命题,其中正确命题的个数是: (1)若a// ,b// , 则 a//b (2)若a// ,b , 则 a//b (3)若a//b,b ,则a// (4)若a//b,b// ,则a//
A.0 B.1 ∩∩ C.2 D.4 ( C) 2. 下列命题中,正确的是: (A )
已知直线a和b, a∥b,a∥面α, b α
求证:b∥平面α
证明:过a 作平面β交平 面α于直线 c
∵ a∥ α ∴ a∥ c
又 ∵ a∥ b ∴ b∥ c a c
β
b
α
∵ b α, c α
∴b∥α.
典例剖析
如果两个相交平面分别经过两条平行直线中的一条,那么它 们的交线和这两条直线平行. β, a∥b(如图)求证: 已知:平面α∩ 平面β= l, a α, b 例3 a∥l , b∥l.
空间几何中的平行关系
空间几何中的平行关系在空间几何中,平行关系是一个重要的概念。
它涉及到线与线、面与面之间的关系,并且在实际应用中有着广泛的应用。
本文将会介绍空间几何中的平行关系的定义、性质以及应用,并且结合具体的例子来说明。
1. 平行关系的定义在空间几何中,如果两个线(又称为直线)不相交,并且在同一个平面上,那么它们被称为平行线。
类似地,如果两个平面之间没有相交的情况,那么它们被称为平行平面。
2. 平行关系的性质平行关系具有以下性质:- 平行线之间的距离相等:如果一条线与另一条线平行,并且在同一个平面上,那么这两条线之间的距离是相等的。
- 平行线的倾斜角度相等:如果两条线平行,并且这两条线与另外一条直线相交,那么与第一条线相交的角度与与第二条线相交的角度是相等的。
- 平行平面之间的距离相等:如果两个平面之间平行,并且这两个平面分别与另一平面相交,那么与第一个平面相交的直线到与第二个平面相交的直线的距离是相等的。
3. 平行关系的应用空间几何中的平行关系在实际应用中有着广泛的应用。
下面将介绍一些应用的例子:- 建筑设计中的平行关系:在建筑设计过程中,设计师需要确保墙壁、天花板等构件是平行的,以保证建筑结构的稳定和美观。
- 航空航天中的平行关系:在飞机、火箭等交通工具的设计中,需要考虑平行关系来确保机翼、尾翼等部件的平行安装,以提高飞行性能和稳定性。
- GPS定位中的平行关系:全球定位系统(GPS)利用卫星进行定位,而卫星之间的轨道需要保持平行关系,以确保精确的定位和导航。
通过以上例子可以看出,平行关系在各个领域都有着重要的应用。
它不仅关乎到结构的稳定性和性能,还对人类的生活和发展产生着重要的影响。
总结起来,空间几何中的平行关系是指在同一平面内两条线不相交,或者两个平面没有交点的情况。
平行关系具有距离相等和角度相等的性质,这些性质在建筑设计、航空航天、GPS定位等领域都有着广泛的应用。
通过对平行关系的研究和应用,人们能够更好地理解和利用空间中的几何关系,为各个领域的发展做出贡献。
第2套人教初中数学七下 5.2.2 平行线的判定课件 【经典初中数学课件】
(方法二) 解:如图,画截线a,
度量∠1,∠2 若∠1=∠2 ,
1
2 a
则玻璃板的上下两边平行
(内错角相等,两直线平行)
练习:
3.如图, 如何判断这块玻璃板的上下两边 平行?
(方法三)
解:如图,画截线a,
1
度量∠1,∠2
2
a
若∠1+∠2 =180°,
则玻璃板的上下两边平行
(同旁内角互补,两直线平行)
谢谢同学们的努力!
Thank you!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?
一、新课引入
点
二
利用数轴体会:
两个不等式解集的 公共部分 就是不等
式组的解集。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
知
可分为四种情况.
识 点
⑴ x 2,
二
x
3.
在数轴上表示为:
简称:大大取较大 所以不等式组的解集是_______。
三、研读课文
具体分析如下:
用数轴来表示一元一次不等式组的解集,
A
C
E2
1
B
3F
D
变式1
AC
2
E1
3
B
F
D
变式2
平行线的判定2
① 如图: 如果∠1=∠3,
a
那么a与b平行吗?
b
内错角相等,两直线平行。
2020-2021学年高中数学 第一章 立体几何初步 5.2 平行关系的性质课时作业(含解析)北师大
第一章立体几何初步[课时作业][A组基础巩固]1.两条直线都和一个平面平行,则这两条直线的位置关系是() A.平行B.相交C.异面D.以上均可能解析:这两条直线可能平行,可能相交,也可能异面.答案:D2.如图所示,长方体ABCD-A1B1C1D1中,E、F分别是棱AA1、BB1的中点,过EF的平面EFGH分别交BC和AD于点G、H,则HG与AB 的位置关系是()A.平行B.相交C.异面D.平行和异面解析:∵E、F分别是AA1、BB1的中点,∴EF∥AB,又AB平面EFGH,EF平面EFGH,∴AB∥平面EFGH,又AB平面ABCD,平面ABCD∩平面EFGH=GH,∴AB∥GH.答案:A3.如图,各棱长均为1的正三棱柱ABC-A1B1C1中,M,N分别为线段A1B,B1C上的动点,且MN∥平面ACC1A1,则这样的MN有() A.1条B.2条C.3条D.无数条解析:如图,过M作MQ∥AA1交AB于Q,过Q作QH∥AC,交BC 于点H ,过点H 作NH ∥BB 1,交B 1C 于点N .因为BB 1∥AA 1,所以NH ∥MQ ,则平面MQHN ∥平面ACC 1A 1,则MN ∥平面ACC 1A 1.因为M 为线段A 1B 上的动点,所以这样的MN 有无数条,故选D. 答案:D4.如图,P 是△ABC 所在平面外一点,平面α∥平面ABC ,线段P A ,PB ,PC 分别交α于A ′,B ′,C ′,若P A ′∶AA ′=2∶3,则△A ′B ′C ′与△ABC 面积的比为( ) A .2∶5 B .3∶8 C .4∶9D .4∶25解析:由题意知,△A ′B ′C ′∽△ABC , 从而S △A ′B ′C ′S △ABC=⎝⎛⎭⎫P A ′P A 2=⎝⎛⎭⎫252=425. 5.若直线l 不存在与平面α内无数条直线都相交的可能,则直线l 与平面α的关系为________. 解析:若直线l 与平面α相交或在平面α内,则在平面α内一定存在无数条直线与直线l 相交,故要使l 不可能与平面α内无数条直线都相交,只有l ∥α. 答案:l ∥α6.空间四边形ABCD 中,对角线AC =BD =4,E 是AB 的中点,过E 与AC 、BD 都平行的截面EFGH 分别与BC 、CD 、DA 交于F 、G 、H ,则四边形EFGH 的周长为________.解析:易知EFGH 为平行四边形,且F 、G 、H 分别为BC 、CD 、AD 的中点,∴EF =12AC =2,同理FG =GH =EH =2,∴四边形EFGH 的周长为8. 答案:87.如图所示,ABCD -A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________. 解析:∵MN ∥平面AC ,平面PMN ∩平面AC =PQ , ∴MN ∥PQ ,易知DP =DQ =23a .故PQ =PD 2+DQ 2=2DP =223a .答案:223a8.如图,P 为▱ABCD 所在平面外一点,E 为AD 的中点,F 为PC 上一点,当P A ∥平面EBF 时,PFFC=________. 解析:连接AC 交BE 于点G ,连接FG ,因为P A ∥平面EBF ,P A 平面P AC ,平面P AC ∩平面BEF =FG ,所以P A ∥FG ,所以PF FC =AGGC .又因为AD ∥BC ,E 为AD 的中点, 所以AG GC =AE BC =12,所以PF FC =12.答案:129.如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,BC ∥AD ,E 为侧棱PD 的中点,且BC =2,AD =4.求证:CE ∥平面P AB .证明:取AD 的中点O ,连接OC ,OE (图略). ∵E 为侧棱PD 的中点, ∴OE ∥P A ,∴OE ∥平面P AB .∵BC =2,AD =4,BC ∥AD ,∴四边形ABCO 为平行四边形, ∴OC ∥AB ,∴OC ∥平面P AB .∵OC ∩OE =O ,∴平面OCE ∥平面P AB . ∵CE 平面OCE ,∴CE ∥平面P AB .10.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,P,Q分别是AD1,BD的中点.求证:PQ∥平面DCC1D1.证明:证法一连接AC、CD1,∵P,Q分别是AD1,AC的中点,∴PQ∥CD1.又P平面DCC1D1,CD1平面DCC1D1,∴PQ∥平面DCC1D1.证法二取AD中点G,连接PG、GQ.则有PG∥D1D.又PG平面DCC1D1,D1D平面DCC1D1,∴PG∥平面DCC1D1,同理GQ∥平面DCC1D1.又PG∩GQ=G,∴平面PGQ∥平面DCC1D1.又PQ平面PGQ,∴PQ∥平面DCC1D1.[B组能力提升]1.在正方体ABCD-A1B1C1D1中,作截面EFGH(如图)交C1D1,A1B1,AB,CD分别于点E,F,G,H,则四边形EFGH的形状为()A .平行四边形B .菱形C .矩形D .梯形解析:由于正方体中平面ABB 1A 1∥平面DCC 1D 1,又截面EFGH 与平面ABB 1A 1、平面DCC 1D 1分别相交于GF ,EH ,由面面平行的性质定理知GF ∥EH ;同理可得EF ∥GH ,故四边形EFGH 一定是平行四边形,选A. 答案:A2.已知正方体ABCD -A 1B 1C 1D 1的棱C 1D 1上存在一点E (不与端点重合),使得BD 1∥平面B 1CE ,则( ) A .BD 1∥CE B .AC 1⊥BD 1 C .D 1E =2EC 1D .D 1E =EC 1解析:连接BC 1,设B 1C ∩BC 1=O ,连接OE ,如图,BD 1∥平面B 1CE ,平面BC 1D 1∩平面B 1CE =OE ,∴BD 1∥OE ,∵O 为BC 1的中点,∴E 为C 1D 1的中点,∴D 正确,C 错误;由异面直线的定义,知BD 1,CE 是异面直线,故A 错误;连接AD 1,在矩形ABC 1D 1中,AC 1与BD 1不垂直,故B 错误.故选D. 答案:D3.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________. 解析:当P 点在平面α和平面β之间时,由三角形相似可求得BD =24,当平面α和平面β在点P 同侧时可求得BD =245.答案:24或2454.在如图所示的五面体ABCDEF 中,四边形ABCD 为菱形,∠DAB =60°,EF ∥平面ABCD ,EA =ED =AB =2EF =2,M 为BC 的中点,求证:FM ∥平面BDE .证明:取CD 的中点N ,连接MN ,FN (图略). 因为N ,M 分别为CD ,BC 的中点,所以MN ∥BD .又BD 平面BDE ,且MN 平面BDE ,所以MN ∥平面BDE ,因为EF ∥平面ABCD ,EF 平面ABEF ,平面ABCD ∩平面ABEF =AB ,所以EF ∥AB . 又AB =CD =2DN =2EF =2,AB ∥CD , 所以EF ∥DN ,EF =DN ,所以四边形EFND 为平行四边形,所以FN ∥ED . 又ED 平面BDE ,且FN平面BDE ,所以FN ∥平面BDE .又FN ∩MN =N ,所以平面MFN ∥平面BDE . 又FM 平面MFN ,所以FM ∥平面BDE .5.四棱锥P -ABCD 的底面ABCD 是梯形,AB ∥CD ,且AB =23CD .试问在PC 上能否找到一点E ,使得BE ∥平面P AD ?若能,请确定E 点的位置,并给出证明;若不能,请说明理由. 解析:在PC 上取点E ,使CE PE =12,则BE ∥平面P AD .证明如下:如图,延长DA 和CB 交于点F ,连接PF .梯形ABCD 中,AB ∥CD ,AB =23CD .∴AB CD =BF FC =23,∴BC BF =12. 又CE PE =12,∴△PFC 中,CE PE =BCBF, ∴BE ∥PF ,而BE 平面P AD ,PF 平面P AD .∴BE ∥平面P AD .6.如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.解析:相交直线AA ′、BB ′所在平面和两平行平面α、β分别相交于AB 、A ′B ′,由面面平行的性质定理可得,AB ∥A ′B ′.同理相交直线BB ′、CC ′确定的平面和平行平面α、β分别相交于BC 、B ′C ′,从而BC ∥B ′C ′.同理易证AC ∥A ′C ′.∴∠BAC 与∠B ′A ′C ′的两边对应平行且方向相反, ∴∠BAC =∠B ′A ′C ′.同理∠ABC =∠A ′B ′C ′,∠BCA =∠B ′C ′A ′. ∴△ABC 与△A ′B ′C ′的三内角分别相等,∴△ABC ∽△A ′B ′C ′,∵AB ∥A ′B ′,AA ′∩BB ′=O , ∴在平面ABA ′B ′中,△AOB ∽△A ′OB ′.∴A ′B ′AB =OA ′OA =23.而S △ABC =12AB ·AC =12×2×1=1.∴S △A ′B ′C ′S △ABC =⎝⎛⎭⎫A ′B ′AB 2, ∴S △A ′B ′C ′=49S △ABC =49×1=49.。
平行线知识点
引言概述:平行线是几何学中的重要概念,它具有广泛的应用。
在我们的日常生活中,许多事物都涉及到平行线,例如建筑设计、道路规划、电路布线等。
了解平行线的性质和应用,对于我们理解空间关系,解决实际问题具有重要意义。
本文将详细阐述平行线的知识点,分为引言概述、正文内容、总结三个部分。
正文内容:一、平行线的定义和性质1.1定义:平行线是在同一个平面上,不相交且永不相交延长的直线。
a)平行线与同一平面内的任意一条直线的交角为对顶角。
b)平行线与同一平面内的交角相等的两条直线平行。
c)平行线的两条边与同一平面内的一条直线分别相交,那么对应的内角互补。
d)平行线的两条边与同一平面内的一条直线分别相交,那么对应的外角相等。
二、平行线的证明方法2.1直角三角形的证明法:通过证明直角三角形的对边平行,可以得出直角三角形两条边上的点是平行线。
2.2使用平行线的性质:利用平行线的性质证明两条线段平行,可以通过证明其交角相等或者对应的内角互补来推断。
2.3使用反证法:通过假设两条线段不平行,然后推导出矛盾的结论,从而证明两条线段是平行线。
三、平行线的应用3.1建筑设计中的应用:在建筑设计中,平行线的概念常常用于确定建筑物的构造和设计。
例如,在绘图过程中使用平行线来绘制建筑平面图、立面图等。
3.2道路规划中的应用:在道路规划中,平行线的概念可用于确定道路的宽度和布局。
通过保持道路平行,可以提供良好的交通流畅性和安全性。
3.3电路布线中的应用:在电路布线中,平行线可以用于控制信号的传输和减小电磁干扰。
通过将平行线的路径保持一致,可以有效地减少电路中的环流和干扰。
四、平行线的相关定理4.1外角定理:如果两条平行线被一条横切线所切,那么这条横切线所对应的外角与这两条平行线的内角是互补的。
4.2内角定理:如果两条平行线被一条横切线所切,那么这条横切线所对应的内角与这两条平行线的对应内角相等。
4.3夹角定理:如果两条平行线被一条横切线所切,那么这条横切线的两边与这两条平行线之间的夹角互补。
2022年人教版平行线的判定性质练习知识点考点典型例题
5.2平行线及其鉴定【知识要点】平行线旳鉴定(1)同位角相等,两直线平行(2)内错角相等,两直线平行(3)同旁内角互补,两直线平行(4)在同一平面内,垂直于同一条直线旳两条直线互相平行(5)平行公理旳推论:假如两条直线都与第三条直线互相平行,那么这两条直线也互相平行。
【配套练习】一.判断题:1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。
()2.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()二.填空题:1.∵a∥b,b∥c(已知)∴______ ∥______()2.如图:1234ab c(1)∵______=∠3,∴a∥b ()。
(2)∵∠2=∠4,∴______∥________()(3)∵∠2+∠3=180°,∴______∥________()3.如图③∵∠1=∠2,∴______∥________()∵∠2=∠3,∴______∥_______()4.如图④∵∠1=∠2,∴______∥________()∵∠3=∠4,∴______∥________()5.如图⑤∠B=∠D=∠E,那么图形中旳平行线有________________________________。
6.如图⑥∵AB⊥BD,CD⊥BD(已知)∴∠B=∠D=90°()∴∠B+∠D=180°∴AB∥CD ( )又∵∠1+∠2 =180°(已知)∴AB∥EF ( )∴CD∥EF ( )三.选择题:1.如图⑦,∠D=∠EFC,那么()A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,鉴定AB∥CE旳理由是()A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE3.如图⑨,下列推理错误旳是()A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b旳是()A.①③B.②④C.①③④D.①②③④四.完毕推理,填写推理根据:1.如图⑩∵∠B=∠______,∴AB∥CD()∵∠BGC=∠____,∴CD∥EF()∵AB∥CD ,CD∥EF,∴AB∥_______()2.如图⑾填空:(1)∵∠2=∠3(已知)∴AB__________()(2)∵∠1=∠A(已知)∴__________()(3)∵∠1=∠D(已知)∴__________()(4)∵_______=∠F(已知)∴AC∥DF()3.填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简记:
面面平行
线线平行
公理4:平行于同一直线的两直线互相平行.
公理4用符号语言描述为:
若 a//b, b//c,a则 //c.
(空间平行线的传递性)
思考:平行于同一平面的两平面互相平行?
文字语言:平行于同一平面的两平面互相平行.
图形语言:
符号语言: //,// //
简记:
平行平面的传递性
已知:平面//平面,点A、D, 点B、C,且有AB//CD,
求证: ABCD.
证明:A/B /CD
A和 BC确 D 定A 平B面 CD
又 //, 平 面 A B C D A D , 平 面 A B C D B C ,
AD//BC ∴ 在四边形ABCD中,AB//CD且AD//BC
a
b
a
b
a
b
a
b
对于探究 3,由于平面 与两个平面的交线 a 与 b 显然共面于平面 ,而且不可能有公
共点,故 a / /b . 证明如下:
已知:如图,已知平面α,β,γ满足: / / , a , b . 求 证 : a / / b .
平面与平面平行的性质
思考:
如果两个平面平行, 能够推导出那些结论?
讨论:
两个平面平行,其中一个平面内的直线 与另一个平面有什么位置关系?
两个平面内的直线有什么位置关系? 当第三个平面和两个平行平面都相交,
两条交线有什么关系?为什么?
探究 1:已知平面 //平面 ,直线 a , 想象直线 a 在平面 内任意运动,则直线 a
证明: a , b ,
a,b.
又 / /,
∴ a、b没有公共点.
a ,b ,
a
b
a / /b.
平面与平面平行的性质定理
文字语言:两个平行平面同与第三个平面相交,
那么它们的交线平行. 图形语言:
a
b
符号语言:
/ /
a
a
/
/b
b
与平面 是什么位置关系?
a
【解析】探究结果是显然的.对于探究 1,由
于平面 //平面 ,所以无论直线 a 在平面 内怎样任意运动,它与平面 都没有公
共点,故 a / / .
文字语言:两平面平行, 则一个平面内的直线 平行于另一平面
图形语言:
a
符号语言: //,a a//
∴ 四边形ABCD为平行四边形,ABCD .
结论: 夹在两个平行平面间的平行线段相等
小结!
1.Leabharlann 面面平行线面平行2.
面面平行
线线平行
3.平行平面的传递性
4.夹在两个平行平面间的平行线段相等
谢谢!
简记:
面面平行
线面平行
探究2:
已 知 平 面 , , 直 线 a,b , 且 / / ,
a ,b .则直线 a 与直线 b 具有怎样的
位置关系?
a
a
b
b
平行或异面
探究 3:已知平面 //平面 ,平面 平 面 a ,平面 平面 b ,如下图,想 象平面 绕直线 a 旋转时,平面 与两个平 面的交线 a 与 b 是什么位置关系?