多目标规划及案例

合集下载

多目标规划实例

多目标规划实例

多目标规划实例简介多目标规划是一种决策方法,它可以帮助人们在多个目标之间做出权衡和平衡。

在实际问题中,通常会有多个相互关联的目标需要同时考虑,而单目标规划无法满足这种需求。

多目标规划通过建立多个目标函数和约束条件之间的优化问题,从中寻找一个解集,该解集包含了一系列近似最优的解,这些解通常被称为 Pareto 最优解。

在本文中,我们将介绍一个实际的多目标规划问题,并使用 Markdown 文本格式展示其模型、目标函数和约束条件。

实例描述假设我们是一家电子产品制造公司,我们要生产两种类型的电子产品:手机和平板电脑。

我们有两个主要的目标:最大化销售额和最小化生产成本。

我们需要找到一个生产计划,使得销售额最大化同时生产成本最小化。

模型我们假设我们可以生产的手机数量为 x,平板电脑数量为 y。

我们使用以下模型描述我们的多目标规划问题:•目标函数 1:最大化销售额–销售额 = 销售价格 × 销售数量–销售价格:手机价格为 P1,平板电脑价格为 P2–销售数量:手机数量为 x,平板电脑数量为 y•目标函数 2:最小化生产成本–生产成本 = 生产成本1 + 生产成本2–生产成本1:生产一个手机的成本为C1–生产成本2:生产一个平板电脑的成本为 C2•约束条件–生产产能限制:手机数量加平板电脑数量不能超过产能上限 N–非负约束:手机数量和平板电脑数量不能为负数目标函数和约束条件根据上述模型,我们可以得到以下目标函数和约束条件。

目标函数 1:最大化销售额Maximize: P1 * x + P2 * y目标函数 2:最小化生产成本Minimize: C1 * x + C2 * y约束条件x + y <= Nx >= 0y >= 0结论多目标规划是一种强大的决策方法,可以帮助我们在多个目标之间做出权衡和平衡。

在本文中,我们介绍了一个实际的多目标规划问题,以及该问题的模型、目标函数和约束条件。

多目标规划应用实例

多目标规划应用实例

02
投资者需要在满足一定风险承 受能力的前提下,最大化投资 组合的预期收益,同时考虑市 场波动、政策风险等因素。
03
投资决策问题需要考虑多个目 标之间的权衡和折中,以实现 整体最优。
目标函数
收益最大化
投资者希望获得尽可能高的投资回报率,通 常以预期收益率作为目标函数。
风险最小化
投资者希望将投资风险降至最低,通常以方 差或标准差作为目标函数。
城市发展需满足环境保护的相关法律法规和标准。
3
3. 资源利用约束
城市发展需遵循资源利用的可持续性原则。
求解方法与结果分析
• 多目标规划问题通常采用权重法、目标规 划法、遗传算法等求解方法进行求解。通 过对不同方案进行比较和评估,可以得出 最优解或满意解。在城市规划与交通管理 中,多目标规划的应用可以帮助决策者全 面考虑各种因素,制定出更加科学、合理 的城市规划方案,提高城市运行效率,促 进城市的可持续发展。
多目标规划能够为决策者提供一个 系统的方法来权衡和比较不同目标 之间的优劣,从而提高决策的科学 性和合理性。
折衷与平衡
多目标规划可以帮助决策者在多个 目标之间找到一个相对最优的折衷 方案,实现不同目标之间的平衡发 展。
多目标规划的方法与步骤
方法
多目标规划常用的方法包括层次分析 法、多属性决策分析、数据包络分析 等。
问题描述
目标函数
• 目标函数包括两个部分:最小化生产成本 和运输成本。生产成本由各个工厂的生产 费用决定,运输成本则取决于各个工厂之 间的运输距离和运输量。
约束条件
• 约束条件包括:各个工厂的生产能力限制、市场需求量限制以及产品种类限制等。这些约束条件确保了生产计 划的可实施性和有效性。

第九章目标规划——多目标线性规划

第九章目标规划——多目标线性规划
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小 min Z = f( d ++ d - )
(2) 要求不超过目标值,即允许达不到目标值,即正偏差变量 要尽可能地小
min Z = f( d +) (3) 要求超过目标值,即超过量不限,但必须是即负偏差变量要 尽可能地小
目标规划 Goal Programming(GP)
第九章
目标规划
——多目标线性规划
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
目标规划问题及其数学模型
目标规划( Goal Programming )方法是Charnes和Cooper于 1961年提出的,目前已成为一种简单、实用的处理多目标决策问题 的 方法,是多目标决策中应用最为广泛的一种方法。
木工 油漆工 1 10
资源总量(小时) 11 10
求解此问题可以得到王老板的最优生产方案: 每天生产椅子 4 把,桌子 3 张,获最大利润 62 元。
第九章目标规划——多目 标线性规划
目标规划 Goal Programming(GP)
家具制造问题——王老板遇到的新问题
王老板过去一直以如何计划两种家具的生产量才能获得最大总利 润为其生产、经营的唯一目标。然而,市场经济环境下新的问题不断 出现,它迫使王老板不得不考虑…... 1. 首先,根据市场信息,椅子的销售量已有下降的趋势,故应果断 决策减少椅子的产量,其产量最好不超过桌子的产量。 2. 其次,劳动力市场上已招不到符合生产质量要求的木工了,因此 不可能考虑增加木工这种劳动力资源来增加产量,并且由于某种原因 现有木工已不可能再加班。 3. 再次,应尽可能充分利用油漆工的现有的有效工作时间,可以通 过加班使油漆工资源增加,但应考虑油漆工希望最好不加班。 4. 最后,王老板考虑最好达到并超过预计利润指标 56元。

多目标规划及案例

多目标规划及案例

主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
转化为单目标的具体方法介绍:
求解算法之二:
目标规划法
二、多目标优化目标规划法
线性规划通常考虑一个目标函数(问题简单) 目标规划考虑多个目标函数(问题复杂) 。
例 生产安排问题
某企业生产甲、乙两种产品,需要用到A,B,C 三种设备,关于产品的盈利与使用设备的工时及限 制如下表所示。
甲 2 A/(h/件) 4 B/(h/件) 0 C/(h/件) 赢利/(元/件) 200 乙 设备的生产能力/h 2 12 0 16 5 15 300
u( f (x)) = ∑λi fi (x)
i =1
m
∑λ = 1
i =1 i
m
转化单目标法
3. 极大极小点法
1≤ i ≤ m
min u ( f ( x )) = min max{ f i ( x )}
x∈ X 1≤ i ≤ m
4. 范数理想点法
dp
(
p⎤ ⎡ f ( x ), f ;ω = ⎢ ∑ ω i f i ( x ) − f i ⎥ ⎣ i =1 ⎦ m
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2 • 设备A为贵重设备,严格禁止超时使用 • 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍 从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解

4.9 多目标规划

4.9 多目标规划

优化建模之多目标规划引例多目标问题的数学模型多目标问题的求解方法引例2007全国大学生数学建模竞赛B题乘公交,看奥运第29届奥运会明年8月将在北京举行,大部分人将会乘坐公共交通工具到现场观看奥运比赛,这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。

请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。

(其它略)花费最小,时间最短,转车次数最小,堵车程度弱。

不可公度性矛盾性目标目标数学模型min x∈R∗f x =(f 1x ,f 2x ,⋯,f p x )s.t.ቊg i x ≥0,j =1,2,⋯,m h k x =0.k =1,2,⋯,lf i ,g i ,h k :R n→R.p ≥2记可行域为D.x ∗:x ∈D,f i (x)≥f i (x ∗)绝对最优解。

min x min y y xA B C D y x A B CD B 通常是不存在的。

多目标决策的本质问题是:如何根据决策者的主观价值判断,对有效解的好坏做出比较?由于可行域中的一个点,对应目标函数是一个向量,所以问题实际是:如何比较两个向量的大小?min x∈R∗f x =(f 1x ,f 2x ,⋯,f p x )(3,5),(2,7)哪个小?思想:转化为单目标问题u(x)minxϵD偏好关系:在像集f (X)上有某个二元关系(称为偏好序)反映决策者的偏好。

最优解:在给定的偏好关系下,f 在X 上的最好解。

(1)加权法:权数线性加权:ϖ1,ϖ2,⋯,ϖp ,෍i=1pϖi =1u x =෍i=1pϖi f i (x)指数加权法:u x =ෑi=1p(f i (x))ϖi(2)极小极大(min-max )法*x ()x f 1()x f 2min xϵD u f x =min x∈D (max 1≤i≤pf i (x))min x,tt s.t.f i x ≤t,i =1,⋯,pxϵD等价转化为(3)偏差函数法b.找距离理想点最近的点作为最优解:min x∈D u x=minx∈D෍i=1p(f i x−f i∗)2(f1,f2,⋯,f p)a.给定理想点:(4)测度法:f i,min=minx∈D f i x,f i,max=minx∈Df i x,d i x=f i,min−f i xf i,max−f i,min∈0,1max x∈D ෍i=1pd i(x)或maxx∈Dෑi=1pd i(x)(5)约束法在多个目标中选定一个主要目标,而对其他目标设定一个期望值,在要求结果不比期望值坏的情况下,求主要目标的最优值。

多目标规划课件

多目标规划课件
min U(F(X))
X∈R
然后求解该问题,并将其最优解X*作为(VP) 的最优解。 由于构造评价函数的多种多样,也就出现 了多种不同的评价函数方法。
处理多目标规划的一些方法
1. 线性加权和法 对 重 且(要 ∑V程λPj)=中度1,的给然p以个后适目构当标造的f评1权(X价系),函数f2数(λXj≥),0…(j,=f1p(,X2,)…按,p其),
挑选出满意的方案来。这时称BC上的点为
非劣解,或有效解。
多目标规划解的概念
对于一般的多目标规划问题:
(VP)
V-min F(X)=(f1(X), f2(X),…,fp(X))T
s.t. gi(X)≤0, i=1,2,…,m
其中X=(x1,x2,…,xn)T, p≥2
设R={X| gi(X)≤0, i=1,2,…,m}
多目标规划解的性质
类似地可证明:像集F(R)的有效点一
定是弱有效点,即
E
* pa
E w* p
通过在像集F(R)上寻找有效点(或弱 有效点),就可以确定约束集合R上 的有效解(或弱有效解)。对此,有 如下的定理。
多目标规划解的性质
定理4 在像集F(R)上,若Epa*已知,则在约 束集合R上,有
X∈R
p-1
其中Rp-1=Rp-2∩{X |fp-1(X)≤fp-1*}
处理多目标规划的一些方法
此时求得最优解X*,最优值为fp*,则 X*就是多目标问题(VP)在分层序列意 义下的最优解。进一步有下列定理。
定理6 设X*是由分层序列法所得到的 最优解,则X*∈Rpa*.
处理多目标规划的一些方法
(2)若fj(Y)= fj(X*), j=1,2,…,j0-1 但fj0(Y)<fj0(X*) 2≤j0≤p 此时必有fj(Y)= fj(X*)≤fj*, j=1,2,…,j0-1 因此,Y是问题 (Pj0) min fp(X) X∈Rj0-2∩{X |fj0-1(X)≤fj0-1*} 的可行解,又由

《多目标规划模型》课件

《多目标规划模型》课件

02
权重法的主要步骤包括确定权重、构造加权目标函数、求解加权目标函数,最 后得到最优解。
03
权重法的优点是简单易行,适用于目标数量较少的情况。但缺点是主观性强, 依赖于决策者的经验和判断。
约束法
1
约束法是通过引入约束条件,将多目标问题转化 为单目标问题,然后求解单目标问题得到最优解 。
2
约束法的主要步骤包括确定约束条件、构造约束 下的目标函数、求解约束下的目标函数,最后得 到最优解。
多目标规划模型
目录
• 多目标规划模型概述 • 多目标规划模型的建立 • 多目标规划模型的求解方法 • 多目标规划模型的应用案例 • 多目标规划模型的未来发展与挑战
01 多目标规划模型概述
定义与特点
定义
多目标规划模型是一种数学优化方法 ,用于解决具有多个相互冲突的目标 的问题。
特点
多目标规划模型能够权衡和折衷多个 目标之间的矛盾,寻求满足所有目标 的最佳解决方案。
02 多目标规划模型的建立
确定目标函数
01
目标函数是描述系统或决策问题的期望结果的数学表达 式。
02
在多目标规划中,目标函数通常包含多个目标,每个目 标对应一个数学表达式。
03
目标函数的确定需要考虑问题的实际背景和决策者的偏 好。
确定约束条件
01 约束条件是限制决策变量取值范围的限制条件。 02 在多目标规划中,约束条件可以分为等式约束和
谢谢聆听
模型在大数据和人工智能时代的应用前景
要点一
总结词
要点二
详细描述
随着大数据和人工智能技术的快速发展,多目标规划模型 在许多领域的应用前景广阔。
大数据时代带来了海量的数据和复杂的问题,这为多目标 规划模型提供了广阔的应用场景。例如,在金融领域,多 目标规划可以用于资产配置和风险管理;在能源领域,多 目标规划可以用于能源系统优化和碳排放管理。同时,随 着人工智能技术的不断发展,多目标规划模型有望与机器 学习、深度学习等算法相结合,共同推动相关领域的发展 。

第6章多目标规划方法精品PPT课件

第6章多目标规划方法精品PPT课件

如果将(6.1.1)和(6.1.2)式进一步缩
写, 即
max(m ZiF n(X ) )
(6.1.3)
(X)G
(6.1.4)
式中: ZF(X)是k维函数向量;
k是目标函数的个数;
Φ(X ) 等是m维函数向量;
G是m维常数向量;
m是约束方程的个数。
甘肃农业大学资源与环境学院
对 于 线 性 多 目 标 规 划 问 题 , ( 6.1.3 ) 和 (6.1.4)式可以进一步用矩阵表示
尽可能的小,或即:
(x12x22)min
根据问题的要求,应满足下述约束条件:
x1 H
x1 x1
x2
x2
W
0
4
x
2
x1
0
x 1 0 , x 2 0
这是具有两个目标的非线性规划问题。
甘肃农业大学资源与环境学院
多目标规划及其非劣解
例3:【投资决策问题】某投资开发公司拥有总资金A万元, 今有n(≥2)个项目可供选择。设投资第i(i=1,2,……,n)个 项目要用资金ai万元,预计可得到收益bi万元。问应如何使 用总资金A万元,才能得到最佳的经济效益?
甘肃农业大学资源与环境学院
第1节 多目标规划及其非劣解
➢多目标规划及其非劣解 ➢多目标规划的非劣解
甘肃农业大学资源与环境学院
多目标规划及其非劣解
例1:【喜糖问题】设市场上有甲级糖及乙级糖,单价分别 为4元/斤及2元/斤。今要筹办一桩喜事。“筹备小组”计 划总花费不超过40元,糖的总斤数不少于10斤,甲级糖不 少于5斤。问如何确定最佳的采购方案。
n
f1(x1,……,xn) bixi max i1 n
f2(x1,……,xn) aixi min i1

目标规划与多目标规划

目标规划与多目标规划
100.0000 200.0000 90.00000 110.0000 100.0000 50.00000 250.0000
总费用为3360.
Reduced Cost 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
硬约束(供应约束)
系列软约束 (1)用户4必须全部满足
(2)供应用户1的产品中,工厂3的产品不少于100单位
(3)每个用户的满足率不低于80%; 四个用户的80%需求量分别为160,80,360,200,即
(4)应尽量满足个用户的要求
(5)新运费尽量不超过不考虑各个目标费用的10%: (6)因道路限制,工厂2到用户4的路线的运输任务应尽量避免: (7) 用户1和用户3的满足率尽量平衡:
2 目标规划的模型
例2 在上述例1的基础上,计划人员还要求考虑如下意见:
1 由于产品II销售疲软,故希望产品II的产量不超过产品I产 量的一半;
2 原材料严重短缺,生产中应避免过量消耗;
3 最好能够节约4小时设备工时;
4 计划利润不少于48元。
分析:把这四条意见分别看成营销部门、材料部门、设备管理 部门、财务部门四个部门的目标愿望。那么在决策的时候,如 何协调者四个部门的意愿呢。同等对待每个目标意愿,势必陷 于矛盾中。故当务之急是确定四个目标的重要程度或轻重缓急。 然后根据重要程度逐一协调。下面引入一些新的变量来解决问 题。
目标决策值f
X2-x1/2 5x1+10x2 4x1+4x2 6x1+8x2

多目标规划模型很好ppt课件

多目标规划模型很好ppt课件

1
例题1 某工厂在一个计划期内生产甲、乙两种产品,各产品 都要消耗A,B,C三种不同的资源。每件产品对资源的单位 消耗、各种资源的限量以及各产品的单位价格、单位利润和 所造成的单位污染如下表。假定产品能全部销售出去,问每 期怎样安排生产,才能使利润和产值都最大,且造成的污染 最小?

资源A单位消耗
max( f3 ( X )) 3x1 2x2
9x1 4x2 240 4x1 5x2 200 3x1 10x2 300 x1, x2 0
望达到的目标值转化为约束条件。 经研究,工厂认为总产值至少应 达到20000个单位,而污染控制 在90个单位以下,即
f2 (X ) 400x1 600x2 20000
f3 (X ) 3x1 2x2 90
由主要目标法化为单目标问题max f1( X ) 70x1 120x2
用单纯形法求得其最优解为
x1 12.5, x2 26.25, f1(x) 4025, f2 (x) 20750, f3 (x) 90
400x1 600x2 20000 3x1 2x2 90 9x1 4x2 240 4x1 5x2 200 3x1 10x2 300 x1, x2 0
aij
f1
f2
f3
f4
f5
f6
A1
1
1
67
50.5 34
50.5
A2
100
100
1
100
1
1
A3
1
42.25 100
1
67
100
A4
40.6 25.75 67
25.75 100
1
设权系数向量为W=(0.2,0.1,0.1,0.1,0.2,0.3), 则

多目标规划方法讲义(PPT 66页)【优选文档】PPT

多目标规划方法讲义(PPT 66页)【优选文档】PPT

式中: 和 分别表示与 相应的、与 相比13、乍见翻疑梦,相悲各问年。目标规划的目标函数(准则函数)是按照各目标约束的正、负偏差变量和赋予相应的优先因子而构造的。1多目标规划及其非劣解10、阅读一切好书如同和过去最杰出的人谈话。11、成功就是日复一日那一点点小小努力的积累。3082万元,每一年的总收益为600.9、没有失败,只有暂时停止成功!(二)目标规划的有关概念将上述问题化为标准后,用单纯形方法求解可得最佳决策方案为 (万元)。2、绝对约束和目标约束11月-2211月-2209:49:5509:49:55November 3, 2022可利用的设备总台时为10台时。目标规划的目标函数(准则函数)是按照各目标约束的正、负偏差变量和赋予相应的优先因子而构造的。如果追求总产量最大和总产值最大双重目标,那么,目标函数包括:15、楚塞三湘接,荆门九派通。
三、约束模型 理论依据 :若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:
采用矩阵可记为:
四、目标规划模型
也需要预先确定各个目标的期望值 ,同时给每一个目标赋予一个优先因子和权系数,假定有K个目标,L个优先级 ,目标规划模型的数学形式为:
第六章 多目标规划方法
在地理学研究中,对于许多规划问题,常常需要考虑多个目标,如经济效益目标,生态效益目标,社会效益目标,等等。为了满足这类问题研究之需要,本章拟结合有关实例,对多目标规划方法及其在地理学研究中的应用问题作一些简单地介绍。
本章主要内容:
多目标规划及其求解技术简介目标规划方法 多目标规划应用实例
(6.3.6)

多目标规划案例ppt

多目标规划案例ppt
p3 : 保持全体售货员充分就业, 但对全时售货员要比对半时售货员加倍优先考虑;p 4 :
尽量减少加班时间。但对两种售货员区别对待,优先因子由他们对利润的贡献而定。 现在,我们根据商店经理的 4 个目标和优先权结构,建立目标规划模型。
线性目标规划的数学模型
①销售目标约束 完成 5500 销售目标是全时和半时售货员全部工作时间和其生产率(即每小时销 售量)的函数。 设计如下变量:
x1 :全体全时售货员下月的工作时间(小时) x2 :全体半时售货员下月的工作时间(小时)
d1 :达不到销售目标的负偏差
d1 :超过销售目标的正偏差
由于制定的目标为销售量 5500,于是该约束可以表达为:
5x1 2 x2 d1 d1 5500
线性目标规划的数学模型
②正常工作时间约束 销售时间由两种售货员的正常工作时数和人数所决定。因 x1 代表全时售货员全体 下月工作时数。5 个全时售货员,故正常的每月工作时数为 5× 160=800 小时,半时 工作的售货员的每月工作时数为 4× 80=320 小时。 设计如下偏差变量:
d2 :全体全时售货员下月的停工时间; d 2 :全体全时售货员下月的加班时间;
d 3 :全体半时售货员下月的停工时问; d 3 :全体半时售货员下月的加班时间。
则有约束条件:
x1 d2 d2 800; x2 d3 d3 320
线性目标规划的数学模型
p3 : 2d2 d3 ,除了保持全体售货员充分就业,但加倍优先考虑全时售货员;
p 4 : 3d3 d2
确定 p 4 表达形式的理由是:全时售货员和半时售货员每小时生产率的比是 5:2, 而每小时的加班费分别是 9 元和 4 元。于是有:全时售货员每加班 l 小时,卖出 5 张 唱片的总利润为 15 元,扣去加班费 9 元,则商店得利润 15-9=6 元。半时售货员每加 班 1 小时,卖出 2 张唱片的总利润为 6 元,扣去加班费 4 元,商店得利润 6-4=2 元。 因此,全时的和半时售货员加班 1 小时所获得利润的比为 3:1 ,故权因子之比为

目标、计划与执行 案例

目标、计划与执行 案例

目标、计划与执行案例目标:减肥10斤。

我这人吧,一直对自己的身材不太满意,特别是每次看到镜子里圆滚滚的自己,就下定决心要减肥。

10斤,就是我的小目标,感觉减掉这个数,我就能重新变回那个有自信的自己。

计划:1. 饮食方面。

早餐我决定抛弃那些油腻的油条和甜到齁的糕点。

改成喝一杯低脂牛奶,吃个水煮蛋,再加上一小份全麦面包。

想着那些美味的油条只能挥泪告别,心里还真有点舍不得呢。

不过为了瘦,拼了!午餐的话,肉肯定还是要吃的,毕竟我是个无肉不欢的人。

但是只能吃瘦肉,像什么红烧五花肉、油滋滋的烤鸭之类的,就只能在梦里相见了。

我会选择吃去皮的鸡肉或者瘦牛肉,搭配上一大盘水煮青菜,什么西兰花、生菜、芹菜,能塞多少是多少,还要把主食换成糙米饭,听说这玩意儿不容易长肉。

晚餐就比较简单了,一碗蔬菜汤加上半个苹果就搞定。

晚上本来就不应该吃太多,我可不想让那些食物在我肚子里变成脂肪堆积起来。

2. 运动方面。

每天早上起床先做20分钟的拉伸运动。

这可不是简单的伸伸胳膊踢踢腿,而是那种能让我全身肌肉都被唤醒的拉伸,就像给身体做个热身操,为一天的活动开个好头。

晚上下班后,我要去跑步。

刚开始跑个30分钟就行,毕竟我这小身板儿也受不了太猛的。

我还想象着自己像个轻盈的小鹿一样在跑道上奔跑,把身上的赘肉一点点甩掉。

而且跑步的时候我要听那种节奏感很强的音乐,这样才能让我更有动力。

周末的时候不能偷懒,除了日常的跑步,我还要加上30分钟的力量训练。

什么平板支撑、深蹲这些,虽然做起来有点累,但是一想到能让自己的肌肉变得紧实,也就咬咬牙坚持了。

执行:刚开始执行这个计划的时候,那叫一个痛苦啊。

早餐的时候,看到同事吃油条,那香味直往我鼻子里钻,我差点就忍不住伸手去抢了。

但是一想到自己的减肥目标,还是默默地喝了一口牛奶。

午餐吃糙米饭的时候,那口感真的是让我欲哭无泪,就像在嚼沙子一样。

不过瘦肉和青菜的搭配还算能接受,吃着吃着也就习惯了。

晚上跑步的时候,才跑了10分钟我就气喘吁吁,感觉自己的肺都要炸了。

多目标规划实例

多目标规划实例
地下水水质指数的约束条件 为:
PW IPW I(r,
,z) 3
i 1
si
PI W
n ci s i1 i
表示地下水污染程度较轻,一般可以作为生活饮用水,处理 简单、经济、水质完全符合国家颁布的生活饮用水标准。
工程地质条件约束
○ i.地下水位约束。地下水位埋深小于3m,对城市建筑施工不利, 大于100m则导致城市取水困难,因此对地 下水位埋深H要求:
如果记L为单位土地面积的征用费,则它应该是点
的函数。那么,
对于追求“土地征用费最低”这一目标的目标函数可以表示为:
城市用水费用。城市用水费用,主要取决于打井费用和配套设备及抽水 费用。在冲积扇的下部,地下水位浅,用水费用低廉。而在冲积扇的中 上部,地下水位深,用水费用高。如果记W为单位土地面积上的城市用 水费用,则所追求 “用水费用最低”这一目标的目标函数可以表示为:
地下水的水质。地下水对绿洲型城市优化选址的影响, 除了水资源量外,还有水质问题。水质的好坏,直接影 响到城市居民的身体健康和工业用水的成本及其产成品 的质量。在能够作为城市区位选址的地段,地下水的水 质,特别是有关毒理学指标,如氟化物、氰化物、砷、 汞、酚、铬等及其表征水质状况的指标,如硬度、
胺基、化学耗氧量、氨等,经过简单的净化处理后均应 符合国家生活饮用水卫生标准和工业用水水质标准。
○ ii.地基承载力约束。对于不同的楼层建筑,要求的地基承载力条件不同,设 为城市建筑施工所
要求的最低地基承载力,则地基承载力F应满足:
模型分析与评价
○ 以上仅仅是借助于多目标规划的数学语言,对绿洲型城市的区位选址问题作了一般性的理论描述。 模型中的目标函数以及所有约束条件中所涉及的环境地质要素均是坐标点的函数。如果要将上述描 述性的模型

《多目标规划》课件

《多目标规划》课件

约束条件
01
约束条件是限制决策变量取值范围的限制条件,通常表示为决 策变量的不等式或等式。
02
在多目标规划中,约束条件可能包括资源限制、技术限制、经
济限制等。
约束条件的处理需要考虑其对目标函数的综合影响,以确定最
03
优解的范围。
决策变量
01 决策变量是规划问题中需要确定的未知数,通常 表示为数学符号或参数。
多目标规划的算法改进与优化
混合整数多目标规划算法
结合整数规划和多目标规划的优点,解决具有离散变量的 多目标优化问题。
进化算法
借鉴生物进化原理,通过种群进化、基因突变等方式寻找 多目标优化问题的Pareto最优解。
梯度下降法
利用目标函数的梯度信息,快速找到局部最优解,提高多 目标规划的求解效率。
多目标规划在实际问题中的应用前景
特点
多目标遗传算法能够处理多个相互冲突的目标函数,提供一组非劣解集供决策者选择。 它具有较强的全局搜索能力和鲁棒性,适用于复杂的多目标优化问题。
注意事项
多目标遗传算法需要合理设置遗传参数和选择策略,以确保求解的有效性和准确性。
04
多目标规划案例分析
生产计划优化案例
总结词
生产计划优化案例主要展示多目标规划在生产计划方面的应 用,通过合理安排生产计划,降低成本并提高生产效率。
《多目标规划》课件
• 多目标规划概述 • 多目标规划的基本概念 • 多目标规划的常用方法 • 多目标规划案例分析 • 多目标规划的未来发展与展望
目录
01
多目标规划概述
定义与特点
定义
多目标规划是一种决策方法,旨在同 时优化多个目标函数,并考虑多个约 束条件。
特点

lingo求解多目标规划__例题

lingo求解多目标规划__例题

实验二:目标规划一、实验目的目标规划是由线性规划发展演变而来的,线性规划考虑的是只有一个目标函数的问题,而实际问题中往往需要考虑多个目标函数,这些目标不仅有主次关系,而且有的还相互矛盾。

这些问题用线性规划求解就比较困难,因而提出了目标规划。

熟悉目标规划模型的建立,求解过程及结果分析。

二、目标规划的一般模型设)...2,1(n j x j =是目标规划的决策变量,共有m 个约束是国刚性约束,可能是等式约束,也可能是不等式约束。

设有l 个柔性目标约束,其目标规划约束的偏差是),...,2,1(,l i d d i i =-+。

设有q 个优先级别,分别为q p p p ,...,21。

在同一个优先级k p 中,有不同的权重,分别记为),...,2,1(,l j w w kj kj =-+。

因此目标规划模型的一般数学表达式为:min ∑∑=++--=+=l j j kj j kj q k k d w d w p z 11);(s.t. ,,...2,1,),(1m i b x an j i j ij =≥=≤∑= .,...2,1,0,,,...,2,1,,,...2,1,1l i d d n x o x l i g d d x c i i j i nj i i j ij =≥=≥==-++-=+-∑ 三、实验设备及分组实验在计算机中心机房进行,使用微型电子计算机,每人一机(一组)。

四、实验容及步骤1、打开LINGO ,并利用系统菜单和向导在E 盘创建一个项目。

目录和项目名推荐使用学生自己的学号。

2、以此题为例,建立数学模型,并用说明语句进行说明,增强程序的可读性。

例2.1:某工厂生产Ⅰ、Ⅱ两种产品,需要用到A ,B ,C 三种设备,已知有关数据见下表。

企业的经营目标不仅仅是利润,还需要考虑多个方面:(1) 力求使利润不低于1500元;(2) 考虑到市场需求,Ⅰ、Ⅱ两种产品的产量比应尽量保持1:2;(3) 设备A 为贵重设备,严格禁止超时使用;(4) 设备C 可以适当加班,但要控制;设备B 即要求充分利用,又尽可能不加班。

gurobi多目标优化案例

gurobi多目标优化案例

gurobi多目标优化案例
1. 生产调度问题:某工厂生产多种产品,每种产品需要不同的设备和工艺流程。

目标是最大化产量和最小化生产时间。

2. 路径规划问题:在一个城市中,有多个起点和终点,需要找到一条路径,使得总行驶距离最短、总耗时最短。

3. 设备布局问题:在一个工厂中,需要将多个设备布置在不同的位置,以最小化设备之间的距离和最大化设备的利用率。

4. 资源分配问题:某公司有多个项目需要分配资源,包括人力和设备,需要找到最佳的资源分配方案,以最大化总利润和最小化总成本。

5. 物流网络设计问题:某物流公司需要设计一个物流网络,包括仓库和运输路线,以最小化总运输成本和最大化客户满意度。

6. 供应链优化问题:某公司的供应链包括多个环节,包括采购、生产和物流,需要找到最佳的供应链优化方案,以最大化整体效益。

7. 机器学习模型选择问题:在机器学习中,有多个模型可以选择,需要找到最佳的模型组合,以最小化预测误差和最大化模型性能。

8. 资产配置问题:某投资公司需要将资金分配到不同的资产类别中,包括股票、债券和房地产,需要找到最佳的资产配置方案,以最大化总回报和最小化风险。

9. 员工排班问题:某公司有多个员工,需要安排他们的工作时间表,以最小化总工时和最大化员工满意度。

10. 项目调度问题:某项目有多个任务需要完成,每个任务有不同
的时限和资源需求,需要找到最佳的任务调度方案,以最小化总延迟和最大化项目效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 以学分最多为目标, 不管课程多少。
最优解显然是选修所 有9门课程 。
多目标规划
• 在课程最少的前提下 以学分最多为目标。
课号
课名
学分
∗1 ∗
微积分
5
∗2 ∗
线性代数
4
∗ 3 ∗ 最优化方法
4
4
数据结构
3
5∗
应用统计
4
∗6
计算机模拟
3
∗ 7 ∗ 计算机编程
2
8
预测理论
2
∗9 ∗
数学实验
3
9
增加约束 ∑ xi = 6 , i =1
A/(h/件)
22
12
B/(h/件)
40
16
C/(h/件)
05
15
赢利/(元/件) 200 300
问该企业应如何安排生产,使得在计划期内 总利润最大?
1. 线性规划建模
该例是一个线性规划问题,直接考虑它的线性规划模型
设甲、乙产品的产量分别为x1, x2,建立线性规划模型:
Max z = 200 x1 + 300 x 2 ;
s. t. 2x1 + 2x2 ≤12,
4x1 ≤16,
5x2 ≤15,
x1, x2 ≥ 0.
用Lindo或Lingo软件求解,得到最优

x1 = 3, x2 = 3, z* = 1500.
2. 目标规划建模
若在上例中,企业的经营目标不仅要考
Max
s. t.
z = 200 x 1 + 300 x 2 ;
⎪⎧min{d −}; ⎪⎩⎨200x1 + 300x2 + d − − d + = 1500.
甲 乙 设备的生产能力/h
A/(h/件)
22
12
B/(h/件)
40
16
C/(h/件)
05
15
赢利/(元/件) 200 300
• 力求使利润指标不低于1500元
• 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2
求解算法
转化为单目标
实例1:投资的收益和风险
市场上有n种资产(如股票、债券、…)Si ( i=1,…n) 供投资者选择,某公司有数额为M的一笔相当大的资金可用 作一个时期的投资。公司财务分析人员对这n种资产进行了 评估,估算出在这一时期内购买Si的平均收益率,并预测出 购买Si的风险损失率。考虑到投资越分散,总的风险越小, 公司确定,当用这笔资金购买若干种资产时,总体风险可用 所投资的Si中最大的一个风险来度量。 购买Si要付交易费,费率已知,并且当购买额不超过最低限 额时,交易费按购买最低限额计算(不买当然无须付费)。 另外,假定同期银行存款年利率是1%, 且既无交易费又无风 险。试给该公司设计一种投资组合方案 目标一:使净收益尽可能大; 目标二:而总体风险尽可能小。
课程最少
9
Min Z = ∑ xi i =1
学分最多
Max W = 5x1 +4x2 +4x3 +3x4 +4x5 +3x6 +2x7 +2x8 +3x9
两目标(多目标)规划 Min {Z , −W }
多目标优化的处理方法:化成单目标优化。
• 以课程最少为目标, 不管学分多少。
最优解如上,6门课 程,总学分21 。
以学分最多为目标求解。
最优解: x1 = x2 = x3 = x5 = x7 = x9 =1, 其它为0;总 学分由21增至22。
注意:最优解不唯一!
可将x9 =1 易为x6 =1 LINDO无法告诉优化 问题的解是否唯一。
多目标规划
• 对学分数和课程数加权形成一个目标,如三七开。
Min Y = λ1Z − λ2W = 0.7Z − 0.3W
约束条件 先修课程要求 x3=1必有x1 = x2 =1
x3 ≤ x1, x3 ≤ x2
2x3 − x1 − x2 ≤ 0 x4 ≤ x7 x4 − x7 ≤ 0
2x5 − x1 − x2 ≤ 0 x6 − x7 ≤ 0
x8 − x5 ≤ 0
2x9 − x1 − x2 ≤ 0
讨论:选修课程最少,学分尽量多,应学习哪些课程?
0-1规划模型
课号
课名
先修课要求
∗1
微积分
∗2
线性代数
∗3
最优化方法 微积分;线性代数
4
数据结构
计算机编程
5
应用统计 微积分;线性代数
∗6
计算机模拟
计算机编程
∗7
计算机编程
8
预测理论
应用统计
∗9
数学实验 微积分;线性代数
模型求解(LINDO)
最优解: x1 = x2 = x3 = x6 = x7 = x9 =1, 其它为0;6门课程,总学分21
7 计算机编程
计算机
8
预测理论
运筹学
9
数学实验 运筹学;计算机
约束条件
最少2门数学课, 3门运筹学课, 2门计算机课。
xi=1 ~选修课号i 的 课程(xi=0 ~不选)
目标函数 选修课程总数最少
9
Min Z = ∑ xi i =1
x1 + x2 + x3 + x4 + x5 ≥ 2
x3 + x5 + x6 + x8 + x9 ≥ 3 x4 + x6 + x7 + x9 ≥ 2
每条线路中的景点可以全部参观,也可以参观其中之一。 不仅如此,一起参观景点的人数越多,每人承担的费用也会越 小。车费与车型、乘客人数、路程种类及公里数有关。
主办方在会议开始前对所有参会的100位代表 旅游意向进行了调查,充分考虑这些代表的意愿, 为主办方设计代表们合适的旅游路线,使他们在会 议结束后的10天时间内花最少的钱游尽可能多的地 方。 目标一:宾客参观意愿满意度尽可能高 目标二:宾客所花费用尽可能少 目标三:宾客游尽可能多的景点
d + ---- 超出目标的差值,称为正偏差d变+ 量
d − ---- 未达到目标的差值,称为负偏差变量 其中d + 与 d −至少有一个为0
约定如下: •当实际值超过目标值时,有 d − = 0, d + > 0; •当实际值未达到目标值时,有 d + = 0, d − > 0; •当实际值与目标值一致时,有 d − = 0, d + = 0.
从上述问题可以看出,仅用线性规划方法是不够的,需 要借助于目标规划的方法进行建模求解
目标规划的数学模型
目标规划的基本概念
为了克服线性规划的局限性,目标规划采用如下手段: 1. 设置偏差变量; 2. 统一处理目标与约束; 3. 目标的优先级与权系数。
1. 设置偏差变量
用偏差变量(Deviational variables)来表示实际值与目标值 之间的差异,令
2x1 + 2x2 ≤ 12 , 4x1 ≤ 16, 5x2 ≤ 15, x1, x2 ≥ 0.
虑利润,还需要考虑多个方面,因此增加下列因素(目标):
• 力求使利润指标不低于1500元 • 考虑到市场需求,甲、乙两种产品的产量比应尽量保持1:2
• 设备A为贵重设备,严格禁止超时使用
• 设备C可以适当加班,但要控制;设备B既要求充分利用,又 尽可能不加班,在重要性上,设备B是设备C的3倍
线性多目标规划模型---线性加权和法
例: 一个生产问题,有关数 据如表。问如何安排生产可 使总利润最大,产量之和最
品产
原单料耗 甲
A4
B4
乙 总量
5 80
2 48
小。要求第二种原料用完。
C1
06
单位利润 80 100
解 设 x1, x2为甲,乙的产量 矛

min z1 = x1 + x2 max z2 = 80 x1 + 100 x2
F(X) = M
X ≥O
max R( X ) s.t. Q( X ) ≤ b
F(X) = M
X ≥O
min {ρ Q( X ) − (1 − ρ ) R( X )}
Байду номын сангаас
s.t. F ( X ) = M
X ≥O
ρ 为目标权重或偏好系数。
a,b, ρ 均可看成参数,对不同的参数值求出
最优解,然后加以讨论,选出满意解。
求解算法
转化为单目标
实例2:旅游路线设计
今年暑假,我校要召开“××学术会议”,届时来自国内外 的许多著名学者都会相聚成都。在会议结束后,主办方希望能 安排这些远道而来的贵宾参观四川省境内的著名自然和人文景 观,初步设想有如下线路可供选择: 一号线:九寨沟、黄龙; 二号线:乐山、峨嵋; 三号线:四姑娘山、丹巴; 四号线:都江堰、青城山; 五号线:海螺沟、康定;
要求至少选两门数学课、三门运筹学课和两门计算机课
为了选修课程门数最少,应学习哪些课程 ?
选修课程最少,且学分尽量多,应学习哪些课程 ?
0-1规划模型
决策变量
课号
课名
所属类别
1
微积分
数学
2
线性代数
数学
3 最优化方法 数学;运筹学
4
数据结构
数学;计算机
5
应用统计
数学;运筹学
6 计算机模拟 计算机;运筹学
盾 的
s.t. 4 x1 + 5x2 ≤ 80
4 x1 + 2 x2 = 48
x1
≤6
x1, x2 ≥ 0
一般形式: min Q( X ) max R( X ) s.t. F ( X ) = M
相关文档
最新文档