最新高考物理电场专题

合集下载

2025年高考人教版物理一轮复习专题训练—带电粒子在叠加场和交变电磁场中的运动 附答案解析

2025年高考人教版物理一轮复习专题训练—带电粒子在叠加场和交变电磁场中的运动  附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—带电粒⼦在叠加场和交变电、磁场中的运动(附答案解析)1.如图所⽰,⼀带电液滴在相互垂直的匀强电场和匀强磁场中刚好做匀速圆周运动,其轨道半径为R,已知该电场的电场强度⼤⼩为E、⽅向竖直向下;该磁场的磁感应强度⼤⼩为B、⽅向垂直纸⾯向⾥,不计空⽓阻⼒,设重⼒加速度为g,则( )A.液滴带正电B.液滴⽐荷=C.液滴沿顺时针⽅向运动D.液滴运动速度⼤⼩v=2.(多选)(2024·吉林长春市外国语学校开学考)如图所⽰,在竖直平⾯内的虚线下⽅分布着互相垂直的匀强电场和匀强磁场,电场的电场强度⼤⼩为10 N/C,⽅向⽔平向左;磁场的磁感应强度⼤⼩为2 T,⽅向垂直纸⾯向⾥。

现将⼀质量为0.2 kg、电荷量为+0.5 C的⼩球,从该区域上⽅的某点A以某⼀初速度⽔平抛出,⼩球进⼊虚线下⽅后恰好做直线运动。

已知重⼒加速度为g=10 m/s2。

下列说法正确的是( )A.⼩球平抛的初速度⼤⼩为5 m/sB.⼩球平抛的初速度⼤⼩为2 m/sC.A点距该区域上边界的⾼度为1.25 mD.A点距该区域上边界的⾼度为2.5 m3.(2023·⼴东梅州市期末)如图甲所⽰,在竖直平⾯内建⽴xOy坐标系(y轴竖直),在x>0区域有沿y轴正⽅向的匀强电场,电场强度⼤⼩为E=;在x>0区域,还有按图⼄规律变化的磁场,磁感应强度⼤⼩为B0,磁场⽅向以垂直纸⾯向外为正⽅向。

t=0时刻,有⼀质量为m、带电荷量为+q的⼩球(可视为质点)以初速度2v0从原点O沿与x轴正⽅向夹⾓θ=的⽅向射⼊第⼀象限,重⼒加速度为g。

求:(1)⼩球从上往下穿过x轴的位置到坐标原点的可能距离;(2)⼩球与x轴之间的最⼤距离。

4.(多选)(2024·重庆西南⼤学附中⽉考)如图甲所⽰的平⾏⾦属极板M、N之间存在交替出现的匀强磁场和匀强电场,取垂直纸⾯向外为磁场正⽅向,磁感应强度B随时间t周期性变化的规律如图⼄所⽰,取垂直极板向上为电场正⽅向,电场强度E随时间t周期性变化的规律如图丙所⽰。

专题19带电粒子在电场中的运动(解析版)-三年(2022-2024)高考物理真题分类汇编(全国通用)

专题19带电粒子在电场中的运动(解析版)-三年(2022-2024)高考物理真题分类汇编(全国通用)

专题19带电粒子在电场中的运动考点01带电小球在电场中运动1.(2024年高考辽宁卷)在水平方向的匀强电场中,一带电小球仅在重力和电场力作用下于竖直面(纸面)内运动。

如图,若小球的初速度方向沿虚线,则其运动轨迹为直线,若小球的初速度方向垂直于虚线,则其从O点出发运动到O点等高处的过程中()A.动能减小,电势能增大B.动能增大,电势能增大C.动能减小,电势能减小D.动能增大,电势能减小【答案】D【解析】根据题意若小球的初速度方向沿虚线,则其运动轨迹为直线,可知电场力和重力的合力沿着虚线方向向下,又电场强度方向为水平方向,根据力的合成可知电场强度方向水平向右,若小球的初速度方向垂直于虚线,则小球做类平抛运动,其从O点出发运动到O点等高处的过程中,动能增大,重力做功为零,电场力的方向与小球的运动方向相同,则电场力对小球正功,电势能减小,D正确。

2.(2024高考广西卷)如图,将不计重力、电荷量为q带负电的小圆环套在半径为R的光滑绝缘半圆弧上,半圆弧直径两端的M点和N点分别固定电荷量为27Q和64Q的负点电荷。

将小圆环从靠近N点处静止释放,小圆环先后经过图上1P点和2P点,己知3sin5θ=则小圆环从1P点运动到2P点的过程中()A.静电力做正功B.静电力做负功C.静电力先做正功再做负功D.静电力先做负功再做正功【答案】A【解析】设在小圆环在1P 、2P 间的任意一点P ,PM 与MN 的夹角为α,根据几何关系可得3753α︒≤≤︒带负电的小圆环在两个负点电荷电场中的电势能p 64272sin 2cos kQq kQq E R R αα=+根据数学知识可知在3753α︒≤≤︒范围内,随着α的增大,小圆环的电势能一直减小,所以静电力做正功。

故选A 。

3.(2024年高考江西卷)如图所示,垂直于水平桌面固定一根轻质绝缘细直杆,质量均为m 、带同种电荷的绝缘小球甲和乙穿过直杆,两小球均可视为点电荷,带电荷量分别为q 和Q 。

电场中的图像专题和电容器专题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电场中的图像专题和电容器专题(解析版)—2025年高考物理一轮复习考点通关卷(新高考通用)

电场中的图像专题和电容器专题建议用时:50分钟电场中的图像问题(A.粒子带正电C.电势能的最小值为零【答案】B【详解】A.粒子从静止开始沿强度方向先沿x轴负向,表明粒子带负电,故A .滑块在3m x =处所受合外力小于0.5NB .两场源电荷均带负电,且12Q Q <C .滑块向右一定可以经过4m x =处的位置D .滑块向右运动过程中,速度始终减小【答案】CA.a点场强大小小于b点的B.同一电荷在a点受到的电场力大小可能等于在C.同一正电荷在a点的电势能大于在D.将一负电荷从a点移到bA....【答案】C【详解】AC.在v-t图像中,斜率表示加速度,而加速度由电场力产生,由于电场线的疏密表示电场强弱,所以电子在运动过程中,电场先增强后减弱,电场力先增大后减小,所以加速度应先增大后减小,故斜率A.在x轴上,由O点到2x处的电场强度逐渐减小A.在x轴负半轴上,x₁处的电场强度最大B.两点电荷可能带同种电荷C.将负试探电荷沿+x方向移动到D.两点电荷中正电荷的电荷量大于负电荷的电荷量A.x轴上的电场强度方向沿B.A、B两点的电势相等C.电子从A点运动到B D.电子从A点运动到BA.点电荷A、B带电荷量大小之比为B.除无穷远处,x轴上有3处电势为零的点C.除无穷远处,x轴上只有1处场强为零的点D.从0x处静止释放的负试探电荷能再次经过该点【答案】CA....【答案】BD【详解】A.由题知该电场为非匀强电场,电子从M沿直线运动到N,电场线疏密程度非均匀变化,可知题中电场强度E随位移x非线性变化,电场强度随位移x在逐渐减小,.电场强度E随位移x在逐渐减小,粒子所受电场力在逐渐减小,故粒子的加速度在逐渐减小,A....【答案】AB【详解】AD.由于粒子只受电场力作用,因根据功能关系有-图像的斜率大小即为粒子所受电场力大小,从题图可知,图像的斜率随位移的增大而越来qEΔx E x电容器专题(A.A板带电量为3CEd4 B.P点的电势为3Ed4A.保持S接1,减小C两极板的正对面积,油滴会向上移动B.保持S接1,将C的下极板上移,油滴会向下移动C.将S从1掷到2,油滴将向下运动D.将S从1掷到2,同时将下极板上移,油滴将向下运动A.匀速向上运动时,C1减小,C2增加B.匀速向下运动时,C1减小,C2增加C.由静止突然加速向上运动时,C1减小,C2增加D.正在匀速向上运动的传感器突然停止运动时,C1减小,C2增加【答案】C【详解】AB.匀速运动时,多晶硅悬梁臂相对于顶层多晶硅上下极板间的距离均不变,根据:A.分子层间的距离增加了22πrkQSke¢BC.分子层间的距离增加了24πrkQSke¢DA.S闭合时,静电计的指针张角立即增大到某一角度后保持不变B.S闭合,稳定后将电阻箱R的阻值逐渐增大,静电计的指针张角不变C.S闭合,稳定后再断开S,仅将A板向上平移一小段距离,静电计的指针张角增大D.S闭合,稳定后再断开S,仅将A板向上平移一小段距离,A.带电油滴的电荷量mgd qU =A.电介质插入极板越深,电容器电容越大B.当传感器处于静止状态时,电容器不带电C.当传感器由静止突然向前加速时,会有电流由D.当传感器匀速直线运动时,达到稳定后电流表指针不偏转【答案】AD【详解】A.电介质插入极板越深,根据:A .R 中有从a 到b 的电流C .油滴的电势能不变【答案】CD【详解】A .将A 板向上移动时,由平行板电容器决定式可知:A .1Q 减小B .2Q 减小【答案】BD【详解】将绝缘介质抽出,由电容的决定式:可知2C 变小,1C 不变,其中:。

高中物理压轴题05 带电粒子在电场中运动(解析版)

高中物理压轴题05 带电粒子在电场中运动(解析版)

压轴题05带电粒子在电场中的运动1.本专题是电场的典型题型,包括应用静电力的知识解决实际问题。

高考中既可以在选择题中命题,更会在计算题中命题。

2024年高考对于电场的考查仍然是热点。

2.通过本专题的复习,不仅利于完善学生的知识体系,也有利于培养学生的物理核心素养。

3.用到的相关知识有:电场力的性质、电场力能性质、带电粒子在电场中的平衡、加速、偏转等。

近几年的高考命题中一直都是以压轴题的形式存在,重点考查类型静电场的性质,电容器的动态分析,电场中的图像问题,带电粒子在电场中的运动问题,力电综合问题等。

考向一:静电场力的性质1.库仑定律(1)内容:真空中两个静止点电荷之间的相互作用力,与它们的电荷量的乘积成正比,与它们的距离的二次方成反比,作用力的方向在它们的连线上.(2)表达式:F=k q1q2r2,式中k=9.0×109N·m2/C2,叫做静电力常量.(3)适用条件:真空中的点电荷.①在空气中,两个点电荷的作用力近似等于真空中的情况,可以直接应用公式;②当两个带电体的间距远大于本身的大小时,可以把带电体看成点电荷.(4)库仑力的方向:由相互作用的两个带电体决定,且同种电荷相互排斥,异种电荷相互吸引.(5)应用库仑定律的四条提醒a.在用库仑定律公式进行计算时,无论是正电荷还是负电荷,均代入电量的绝对值计算库仑力的大小.b.两个点电荷间相互作用的库仑力满足牛顿第三定律,大小相等、方向相反.c.库仑力存在极大值,由公式F=k q1q2r2可以看出,在两带电体的间距及电量之和一定的条件下,当q1=q2时,F最大.d.对于两个带电金属球,要考虑金属球表面电荷的重新分布.2.电场强度的三个公式的比较电场强度――――→点电荷电场E =k Q r 2―――→任何电场E =F q ―――→匀强电场E =U d ――→叠加平行四边形定则3.电场强度的计算与叠加在一般情况下可由上述三个公式计算电场强度,但在求解带电圆环、带电平面等一些特殊带电体产生的电场强度时,上述公式无法直接应用。

2024届高考物理微专题:带电粒子在电场中的力电综合问题

2024届高考物理微专题:带电粒子在电场中的力电综合问题

微专题61带电粒子在电场中的力电综合问题解决电场、重力场、复合场问题的两个角度:1.功能角度:运用动能定理和功能关系分析粒子的运动,注意等效最高点和等效最低点速度的计算和向心力公式的应用.2.动力学角度:涉及运动时间、速度、位移时一般从动力学角度分析.1.如图所示,在水平向左的匀强电场中,可视为质点的带负电物块,以某一初速度从足够长的绝缘斜面上的A点沿斜面向下运动,经C点到达B点时,速度减为零,然后再返回到A点.已知斜面倾角θ=30°,物块与斜面间的动摩擦因数μ=33,整个过程斜面均保持静止,物块所带电荷量不变.则下列判断正确的是()A.物块在上滑过程中机械能一定减小B.物块在上滑过程中,增加的重力势能一定大于减少的电势能C.物块下滑时经过C点的动能一定大于上滑时经过C点的动能D.物块在下滑过程中,斜面与地面之间的摩擦力可能不为零答案C解析上滑过程中满足Eq cosθ>F f+mg sinθ,则静电力做功大于摩擦力做功,即除重力以外的其他力的合力对物块做正功,则物块的机械能增加,选项A错误;上滑过程中由动能定理W电+W f+W G=ΔE k,W电>|W G|,则物块在上滑过程中,增加的重力势能一定小于减少的电势能,选项B错误;由于物块下滑经过C点往下运动,再返回到C点时有摩擦力做功,则由功能关系可知物块下滑时经过C点的动能一定大于上滑时经过C点的动能,选项C正确;当不加电场时,由于斜面对物块的支持力为F N=mg cos30°,摩擦力F f=μmg cos30°=mg sin30°,可知支持力和摩擦力的合力方向竖直向上;当加电场时,F N=mg cos30°+qE sin30°,F f=μ(mg cos30°+qE sin30°),支持力和摩擦力成比例关系增加,则摩擦力和支持力的合力仍竖直向上,根据牛顿第三定律,则物块给斜面的摩擦力和压力的合力方向竖直向下,可知斜面在水平方向受力为零,则斜面所受地面的摩擦力为零,选项D错误.2.(2023·河北邯郸市模拟)如图所示,在一带电竖直平行金属板之间,有一质量为m,带电荷量为+q的小球被绝缘细线悬挂静止于A点,剪断细线后,小球恰能沿直线AB运动,经时间t后到达B点,已知直线AB与水平方向的夹角为45°,重力加速度为g,规定A点的电势为零,下列说法正确的是()A .电场强度大小为E =2mg qB .B 点的电势φB =mg 2t 22qC .小球在B 点的电势能E B =mg 2t 22D .小球机械能的变化量为mg 2t 22答案D 解析小球沿直线AB 运动,合力沿AB 方向,如图所示则有qE tan 45°=mg ,解得E =mg q ,故A 错误;由牛顿第二定律得加速度为mg sin 45°=ma ,由匀变速直线运动规律,得小球到B 点的速度为v =at ,设AB =L ,根据动能定理得mgL sin 45°+qEL cos 45°=12m v 2,解得静电力做功W =qEL cos 45°=m v 24,根据W =qU AB ,解得U AB =m v 24q,根据U AB =φA -φB ,且A 点的电势为零,解得φB =-mg 2t 22q,B 点的电势能为E B =qφB ,联立解得:E B =-mg 2t 22,故B 、C 错误;小球机械能的变化量等于静电力做的功,ΔE =W =mg 2t 22,故D 正确.3.如图所示,在地面上方的水平匀强电场中,一个质量为m 、电荷量为+q 的小球,系在一根长为L 的绝缘细线一端,可以在竖直平面内绕O 点做圆周运动.AB 为圆周的水平直径,CD 为竖直直径,已知重力加速度为g ,电场强度E =mg q,不计空气阻力,下列说法正确的是()A .若小球在竖直平面内绕O 点做圆周运动,则它运动的最小速度v =2gLB .若小球在竖直平面内绕O 点做圆周运动,则小球运动到A 点时的机械能最小C .若将小球在A 点由静止开始释放,则小球运动到B 点时的速度为v =2gLD .若将小球在A 点以大小为v =gL 的速度竖直向上抛出,它将沿圆周到达B 点答案B 解析由于电场强度E =mg q,故mg =Eq ,物体的加速度大小为a =2g ,若小球在竖直平面内绕O 点做圆周运动,则它运动的最小速度为v ,则有2mg =m v 2L ,解得v =2gL ,A 错误;除重力和弹力外其他力做功等于机械能的增加值,若小球在竖直平面内绕O 点做圆周运动,则小球运动到A 点时,电势能最大,故到A 点时的机械能最小,故B 正确;小球受合力方向与电场方向夹角45°斜向下,故若将小球在A 点由静止开始释放,小球运动到B 点的过程中,由动能定理得qE ·2L =12m v 2,解得:v =2gL ,故C 错误;若将小球在A 点以大小为gL 的速度竖直向上抛出,小球将不会沿圆周运动,小球在竖直方向做竖直上抛运动,水平方向做匀加速运动,因Eq =mg ,故水平加速度与竖直加速度大小均为g ,当竖直方向上的位移为零时,时间t =2L g ,则水平位移x =12gt 2=2L ,则说明小球刚好运动到B 点,故D 错误.4.(多选)如图所示,在竖直面内有一半径为R 的圆环形轨道,轨道内部最低点A 处有一质量为m 的光滑带正电的小球(可视作质点),其所带电荷量为q ,在圆环区域内存在着方向水平向右的匀强电场,电场强度E =3mg 3q ,现给小球一个水平向右的初速度,使小球开始运动,以下说法正确的是()A .若v 0> 1+3 gR ,则小球可以做完整的圆周运动B .若小球可以做完整的圆周运动,则轨道所给弹力的最大值与最小值相差43mgC .若v 0=5gR ,则小球将在轨道最高点B 处脱离轨道D .若v 0=gR ,则小球不会脱离轨道答案BCD 解析小球同时受到重力和静电力作用,这时可认为小球处于等效重力场中,小球受到的等效重力为:G ′= mg 2+ qE 2=mg 2+ 33mg 2=233mg ,等效重力加速度为g ′=G ′m =233g ,等效重力与竖直方向的夹角为θ,如图所示,则有:tan θ=qE mg =33,θ=30°,小球可以做完整的圆周运动,在等效最高点,有:mg ′≤m v 2R,从等效最高点达到A 点过程中,根据动能定理可得:mg ′(R +R cos θ)=12m v 02-12m v 2,解得:v 0≥2 3+1 gR ,故A 错误;若小球可以做完整的圆周运动,则小球在等效重力场中最低点轨道所给的弹力最大,等效最高点轨道所给的弹力最小;在等效最低点有:F 1-G ′=m v 12R ,在等效最高点有:F 2+G ′=m v 22R,在等效重力场中,从最高点达到最低点过程中,根据动能定理可得:mg ′·2R =12m v 12-12m v 22,解得轨道所给弹力的最大值与最小值相差为:F 1-F 2=43mg ,故B 正确;若v 0=5gR ,小球到达最高点B 处的过程中,重力做负功,静电力不做功,则有:-mg ·2R =12m v B 2-12m v 02,解得:v B =gR ,故可得小球将在轨道最高点B 处脱离轨道,故C 正确;在等效重力场中,若v 0=gR ,小球没有超过等效重力场中的半圆,故小球不会脱离轨道,故D 正确.5.如图所示,在竖直平面内有直角坐标系xOy ,有一匀强电场,其方向与水平方向成α=30°角斜向上,在电场中有一质量为m =1×10-3kg 、电荷量为q =1.0×10-4C 的带电小球,用长为L =335m 的不可伸长的绝缘细线挂于坐标原点O ,当小球静止于M 点时,细线恰好伸直且水平.现用外力将小球拉到最低点P ,然后无初速度释放,g =10m/s 2.(1)求电场强度E 的大小;(2)求小球再次到达M 点时的速度大小;(3)如果小球再次到达M 点时,细线突然断裂,从此时开始计时,求小球运动t =1s 时的位置坐标.答案(1)200N/C (2)6m/s (3)(2835m,6m)解析(1)当小球静止于M 点时,由平衡条件得qE sin α=mg解得E =200N/C(2)小球所受静电力和重力的合力恒定,大小为F =3mg ,方向水平向右,设小球运动到M 点时,小球的速度为v ,则由动能定理得3mgL =12v 2解得v =6m/s(3)小球运动到M 点时,细线突然断裂,小球的速度方向竖直向上,所受合力F 水平向右,小球将做类平抛运动,由牛顿第二定律得3mg =ma在竖直方向上,有y =v t在水平方向上,有x 1=12at 2解得x =x 1+L =2835m ,y =6m 所以小球的位置坐标为(2835m,6m).6.(2023·新疆喀什市检测)如图所示,水平绝缘粗糙的轨道AB 与处于竖直平面内的半圆形绝缘光滑轨道BC 平滑连接,半圆形轨道的半径R =0.40m ,在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E =3.0×104N/C.现有一电荷量q =+1.0×10-5C 、质量m =0.04kg 的带电体(可视为质点),在水平轨道上的P 点由静止释放,带电体恰好能通过半圆形轨道的最高点C ,然后落至水平轨道上的D 点(图中未画出),取g =10m/s 2.求:(1)带电体运动到圆形轨道C 点时的速度大小;(2)带电体在圆弧形轨道上运动的最大速度;(3)D 点到B 点的距离x .答案(1)2.0m/s (2)22m/s (3)0.2m 解析(1)设带电体经过C 点时的速度为v C ,根据牛顿第二定律得:mg =m v C 2R解得:v C =2.0m/s(2)设带电体通过B 点时的速度为v B ,带电体从B 运动到C 的过程中,根据动能定理得:-2mgR =12m v C 2-12m v B 2解得:v B =25m/s 根据静电力和重力的比值关系可知,等效最低点与竖直方向的夹角为tan θ=qE mg =1.0×10-5×3.0×100.04×10=34即θ=37°,等效最低点的位置如图所示:由B 到等效最低点根据动能定理得:qE ·R sin 37°-mg ·R (1-cos 37°)=12m v m 2-12m v B 2解得:v m =22m/s(3)带电体离开圆弧轨道后在竖直方向上:2R =12gt 2在水平方向上:x =v C t -qE 2mt 2联立解得:x =0.2m.7.如图所示,绝缘轨道CDGH 位于竖直平面内,圆弧段DG 的圆心角为θ=37°,DG 与水平段CD 、倾斜段GH 分别相切于D 点和G 点.CD 段粗糙,DGH 段光滑.在H 处固定一垂直于轨道的绝缘挡板,整个轨道处于电场强度为E =1×104N/C 、水平向右的匀强电场中,一质量m =4×10-3kg 、带电荷量q =+3×10-6C 的小滑块在C 处由静止释放,经挡板碰撞后滑回到CD 段的中点P 处时速度恰好为零.已知CD 段长度L =0.8m ,圆弧DG 的半径r =0.2m;不计滑块与挡板碰撞时的动能损失,滑块可视为质点.g=10m/s2,cos37°=0.8,sin 37°=0.6,求:(1)滑块与CD段之间的动摩擦因数μ;(2)滑块在CD段上运动的总路程;(3)滑块与绝缘挡板碰撞时的最大动能和最小动能.答案(1)0.25(2)2.4m(3)0.018J0.002J解析(1)滑块由C处释放,经挡板碰撞后第一次滑回P点的过程中,由动能定理得qE L 2-μmg(L+12L)=0解得μ=Eq3mg=0.25;(2)滑块在CD段上受到的滑动摩擦力μmg=0.01N静电力Eq=0.03N滑动摩擦力小于静电力,故不可能停在CD段,滑块最终会在DGH间来回往复运动,到达D 点的速度为0.全过程由动能定理得EqL-μmgs=0解得s=2.4m;(3)GH段的倾角为37°,因为Eq cosθ=mg sinθ=0.024N,则加速度a=0,所以滑块与绝缘挡板碰撞的最大动能为滑块第一次运动到G点的动能.对C到G过程由动能定理得E kmax=Eq(L+r sinθ)-μmgL-mg(r-r cosθ)=0.018J滑块最终在DGH间来回往复运动,碰撞绝缘挡板时有最小动能.对D到G过程由动能定理得E kmin=Eqr sinθ-mg(r-r cosθ)=0.002J.8.如图所示,圆心为O、半径为R的圆弧形光滑轨道MN固定在竖直平面内,O、N恰好处于同一竖直线上,ON=R,OM与竖直方向之间的夹角θ=37°,水平面上方空间存在水平向左的匀强电场.水平面上有一点P,点P、M的连线恰好与圆弧轨道相切于M点,PM=2R.现有一质量为m、电荷量为+q的小球(可视为质点)从P点以一定的初速度沿PM做直线运动,小球从M点进入圆弧轨道后,恰好能沿圆弧轨道运动并从N点射出.sin37°=0.6,cos37°=0.8,重力加速度为g.求:(1)小球沿圆弧轨道运动过程中的最小速度的大小;(2)小球在P 点时的初速度大小;(3)小球在水平面上的落点到P 点的距离.答案(1)53gR (2)353gR (3)(32+3)R 解析(1)由小球沿PM 做直线运动可知,小球所受的静电力与重力的合力方向沿MP 方向,受力分析如图(a)所示:则qE tan θ=mg解得:E =4mg3q小球恰好能沿圆弧运动并从N 点射出可知,小球在圆弧轨道上经过“等效最高点G ”时速度最小,如图(b)所示:此时小球所受的静电力与重力的合力提供向心力,则mg sin θ=m v G 2R 解得:v G =53gR (2)小球从P 点运动到G 点的过程中,根据动能定理得:-mg sin θ·3R =12m v G 2-12m v 02解得:v 0=353gR (3)小球从G 点运动到N 点的过程中,根据动能定理得:mg sin θ(R -R sin θ)=12m v N 2-12m v G 2解得:v N =3gR小球从N 水平飞出后,在水平方向上做初速度为3gR 的匀加速运动,在竖直方向上做自由落体运动,设小球从N 飞出到落地的时间为t ,则竖直方向上:R +R cos θ+2R sin θ=12gt 2解得:t =6R g水平方向上的加速度大小为a x =qE m =43g 小球在水平面上的落点到N 点的水平距离为x =v N t +12a x t 2解得:x =(32+4)R则小球在水平面上的落点到P 点的距离为x 0=x -(2R cos θ-R sin θ)=(32+3)R .。

电场能的性质 2024届高考物理一轮复习热点题型(解析版)

电场能的性质 2024届高考物理一轮复习热点题型(解析版)

电场能的性质1.目录题型一 电场性质的综合应用类型1 利用点电荷考电场的性质类型2 利用电偶极子考电场的性质题型二 电势差与电场强度的关系题型三 电场线、等势面及运动轨迹问题题型五 电场中功能关系的综合问题题型六 电场中的图像问题类型1 v-t、v-x图像类型2 φ-x图像类型3 E-x图像类型4 E p-x图像、E k-x图像电场性质的综合应用【核心归纳】1.静电力做功的特点静电力做功与路径无关,只与电荷量和电荷移动过程始、末位置间的电势差有关.2.电势能(1)定义:电荷在电场中具有的势能,称为电势能.(2)说明:电势能具有相对性,通常把无限远处或大地表面的电势能规定为零.3.电势(1)定义:电荷在电场中某一点的电势能与它的电荷量之比.(2)定义式:φ=E p q.(3)标矢性:电势是标量,有正、负之分,其正(负)表示该点电势比零电势高(低).(4)相对性:电势具有相对性,同一点的电势因选取零电势点的不同而不同.4.静电力做功与电势能变化的关系(1)静电力做的功等于电荷电势能的减少量,即W AB=E p A-E pB.静电力对电荷做多少正功,电荷电势能就减少多少;电荷克服静电力做多少功,电荷电势能就增加多少.(2)电势能的大小:由W AB=E p A-E pB可知,若令E pB=0,则E p A=W AB,即一个电荷在电场中某点具有的电势能,数值上等于将其从该点移到零电势能位置过程中静电力所做的功.【方法技巧】1.求静电力做功的四种方法2.判断电势能变化的两种方法(1)根据静电力做功:静电力做正功,电势能减少;静电力做负功,电势能增加.(2)根据E p=φq:正电荷在电势越高处电势能越大;负电荷在电势越高处电势能越小.3.电势高低的四种判断方法(1)电场线法:沿电场线方向电势逐渐降低.(2)电势差与电势的关系:根据U AB=W ABq,将W AB、q的正负号代入,由U AB的正负判断φA、φB的高低.(3)E p与φ的关系:由φ=E pq知正电荷在电势能大处电势较高,负电荷在电势能大处电势较低.(4)场源电荷的正负:取离场源电荷无限远处电势为零,正电荷周围电势为正值,负电荷周围电势为负值;靠近正电荷处电势高,靠近负电荷处电势低.空间中有多个点电荷时,某点的电势可以代数求和.类型1利用点电荷考电场的性质1如图所示,一个带负电的点电荷固定在O点,实线为几条对称分布的电场线,虚线为以Oe电场线上的O 点为圆心的一个圆,a、b、c、d、e、f、g、h为圆与电场线的交点,下列说法正确的是()A.b、h两点的电场强度相同B.a点电势比e点电势高C.d、b两点之间的电势差大于e、b两点之间的电势差D.将电子沿圆周由h运动到d与由h运动到f,电场力做功相等【答案】D【详解】A.由题图可知,b、h两点到O点的距离相同,则电场强度的大小相同,但是方向不同,则b、h两点的电场强度不同,故A错误;BC.电势沿着电场线的方向逐渐降低,该电场是由带负电的点电荷产生的,则离点电荷越远,电势越高,所以a点电势低于e点电势,d点电势低于e点电势,则d、b两点间电势差小于e、b两点间电势差,故BC错误;D.d、f两点到O点的距离相等,则d、f两点的电势相同,电子沿圆周由h运动到d与由h运动到f,电场力做功相等,故D正确。

电场与磁场专题(2024高考真题及解析)

电场与磁场专题(2024高考真题及解析)

电场与磁场专题1.(多选)[2024·安徽卷] 空间中存在竖直向下的匀强电场和垂直于纸面向里的匀强磁场,电场强度大小为E ,磁感应强度大小为B.一质量为m 的带电油滴a ,在纸面内做半径为R 的圆周运动,轨迹如图所示.当a 运动到最低点P 时,瞬间分成两个小油滴Ⅰ、Ⅰ,二者带电荷量、质量均相同.Ⅰ在P 点时与a 的速度方向相同,并做半径为3R 的圆周运动,轨迹如图所示.Ⅰ的轨迹未画出.已知重力加速度大小为g ,不计空气浮力与阻力以及Ⅰ、Ⅰ分开后的相互作用,则 ( )A .油滴a 带负电,所带电荷量的大小为mgE B .油滴a 做圆周运动的速度大小为gBREC .小油滴Ⅰ做圆周运动的速度大小为3gBRE ,周期为4πEgB D .小油滴Ⅰ沿顺时针方向做圆周运动1.ABD [解析] 油滴a 做圆周运动,故重力与电场力平衡,可知带负电,有mg =Eq ,解得q =mgE ,故A 正确;根据洛伦兹力提供向心力有Bqv =m v 2R ,得R =mvBq ,解得油滴a 做圆周运动的速度大小为v =gBR E ,故B 正确;设小油滴Ⅰ的速度大小为v 1,得3R =m 2v 1B q 2,解得v 1=3BqR m =3gBRE ,周期为T =2π·3R v 1=2πEgB ,故C 错误;带电油滴a 分离前后动量守恒,设分离后小油滴Ⅰ的速度为v 2,取油滴a分离前瞬间的速度方向为正方向,得mv =m 2v 1+m 2v 2,解得v 2=-gBRE,由于分离后的小油滴受到的电场力和重力仍然平衡,分离后小油滴Ⅰ的速度方向与正方向相反,根据左手定则可知小油滴Ⅰ沿顺时针方向做圆周运动,故D 正确.2.[2024·北京卷] 如图所示,两个等量异种点电荷分别位于M 、N 两点,P 、Q 是MN 连线上的两点,且MP=QN.下列说法正确的是()A.P点电场强度比Q点电场强度大B.P点电势与Q点电势相等C.若两点电荷的电荷量均变为原来的2倍,P点电场强度大小也变为原来的2倍D.若两点电荷的电荷量均变为原来的2倍,P、Q两点间电势差不变2.C[解析] 由等量异种点电荷的电场线分布特点知,P、Q两点电场强度相等,A错误;由沿电场线方向电势越来越低知,P点电势高于Q点电势,B错误;由电场叠加得P点电场强度E=k QMP2+k QNP2,若仅两点电荷的电荷量均变为原来的2倍,则P点电场强度大小也变为原来的2倍,同理Q点电场强度大小也变为原来的2倍,而P、Q间距不变,根据U=Ed定性分析可知P、Q两点间电势差变大,C正确,D错误.3.[2024·北京卷] 我国“天宫”空间站采用霍尔推进器控制姿态和修正轨道.图为某种霍尔推进器的放电室(两个半径接近的同轴圆筒间的区域)的示意图.放电室的左、右两端分别为阳极和阴极,间距为d.阴极发射电子,一部分电子进入放电室,另一部分未进入.稳定运行时,可视为放电室内有方向沿轴向向右的匀强电场和匀强磁场,电场强度和磁感应强度大小分别为E和B1;还有方向沿半径向外的径向磁场,大小处处相等.放电室内的大量电子可视为处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动(如截面图所示),可与左端注入的氙原子碰撞并使其电离.每个氙离子的质量为M、电荷量为+e,初速度近似为零.氙离子经过电场加速,最终从放电室右端喷出,与阴极发射的未进入放电室的电子刚好完全中和.已知电子的质量为m、电荷量为-e;对于氙离子,仅考虑电场的作用.(1)求氙离子在放电室内运动的加速度大小a;(2)求径向磁场的磁感应强度大小B2;(3)设被电离的氙原子数和进入放电室的电子数之比为常数k,单位时间内阴极发射的电子总数为n,求此霍尔推进器获得的推力大小F.3.(1)eEM (2)mEB1eR(3)nk√2eEMd1+k[解析] (1)氙离子在放电室时只受电场力作用,由牛顿第二定律有eE=Ma解得a=eEM(2)电子处于阳极附近,在垂直于轴线的平面绕轴线做半径为R的匀速圆周运动,沿轴向向右的匀强磁场的洛伦兹力提供向心力,则有B1ev=m v 2R可得v=B1eRm轴线方向上所受电场力(水平向左)与径向磁场的洛伦兹力(水平向右)平衡,即Ee=evB2解得B2=mEB1eR(3)单位时间内阴极发射的电子总数为n,设单位时间内被电离的氙原子数为N,根据被电离的氙原子数和进入放电室的电子数之比为常数k,可知进入放电室的电子数为Nk又由于这些电离氙原子数与未进入放电室的电子刚好完全中和,说明未进入放电室的电子数也为N即有n=N+Nk则单位时间内被电离的氙离子数N=nk1+k氙离子经电场加速,有eEd=12M v12-0可得v1=√2eEdM设时间Δt内氙离子所受到的作用力为F',由动量定理有F'·Δt=N·Δt·Mv1解得F'=nk√2eEMd1+k由牛顿第三定律可知,霍尔推进器获得的推力大小F=F'则F=nk√2eEMd1+k4.[2024·福建卷] 以O点为圆心,半径为R的圆上八等分放置电荷,除G为-Q,其他为+Q,M、N为半径上的点,OM=ON,已知静电力常量为k,则O点场强大小为,M点电势(选填“大于”“等于”或“小于”)N点电势.将+q点电荷从M沿MN移动到N点,电场力(选填“做正功”“做负功”或“不做功”).4.2kQR2大于做正功[解析] 根据点电荷的场强特点可知,除了MN连线上的正负电荷外,其余的6个电荷形成的电场在O点处相互抵消,故O点场强大小为E O=kQR2+kQR2=2kQR2;根据对称性可知,若没有沿水平直径方向上的正电荷和负电荷,则M和N点的电势相等,由于M点靠近最左边的正电荷,N点靠近最右边的负电荷,故M点电势大于N点电势;将+q点电荷从M沿MN移动到N点,由于电势降低,故电场力做正功.5.[2024·甘肃卷] 一平行板电容器充放电电路如图所示.开关S接1,电源E给电容器C充电;开关S接2,电容器C对电阻R放电.下列说法正确的是()A.充电过程中,电容器两极板间电势差增加,充电电流增加B.充电过程中,电容器的上极板带正电荷、流过电阻R的电流由M点流向N点C.放电过程中,电容器两极板间电势差减小,放电电流减小D.放电过程中,电容器的上极板带负电荷,流过电阻R的电流由N点流向M点5.C[解析] 充电过程中,随着电容器带电荷量的增加,电容器两极板间电势差增加,充电电流在减小,故A错误;根据电路图可知,充电过程中,电容器的上极板带正电荷,流过电阻R的电流由N点流向M点,故B错误;放电过程中,随着电容器带电荷量的减小,电容器两极板间电势差减小,放电电流在减小,故C正确;根据电路图可知,放电过程中,电容器的上极板带正电荷,流过电阻R的电流由M点流向N点,故D错误.6.(多选)[2024·甘肃卷] 某带电体产生电场的等势面分布如图中实线所示,虚线是一带电粒子仅在此电场作用下的运动轨迹,M、N分别是运动轨迹与等势面b、a的交点,下列说法正确的是 ( )A .粒子带负电荷B .M 点的电场强度比N 点的小C .粒子在运动轨迹上存在动能最小的点D .粒子在M 点的电势能大于在N 点的电势能6.BCD [解析] 根据粒子所受电场力指向曲线轨迹的凹侧可知,带电粒子带正电荷,故A 错误;等差等势面越密集的地方场强越大,故M 点的电场强度比N 点的小,故B 正确;粒子带正电,因为M 点的电势大于N 点的电势,故粒子在M 点的电势能大于在N 点的电势能,故D 正确;由于带电粒子仅在电场作用下运动,电势能与动能总和不变,故可知当电势能最大时动能最小,故粒子在运动轨迹上到达最大电势处时动能最小,故C 正确.7.[2024·甘肃卷] 质谱仪是科学研究中的重要仪器,其原理如图所示.Ⅰ为粒子加速器,加速电压为U ;Ⅰ为速度选择器,匀强电场的电场强度大小为E 1,方向沿纸面向下,匀强磁场的磁感应强度大小为B 1,方向垂直纸面向里;Ⅰ为偏转分离器,匀强磁场的磁感应强度大小为B 2,方向垂直纸面向里.从S 点释放初速度为零的带电粒子(不计重力),加速后进入速度选择器做直线运动,再由O 点进入分离器做圆周运动,最后打到照相底片的P 点处,运动轨迹如图中虚线所示. (1)粒子带正电还是负电?求粒子的比荷. (2)求O 点到P 点的距离.(3)若速度选择器Ⅰ中匀强电场的电场强度大小变为E 2(E 2略大于E 1),方向不变,粒子恰好垂直打在速度选择器右挡板的O'点上.求粒子打在O'点的速度大小.7.(1)正电E 122UB 12(2)4UB 1E 1B 2 (3)2E 2-E1B 1[解析] (1)由于粒子在偏转分离器Ⅰ中向上偏转,根据左手定则可知粒子带正电;设粒子的质量为m ,电荷量为q ,粒子进入速度选择器Ⅰ时的速度为v 0,在速度选择器中粒子做匀速直线运动,由平衡条件有qv 0B 1=qE 1在粒子加速器Ⅰ中,由动能定理有 qU =12m v 02联立解得粒子的比荷为q m =E 122UB 12(2)在偏转分离器Ⅰ中,洛伦兹力提供向心力,有qv 0B 2=m v 02r可得O点到P点的距离为OP=2r=4UB1E1B2(3)粒子进入速度选择器Ⅰ瞬间,粒子受到向上的洛伦兹力F洛=qv0B1向下的电场力F=qE2由于E2>E1,且qv0B1=qE1所以通过配速法,如图所示其中满足qE2=q(v0+v1)B1则粒子在速度选择器中水平向右以速度v0+v1做匀速运动的同时,在竖直面内以速度v1做匀速圆周运动,当速度转向到水平向右时,满足垂直打在速度选择器右挡板的O'点的要求,故此时粒子打在O'点的速度大小为v'=v0+v1+v1=2E2-E1B18.(多选)[2024·广东卷] 污水中的污泥絮体经处理后带负电,可利用电泳技术对其进行沉淀去污,基本原理如图所示.涂有绝缘层的金属圆盘和金属棒分别接电源正、负极,金属圆盘置于容器底部,金属棒插入污水中,形成如图所示的电场分布,其中实线为电场线,虚线为等势面.M点和N点在同一电场线上,M点和P点在同一等势面上.下列说法正确的有()A.M点的电势比N点的低B.N点的电场强度比P点的大C.污泥絮体从M点移到N点,电场力对其做正功D.污泥絮体在N点的电势能比其在P点的大8.AC[解析] 电场线的疏密程度反映电场强度大小,电场线越密则电场强度越大,由于N点附近的电场线比P点附近的稀疏,故N点的电场强度比P点的小,B错误;沿电场线方向电势逐渐降低,故M点的电势比N点的低,污泥絮体带负电,故其受到的电场力方向与电场强度方向相反,若从M点移到N点,则电场力对其做正功,A、C正确;由于M点和P点在同一等势面上,故M点电势等于P点电势,则N点电势高于P点电势,污泥絮体带负电,即q<0,根据电势能E p=qφ可知,污泥絮体在N点的电势能比其在P点的小,D错误.9.[2024·广东卷] 如图甲所示,两块平行正对的金属板水平放置,板间加上如图乙所示幅值为U0、周期为t0的交变电压.金属板左侧存在一水平向右的恒定匀强电场,右侧分布着垂直纸面向外的匀强磁场,磁感应强度大小为B.一带电粒子在t=0时刻从左侧电场某处由静止释放,在t=t0时刻从下板左端边缘位置水平向右进入金属板间的电场内,在t=2t0时刻第一次离开金属板间的电场、水平向右进入磁场,并在t=3t0时刻从下板右端边缘位置再次水平进入金属板间的电场.已知金属板的板长是板间距离的π3倍,粒子质量为m.忽略粒子所受的重力和场的边缘效应.(1)判断带电粒子的电性并求其所带的电荷量q;(2)求金属板的板间距离D和带电粒子在t=t0时刻的速度大小v;(3)求从t=0时刻开始到带电粒子最终碰到上金属板的过程中,电场力对粒子做的功W.9.(1)带正电πmBt0(2)√3πU0t08B√π3U024Bt0(3)(π3+16π)mU048Bt0[解析] (1)由带电粒子在左侧电场中由静止释放后加速运动的方向可知粒子带正电(或由带电粒子在磁场中做圆周运动的方向结合左手定则可知粒子带正电).设粒子在磁场内做圆周运动的速度为v,半径为r,根据洛伦兹力提供向心力有qvB=m v 2r粒子在磁场中运动半个圆周所用的时间Δt=3t0-2t0粒子在磁场中做圆周运动的周期为T=2Δt又知T=2πrv联立解得q=πmBt0(2)设金属板间的电场强度为E,粒子在金属板间运动的加速度为a,则有E=U0Da=qEmt 0~2t 0内,粒子在金属板间的电场内做两个对称的类平抛运动,在垂直于金属板方向的位移等于在磁场中做圆周运动的直径,即y =2r 在垂直于金属板方向有y =2×12a (t 02)2在沿金属板方向有π3D =vt 0 联立解得D =√3πU 0t 08B ,v =√π3U 024Bt 0(3)由(1)(2)可知y =2D3由对称性可知,3t 0~4t 0内,粒子第二次进入金属板间的电场内,粒子在竖直方向的位移仍为y ,由于y <D ,故粒子不会碰到金属板.t =4t 0后,粒子进入左侧电场,先减速到速度为零,后反向加速,并在t =6t 0时刻第三次进入金属板间的电场内,此时粒子距上板的距离为h =D -y =D3,注意到h =y2,故粒子恰在加速阶段结束时碰到金属板.粒子第一次、第二次进出金属板间的电场过程中,电场力做功为0,粒子第三次进入金属板间的电场后,电场力做功为qEh ,设粒子在左侧电场中运动时电场力做功为W 左,根据动能定理有 W 左=12mv 2电场力对粒子做的总功为W =W 左+qEh联立解得W =(π3+16π)mU 048Bt 010.[2024·广西卷] xOy 坐标平面内一有界匀强磁场区域如图所示,磁感应强度大小为B ,方向垂直纸面向里.质量为m ,电荷量为+q 的粒子,以初速度v 从O 点沿x 轴正向开始运动,粒子过y 轴时速度与y 轴正向夹角为45°,交点为P .不计粒子重力,则P 点至O 点的距离为 ( )A .mv qBB .3mv2qBC .(1+√2)mvqB D .(1+√22)mvqB10.C [解析] 粒子运动轨迹如图所示,在磁场中,根据洛伦兹力提供向心力有qvB =m v 2r ,可得粒子做圆周运动的半径为r =mvqB ,根据几何关系可得P 点至O 点的距离为L PO =r +r sin45°=(1+√2)mvqB ,故选C .11.[2024·广西卷] 如图所示,将不计重力、电荷量为q 的带负电的小圆环套在半径为R 的光滑绝缘半圆弧上,半圆弧直径两端的M 点和N 点分别固定电荷量为27Q 和64Q 的负点电荷.将小圆环从靠近N 点处静止释放,小圆环先后经过图上P 1点和P 2点,己知sin θ=35,则小圆环从P 1点运动到P 2点的过程中 ( )A .静电力做正功B .静电力做负功C .静电力先做正功再做负功D .静电力先做负功再做正功11.A [解析] 沿电场线越靠近负电荷则电势越低,画出两个不等量负点电荷的电场线分布如图甲所示,半圆与电场线的交点中其电场强度沿半径方向时,该点对应的电势最高,设该点为P ,如图乙所示,设连线PM 与直径MN 的夹角为α,则P 点到M 点的距离d M =2R cos α,P 点到N 点的距离为d N =2R sin α,M 点处点电荷在P 点产生的电场强度为E M =k 27Q d M2,N点处点电荷在P点产生的电场强度为E N =k64Qd N 2,P 点的电场强度沿着圆半径方向,由电场叠加原理可知E NE M=tan α,联立解得α=53°,已知P 2点和N 点连线与直径MN 的夹角恰好为37°,则P 2点和M 点连线与直径MN 的夹角恰好为53°,故半圆上P 2点的电势最高,因此带负电的圆环从P 1点运动到P 2点的过程中,电势一直升高,静电力一直做正功,选项A 正确.12.(多选)[2024·海南卷] 真空中有两个点电荷,电荷量均为-q (q ≥0),固定于相距为2r 的P 1、P 2两点,O 是P 1P 2连线的中点,M 点在P 1P 2连线的中垂线上,距离O 点为r ,N 点在P 1P 2连线上,距离O 点为x (x ≪r ),已知静电力常量为k ,则下列说法正确的是 ( )A .P 1P 2中垂线上电场强度最大的点到O 点的距离为√33rB .P 1P 2中垂线上电场强度的最大值为4√3kq9r 2C .在M 点放入一电子,从静止释放,电子的加速度一直减小D .在N 点放入一电子,从静止释放,电子的运动可视为简谐运动12.BCD [解析] 设P 1处的点电荷在P 1P 2中垂线上某点A 处产生的场强与竖直方向的夹角为θ,则根据场强的叠加原理可知,A 点的合场强为E =k 2qr 2sin 2 θcos θ,根据均值不等式可知当cos θ=√33时E 有最大值,且最大值为E m =4√3kq9r 2,此时A 点到O 点的距离为y =√22r ,故A 错误,B 正确;在M 点放入一电子,从静止释放,由于r >y =√22r ,可知电子向上运动的过程中所受电场力一直减小,则电子的加速度一直减小,故C 正确;根据等量同种电荷的电场线分布可知,电子运动过程中,O 点为平衡位置,可知当发生的位移为x 时,粒子受到的电场力为F =keq ·4rx(r -x )2(r+x )2,由于x ≪r ,整理后有F =4keqr 3·x ,在N 点放入一电子,从静止释放,电子的运动可视为以O 点为平衡位置的简谐运动,故D 正确.13.[2024·海南卷] 如图,在xOy 坐标系中有三个区域,圆形区域Ⅰ分别与x 轴和y 轴相切于P 点和S 点.半圆形区域Ⅰ的半径是区域Ⅰ半径的2倍.区域Ⅰ、Ⅰ的圆心O 1、O 2连线与x 轴平行,半圆与圆相切于Q 点,QF 垂直于x 轴,半圆的直径MN 所在的直线右侧为区域Ⅰ.区域Ⅰ、Ⅰ分别有磁感应强度大小为B 、B 2的匀强磁场,磁场方向均垂直纸面向外.区域Ⅰ下方有一粒子源和加速电场组成的发射器,可将质量为m 、电荷量为q 的粒子由电场加速到v 0.改变发射器的位置,使带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ.已知某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ.(不计粒子的重力和粒子之间的影响) (1)求加速电场两板间的电压U 和区域Ⅰ的半径R.(2)在能射入区域Ⅰ的粒子中,某粒子在区域Ⅰ中运动的时间最短,求该粒子在区域Ⅰ和区域Ⅰ中运动的总时间t.(3)在区域Ⅰ加入匀强磁场和匀强电场,磁感应强度大小为B ,方向垂直纸面向里,电场强度的大小E =Bv 0,方向沿x 轴正方向.此后,粒子源中某粒子经区域Ⅰ、Ⅰ射入区域Ⅰ,进入区域Ⅰ时速度方向与y 轴负方向成74°角.当粒子动能最大时,求粒子的速度大小及所在的位置到y 轴的距离(sin37°=35,sin53°=45).13.(1)mv 022qmv 0qB (2)πmqB(3)2.6v 0172mv 025qB[解析] (1)根据动能定理得qU =12m v 02解得U =mv 022q粒子进入区域Ⅰ做匀速圆周运动,根据题意某粒子从P 点射入区域Ⅰ,并从Q 点射入区域Ⅰ,故可知此时粒子的运动轨迹半径与区域Ⅰ的半径R 相等,粒子在磁场中做匀速圆周运动,由洛伦兹力提供向心力qBv 0=m v 02R 解得R =mv0qB(2)带电粒子在OF 范围内都沿着y 轴正方向以相同的速度v 0沿纸面射入区域Ⅰ,由(1)可得,粒子在区域Ⅰ中做匀速圆周运动,轨迹半径为R ,因为在区域Ⅰ中的磁场半径和轨迹半径相等,所以粒子射入点、区域Ⅰ圆心O 1、粒子出射点、轨迹圆心O'四点构成一个菱形,由几何关系可得,区域Ⅰ圆心O 1和粒子出射点连线平行于粒子射入点与轨迹圆心O'连线,则区域Ⅰ圆心O 1和粒子出射点连线水平,根据磁聚焦原理可知粒子都从Q 点射出,粒子射入区域Ⅰ,仍做匀速圆周运动,由洛伦兹力提供向心力q B2v 0=m v 02R '解得R'=2R如图甲所示,要使粒子在区域Ⅰ中运动的时间最短,轨迹所对应的圆心角最小,可知在区域Ⅰ中运动的圆弧所对的弦长最短,即此时最短弦长为区域Ⅰ的磁场圆半径2R ,根据几何知识可得此时在区域Ⅰ和区域Ⅰ中运动的轨迹所对应的圆心角都为60°,粒子在两区域磁场中运动周期分别为 T 1=2πR v 0=2πmqBT 2=2π·2R v 0=4πmqB 故可得该粒子在区域Ⅰ和区域Ⅰ中运动的总时间为 t =60°360°T 1+60°360°T 2=πmqB甲(3)如图乙所示,将速度v 0分解为沿y 轴正方向的速度v 0及速度v',因为E =Bv 0,可得qE =qBv 0,故可知沿y 轴正方向的速度v 0产生的洛伦兹力与电场力平衡,粒子同时受到另一方向的洛伦兹力qBv',故粒子沿y 轴正方向做旋进运动,根据几何关系可知 v'=2v 0sin 53°=1.6v 0故当v'方向为竖直向上时粒子速度最大,最大速度为 v m =v 0+1.6v 0=2.6v 0根据几何关系可知此时所在的位置到y 轴的距离为 L =R'+R'sin 53°+2R +2R =6.88R =172mv 025qB乙14.[2024·河北卷] 我国古人最早发现了尖端放电现象,并将其用于生产生活,如许多古塔的顶端采用“伞状”金属饰物在雷雨天时保护古塔.雷雨中某时刻,一古塔顶端附近等势线分布如图所示,相邻等势线电势差相等,则a 、b 、c 、d 四点中电场强度最大的是 ( )A .a 点B .b 点C .c 点D .d 点14.C [解析] 在静电场中,等差等势线的疏密程度反映电场强度的大小,等差势线越密,则电场强度越大.由题图可知,c 点等差等势线最密集,故c 点电场强度最大,C 正确.15.[2024·河北卷] 如图所示,真空中有两个电荷量均为q (q >0)的点电荷,分别固定在正三角形ABC 的顶点B 、C.M 为三角形ABC 的中心,沿AM 的中垂线对称放置一根与三角形共面的均匀带电细杆,电荷量为q2.已知正三角形ABC 的边长为a ,M 点的电场强度为0,静电力常量为k.顶点A 处的电场强度大小为( )A .2√3kq a 2B .kq a 2(6+√3)C .kq a 2(3√3+1)D .kqa2(3+√3)15.D [解析] 如图所示,B 、C 两处点电荷在M 处产生的电场强度大小E 1=E 2=kq(√33a )2=3kqa 2,由于M 点的电场强度为0,故带电细杆在M 点产生的电场强度大小E 3=E 1cos 60°+E 2cos 60°=3kq a 2,B 、C 两处点电荷在A 处产生的电场强度大小E 4=E 5=kqq 2,合场强E 合'=E 4cos 30°+E 5cos 30°=√3kqa 2,方向向上,由于M 点与A 点关于带电细杆对称,故细杆在A 处产生的电场强度大小E 6=E 3=3kqa 2,方向向上,因此A 点的电场强度大小E =E 合'+E 6=kqa 2(√3+3),D 正确.16.(多选)[2024·河北卷] 如图所示,真空区域有同心正方形ABCD 和abcd ,其各对应边平行,ABCD 的边长一定,abcd 的边长可调,两正方形之间充满恒定匀强磁场,方向垂直于正方形所在平面.A处有一个粒子源,可逐个发射速度不等、比荷相等的粒子,粒子沿AD方向进入磁场.调整abcd的边长,可使速度大小合适的粒子经ad边穿过无磁场区后由BC边射出.对满足前述条件的粒子,下列说法正确的是()A.若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必垂直BC射出B.若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子必垂直BC射出C.若粒子经cd边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为45°D.若粒子经bc边垂直BC射出,则粒子穿过ad边时速度方向与ad边夹角必为60°16.ACD[解析] 若粒子穿过ad边时速度方向与ad边夹角为45°,则粒子必经过cd边,作出粒子运动轨迹图,如图甲所示,由对称性可知,粒子从C点垂直于BC射出,A、C正确;若粒子穿过ad边时速度方向与ad边夹角为60°,则粒子可能从cd边再次进磁场,作出粒子运动轨迹如图乙所示,此时粒子不能垂直BC射出,粒子也可能经bc边再次进入磁场,作出粒子运动轨迹如图丙所示,此时粒子垂直BC边射出,B错误,D正确.17.[2024·河北卷] 如图所示,竖直向上的匀强电场中,用长为L的绝缘细线系住一带电小球,在竖直平面内绕O点做圆周运动.图中A、B为圆周上的两点,A点为最低点,B点与O点等高.当小球运动到A 点时,细线对小球的拉力恰好为0,已知小球的电荷量为q (q >0),质量为m ,A 、B 两点间的电势差为U ,重力加速度大小为g ,求: (1)电场强度E 的大小.(2)小球在A 、B 两点的速度大小.17.(1)U L(2)√Uq -mgLm√3(Uq -mgL )m[解析] (1)A 、B 两点沿电场线方向的距离为L ,在匀强电场中,由电场强度与电势差的关系可知E =U L(2)当小球运动到A 点时,细线对小球的拉力为0,由牛顿第二定律得Eq -mg =mv A 2L解得v A =√Uq -mgLm小球由A 点运动到B 点,由动能定理得 Uq -mgL =12m v B 2-12m v A 2 解得v B =√3(Uq -mgL )m18.[2024·湖北卷] 如图所示,在以O 点为圆心、半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.圆形区域外有大小相等、方向相反、范围足够大的匀强磁场.一质量为m 、电荷量为q (q >0)的带电粒子沿直径AC 方向从A 点射入圆形区域.不计重力,下列说法正确的是 ( )A .粒子的运动轨迹可能经过O 点B .粒子射出圆形区域时的速度方向不一定沿该区域的半径方向C .粒子连续两次由A 点沿AC 方向射入圆形区域的最小时间间隔为7πm3qBD.若粒子从A点射入到从C点射出圆形区域用时最短,粒子运动的速度大小为√3qBR3m18.D[解析] 根据磁场圆和轨迹圆相交形成的圆形具有对称性可知,在圆形匀强磁场区域内,沿着径向射入的粒子总是沿径向射出,所以粒子的运动轨迹不可能经过O点,故A、B错误;粒子连续两次由A点沿AC方向射入圆形区域的时间间隔最短对应的轨迹如图甲所示,则最小时间间隔为Δt=2T=4πmqB,故C错误;粒子从A点射入到从C点射出圆形区域用时最短对应的轨迹如图乙所示,设粒子在磁场中运动的半径为r,根据几何关系可知r=√33R,根据洛伦兹力提供向心力有qvB=m v 2r ,解得v=√3qBR3m,故D正确.19.(多选)[2024·湖北卷] 关于电荷和静电场,下列说法正确的是()A.一个与外界没有电荷交换的系统,电荷的代数和保持不变B.电场线与等势面垂直,且由电势低的等势面指向电势高的等势面C.点电荷仅在电场力作用下从静止释放,该点电荷的电势能将减小D.点电荷仅在电场力作用下从静止释放,将从高电势的地方向低电势的地方运动19.AC[解析] 根据电荷守恒定律可知,一个与外界没有电荷交换的系统,电荷的代数和保持不变,故A正确;根据电场线和等势面的关系可知,电场线与等势面垂直,且由电势高的等势面指向电势低的等势面,故B错误;点电荷仅在电场力作用下从静止释放,则电场力做正功,该点电荷的电势能将减小,根据φ=E pq可知,正电荷将从电势高的地方向电势低的地方运动,负电荷将从电势低的地方向电势高的地方运动,故C正确,D错误.20.[2024·湖南卷] 真空中有电荷量为+4q和-q的两个点电荷,分别固定在x轴上-1和0处.设无限远处电势为0,x正半轴上各点电势φ随x变化的图像正确的是()。

高中物理电场试题及答案解析

高中物理电场试题及答案解析

高中物理电场试题及答案解析一、选择题1. 电场强度的定义式是:A. E = F/qB. E = q/FC. E = FqD. E = Fq/q答案:A解析:电场强度E定义为单位正电荷在电场中受到的电场力F与该电荷量q的比值,即E = F/q。

2. 一个点电荷Q产生电场的电场线分布是:A. 从Q向外发散B. 从无穷远处指向QC. 从Q向无穷远处发散D. 以上都是答案:C解析:点电荷Q产生的电场线从Q向无穷远处发散,正电荷向外发散,负电荷向内收敛。

二、填空题1. 电场线从正电荷出发,终止于________。

答案:无穷远处或负电荷2. 电场中某点的场强为E,若将试探电荷加倍,则该点的场强为________。

答案:E三、计算题1. 一个点电荷q = 2 × 10⁻⁸ C,求它在距离r = 0.1 m处产生的电场强度。

答案:E = k * q / r²E = (9 × 10⁹ N·m²/C²) * (2 × 10⁻⁸ C) / (0.1 m)²E = 1800 N/C解析:根据点电荷的电场强度公式E = k * q / r²,代入数值计算即可得到答案。

2. 一个带电粒子的质量为m = 0.01 kg,带电量为q = 1.6 ×10⁻¹⁹ C,它在电场强度为E = 3000 N/C的电场中受到的电场力是多少?答案:F = q * EF = (1.6 × 10⁻¹⁹ C) * (3000 N/C)F = 4.8 × 10⁻¹⁶ N解析:根据电场力的公式F = q * E,代入已知的电荷量和电场强度即可计算出电场力。

结束语:通过本试题的练习,同学们应该对电场强度的定义、点电荷产生的电场线分布以及电场力的计算有了更深入的理解。

希望同学们能够掌握这些基本概念和计算方法,为进一步学习电场的相关知识打下坚实的基础。

2025年高考人教版物理一轮复习专题训练—静电场中力的性质 附答案解析

2025年高考人教版物理一轮复习专题训练—静电场中力的性质  附答案解析

2025年⾼考⼈教版物理⼀轮复习专题训练—静电场中⼒的性质(附答案解析)1.(多选)(2021·湖北卷·8)关于电场,下列说法正确的是( )A.电场是物质存在的⼀种形式B.电场⼒⼀定对正电荷做正功C.电场线是实际存在的线,反映电场强度的⼤⼩和⽅向D.静电场的电场线总是与等势⾯垂直,且从电势⾼的等势⾯指向电势低的等势⾯2.(2023·⼴东东莞市模拟)⼩明同学在空⽓⼲燥的教室⾥进⾏⼀个⼩实验,将⼀塑料扁带撕成细丝后,⼀端打结,做成“章鱼”的造型,⽤⽑⼱顺着细丝向下捋⼏下,同样⽤⽑⼱来回摩擦PVC(塑料)管。

将“章鱼”抛向空中,然后把PVC管从下⽅靠近它,直到“章鱼”处于悬停状态,则( )A.PVC管带电⽅式属于感应起电B.塑料扁带丝由于带上同种电荷会向四周散开C.⽤⽑⼱摩擦后,“章鱼”与PVC管带异种电荷D.PVC管与“章鱼”相互靠近过程中,两者间相互作⽤⼒变⼩3.如图所⽰,⼀负电荷仅在静电⼒作⽤下从点a运动到点b,在点a的速度⼤⼩为v0,⽅向与电场⽅向相同。

该电荷从点a到点b的v-t图像正确的是( )4.如图为真空中两点电荷A、B形成的电场中的电场线,该电场线关于虚线对称,O点为A、B点电荷连线的中点,a、b为其连线的中垂线上对称的两点,则下列说法正确的是( )A.A、B可能带等量异种电荷B.A、B可能带不等量的正电荷C.同⼀试探电荷在a、b两点处所受静电⼒⼤⼩相等,⽅向相反D.a、b两点处⽆电场线,故其电场强度为零5.(2024·河北省模拟)如图所⽰,真空中A、B两点分别固定两个相同的带电⾦属⼩球(均可视为点电荷),所带电荷量分别为+Q和-5Q,在A、B的延长线上的C点处固定⼀电荷量为q的点电荷,该电荷受到的静电⼒⼤⼩为F1,已知AB=BC。

若将两带电⾦属⼩球接触后再放回A、B两处时,C处点电荷受到的静电⼒⼤⼩为F2,则为( )A. B. C. D.6.(多选)如图甲所⽰,在x轴上有⼀个点电荷Q(图中未画出),O、A、B为轴上三点,放在A、B两点的试探电荷受到的静电⼒跟试探电荷所带电荷量的关系如图⼄所⽰。

2024高考物理一轮复习--电场强度、电场线专题

2024高考物理一轮复习--电场强度、电场线专题

电场强度、电场线一、电场强度的理解和计算1.电场强度的性质(1)矢量性:规定正电荷在电场中某点所受电场力的方向为该点电场强度的方向。

(2)唯一性:电场中某一点的电场强度E 是唯一的,它的大小和方向与放入该点的电荷q 无关,它决定于形成电场的电荷(场源电荷)及空间位置。

(3)叠加性:如果有几个静止点电荷在空间同时产生电场,那么空间某点的电场强度是各场源电荷单独存在时在该点所产生的电场强度的矢量和。

2.电场强度的三个公式比较三个公式⎩⎪⎨⎪⎧E =Fq(适用于任何电场)E =kQ r 2(适用于点电荷产生的电场)E =U d (适用于匀强电场)二、有关电场线的综合问题1.两种等量点电荷的电场强度及电场线的比较2.“电场线+运动轨迹”组合模型模型特点:当带电粒子在电场中的运动轨迹是一条与电场线不重合的曲线时,这种现象简称为“拐弯现象”,其实质为“运动与力”的关系。

运用牛顿运动定律的知识分析:(1)“运动与力两线法”——画出“速度线”(运动轨迹在某一位置的切线)与“力线”(在同一位置电场线的切线方向且指向轨迹的凹侧),从二者的夹角情况来分析带电粒子做曲线运动的情况。

(2)“三不知时要假设”——电荷的正负、电场的方向、电荷运动的方向,是题目中相互制约的三个方面。

若已知其中一个,可分析判定各待求量;若三个都不知(三不知),则要用“假设法”进行分析。

3.电场线的应用(涉及电势部分将在下一节进一步研究)三、电场强度的叠加1.电场强度的叠加(如右图所示)2.“等效法”“对称法”和“填补法”(1)等效法在保证效果相同的前提下,将复杂的电场情景变换为简单的或熟悉的电场情景.例如:一个点电荷+q与一个无限大薄金属板形成的电场,等效为两个等量异种点电荷形成的电场,如图甲、乙所示.(2)对称法利用空间上对称分布的电荷形成的电场具有对称性的特点,使复杂电场的叠加计算问题大为简化.例如:如图所示,均匀带电的34球壳在O 点产生的场强,等效为弧BC 产生的场强,弧BC产生的场强方向,又等效为弧的中点M 在O 点产生的场强方向. (3)填补法将有缺口的带电圆环或圆板补全为完整的圆环或圆板,或将半球面补全为球面,从而化难为易、事半功倍.3.选用技巧(1)点电荷电场、匀强电场场强叠加一般应用合成法. (2)均匀带电体与点电荷场强叠加一般应用对称法.(3)计算均匀带电体某点产生的场强一般应用补偿法或微元法.四、针对练习1、如图所示,菱形abcd 的边长为L ,60b ∠=,电荷量相等的两正电荷(均视为点电荷)分别位于a 点和c 点,O 是ac 连线的中点。

2023新教材高考物理二轮专题复习专题十电场及带电粒子在电场中的运动课件

2023新教材高考物理二轮专题复习专题十电场及带电粒子在电场中的运动课件

A.粒子3入射时的动能比它出射时的大 B.粒子4入射时的动能比它出射时的大
答案:BD
C.粒子1入射时的动能小于粒子2入射时的动能
D.粒子1入射时的动能大于粒子3入射时的动能
预测5 如图所示,长为l的轻质绝缘细线一端悬于O点,另一端悬吊 一质量为m、电荷量为+q的小球(可视为质点).在空间施加一沿水平 方向的匀强电场,保持细线始终张紧,将小球从A点拉起至与O点处 于同一水平高度的B点,并由静止释放.小球在A点时速度最大,此时 细线与竖直方向夹角为α=37°.已知sin 37°=0.6,cos 37°=0.8, 电场的范围足够大,重力加速度为g.
考点二 带电粒子在电场中的运动 1.解决带电粒子在电场中运动问题的基本思路 (1)两分析:一是对带电粒子进行受力分析,二是分析带电粒子的运 动状态和运动过程(初始状态及条件,加速或减速直线运动还是曲线 运动等). (2)建模型:建立正确的物理模型(加速还是偏转),恰当选用规律或 其他方法(如图像),找出已知量和待求量之间的关系.
注意:“化曲为直”思想的应用. 2.用能量观点处理带电体运动的思维方法 (1)用动能定理W=ΔEk处理 (2)用包括电势能和内能在内的能量守恒定律处理
例2 [2022·全国甲卷](多选)地面上方某区域存在方向水平向右的匀强 电场,将一带正电荷的小球自电场中P点水平向左射出.小球所受的 重力和电场力的大小相等,重力势能和电势能的零点均取在P点.则 射出后,( )
A.a点的电势高于b点的电势 B.电子从a点到b点电势能减小 C.电子从a点到b点做匀加速运动 D.a点的电场强度大于b点的电场强度
答案:B
【技法点拨】
电场中三线问题的解题思路 解决电场中的三线问题,分清电场线、等势线、轨迹线是解题的基 础,做曲线运动的物体一定要受到指向轨迹内侧的合外力是解题的切 入点,功能关系(电场力做的功等于电势能的减少量,合外力的功等 于物体动能的增量等)是解题动能时,其电势能最大 C.小球速度的水平分量和竖直分量大小相等时,其动能最大 D.从射出时刻到小球速度的水平分量为零时,重力做的功等于小 球电势能的增加量

最新高考物理带电粒子在电场中的运动题20套(带答案)

最新高考物理带电粒子在电场中的运动题20套(带答案)

最新高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。

该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。

某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。

【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。

(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。

从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,EF 与GH 间为一无场区.无场区左侧A 、B 为相距为d 、板长为L 的水平放置的平行金属板,两板上加某一电压从而在板间形成一匀强电场,其中A 为正极板.无场区右侧为一点电荷Q 形成的电场,点电荷的位置O 为圆弧形细圆管CD 的圆心,圆弧半径为R ,圆心角为120°,O 、C 在两板间的中心线上,D 位于GH 上.一个质量为m 、电荷量为q 的带正电粒子以初速度v 0沿两板间的中心线射入匀强电场,粒子出匀强电场经无场区后恰能进入细圆管,并做与管壁无相互挤压的匀速圆周运动.(不计粒子的重力、管的粗细)求:(1)O 处点电荷的电性和电荷量; (2)两金属板间所加的电压.【答案】(1)负电,2043mv R kq ;23mdv 【解析】(1)粒子进入圆管后受到点电荷Q 的库仑力作匀速圆周运动,粒子带正电,则知O 处点电荷带负电.由几何关系知,粒子在D 点速度方向与水平方向夹角为30°,进入D 点时速度为:003303v v v cos ==︒ …①在细圆管中做与管壁无相互挤压的匀速圆周运动,故Q带负电且满足22Qq vk mR R=…②由①②得:243mv RQkq=(2)粒子射出电场时速度方向与水平方向成30°tan 30°=yvv…③v y=at…④qUamd=…⑤Ltv=…⑥由③④⑤⑥得:22003033mdv tan mdvUqL qL︒==3.如图所示,虚线MN左侧有一场强为E1=E的匀强电场,在两条平行的虚线MN和PQ之间存在着宽为L、电场强度为E2=2E的匀强电场,在虚线PQ右侧距PQ为L处有一与电场E2平行的屏.现将一电子(电荷量为e,质量为m,重力不计)无初速度地放入电场E1中的A点,最后电子打在右侧的屏上,A点到MN的距离为2L,AO连线与屏垂直,垂足为O,求:(1) 电子到达MN时的速度;(2) 电子离开偏转电场时偏转角的正切值tanθ;(3) 电子打到屏上的点P′到点O的距离.【答案】(1)eELvm=L.【解析】【详解】(1)电子在电场E 1中做初速度为零的匀加速直线运动,设加速度为a 1,到达MN 的速度为v ,则:a 1=1eE m =eEm2122La v =解得eELv m=(2)设电子射出电场E 2时沿平行电场线方向的速度为v y ,a 2=2eE m =2eEm t =L v v y =a 2ttan θ=y v v=2(3)电子离开电场E 2后,将速度方向反向延长交于E 2场的中点O ′.由几何关系知:tan θ=2xLL+解得:x =3L .4.如图所示,荧光屏MN 与x 轴垂直放置,荧光屏所在位置的横坐标x 0=60cm ,在第一象限y 轴和MN 之间存在沿y 轴负方向的匀强电场,电场强度E =1.6×105N/C ,在第二象限有半径R =5cm 的圆形磁场,磁感应强度B =0.8T ,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为qm=1.0×108C/kg 的带正电的粒子,已知粒子的发射速率v 0=4.0×106m/s .不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围;(3)带电粒子打到荧光屏上的位置与Q 点的最远距离. 【答案】(1)5cm ;(2)0≤y≤10cm ;(3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动,由洛伦兹力提供向心力得:qvB =m 20v r解得:r =20510mv Bq-=⨯m=5cm (2)由(1)问可知r =R ,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示:由几何关系可知四边形PO ′FO 1为菱形,所以FO 1∥O′P ,又O′P 垂直于x 轴,粒子出射的速度方向与轨迹半径FO 1垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为0≤y ≤10cm (3)假设粒子没有射出电场就打到荧光屏上,有:x 0=v 0t 0 h =2012at a =qE m解得:h =18cm >2R =10cm说明粒子离开电场后才打在荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则:x =v 0t y =212at 代入数据解得:x 2y设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ⋅===所以:H =(x 0﹣x )tan θ=(x 0﹣2y )•2y由数学知识可知,当(x 0﹣2y )=2y 时,即y =4.5cm 时H 有最大值 所以H max =9cm5.水平面上有一个竖直放置的部分圆弧轨道,A 为轨道的最低点,半径OA 竖直,圆心角AOB 为60°,半径R=0.8m ,空间有竖直向下的匀强电场,场强E=1×104N/C 。

2024届高考物理二轮专题复习:电场的性质-带电粒子在电场中的运动 课件66张

2024届高考物理二轮专题复习:电场的性质-带电粒子在电场中的运动 课件66张

第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
2.电势能变化的判断 (1)根据电场力做功判断,若电场力对电荷做正功,电势能减少; 反之则增加。即 W=-ΔEp。 (2)根据能量守恒定律判断,电场力做功的过程是电势能和其他 形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动 能相互转化,总和应保持不变,即当动能增加时,电势能减少。
置于正方形的中心 O 点,此时每个点电荷所受库仑力的合力均为 0。
若将 P 沿 x 轴向右略微移动后,由静止释放,以下判断正确的是( )
第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训


第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
电场中的图像问题
[典例 2] (2021·山东卷)如图甲所示,边长为 a 的正方形,四个
顶点上分别固定一个电荷量为+q
的点电荷;在
0≤x<
2 2a
区间,x
轴上电势 φ 的变化曲线如图乙所示。现将一电荷量为-Q 的点电荷 P
第1讲 电场的性质 带电粒子在电场中的运动
1
2
3
4
突破点一 突破点二 突破点三 专题限时集训
3.掌握图像问题的四个关键 (1)根据 v-t 图像中速度变化、斜率确定电荷所受合力的方向与合 力大小变化,确定电场的方向、电势高低及电势能变化。

高考物理二轮复习热点题型归纳—电场性质、带电粒子在电场中的运动

高考物理二轮复习热点题型归纳—电场性质、带电粒子在电场中的运动

高考物理二轮复习热点题型归纳—电场性质、带电粒子在电场中的运动考点1电场的性质............................................................................................1考点2与平行板电容器相关的电场问题.................................................................4考点3带电粒子在电场中的运动..........................................................................7考点4电场中常考的“四类”图象问题..................................................................9考点5带电粒子的力电综合问题. (11)考点1电场的性质1.电场中的各个物理量的形成及相互转化的关系2.电势高低的比较(1)根据电场线方向判断,沿着电场线方向,电势越来越低。

(2)将带电荷量为+q 的电荷从电场中的某点移至无穷远处时,电场力做正功越多,则该点的电势越高。

(3)根据电势差U AB =φA -φB 判断,若U AB >0,则φA >φB ,反之φA <φB 。

3.电势能变化的判断(1)根据电场力做功判断,若电场力对电荷做正功,电势能减少;反之则增加。

即W =-ΔE p 。

(2)根据能量守恒定律判断,电场力做功的过程是电势能和其他形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动能相互转化,总和应保持不变,即当动能增加时,电势能减少。

【典例1】如图所示,四幅有关电场说法正确的是()A.图甲为等量同种点电荷形成的电场线B.图乙离点电荷距离相等的a 、b 两点场强相同C.图丙中在c 点静止释放一正电荷,可以沿着电场线运动到d 点D.图丁中某一电荷放在e 点与放到f 点,它们的电势能相同【答案】选D【解析】由图可知,甲为等量异种电荷形成的电场线,故A 错误;乙为正的点电荷所形成的电场线分布,离点电荷距离相等的a 、b 两点电场强度大小相同,电场强度方向不同,故B 错误;只有电场线为直线时,粒子才有可能沿着电场线运动。

微专题46 电场中的功能分析-2025版高中物理微专题

微专题46  电场中的功能分析-2025版高中物理微专题

微专题46电场中的功能分析【核心考点提示】1.电场力做功的特点:电场力对某电荷做的功与路径无关,只与初、末位置的电势差有关.2.对电场力做功的理解可类比重力做功.电场力做正功,电势能减少;电场力做负功,电势能增加.3.电场力做功的计算方法(1)由公式W=Fl cosα计算,此公式只适用于匀强电场,可变形为:W=qEl cosα.(2)由W=qU来计算,此公式适用于任何形式的静电场.(3)由动能定理来计算:W电场力+W其他力=ΔE k.(4)由电势能的变化来计算:W AB=E p A-E p B.4.功能关系(1)若只有电场力做功,电势能与动能之和保持不变;(2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变;(3)除重力外,其他各力对物体所做的功等于物体机械能的变化.(4)所有力对物体所做功的代数和,等于物体动能的变化【经典例题选讲】【例题1】如图所示,三条平行等间距的虚线表示电场中的三个等势面,电势值分别为10V、20V、30V,实线是一带电粒子(不计重力)在该区域内的运动轨迹,a、b、c是轨迹上的三个点,下列说法正确的是().A.粒子在三点所受的电场力不相等B.粒子必先过a,再到b,然后到cC.粒子在三点所具有的动能大小关系为E k b>E k a>E k cD.粒子在三点的电势能大小关系为E p c<E p a<E p b【解析】根据电场线与等势面垂直,沿着电场线电势逐渐降低,可知粒子带负电,电场为匀强电场,则粒子在三点所受的电场力相等.因速度方向未知,则粒子不一定必先过a,再到b,然后到c,也可以反之;粒子无论是先从a到b再到c,还是先从c到b再到a,电场力均先做负功,再做正功,动能先减少后增加,电势能先增加后减少,故D正确.【答案】D【变式1】【2017·天津卷】如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

具体复习建议一.两种电荷,电荷守恒,电荷量(Ⅰ)1.两种电荷的定义方式。

(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮摩擦橡胶棒,定义橡胶棒带负电)2.从物质的微观结构及物体带电方法接触带电(所带电性与原带电体相同)摩擦起电(两物体带等量异性电荷)感应带电(两导体带等量异性电荷)3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。

每个物体所带电量应为电子电量(基本电量)的整数倍。

4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。

(注意电性)二.真空中的库仑定律(Ⅱ)1.r r q kq F 22112 或 2212112r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。

2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷;(3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律221r q kq F 等效处理,但r 表示两球心之间的距离。

(其它形状的带电体不可用电荷中心等效)(4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况两球带同性电荷时:221r q kq Fr 表示两球心间距,方向在球心连线上 两球带异性电荷时:221rq kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型)4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零)mgtg l q kq 221)sin 2(3221sin 4cos l q kq mg T(2)若原来带同性电荷,则F F /;若原来带异性电荷,则相互作用力大小与原来比各种可能性都有。

三.电场,电场的叠加(Ⅱ)1.电场强度的定义:qF E 或 a.单位检验电荷在电场空间某点受力的大小定义为此电场在此点的电场强度的大小,b.规定正电荷的受力方向为此点的电场强度方向。

2.电场强度定义的思维方式:(1)在场中的某点置入不同的检验电荷,其受力不同,但力与电荷的比值相同,说明:此比值由产生场的电荷决定,与检验电荷无关。

(2)改变场源电荷或检验电荷在场中的位置,比值将会发生变化,说明:比值由场源电荷及点相对于场源电荷的空间位置决定。

(3)选择检验电荷是为了不改变场源电荷的空间分布,保持空间场强不变。

(4)密度、电阻、速度等物理量均采用了上述定义方式,这是认识物理规律、定义物理量的一种重要方法。

3.点电荷电场:r r kq E 2 或 2rkq E 方向:正电荷沿半径向外,负电荷沿半径向内。

4.两点电荷在电荷连线和中垂线的电场(1) 若q 1=q 2为同性电荷,则:a .E o =0b .中垂线上有一点场的极大值(若说某点离o 点较近,则视为此点在极大值以内);方向:正电荷沿线向外,负电荷沿线向内。

C .连线上以中点、电荷分成的各段中靠近电荷处场强较大,离电荷等距离时外侧比内侧场强大。

(2) 若q 1=q 2为异性电荷,则:a .中垂线上靠近中点o 场强较大;方向:垂直于中垂线指向负电荷。

b .连线上以中点、电荷分成的各段中靠近电荷处场强较大,离电荷等距离时内侧比外侧场强大。

(3)若q 1≠q 2为同性电荷时,电场为零点在q 1、q 2之间,到q 2的距离x 满足:2221)(x kq x l kq ,在此处放一电荷q ,且同时满足:222xkq l kq 时三带电体均可处于静止状态。

(4) 若q 1≠q 2为异性电荷时,电场为零点在连线上小电荷外侧,若q 1<q 2,到q 1的距离x 满足:2122)(x kq x l kq 在此处放一电荷q ,且同时满足:222x kq l kq 时三带电体均可处于静止状态。

5.平行板匀强电场d U Ek S kQ E 44 6.电场的叠加电场的存在不需要介质同一空间可以同时存在不同带电体的电场只有通过影响带电体所带电量的大小、电荷的分布或在空间的位置才能改变此带电体在空间的电场空间某点电场与某电荷在空间这一点的电场是不同的,空间某点电场是所有电荷在空间这一点的电场的叠加。

提供的练习0.下列有关电场强度的叙述中,错误的是 ( D )A .电场强度是描述电场力的性质的物理量,B .电场强度在数值上等于放入该点的电荷所受到的电场力跟它电量的比值,C .点电荷Q 形成的电场中,强度跟Q 成正比,与距离r 的平方成反比,D .在匀强电场中,场强等于两点间的电势差与两点间的距离之比。

1.如图(1)所示,A 、B 为两个用绝缘细线悬挂起来的质量相等的带电小球,左边放一个带正电的球C ,两悬线都保持竖直方向(两线长度相等),那么图(2)中哪个图可以表示A 、B 两球的静止位置?( B )2.两个相同的金属小球分别带电后离开一定距离,两球相互作用的静电力大小为F ,若将两小球接触一下后再分开仍放回原处,发现两球相互作用的静电力大小仍为F ,则这两小球原来所带的电荷( B)(1) A B C DA.可能是等量的异种电荷,B.可能是不等量的异种电荷,C.可能是不等量的同种电荷,D.不可能是异种电荷。

3.在两个等量异种点电荷形成的电场中,( C )A.一定存在场强E等于零的点,也存在电势U等于零的点,B.只存在场强E等于零的点,不存在电势U等于零的点,C.不存在场强E等于零的点,只存在电势U等于零的点,D.场强E等于零和电势U等于零的点都不存在。

41.如图所示,三个完全相同的金属小球a、b、c位于等边三角形的三个顶点上,a和c带正点,b带负电,a所带电量的大小比b的小。

已知c受到的a和b的静电力的合力可用图中四条有向线段的一条来表示,它应是[ B]A.F1B.F2 C.F3D.F442.如果把三个电量相等的同种点电荷固定在等边三角形ABC的三个顶点上,在这三个点电荷形成的电场中,电场强度为零的点应在该三角形的( C ) A.三个顶点上,B.任一条边的中点上,C.几何中心,D.任一条边的延长线上。

5.两小球质量不相等,并分别带有不等量的异种电荷,其中q1是正电荷,q2是负电荷,且q1 > q2 ,用细线悬挂于O点,如果在整个空间施加一个水平向左的匀强电场,则不可能出现的平衡状态是( AD )F4b((6. 如图所示,在光滑的水平绝缘平面上固定着三个等质量的可视为质点的带电小球A 、B 、C ,三球排成一条直线,若释放A 球(另外两球仍固定,下同)则释放瞬间A 球的加速度为1米/秒2,方向向左;若释放C 球,则C 球的瞬时加速度为2米/秒2,方向向右。

现同时释放三个球,则释放瞬间B 球的加速度大小为_______1_____米/秒2,方向是____向左_____7. 如图,在沿水平方向的匀强电场中,一质量为m 的带正电的小球通过一长为L 的轻质绝缘绳,悬挂于固定点O 上,已知小球在电场中所受的电场力跟重力之比为1 : 3 ,现使小球从与O 同高、到O 的距离为L / 3 的A 点由静止开始释放,则当绝缘绳刚要被拉紧时,带电小球的速率为______2________。

8.图中半径为R 的光滑圆柱体保持静止,整个空间存在水平向右的匀强电场,一个质量为m 、带正电荷q 的滑块,从最高点A 由静止起沿柱面滑下,达到B 点时开始离开柱面, AOB = ,根据以上条件求出匀强电场的电场强度E 。

sin 3)2cos 3(q mg9.竖直放置的一对平行金属板的左极板上用绝缘线悬挂了一个带正电的小球,将平行金属板按图5所示的电路图连接。

绝缘线与左极板的夹角为θ。

当滑动变阻器R 的滑片在a 位置时,电流表的读数为I 1,夹角为θ1A B CE当滑片在b位置时,电流表的读数为I2,夹角为θ2,则(D )A.θ1<θ2,I1<I2 B.θ1>θ2,I1>I2C.θ1=θ2,I1=I2 D.θ1<θ2,I1=I2四.电场力做功、电势能的改变、电势差、电势(Ⅱ)1.电场力是保守力,其做功与路径无关。

(无论电场力是否为恒力,做功均与路径无关)2.电场力做功与电势能改变之间的关系:W=E初-E末=ΔE p3.确定电势零点后,电势能与电势的关系:E qA=φA q(1)由于φA与q分属场源电荷与电荷,所以电势能属于系统,(2)由于零电势的选择是任意的,所以电势与电势能是相对的(3)电势或电势能存在正负,表示相对于零点势或零电势能的高低(注意电荷的正负)。

(4)两带点导体接触后,自由电子将从低电势导体向高电势导体转移,直至两导体电势相等为止。

4.电势能改变量应为:ΔE=(φA-φB)q=U AB q,则电场力做功为:W AB=ΔE p =U AB q(1)虽然电场中各点的电势是相对的,但任意两点间的电势差是绝对的,是一个定值,且U AB=U BA(2)由于电场中两点的电势差为定值,所以将一电荷从一点移到另一点系统的电势能变化量一定,电场力作功一定(与路径无关)5.在匀强电场中,有U AB=Ed AB(其中d AB为从A向B有向线段在E方向上的投影,二者同向U AB为正,反向U AB为负)6.一对电场力的功之和可正、可负、也可为零,这就决定两个力可以同时做正功,可同时做负功,可一正一负和为正,一正一负和为负、一正一负和为零、可一正一零、也可一负一零。

和的正、负活零反映了系统电势能与机械能的转化关系。

五.电场线、等势面(Ⅱ)1.电场线密的地方场强大,电场线各点的切线方向为各点的场强方向,沿电场线走向电势降低,各点电场方向为过此点电势降落最快的方向。

2.在同一等势面上各点电势相同,沿等势面移动电荷电场力不做功。

各点场强方向与等势面垂直且从高电势面指向低电势面,等势面密的地方场强大。

3.电场线、等势线均不是真实存在的,都不相交。

4.电场线不表示电荷在电场中运动的轨迹。

5.电势与电场强度的大小没有必然的联系,某点的电势为零,电场强度未必为零,反之亦然。

提供的练习0.A、B两个均带正电的金属球接触时,有电子从A球流入B球,则说明( ) A.A球电势高B.B球电势高C.A球体积大D.A球带电荷多1.关于静电场,正确的说法是A.静电场中某点电场强度的方向就是电场线在该点的切线方向,B.电势降落最快的方向就是电场强度的方向,C.电场线的方向总是垂直于等势面,D.电荷在一个等势面上移动所受电场力不变。

2.在静电场中,一个负电荷在除电场力外的外力作用下沿电场线方向移动一段距离,若不计电荷所受的重力,则以下说法中正确的是 () A 外力做功等于电荷动能的增量,B 电场力做功等于电荷动能的增量,C 外力和电场力的合力做功等于电荷电势能的增量,D 外力和电场力的合力做的功等于电荷动能的增量。

3. 电子以一定初速射入匀强电场,在运动过程中只受电场力作用,则A .电子的电势能一定不断减小,B .电子的速度一定不断减小,C .电场力一定做正功,D .电子动能一定变化。

相关文档
最新文档