【好】新无碳小车说明书

合集下载

无碳小车设计说明书

无碳小车设计说明书

无碳小车设计说明书为响应“低碳生活”的号召,我们应该节能减排,以优化环境。

作为学生,我们更应践行。

我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车.我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。

设计思路1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损失少,所以小车前进的能量来源于重物下落过程中减少的重力势能.2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运动的路线需有一定的周期性.考虑到小车在转向时会受到摩擦等阻力的影响,让小车行走最远路程是设计要求的最优解。

3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品的最优设计.小车的原理分析及构架设计1.小车的质量要适中,以此来保证车的稳定性.质量若太大,则会增加阻力。

2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。

3.传动的力与力矩要适中,保证加速度的适中.4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。

5.S型的路线转弯半径要适中,保证其行程。

6.选择大小适中的轮子,轮子太大,稳步性降低。

7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。

小车的转向机构转向轮及转向机构如图所示。

转向采用连杆机构传动,转向轮固定在支架上。

当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。

小车的驱动原理重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。

在推杆与摇杆之间,有套筒相连,保证其作圆周运动。

杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。

栓线处为梯形原动轮.起始时,原动轮的转动半径较大,起动转矩大,有利起动。

其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动.原动轮的半径变小,使总转速比提高。

无碳小车产品设计说明书模板

无碳小车产品设计说明书模板

无碳小车产品设计说明书无碳小车产品设计说明书产品名称: 飞轮驱动式无碳小车设计团队: 小组成员: 李进、肖衡、谢中成指导老师: 韩传军、任海涛设计思想: 看到此次竞赛主题, 我团队认为; 能否很好地解决小车的驱动问题和自动转向问题是此次设计成功与否的关键。

围绕这个中心, 我们展开了一系列的理论分析与验证, 经过重复比较, 最终确定了我们的设计思路: 飞轮驱动与仿自行车式转向。

驱动方面, 最开始, 我们想到了发条, 认为将重物下落的重力势能储存在发条中, 在逐渐释放, 能够很好地利用能量。

与此同时, 经过研究玩具小车的驱动机构, 我们认为, 能够想办法将发条与弹簧结合起来使用, 经过二者驱动的时间差来达到将重物能量利用最大化的目的。

可是, 发条在储能和释放能量时都会消耗能量, 因而能量利用率不高; 而且, 如何让弹簧与发条分时驱动也是一个我们始终无法解决的问题; 而且, 发条在释放能量后还会有阻碍驱动轮转动的问题, 要解决这个问题会将小车结构弄得很复杂, 因而, 我们最终放弃了这种想法。

而后, 经过联系农村稻麦收割机的启动实例, 我们想到了利用飞轮驱动, 飞轮驱动结构简单, 而且能够很好地解决发条能量释放后阻止驱动轮转动的问题; 于此同时, 我们也想到了将飞轮与弹簧联合驱动的方案, 这种方案能够将能量尽可能地利用, 而且只要经过传动比让弹簧驱动给后轮的速度大于飞轮能量释放后后轮的速度, 就能让小车平稳前进。

可是这个方案依然存在结构复杂并造成能量消耗打的问题,经过综合考虑权衡,我们最终确定飞轮单独驱动小车的方案。

转向方面,我们主要是仿照自行车转向的方案,利用等宽凸轮控制小车自动转向。

工作原理:主要构件如下图所示,包括储能飞轮、驱动后轮、传动齿轮、”曲柄”圆轮、连杆、转向”摇杆”和转向前轮。

图1当重物下落时,细绳绕过立杆动滑轮带动储能飞轮旋转储能,飞轮旋转驱动后轮前进,同时经过齿轮啮合传动带动”曲柄”圆轮旋转经过连杆传动推拉转向”摇杆”带动转向前轮周期性左右转向,从而实现小车在前进过程中自动转向。

无碳小车设计说明书

无碳小车设计说明书

无碳小车设计说明书目录一、本作品的创新与特色简介;二、设计方案拟定;三、动力与传动方案的设计、计算与分析;四、动作执行机构的设计、计算与分析;五、其它设计计算与说明,设计总结;一:本作品的创新与特色简介;①所有的动力来自载荷重物,所纯机械结构,无碳排放;②在转向方面,采用内凸轮连杆机构,使得转向的角度、时间更加精确,并辅助以有图的可调机构,是转向调节更加明确。

③在重物下落阶段,增加了一动滑轮,使得做功行程加长,并合理的利用了扭矩。

④绕桩曲线部分的轨迹无需精确的计算出,由上图的机构可在完成后对中间连杆进行调试,已达到目标要求。

二:设计方案拟定;小车的方案设计关键在于传动部分与转向部分。

①传动部分;传动部分的问题在于是用什么进行传动,齿轮、带轮、直接驱动等。

最后结合传动的效率、制作的难易程度,最终确定了采用二级齿轮进行传动,如有图所示。

此方案的优点在于,以中间轴为主动轴,以小于1的传动比带动后轮,再以大于1的传动比带动凸轮轴,这样就很好的解决了行驶路程与转向周期间的关系,并且将传动比控制在合理数值内。

另外,以一个动滑轮来增加做功行程,减小瞬时扭矩,使小车前进平缓。

缺点在于,采用了二级齿轮组,使得摩擦耗能增加,机械效率降低。

②转向部分;转向部分在于采用什么机构,最大的争议在于是采用内凸轮还是外凸轮。

最终确定是采用内凸轮连杆机构。

原因在于采用外凸轮的话需要在连杆的回程部分提供一个力——增加一个弹簧;如果这样的话,可能会因为的弹簧的弹性系数,及位置的放置问题上增加设计的难度。

而采用内凸轮的话就不存在这些问题,不过增加了整体的重量,但这可以通过将凸轮在合理的条件下将其镂空来解决。

为了使后期调整时有更大的可能性,因此在连杆部分采用了右图的结果,如此便可以使小车的转向更加的准确。

③材料方面;除了前后轮采用有机玻璃之外,其余的材料都采用铝材。

底板:厚3mm的铝板,300*160*3.后轮:直径160的有机玻璃,厚5mm。

《无碳小车设计说明》-公开课件

《无碳小车设计说明》-公开课件
原动轮的半径变小,总转速比提高,小车缓慢 减速,直到停止,物块停止下落,正好接触 小车。
·在整个过程中,重力势能完 全转换为小车运动过程的损
耗。使小车行进的更远.
4.细节设计
· 车身 · 车轮 · 轴承 以减小小车重力和动过程
· 传输功率=转矩X角速度 ,通过一系列的齿 轮,带轮,转轴产生转速比,使作用在后 轮的转矩和阻尼转矩平衡,物块低速匀速 下落。
· 在后轮转轴上安放多个不同半径的带轮, 微调转矩,适应不同的环境下阻力的不同。
· 制作多套后轮,微调转矩。改变后轮时, 也要相应的改变转向传动轮的大小,同时 保持车身水平,适当调整前轮转轴的长度。 (现场可实现)
无碳小车设计说明
· 构架 · 转向部分 · 驱动部分 · 细节说明
1.构架部分
· 小车采用三轮结构(1个转向,2个驱动) · 重物落差0.5米物重1kg.
2.转向
· 转向机构与驱动轴相连
· 小车的转向轮周期性的摆动
· 计算传动机构,使小车行使200厘米时,转 向轮摆动一个周期。
· 确定连杆在转盘有位置,尽量减小转向轮 的摆动角度,从而使小车先驱的实际距离 变大。确定初始位置与摆轮角度的关系。
3.驱动
· 原理:绳拉力为动力。将物块下落的势能 尽可能多的转换为小车的动能,进而克服 阻力做功。物块在下落的过程中不可避免 的要与小车发生碰撞,碰撞过程必然要有 能量损失,所以要解决的问题:1下降过程 中,尽可能的降低下落的速度;2在将要下 降到小车时,改变转速比,使物块减速下 落,进一步减少碰撞损耗。
·
二、小车的起始和结束过程
· 梯形原动轮的设计实现小车的起 动和物块的从低速到减速下落。 减小因碰撞而损失的能量。
梯形原动轮

无碳小车设计说明书

无碳小车设计说明书

无碳小车设计说明书一、基本构思通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、形成固定路线。

在小车行走时尽量较小摩擦,实现能量较大化的转换。

而且需要灵活绕过障碍物。

在选择方案时综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。

二、驱动机构1.通过重物自由下落,将重力势能转化为动能,由重物下落带动绕线轮转动,从而实现能量的转换。

2.为了增加下车的稳定性,在设计重物支撑杆时采用了三根杆,这样在小车转弯的时候控制重物左右摆动的角度。

3.在设计绕线轮时综合考虑到,要让小车跑的稳定,能轻松启动,而且跑得更远,设计成一个半径较小的二阶的绕线轮。

4.为了增加美光和方便,将固定线直接套在轴上,这样减小工作量,而且更美观更便捷。

三、传动机构1.重物的下落通过绕线轮(黄色)带动主动轴转动,然后通过二级齿轮(红色)将动力传递到后轮从动轴,从而驱动后轮转动。

2.二级齿轮实现对能量的储存。

四、转向机构(绿)1.转向机构采用偏心轴+曲柄、连杆机构(蓝色)。

U型槽的圆周运动通过连杆转化为曲柄的前后摆动,从而实现小车前轮的摆动。

(具有简单、高效、摩擦力小、能量损耗小的特点)2.还有可以无极可调。

这实现了创新,也非常符合比赛规则。

五、车身及其后轮等其他机构1.将其中的一个后轮变为从动轮,保证了小车的正常运行,而且增加差速,让下车启动更加轻松容易,跑的的也更加稳定。

2.降低了底板的高度,增加了小车的稳定性3.支撑杆支座的设计,采用尼龙,使车身更轻,更加美光。

4.后轮选用亚克力板,在车轮三割去三个圆形快,减轻车身重量,强度达到要求,美观实用。

无碳小车设计说明书

无碳小车设计说明书

无碳小车设计说明书为响应“低碳生活”的号召,我们应该节能减排,以优化环境。

作为学生,我们更应践行。

我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。

我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。

设计思路1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。

2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运动的路线需有一定的周期性。

考虑到小车在转向时会受到摩擦等阻力的影响,让小车行走最远路程是设计要求的最优解。

3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品的最优设计。

小车的原理分析及构架设计1.小车的质量要适中,以此来保证车的稳定性。

质量若太大,则会增加阻力。

2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。

3.传动的力与力矩要适中,保证加速度的适中。

4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。

5.S型的路线转弯半径要适中,保证其行程。

6.选择大小适中的轮子,轮子太大,稳步性降低。

7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。

小车的转向机构转向轮及转向机构如图所示。

转向采用连杆机构传动,转向轮固定在支架上。

当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。

小车的驱动原理重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。

在推杆与摇杆之间,有套筒相连,保证其作圆周运动。

杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。

栓线处为梯形原动轮。

起始时,原动轮的转动半径较大,起动转矩大,有利起动。

其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。

无碳小车说明书

无碳小车说明书

目录1.摘要 (1)2.引言 (1)3目的 (1)4工作原理和设计理论推导 (1)4.1总体结构 (1)4.2设计方案介绍与计算分析 (2)4.2.1无碳小车模块机构介绍 (3)5. 设计总结 (8)6.附件1.摘要本作品是依据工程训练综合能力竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车运行,即给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转化为机械能并用来驱动小车行走的装置。

该小车通过微调装置,能够实现自动走“S"字直线绕障。

此模型最大的特点是通过两个不完全齿轮驱动前轮摆动,进行可调整的周期性摆动,使前轮的摆动节拍具有可调性。

本文将对无碳小车的设计过程,功能结构特点等进行详细介绍,并介绍创新点。

2.引言随着社会科技的发展,人们的生活水平的提高,无碳对于人们来说,显得越来越重要,建设无碳社会,使得生活更加的环保,没有任何的污染。

节能、环保、方便、经济,是现代社会所提倡的。

现在许多发达国家都把无碳技术运用到各个领域,像交通,家具等,这也是我国当今所要求以及努力的方向。

针对目前这一现状,我们设计了无碳小车模型,用重力势能转化为机械能提供了一种全新的思路,以便更好的解决以上问题。

3目的本作品设计的目的是围绕命题主题“无碳小车”,即不利用有碳资源,根据能量转化原理,利用重力势能驱动带动具有方向控制功能的小车模型。

这种模型比较轻巧,结构相对的简单,能够成功的将重力势能转化为小车的动能,从而完成小车前行过程中的所有动作。

4工作原理和设计理论推导4.1总体结构图 1 无碳小车总体结构无碳小车模型的主要机构有驱动机构、转向机构、行走机构及微调机构。

主要部件如下图2所示为小车整体模型。

图 2 无碳小车模型4.2设计方案介绍与计算分析4.2.1无碳小车模块机构介绍1.驱动机构本方案采用绳轮作为驱动力转换机构。

我们采用了梯形轮使能量转化过程中有更合适的转矩使驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。

无碳小车设计说明书最新资料

无碳小车设计说明书最新资料

无碳小车
设计思路
小车在整个行进过程中,小车需要的所有动力来自重物的势能,我们应尽可能的将重物的势能转化成小车的动势能,减小物块在竖直方向的动能。

此外,因为能量有限,我们应尽可能简化小车的设计,机构设计越复杂,机构越多,小车的效率就会越低,所以越简单的设计越能将重力势能高效率的应用。

构架部分
车身可使用快速成型机制作(也可由铁丝焊制),重块由三角吊架悬挂,保证其稳定性,车轮间距18cm,避免车体侧翻。

车轮均采用滚珠轴承,降低摩擦引起的
能量损失。

驱动部分
为减小物块在竖直方向的造成的能量损失,我们应增大变速比,但齿轮、轮组等装置都会降低机械效率,增大摩擦力,所以最好的方法就是直接将绳子缠在轴上,采用3mm的轴与60mm的轮,可产生1:20的变速比。

同时采用动滑轮,可使重块的做工行程由0.5米变为1m。

转向部分
小车的转向机构决定着车的行进距离,小车的转向机构复杂化会大大消耗小车的能量,所以用尽可能简单的机构可大大增加小车的行驶距离,所以绳子按照一定的规律缠绕在车轴上,利用绳子的摆角驱动转向轮,然后将与前轮一体的线拨叉插在线中,这样就实现了在物体下落驱动车子前进的同时拨动车转向。

不采用其他机构,(如曲柄摇杆,凸轮,齿轮等机构)这样就尽可能地减少了由转向机构摩擦造成的能量损失
车轴车轮
车轴直径为3mm,采用钢轴,车轮直径为60mm,使用快速成型机制作。

转向原理
绳子左右缠绕,绳子在绕开的过程中将左右摇摆,同
时拨动拨叉,从而驱动转向轮,实现转向运动。

由于小车的运动路线完全由绕绳的缠绕方式决定,我们可更精确的实现转向,实现最短最直接的路线,不受机构运动周期限制。

无碳小车说明书

无碳小车说明书
(1)小车整体稳定性调试:通过小车在指定的平地上行走,经过多次试验,发现小车在后半段,速度增大会导致小车在转弯时由于离心力过大,小车出现倾翻现象。改正措施:第二次设计小车时将底盘加宽,重心降低。
(2)小车速度的调试:通过小车在指定平地上行走,经过多次试验,发现小车在后半段,速度增大转向不稳。改正措施:将绕线轴车小了2mm,降低了速度、减小过大的驱动力,同时也增大了小车前进的距离。如果设备允许、并且精度可以达到要求,保证小车正常驱动的情况下,可以尽量将绕线轴车的越细越好。
a、驱动:
当重物下降 时,驱动轴(轴2)转过的角度为 ,则有
则曲柄轴(轴1)转过的角度
小车移动的距离为(以A轮为参考)
b、转向:
当转向杆与驱动轴间的夹角 为时,曲柄转过的角度为
则 与 满足以下关:
解上述方程可得 与 的函数关系式
c、小车行走轨迹
只有A轮为驱动轮,当转向轮转过角度 时,如图:
则小车转弯的曲率半径为
由能量守恒定律得:
由此可得小车运动的距离
克服运行阻力:(如图9受力分析)
车体运行阻力包括惯性阻力和静力
惯性阻力(N)=P0×a(小车启动加速度)
静阻力一般包括基本阻力、弯道阻力、坡道阻力、气流阻力等
基本阻力(N)=P0g w式中:g重力加速度;w运行阻力系数,实验得出经验数据,约0.01。
F0>P0(a+g w)
附图
1 引言
1.1小车功能设计要求
给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1米,放置一个直径20mm、高200mm的弹性障碍圆棒)。以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。

无碳小车说明书

无碳小车说明书

无碳小车说明书无碳小车说明书1. 简介无碳小车是一种环保型交通工具,其使用电力驱动而不是传统的燃油引擎。

这种小车以减少碳排放为目标,致力于提供更清洁、更可持续的出行方式。

本说明书将带您了解无碳小车的特点、操作方法和维护建议,帮助您更好地使用和保养您的无碳小车。

2. 特点无碳小车的特点如下:- **环保**: 无碳小车使用电力驱动,无燃油燃烧过程,没有尾气排放,对环境污染极小。

- **经济**: 无碳小车使用电力供电,相较于传统燃油车辆,其能源成本更低,为用户节约费用。

- **安静**: 由于无碳小车没有燃油引擎,其工作噪音较低,为用户提供更加宁静的驾驶和乘坐体验。

- **可持续**: 电力可通过可再生能源或其他低碳能源生产,从而在一定程度上减少对非可再生能源的依赖,具有较高的可持续性。

3. 操作方法3.1 启动与停止1. 将无碳小车的电源开关调至“ON”状态。

2. 踏下刹车踏板,同时按下启动按钮。

3. 小车启动后,松开刹车踏板,即可开始行驶。

停止无碳小车时,将电源开关调至“OFF”状态,然后按下停车按钮,小车将停止行驶。

3.2 加速和减速- 加速: 向前推按加速手柄,小车将加速行驶。

- 减速: 向后拉按减速手柄,小车将减速或停止行驶。

3.3 转向- 左转向: 向左转动方向盘,小车将向左转弯。

- 右转向: 向右转动方向盘,小车将向右转弯。

3.4 充电当无碳小车的电池电量过低时,需要进行充电。

将充电器插入小车充电接口,并将另一端插入电源插座。

等待充电指示灯亮起,表示正在充电。

充电完成后,断开充电器与电源的连接。

4. 维护建议为了确保您的无碳小车的正常运行和延长其使用寿命,以下是一些建议的维护事项:- 定期检查电池电量,必要时及时充电,避免电量过低。

- 保持无碳小车干燥清洁,避免暴露在雨水或其它液体中。

- 定期检查轮胎气压,确保合适的气压以保持良好的操控性能。

- 定期清洁和润滑制动系统,保证制动效果可靠。

无碳小车说明书 (1)

无碳小车说明书 (1)

无碳小车说明书(本小组选择的竞赛项目是竞赛项目二)一、小车整体说明小车整体结构上面,我们根据小车功能要求和机器的构成(原动机构、传动机构、执行机构、控制部分),把小车分为驱动部分、转向部分两个模块进行分析和设计。

在此基础上,小车采用三轮机构,后轮驱动,前轮转向,重物下落的过程中通过齿轮传动机构,将重物的重力势能转化为小车运动的动能,在后轮驱动下,再通过转向机构中的凸轮传动,将后轮的行走转化为前轮的转向,以便达到预期的要求。

考虑到竞赛项目二要求的桩距是(400±100)mm,小车车身在允许范围内应尽可能小,并且行走的轨迹也要尽可能的短,这样才能够避免小车车身碰到障碍物或者小车驶出乒乓球桌。

二、驱动部分原理分析:根据小车功能要求,给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。

该自行小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。

以小车绕行的圈数、以及碰倒或避开障碍的多少来综合评定成绩。

在设计要求中,驱动部分是将物块重力势能转化为小车的动能,并在有限的动能下,使小车能够移动尽可能多的距离,让成绩达到尽可能好。

机构分析:为达到既定要求,首先,在驱动机构上,我们通过一个绳轮驱动机构将重物的重力势能转化为小车后轮的驱动动能,具体就是将绳子绕过高40cm的定滑轮,一端连在重物上,另一端固定的绕在驱动轴上,通过重物下落带动驱动轴转动,进而实现后轮的驱动。

然后,为了使小车运动的距离达到尽可能长,我们使用了一个齿轮传动机构,通过齿轮的运转和传递,使得在绳长确定即能量一定的情况下,小车后轮转动的圈数越多,进而尽可能的增加绕行的圈数,但在这个过正中,不能因为摩擦力的情况而发生自锁现象,在这些情况下,我们抉择出最佳的传动比和传力绳。

驱动结构简图如下三、传动转向部分要实现尽可能多的使小车重复完成绕八字运动,传动及转向结构是关键,此处我们来分析一下转向机构。

无碳小车设计说明书

无碳小车设计说明书

S组无碳小车设计说明书目录1、小车的设计要求 (1)2、无碳小车结构方案的设计 (2)2.1整体方案分析 (2)2.2驱动机构 (3)2.3传动机构 (4)2.4转向机构以及轨迹分析与设计 (4)2.4.1小车运行轨迹理论参数分析 (4)2.4.2小车动态力分析 (5)2.4.3传动机构及行走机构参数确定 (7)2.4.4 转向机构参数的确定 (8)2.5微调机构 (9)2.6小车车体整体分析 (9)3、基于SolidWorks motion的仿真分析 (10)3.1 简化模型的建立 (10)3.2 运动副的添加 (10)3.2 仿真计算以及结果分析 (11)参考文献 (12)1、小车的设计要求图1-1 无碳小车示意图图1-2 无碳小车运行轨迹图如上图1-1小车示意图:根据能量守恒定律,给一定重力势能(用⌀mm5065错误!未找到引用源。

普通碳钢的重块,质量为1kg,铅垂下落差为400mm来获得),设计一种“以重力势能驱动具有方向控制功能的无碳小车”,该小车能够在行驶的过程中有规律避开水平的平面上每隔1米设置一个弹性圆棒障碍物(如上图2小车运行轨迹图)。

保证小车行走的过程重物随车平稳的行走而不掉落,要求小车行走的过程中所有的动能均由重物的重力势能获得,不得借用其他形式的能量。

小车底板结构设计采用三轮结构,即2个驱动轮,1个转向轮。

细节上的结构只能根据学校现有材料、机床以及加工工艺的难度进行设计。

2、无碳小车结构方案的设计2.1整体方案分析通过对毕业设计任务要求及目的的剖析,利用发散性思维方式,把实现小车功能的各种可能方案一一列出,为了方便设计,可以将能实现小车功能细分为:驱动机构、传动机构、转向机构、微调机构四个模块。

下图2-1为无碳小车设计的思维导图:图2-1 无碳小车结构方案设计思路在选择各个模块方案时,要从实际情况出发,充分考虑实际学校的机床设备,材料的获取,制造成本以及实际加工工艺的可行性等等。

无碳小车设计说明书

无碳小车设计说明书

北华航天工业学院第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟孙传远肖洋指导老师:***第四届全国大学生工程训练综合能力竞赛无碳小车设计说明书参赛者:夏洪伟、孙传远、肖洋指导老师:***目录第1章方案设计..................................................................................................... - 1 -1.1 车架................................................................................................................ - 3 -1.2 原动机构...................................................................................................... - 3 -1.3 传动机构...................................................................................................... - 4 -1.4 转向机构........................................................................................................ - 7 -1.5 行走机构........................................................................................................ - 9 -1.6 微调机构........................................................................................................ - 9 -第2章技术设计................................................................................................... - 11 -2.1运动学分析模型........................................................................................... - 11 -2.2参数确定....................................................................................................... - 13 -2.3零部件设计................................................................................................... - 13 -附录................................................................................................................... - 15 -第1章方案设计通过对小车的功能分析,“无碳小车越障竞赛”通常主要由车体、能量转换、传动和转向等部分组成。

8型无碳小车设计说明书

8型无碳小车设计说明书

8型无碳小车设计说明书简介本文档为8型无碳小车的设计说明书,描述了该小车的设计概念、功能特点、技术参数以及设计原理等内容。

设计概念8型无碳小车是一款注重环保和可持续发展的智能交通工具。

通过使用无碳能源,例如电动驱动系统和太阳能充电系统,减少对传统燃油的依赖,并且降低了对环境的污染。

同时,该小车还拥有简洁、时尚的外观设计,提供舒适、安全的乘坐体验。

功能特点1.环保节能:采用电动驱动系统,减少对燃油的依赖,无废气排放。

2.太阳能充电:配备太阳能充电系统,可以通过太阳能进行充电,提高能源利用效率。

3.智能导航:配备智能导航系统,提供准确的导航信息,优化行驶路线,减少能源浪费。

4.安全性能:采用高强度车身结构,具有较高的抗冲击性能,保护乘员的安全。

5.舒适乘坐体验:提供宽敞舒适的座椅和乘坐空间,享受愉快的驾驶体验。

技术参数参数值尺寸4000mm x 1500mm x 1800mm车重800kg最高时速80km/h续航里程300km电池容量30kWh充电时间6小时最大载重量300kg功率50kW驱动方式后轮驱动制动系统四轮盘式刹车内饰材质环保材料能源类型电能、太阳能驾驶员座椅数量1乘员座椅数量2设计原理1. 电动驱动系统8型无碳小车采用电动驱动系统,由电动机、电池和控制器组成。

电动机负责将电能转化为机械能,提供动力驱动车辆前进。

电池负责存储电能,供电给电动机使用。

控制器负责控制电动机的运行状态,调节电能的分配和使用。

2. 太阳能充电系统为了提高能源利用效率,8型无碳小车配备了太阳能充电系统。

该系统由太阳能电池板、电控设备和储能装置组成。

太阳能电池板负责将太阳能转化为电能,电控设备负责控制电能流入储能装置进行存储。

通过太阳能充电系统,可以在太阳光充足的情况下,充电小车的电池,提高续航里程。

3. 智能导航系统8型无碳小车配备智能导航系统,通过与卫星导航系统(如GPS)的连接,提供精准的导航信息。

该系统能够根据交通状况和实时路况,优化行驶路线,减少能源的浪费。

无碳小车说明书

无碳小车说明书

无碳小车设计说明书机制八班(100%)2014.7.71.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距500mm。

当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与大带轮d1转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。

大带轮通过带传动带动小带轮转动引起凸轮转动推动连杆使小车前轮发生偏转从而改变小车运行方向构成转向机构。

机构运动简图如下所示2.行程放大小车绕一个8字的近似路程S=2π*500=3142mm,绕20个8字S总=20S=62840,取64000初步设计小车车轮直径100mm小车绕一圈8字车轮转过圈数n轮=S/(πD)=10行程放大系数u=64000/400=160S总=n轮πD=n绕*i*πD=L*i*D/D绕i/D绕=8/5,取i=8,D绕=5mm小车驱动转矩M=1*10*2.5=25N/mm通过网络可以查知一般情况下滚动摩擦系数u<0.01,小车整体质量小于3KG,阻力转矩M阻=30*50*0.01=15<M所以正常状态下物块能驱动小车行进3.转向机构的设计如图所示为小车的绕行轨迹,其中加粗部分为主动轮的轨迹使用单轮驱动,小车运动时前轮偏转角为Θ如图所示,cosα=cos(兀/2_Θ)=sinΘ=0.4Θ=23.58使用凸轮机构,设实际轨迹为240°的大圆弧则S1=4兀/3×6×5=40兀左边为270°S2=6兀/4×4×5=30兀如图导杆机构令l2=5mm则计算可得l1=11.5mm令在凸轮大端推动推杆时小车的主动轮在大圆上运动,可设计如图所示凸轮Θ1=s1/s总×360°=144°Θ2=s2/s总×360°=108°传动比i2的计算由已知可知道凸轮绕一圈小车绕一个8字,车轮绕10圈n凸/n轮=1:10n凸/n绕=n凸/(n轮/8)=4:5无碳小车示意图。

无碳小车设计说明书-大学生工程训练综合能力竞赛

无碳小车设计说明书-大学生工程训练综合能力竞赛

无碳小车设计说明书-大学生工程训练综合能力竞赛无碳小车设计说明书-大学生工程训练综合能力竞赛第三届省大学生工程训练综合能力竞赛(荣获S形组省赛一等奖) 无碳小车设计说明书一、概要3 二、分析3 三、原理设计4 1、驱动机构4 2、转向机构5 3、后轮差速5 四、参数设计6 1、轨迹设计6 2、转角设计6 3、带轮设计7 4、小车部分零件的设计8 (1)拨盘8 (2)转向轮销9 (3)转向轮槽零件图:11 (4)皮带轮12 (5)转向轴13 实体图:13 (6)转向连杆14 (7)拨槽15 (8)拨槽加工工艺分析16 (9)齿轮17 (10)底板19 (11)后驱动轴零件图:20 五、小车装配完成图片21 “无碳小车”设计说明书一、概要此次无碳小车的设计主要是利用重物下落的重力势能作为原动力,来驱动小车前进以及使小车能按规定绕开障碍物。

重物质量M=1kg,下落高度H=400mm,每个障碍物之间隔0.9米、1米、1.1米。

二、分析1、为使得小车能够行走,首要解决的就是小车驱动,要设计小车的驱动机构;2、为使得小车能够转弯,并能够绕开等距离的障碍物,所以要设计一个能够走S 形路线的周期性的转向机构;3、由于只有一个动力源,所以还要设计一套小车的传动机构;4、为了使得小车能够顺利转弯,还要解决小车后轮的差速问题。

三、原理设计1、驱动机构图1左侧部分为我们的驱动简图,考虑到小车的启动时需要较大的启动力矩,同时为使得重物的重力势能能够尽可能大地转化到有利小车行走的方面,与重物下落连线驱动圆锥滚筒设计成为如图所示,再考虑,为使得小车走的路程要长,所以,重物下落的行程要经过一对直齿圆柱齿轮放大。

所以,传动流程:重物→圆锥滚筒→大齿轮→小齿轮→后驱动轮2、转向机构图2为小车的前轮转向部分,为使得小车能够绕开定距离的障碍物,小车前轮转向要设计成具有周期性摆动的转向机构。

故,转向机构设计成正弦机构。

前轮的动力来源:重物→圆锥滚筒→带轮1→带轮2→转向拨盘→转向轮带轮带动拨盘转动,拨动转向轮上的转向槽前后摆动,这样即可以带动前轮的左右摆动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章工作原理和设计理论推导1.总体结构无碳小车模型主要由一个转向轮和两个驱动轮以及几个大小齿轮组成,其中小车中的转向轮,驱动轮,齿轮,支撑块,横杆,木板等如下图所示。

2.整体结构的初步设定尺寸如下驱动轮直径D=120mm 采用橡胶材料转向轮直径d=30mm 采用橡胶材料底板厚度e=5mm 采用木材3.驱动轴及转向轴上轮子的定位介绍驱动轮采用橡胶结构,轴嵌入轮中,采用过度配合,由于橡胶的弹性性能好,可以使轴得到纵向及横向的约束。

第3章.无碳小车设计的理路指导3.1 小车的运动原理以及如何实现正余弦曲线1.小车的运动原理重物的牵引带动原动轮轮的转动,原动轮的转动带动齿轮轮,再根据两齿轮之间的齿轮粘合带动驱动轮和齿轮的转动,带动齿轮盘的转动,从而使方向杆左右运动的同时,前后运动,杆的偏转,使得转向轮偏转,根据驱动轮轮和转向轮的合运动,小车就可以按照要求一边行走一边转弯。

梯形原动轮2.梯形原动轮的原理1.在起始时原动轮的转动半径较大,起动转矩大,有利起动。

2.起动后,原动轮半径变小,转速提高,转矩变小,和阻力平衡后小车匀速运动。

3.当物块距小车很近时,原动轮的半径再次变小,绳子的拉力不足以使原动轮匀速转动,但是由于物块的惯性,仍会减速下降,原动轮的半径变小,总转速比提高,小车缓慢减速,直到停止,物块停止下落,正好接触小车。

初步启动时转矩大约是360N.mm,滚动摩擦力大约为F=320N.mm,小车可以正常起步。

3.2 小车各个尺寸设计的推导:无碳小车二维示意图根据题目中赛道宽度2m ,以及每间隔1m ,放置一个直径20mm 、高200mm 的弹性障碍圆棒,以及赛道的大致行走路线(如图四),我组拟定一些实际尺寸的大小以及推导无碳小车在重力势能作用下自动行走示意图考虑到要使小车的运动轨迹尽可能沿直线运动,绕过的障碍物越多,但又得考虑要使小车不碰到障碍物,经过我组在各方面的考虑,小车的宽度定为24cm, 底板M 的厚度为5mm ,小车的长度200mm ,而转向轮的直径为30mm,经网上查得,橡皮轮胎与干地面之间的动摩擦因素为0.71。

根据运动轨迹路线,它须偏离直线方向35cm 以及两圆柱障碍物的实际距离为98cm ,我们采用Matlab 软件模拟得E 齿轮半径为10mm ,齿轮盘半径为64mm ,底板厚度为5mm ,轴1和轴2直径为6mm ,方向杆的长度为160mm ,方向杆与齿轮盘的连接点的半径55mm , B 齿轮的厚度为20mm ,D 齿轮的厚度为17mm ,转向支撑块中孔的宽高大小为3-6mm ,转向轮和驱动轮的宽度为1cm 。

驱向轮所获得的摩擦阻力大约为6N,假定两驱向轮的直径为120mm,则其转矩cm35cm98M=F*R=360N.m,由于该车子的运动基本上是匀速运动,所以同轴上的转矩相等,所以D齿轮的转矩也为60N.m,设其半径为r ,则B、D边缘所受到的力FD=FB=60/r ,所以D齿轮的转矩为MD=FD*RD=60R/r ,因为小车是匀速行使,所以物体下降也应该是匀速下降,A齿轮的转矩:MA=mg*RA=10*10=100N.m,又根据同一轴上转矩相等,所以B的转矩:MB=MA=100N.m,得RB/rD=3.6。

如何实现正余弦曲线重物的牵引带动原动轮轮的转动,原动轮的转动带动齿轮轮,再根据两齿轮之间的齿轮粘合带动驱动轮和齿轮的转动,带动齿轮盘的转动,从而使方向杆左右运动的同时,前后运动,杆的偏转,使得转向轮偏转,根据驱动轮轮和转向轮的合运动,小车就可以按照要求一边行走一边转弯。

方向杆转动一个周期,小车的转向轮同时也转动了一个周期。

通过运用matlab计算结果及模拟得到,其行进的路线大体是呈一正玄曲线Y=0.35sinπx求导得到在每个位置的转角的正切大小:Y’=0.35πcosπx ;我们可以得到前轮的最大转角为36°第3章.转向机构的设计转向机构简图采用凸轮推杆转向机构4.1 自由度的计算平面机构自由度,由于在平面机构中,各构件只做平面运动,所以每个自由机构只具有三个自由。

而每个平面低副(转动副和移动副)个提供两个约束,每个平面高副只提供一个约束。

设平面机构中共有n个活动构件(机架不是活动构件),在个机构件尚未用运动副连接时,它们共有3n个自由度。

而当个机构用运动副连接之后,设共有P1个低副和Ph个高副,则它们提供(2P1+Ph)个约束,故机构的自由度为F=3n-(2P1+Ph)机构简图 F=3n-(2P1+Ph )=1得出此机构的运动可以实现。

4.2 齿轮传动根据本机构选择直尺圆柱齿轮传动。

4.24. 齿轮的尺寸计算齿顶高 a hm h h a a *=齿根高 f h m c h h a f )(**+=齿顶圆直径 a da a h d d 2+=齿根圆直径 f d f f h d d 2-=孔径 b齿宽b1d b d ψ=第5章 计算1.齿轮设计(一)、选定齿轮类型、精度等级、材料及齿数。

1)按简图所示的传动方案,选用直齿圆柱齿轮传动。

传动简图 2)、此装置运转速度不高,故选用7级精度。

3)、材料选择。

齿条材料为40钢(常化),硬度为200HBS ,齿轮材料为ZG310-570硬度为160HBS ,二者材料硬度差为40HBS 。

4)、齿轮齿数z1=17 z2=z1*3.6=61 2) 初步设计齿轮主要尺寸(1) 设计准则:先由齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。

(2) 按齿面接触疲劳强度设计,即2311)][(132.2H E d t Z u u KT d σ±⋅Φ≥ 1> 确定公式内的各计算数值 Ⅰ.试选载荷系数3.1=tK 。

Ⅱ.计算小齿轮传递的转矩mm N n P T ⋅=⨯=II360105.95251Ⅲ.由《机械设计》表10-7选取齿宽系数1=Φd 。

Ⅳ.由《机械设计》表10-6查得材料的弹性影响系数21188MPa Z E =。

Ⅴ.由《机械设计》图10-21d 按齿面硬度查得小齿轮的接触疲劳强度极限MPa H 3201lim =σ;大齿轮的接触疲劳强度极限MPa H 2702lim =σ。

Ⅵ.计算应力循环次数92110037.160⨯==h jL n N81210288.0⨯==IIi N N (假设的转速为240r/min )Ⅶ.由《机械设计》图10-19取接触疲劳寿命系数92.01=HN K ;94.02=HN K 。

Ⅷ.计算接触疲劳许用应力 取失效概率为1%,安全系数S=1 MPa SK HN H 4.294][1lim 11==σσMPa SK HN H 8.253][2lim 22==σσ 2>.计算Ⅰ. 试算小齿轮分度圆直径t d 1,代入][H σ中较小的值。

mm Z u u KT d H E d t 16)][(132.22311=+⋅Φ≥σ Ⅱ.计算圆周速度v 。

s m n d vt 2.010006021=⨯=πⅢ.计算齿宽b 。

mm d b t d 161=⨯Φ=Ⅳ.计算齿宽与齿高之比hb 模数 mm z d m tt 94.011== 齿高 mm m h t 12.225.2==6.7=hbⅤ.计算载荷系数根据s m v 2.0=,7级精度,由《机械设计》图10-8查得动载系数02.1=V K ; 直齿轮,1==ααF H K K ;由《机械设计》表10-2查得使用系数1=A K ;由《机械设计》表10-4用插值法查得7级精度、小齿轮相对支撑非对称分布时,423.1=βH K ;由6.7=hb,423.1=βH K 查《机械设计》图10-13得51.1=βF K故载荷系数452.1==βαH H V A K K K K KⅥ.按实际的载荷系数校正所算得的分度圆直径 mm K Kd d tt t 50.1631== Ⅶ.计算模数mm z d m t97.01==(3).按齿根弯曲强度设计弯曲强度的设计公式 3211)][(2F SaFa d Y Y z KT m σΦ≥1>.确定公式内的各计算数值Ⅰ.由《机械设计》图10-20c 查得小齿轮的弯曲疲劳强度极限MPa FE 2601=σ;大齿轮的弯曲强度极限MPa FE 2202=σ;Ⅱ.由《机械设计》图10-18取弯曲疲劳寿命系数87.01=FN K ,90.02=FN K ; Ⅲ.计算弯曲疲劳许用应力; 取弯曲疲劳安全系数 S=1.4,有 MPa SK FE FN F 28.165][111==σσMPa SK FE FN F 42.141][222==σσ Ⅳ.计算载荷系数K ;54.1==βαF F V A K K K K K Ⅴ.查取齿形系数;齿形系数Y Fa 及应力校正系数z(z v)1718 1920 21 22 2324 25 2627 2829YFa2.97 2.91 2.85 2.80 2.76 2.72 2.69 2.65 2.62 2.60 2.57 2.552.53YSa1.52 1.531.54 1.55 1.56 1.57 1.5751.58 1.59 1.5951.60 1.611.62z(z v)3035 4045 50 60 7080 90 100150 200∞YFa2.52 2.45 2.40 2.35 2.32 2.28 2.24 2.22 2.20 2.18 2.14 2.122.06YSa 1.6251.651.67 1.68 1.70 1.73 1.75 1.77 1.781.79 1.831.8651.97注:1)基准齿形的参数为α=20° 2)对内齿轮:当α=20°由表查得97.21=Fa Y ;28.22=Fa Y Ⅵ.查取应力校正系数;由表查得52.11=Sa Y ;73.12=Sa YⅦ.计算大、小齿轮的][F SaFa Y Y σ并加以比较;027313.0][111=F Sa Fa Y Y σ027891.0][222=F Sa Fa Y Y σ大齿轮的数值较大。

Ⅷ.设计计算 mm Y Y z KT m F SaFa d 48.0)][(23211=Φ≥σ对比计算结果,由齿面接触疲劳强度计算的模数m 大于由齿根弯曲疲劳强度计算的模数,由于齿轮的模数m 的大小主要取决于弯曲强度所决定的承载能力,而齿面接触疲劳强度所决定的承载能力,仅与齿轮直径(即模数与齿数的乘积)有关,可取由弯曲强度算得的模数0.48并就近圆整为标准值mm m 5.0=,按接触强度算得的分度圆直径,算出小齿轮齿数3311≈=md z 大齿轮齿数,取1192=z 。

(4).几个尺寸计算 1>.计算分度圆直径 mm m z d 5.1611== mm m z d 5.5922==2>.计算中心距mm d d a 38221=+= 3>.计算齿轮宽度mm d b d 5.161=Φ= 取mm B 172=,mm B 201=。

相关文档
最新文档